
Research Statement

In the 21st century, mathematics will increasingly be done by artificial intelligence, even though the
prevalence right now is low. The current methods we have for generating AI models require the consumption
of huge amounts of data. Large data sets are thus helpful for conjecture-formation by both humans and
computers. Over the past decade I have worked on one of the largest existing mathematical databases, the
L-functions and modular forms database (LMFDB), which contains over 2TB of contents, over 2 billion
objects, and required roughly a millennium of computation time to create.

The LMFDB focuses on the Langlands program, which brings together many different areas of mathemat-
ics, from number theory and arithmetic geometry to representation theory to complex, p-adic and harmonic
analysis. The level of interest in this data can be measured by the engagement of the global mathematical
community: the LMFDB has almost 1000 citations, as well as roughly 60,000 users and 500,000 page views
per year from 176 countries and all 50 US states.

In addition to my work on mathematical databases, I am also pursuing several projects in p-adic compu-
tation. This topic has seen much less attention than numerical computation over the real numbers, and has
applications to counting points on varieties over finite fields, finding rational points on curves, computing
L-functions, and studying p-adic analytic spaces associated to varieties.

1 Mathematical Databases

There are two kinds of work that go into building an online mathematical database. First, the underlying
data must be computed, often using computer algebra systems such as Sage [Sage] or Magma [BCP97]. This
process starts with an initial schema describing how the mathematical objects of interest will be represented
using basic types such as integers, strings and floating point values. Code for producing this data needs to
be structured to run at large scale and to include verifications supporting the reliability and reproducibility
of the computations. As an ancillary benefit, running over huge numbers of examples often reveals bugs in
the underlying systems which can be reported and fixed, benefiting other users. Moreover, building such
datasets often yields interesting mathematical problems of independent interest.

Second, the data must be made available to the user through a website. This process requires enough
mathematical understanding to build a helpful presentation and to anticipate how the user may want to
search through the data, enough web development background to create a usable interface, and enough
facility with databases to connect the webpages to the underlying data. Within the LMFDB, I have worked
to streamline this process for others, and I intend to use this experience to facilitate the creation of other
mathematical databases outside the LMFDB.

In the sections below, I describe my roles in creating several sections of the LMFDB: finite groups,
classical modular forms, modular curves, and abelian varieties over finite fields.

1.1 Finite groups

The database of finite groups in the LMFDB [CJP+23] provides a searchable database of over 500,000 groups
[LMF24b] that are small in some way: either with small cardinality (from the SmallGroup database in GAP
and Magma), with a small permutation representation (abstract isomorphism classes of groups from the
transitive group database), arising as a matrix group in small dimension over a ring such as Z, Fq or Z/NZ,
or with a short composition series (simple, perfect and almost simple groups). For each group, the subgroup
lattice, character table, and other properties are stored, to the extent that these computations are feasible.
One of the main improvements that it offers over previous group databases is that it includes subgroup and
quotient relationships rather than just information on how to construct each group.

I have been highly involved in this effort over the last three years, working on writing Magma code and
structuring the computations to gather group theoretic invariants as completely as possible. I am excited
about this database because it offers a qualitative difference with the rest of the LMFDB in terms of its
connections with areas of mathematics outside number theory. Because finite groups arise so ubiquitously,
there is room for cooperation with researchers studying graph theory, error correcting codes, and quantum
computation.
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1.2 Classical modular forms

Modular forms have played a central role in number theory over the last several decades, from the proof of
Fermat’s last theorem and subsequent applications to Diophantine equations to connections with quadratic
forms and automorphic representations. For a positive integer k and finite index subgroup Γ ⊆ SL2(Z),
the space of modular forms of weight k and level Γ is finite dimensional. Each has a basis whose Fourier
coefficients provide a connection to arithmetic geometry and L-functions. In 2019, I helped build the most
extensive existing database of modular forms [BBB+21]. It currently contains 281,965 newforms [LMF24d],
corresponding to 14,417,694 modular forms over C. In addition to covering a broader range of weights and
levels than previous databases, it made great strides in enumerating weight 1 modular forms, where modular
symbol algorithms are not applicable. As part of our effort to ensure the reliability of the data, I designed
and implemented a test suite for the database that ran extensive internal and external consistency checks.

1.3 Modular curves

The modular forms database played a key role in the creation of a new database of modular curves [LMF24c].
I helped organize three workshops at MIT [BCE+22a; BCE+22b; BCE+24] to kick off the creation of this
database, and then worked to put together contributions from the 46 participants in those workshops and
incorporate it into the LMFDB.

Modular curves parameterize elliptic curves together with some extra structure. Specifically, given any
open subgroup H ⊆ GL2(Ẑ), the points on the modular curve XH parameterize elliptic curves E so that
the image of the adelic Galois representation ρE is contained within H, up to conjugacy. Each such XH has
three basic invariants:

1. the level N , so that H is equal to the full preimage of its reduction modulo N ,

2. the index i of H inside GL2(Ẑ),

3. the genus g of XH as a curve.

The modular curve database in the LMFDB contains all curves with level up to 70, models (explicit equations)
for many curves of genus up to 24, and rational points coming from the LMFDB’s databases of elliptic curves
(the Galois images were computed using an algorithm of Zywina [Zyw22] as part of this project).

Work on this database is still ongoing. We aim to include modular curves of higher level, to search for
points using the explicit models (hopefully finding new examples of elliptic curves with interesting Galois
representations), to add quotient curves under Atkin-Lehner operators, and to add automorphism groups
and exceptional isomorphisms. In addition, we hope to connect this database to the extensive literature on
modular curves so that it can serve as a dynamic and growing resource for the community.

1.4 Abelian varieties over finite fields

While many interesting questions about elliptic curves remain open, a lot of focus in computational number
theory has shifted in recent years to higher genus curves (elliptic curves are genus 1 curves equipped with
a base point). One of the central objects of study for a curve of genus g is its Jacobian, defined in terms
of formal sums of points on the curve. Jacobians are examples of abelian varieties, higher dimensional
analogues of elliptic curves that are simultaneously projective varieties and abelian groups. For g > 2, not
all abelian varieties are Jacobians; the characterization of Jacobians among all abelian varieties is known as
the Schottky problem.

Abelian varieties were originally studied over the complex numbers, but arithmetic geometers prefer to
work over number fields and finite fields. Over a finite field Fq, the Honda-Tate theorem [WM71] provides
a powerful tool for studying abelian varieties. It classifies them up to isogeny, which is an equivalence
relation determined by the presence of a homomorphism with finite kernel, and gives a bijection1 between
isogeny classes over Fq of dimension g and integer polynomials of degree 2g whose roots in C all have
absolute value

√
q. Using this correspondence, Taylor Dupuy, Kiran Kedlaya, Christelle Vincent and I built

a database of abelian varieties [DKRV21], including quantities like point counts, endomorphism algebras,

1the image needs to be adjusted slightly by requiring that certain irreducible factors occur with multiplicity
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twists, primitivity, and angle ranks that are isogeny invariant and can be determined from the corresponding
polynomial.

The current database [LMF24a] contains almost 3 million isogeny classes, of dimension up to 6. I have
been working in two directions to enhance it. First, Stefano Marseglia and Mckenzie West have joined us and
we are making progress on dividing isogeny classes up into isomorphism classes. This process proceeds in two
steps, working first with unpolarized abelian varieties and then computing polarizations (a polarization of A
is an isomorphism from A to its dual abelian variety). Given an isogeny class corresponding to a polynomial
f(x), the polynomial defines an order2 and, under certain constraints on f , unpolarized isomorphism classes
correspond to ideal classes in this order. Polarizations and explicit isogenies can be computed in terms of
the same data. We have completed a draft of the resulting dataset, and aim to include it in the LMFDB in
the next several months.

The second direction relates to the Schottky problem. When g > 2, there is no known method for
determining whether a single isogeny class (specified by a polynomial) contains a Jacobian. Instead, various
authors have enumerated all curves of genus g over Fq for g up to 5 and small values of q. I am working
with Kiran Kedlaya on using descriptions of genus 6 and 7 curves [Muk95] to carry out a similar project in
higher genus. Longer term, enough of this form may make it possible to use machine learning algorithms to
search for a pattern in which polynomials correspond to isogeny classes containing a Jacobian.

2 p-adic computation

My interest in p-adic computation began as an undergraduate, with a project that used p-adic cohomology to
count points on surfaces over finite fields [AKR09] and a project that studied the Coleman-Mazur eigencurve
[CM98] in the 3-adic setting [Roe14]. My contributions developed in a more theoretical direction with my
thesis on the local Langlands correspondence for tame unitary groups [Roe11], two papers with Clifton
Cunningham on a function-sheaf dictionary for characters of group schemes [CR16; CR21], and a paper with
Moshe Adrian on rectifiers in the local Langlands correspondence [AR16].

From a computational point of view, there are two main challenges in implementing p-adic arithmetic:
tracking precision through a computation, and handling algebraic extensions, which are far more complicated
than for real numbers. I have led the development of p-adic arithmetic in Sage [Sage] for the last 15 years,
creating an open source platform that other mathematicians have used in work on p-adic L-functions [PS11],
quadratic Chabauty [BD19], Gröbner bases over Tate algebras [CVV19], and many other applications. The
implementation includes many methods for tracking precision (one of which is discussed in the next section),
as well as the ability to compute in extension fields.

2.1 Tracking precision

Both real and p-adic arithmetic can only be implemented to finite precision on a computer, but error tracking
is easier in the p-adic context because p-adic fields are non-Archimedean. For example, arbitrarily many
inexact values can be added and the result will have the same precision as the least precise input. Yet
once addition and multiplication are mixed, precision loss occurs both in theory and practice. Partly as a
consequence of these non-Archimedean advantages, far less work had been done in the p-adic setting than
over the real numbers, where numerical methods are commonly studied. In a sequence of papers with Xavier
Caruso and Tristan Vaccon [CVR14; CVR15; CVR16; CVR17; CVR18], we explored a new method for
propagating precision bounds through a computation, based on the following foundational lemma.

Let V and W be vector spaces over Qp of dimension m and n. The p-adic ball BV (r) of radius r = p−a

around 0 in V is a lattice, paZm
p . More general ellipsoids can be modeled as arbitrary lattices H ⊂ V , and

an imprecise element of V can be modeled as a coset v +H.

Lemma ([CVR14, Lem. 3.4]). Suppose that f : V → W is differentiable at v ∈ V and that the differential
f ′(v) is surjective. Then, for all ρ ∈ (0, 1], there exists δ ∈ R>0 such that, for all r ∈ (0, δ) and all lattices
H with BV (ρr) ⊂ H ⊂ BV (r) one has

f(v +H) = f(v) + f ′(v)(H).

2a subring of full rank inside the number field defined by the same polynomial
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The unique feature of this lemma is the equality of f(v + H) and f(v) + f ′(v)(H), which implies that
tracking precision through lattices and differentials is optimal, since the image of v + H is also given by a
lattice. Accompanying the final paper in this series, we implemented lattice precision within Sage, making
it broadly and easily usable by other mathematicians.

The main downside to the method is that the complexity grows dramatically with the dimension, when
compared to simpler methods. There is a lot of room for student projects that use the lattice approach
to model precision loss theoretically for specific problems, while designing numerically stable algorithms for
computing approximations without precision tracking.

2.2 Extensions and Galois groups

Unlike R, which has a unique nontrivial algebraic extension (the complex numbers), any p-adic field Qp

has infinitely many extensions (see [Ser79] for example). To any such extension K/Qp we may associate its
Galois group G = Gal(K/Qp), a permutation group that controls how K is situated among other extensions
L/Qp. For example, for each odd prime p there is a unique quartic extension with Galois group C2

2 , and it
contains all the quadratic extensions of Qp. Moreover, there is a natural filtration on G (the ramification
filtration), and corresponding sequences of subfields of K and of the normal closure of K. In addition to the
standard problem of computing G and its filtration given K, there are two computational problems naturally
arising in this context:

1. Given G, find all K with Gal(K/Qp) ∼= G (there are finitely many),

2. Build a database of extensions K/Qp, giving a canonical defining polynomial for each K.

Toward the first question, I gave an algorithm [Roe19] for counting the number of K with a given Galois
group, as long as p ̸= 2. There are some natural necessary conditions on G for such a K to exist, but no
known, easy-to-state sufficient conditions. Moreover, there is no efficient algorithm known for enumerating
such K.

I am currently working with Jordi Guardia, John Jones, Kevin Keating, Sebastian Pauli, and David
Roberts on a collaboration (through the SQuaRE program at AIM) to build on work of Monge [Mon14] in
understanding how Galois groups vary in families of Eisenstein polynomials, as well as improving the Jones-
Roberts database [JR06] within the LMFDB. We have found a method for choosing a canonical polynomial
defining each K; the analogous function for number fields, polredabs in Pari [BBB+85], has proven very
useful since it enables looking up an unknown number field from a list of existing fields.

2.3 Hypergeometric L-functions

Hypergeometric motives are a class of motives that provide an avenue to constructing a wide variety of
L-functions that are not easily accessible via direct computation from an explicit algebraic variety. They are
defined in terms of very simple data: a rational function f(T )/g(T ) so that f and g have equal degree and
can be expressed as products of Tm−1 for varying m, together with a specialization parameter t ∈ Q. A full
definition is given in the survey [RR22], and the Dirichlet coefficient ap of the associated L-function can be
expressed [Wat15] as an explicit sum with p summands. Computing the L-function to precision N using this
formula directly thus requires O(N2) operations. Together with Edgar Costa and Kiran Kedlaya [CKR20;
CKR23], we have designed an implemented an algorithm that uses methods originally due to Costa, Gerbicz

and Harvey [CGH14] to compute the L-function in Õ(N) operations.
The performance impact is dramatic in practice, opening up the possibility of computing many hyperge-

ometric L-functions. Such a source of L-functions has two immediate applications: examples are important
in pinning down Euler factors at wild primes in order to get a full conjecture on what the conductor of
a hypergeometric L-function should be, and a large body of high degree L-functions will be valuable in
determining how widely the new murmurations phenomenon [HLOP22] applies.
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