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Abstract. The study of dynamical systems often involves analyzing how
functions behave under iteration in different mathematical spaces. In the con-
text of complex dynamics, tools such as Julia sets and filled Julia sets are
used to understand the long-term behavior of functions in complex Euclidean
space. In this paper, we will present a review of Julia sets and filled Julia sets,
provide an overview of the mathematical formulation of the alternate Julia set
introduced in [DRP09, Section 2], extend it to the p-adic setting, and propose
a tool that can potentially be used to study the arithmetic dynamics of various
types of functions. Additionally, we will summarize key results on connectiv-
ity properties and visualization techniques as discussed in [DBR13, Section 2
and 3] and provide a visualization algorithm and pseudocode that enable the
visualization of alternate Julia sets with various connectivity properties.
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1. Introduction

In complex dynamics, the study of iterated rational functions gives rise to rich
and intricate structures known as Julia sets. For a polynomial f : C→ C, the filled
Julia set is the set of points whose orbits under iteration of f remain bounded,
while the Julia set itself is typically defined as the boundary of the filled Julia
set. Variations such as the alternate Julia set modify the iteration process by
alternating between different polynomials at each step, leading to new dynamical
behaviors and fractal structures. Extending these ideas beyond the complex num-
bers, one can study dynamical systems over Cp, the field of p-adic complex numbers.
In this setting, one can define p-adic Julia sets, p-adic alternate Julia sets, and

Date: May 13, 2025.
1



2 RAY WANG

p-adic Mandelbrot sets analogously, using the p-adic norm to measure bound-
edness of orbits. The resulting p-adic sets display behaviors that are different from
their complex counterparts, reflecting the unique topology and geometry of p-adic
spaces. This paper will explore the definitions, properties, and examples of filled
Julia sets, alternate Julia sets, p-adic Mandelbrot sets, and p-adic alternate Julia
sets, highlighting the similarities and differences across these contexts.

2. Julia sets, filled Julia sets, and Mandelbrot sets

Julia sets and filled Julia sets are common tools for studying the complex-
dynamical behavior of a given function. For a given function F : C → C, the
filled Julia set K is the set of points where their corresponding orbits under F are
bounded. In other words, we can define the filled Julia set as follows:

Definition 2.1. The filled Julia set K(F ) of a given function F is the set of
points z where the orbit {Fn(z)} is bounded.

With the definition of the filled Julia set, we can also define the Julia set J(F )
that can be used to describe the dynamical property of a given function.

Definition 2.2. The Julia set J(F ) is the boundary of the filled Julia set K(F ).
In mathematical terms, J(F ) = ∂K(F ).

The points in the Julia set exhibit chaotic behavior. More specifically, points ly-
ing outside the Julia set diverge to infinity under repeated iterations of the function
F , while points in the interior of the filled Julia set remain bounded. In contrast,
the dynamical behavior of points in the Julia set is highly sensitive to perturbations
and lacks stability.

Notably, the Julia set and the filled Julia set associated with a given function
share the same connectivity properties. For a polynomial in the quadratic family
f : C→ C, f(z) = z2 + c, the corresponding Julia set and filled Julia set are either
path-connected (there is a path within the set that connects any two given points
in the set) or path-disconnected (for any two given points in the set, it is impossible
to find a path within the set that connects the pair). The set of complex numbers
c that can form a path-connected Julia set is called the Mandelbrot set. Different
components of the Mandelbrot set correspond to different dynamical behaviors of
the corresponding filled Julia sets, resulting in different fractal patterns that can
be used to generate beautiful visualizations.

2.1. Examples. The visualization of the Mandelbrot set and the corresponding
path-connected filled Julia sets of different points in the Mandelbrot set are pro-
vided in Figure 1[Bou01, Figure 1]. Different components of the Mandelbrot set
correspond to different dynamical behaviors of the corresponding filled Julia sets.
For example, the largest bulb of the Mandelbrot set corresponds to the filled Julia
sets that have attractive fixed points (i.e., there exists an x such that |f ′(x)| < 1),
while the second-largest bulb corresponds to the filled Julia sets that have attrac-
tive 2-cycles (i.e., there exists an x such that |(f2)′(x)| < 1).

3. Alternate filled Julia sets

3.1. Formulations and Boundedness Properties. Although we can use Julia
sets to model the behavior of a given dynamical system, there are multiple types of
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Figure 1. A visualization of the Mandelbrot set and the corre-
sponding connected Julia sets of different components of the Man-
delbrot set. The plot is generated by Python and is copied from
[Bou01, Figure 1].

interactions in some more complex systems that cannot be described with a single
function. To provide a more general framework for the problem, imagine that there
are two different functions in the quadratic family, F1 and F2, that act on a given
point z0 iteratively. We can define the corresponding orbit of iteratively applying
the two given functions in the quadratic family as follows:

Definition 3.1. For two given functions

F1 : C C

z z2 + c1 and

F2 : C C

z z2 + c2

where c1 and c2 are constants in C, we define the orbit Pc1c2(z0) of a given starting
point z0 ∈ C as the set

{zi|z2i = F2(z2i−1) = z22i−1 + c2, z2i+1 = F1(z2i) = z22i + c1}

where the even terms of the orbits are generated by applying F2 on the previous
terms while the odd terms are generated by applying F1 on the previous terms.
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Similarly, we can also swap F1 and F2 to define another orbit:

Pc2c1(z0) = {zi|z2i = F1(z2i−1) = z22i−1 + c1, z2i+1 = F2(z2i) = z22i + c2}.

Similar to the definition of filled Julia sets, we can also define the filled alternate
Julia set of two alternate dynamics by the boundedness of the orbits.

Definition 3.2. The alternate filled Julia set Kc1c2 corresponding to the orbit
type Pc1c2 is defined as the set of points where their orbits under the alternate
dynamics are bounded

Kc1c2 = {z|Pc1c2(z) is bounded}.

To analyze whether a given orbit Pc1c2(z) is bounded, we need the following
proposition that relates the boundedness of the odd terms and the even terms of
the orbit:

Proposition 3.3. [DRP09, Proposition 2.1]
(1) If z2i is bounded, then z2i−1 is also bounded.
(2) If z2i is unbounded, z2i+1 is also unbounded.

Proof. z2i−1 =
√
z2i − c2 is bounded if z2i is also bounded.

Similarly, z2i+1 = z22i + c1 is unbounded if z2i is also unbounded. □

We can formulate a conjugate orbit (which can be used to study the boundedness
of the alternate orbit) of the alternate dynamics for a given starting point z0 ∈ C
as follows.

Definition 3.4. [DRP09, Equation 5]: A quartic conjugate orbit Qc1c2(z0) of a
given starting point z0 and given parameters c1, c2 ∈ C can be defined as the even
terms of the alternate orbit Pc1c2(z0)

Qc1c2(z0) = {zi|zi = (z2i−1 + c1)
2 + c2}

With the assistance of Proposition 3.3, we can have the following theorem.

Theorem 3.5. [DRP09, Theorem 2.2 and 2.3] The boundedness of Qc1c2(z0)
implies the boundedness of Pc1c2 and therefore the quartic system

f(z) = (z2 + c1)
2 + c2

and the alternating system share the same filled Julia set.

This gives us a tool to analyze the boundedness and connectedness of a given
alternate filled Julia set.

3.2. Connectivities. As stated in the previous section, every alternate filled Julia
set has an equivalent quartic filled Julia set conjugate. We can hence investigate
the connectivity of a given filled Julia set by analyzing the connectivity of the
quartic conjugate. To explore the connectivity of a given (filled) Julia set, we need
a conjecture that was proven by Scott Sutherland.

Theorem 3.6. [Sut14, Section 6]
(1) A given Julia set is connected iff all the orbits of the critical points are

bounded.
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(2) A given Julia set is totally disconnected (which is called Cantor dust) iff
all the orbits of the critical points are unbounded. This kind of Julia sets is
referred to as Fatou dust.

As we have shown in Theorem 3.5, the Julia set of the quartic system F (z) =
(z2 + c1)

2 + c2 is equivalent to the alternate Julia set. We can analyze the con-
nectivity of the alternate filled Julia set by analyzing F . By solving the following
equation

F ′(z) = 2(z2 + c1) ∗ 2z = 0,

we can get three critical points of F to be 0 and ±
√
−c1. By discussing the prop-

erties of the corresponding critical orbits, we can determine the connectivity of the
alternate Julia set we are interested in.

Theorem 3.7. [DRP09, Section 3.1]
(1) The alternate Julia set is connected if the orbits of 0 and ±

√
−c1 are

bounded.
(2) The alternate Julia set is totally disconnected if the orbits of 0 and ±

√
−c1

are bounded.
(3) The alternate Julia set is disconnected if the orbit of either 0 and ±

√
−c1

is bounded.

The boundedness of a given alternate Julia set, therefore, can be determined by
simulating the alternating dynamics in a computer program.

3.3. Visualization algorithms and examples. In this section, we move from
the theoretical formulations of the Alternate Julia set to its visual representation.
By leveraging computer programs, we can transform the mathematical concepts
into vivid and intuitive images, offering a new perspective on the structure and
complexity of the set. Since the behaviors of a filled Julia set can be modeled by
the corresponding quartic function, it seems like the visualizations of the desired
set can be easily shown with the JuliaSetPlot command in Mathematica. However,
due to the lack of computational power, the command cannot be directly plotted in
an online Mathematica notebook. As a result, we decided to provide a visualization
algorithm that can be run in a Google Colab notebook. To simulate the dynamics,
we apply the alternating functions to a set of initial points within a given range (in
our case, we choose a+ bi for a, b ∈ R, |a| < 1.5, |b| < 1.5). We set a boundary of
absolute distances between fn(z0) and the origin for a given z0. After that, we plot
the number of iterations needed for a given point to go beyond the threshold. The
pseudocode for the visualization algorithm can be found in Algorithm 1. We choose
three different pairs of c1 and c2, representing different types of connectivities of
the alternate Julia set. The visualization can be found in Figure 2, 3, and 4.
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Figure 2. A totally disconnected alternate Julia set with c1 =
−0.76 + 0.1i, c2 = −0.76 + 0.1i.

Figure 3. A disconnected alternate Julia set with c1 = −0.76 +
0.1i, c2 = −0.76 + 0.15i.

Figure 4. A connected alternate Julia set with c1 = −0.765 +
0.11i, c2 = −0.76 + 0.1i.
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Algorithm 1 Alternate Julia sets visualization
Input: width, height, zoom, center_x, center_y, c1, c2, max_iter, threshold
Output: image[height][width]
for y = 0 to height− 1 do

for x = 0 to width− 1 do
zx← (x− width

2 ) · zoom+ center_x

zy ← (y − height
2 ) · zoom+ center_y

z ← zx+ i · zy
iter ← 0
while iter < max_iter and |z| < threshold do

if iter is odd then
z ← z2 + c1

else
z ← z2 + c2

end if
iter ← iter + 1

end while
image[y][x]← iter

end for
end for
return image

4. p-adic Mandelbrot sets and p-adic Julia sets

Having concluded our examination of the Alternate Julia set within the frame-
work of complex dynamics, we now proceed to consider analogous constructions in
the context of p-adic Mandelbrot and Julia sets. This transition from the complex
to the p-adic setting highlights profound differences in topology and analytic be-
havior, offering new perspectives on dynamical systems. In the complex dynamical
setting, the Mandelbrot set is defined by the connectivities of Julia sets of func-
tions f(z) = z2+ c in the quadratic family. We can therefore formulate a definition
of p-adic Mandelbrot sets of quadratic families with boundedness of orbits of the
origin. To begin with, we need to define the p-adic analog of complex field.

Definition 4.1. The p-adic analog Cp of the complex field C is defined as

Cp = Q̂p

where Qp is the algebraic closure of the field of p-adic numbers Qp, and Q̂p denotes
the completion of Qp with respect to the p-adic norm | · |p.

We can then define the p-adic Mandelbrot set in the field.

Definition 4.2. The Mandelbrot set M2
p for quadratic families in Cp consists

of the points where the sequence {fn(0)}, generated by iterating the function

f : Cp → Cp, f(z) = z2 + c for a given c ∈ Cp

remains bounded.

However, the structure of M2
p that corresponds to the quadratic family is simple

in contrast to its complex-dynamical counterpart.
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Theorem 4.3. [Sil13, Page 2] M2
p is the unit disk around the origin.

Proof. For the case |c|p ≤ 1, |f(0)|p = |c|p ≤ 1. Suppose that for all n ≤ N ∈ N,
there is a positive r ∈ R such that |fn(0)|p ≤ r. Then,

|fn+1(0)|p = |fn(0)2 + c|p
is bounded by max(|c|p, |fn(0)|p). Therefore, by induction, for all |c|p ≤ 1, c is in
the Mandelbrot set. For |c|p > 1, |fn(0)|p grows exponentially with n, so any point
outside the unit disk is not in the p-adic Mandelbrot set. □

We want to study the more complex dynamics in the p-adic space by expanding
the definition of Mandelbrot sets to a more general case. The reason why we
only consider a single type of orbit {fn(0)} is that each function in the quadratic
family only has one critical point at the origin, while higher order polynomials
have multiple critical points and, therefore, more diverse types of dynamical and
connectivity behaviors determined by Theorem 3.6. With this in mind, we can
define the Mandelbrot set of higher-order polynomials in Cp.

Definition 4.4. For a function family

f(z) = zn + c1z
n−2 + c2z

n−3 + ...+ cn−2z + cn−1

(there is a conjugate of every single order n polynomial in the family), we can define
the Mandelbrot set Mn

p as a set of vectors v ∈ Cn−1
p such that all critical orbits of

f are bounded in Cp.

To know whether the structure of a given p-adic Mandelbrot set is simple, we
can use the following theorem to conclude that some Mandelbrot sets share the
same geometric property.

Theorem 4.5. [Sil13, Theorem 1] If p ≥ n, then Mn
p is a poly-disk

{(c1, c2, ..., cn−1) where |ck|p ≤ 1 for 1 ≤ k ≤ n− 1}.

This theorem can also be used to explain why the Mandelbrot set of the quadratic
family (where n = 2) is a unit disk. Some calculations and examples in [Sil13, Page
2 and 3] and [And13, Figure 1, 2, and 3] also show that the complexity of some Mn

p

with n > p can be comparable to its counterpart in the complex-dynamical setting.

4.1. Examples. [Sil13, Example 2] Consider the function

f : C2 → C2, f(z) = z3 − 3

4
z − 3

4
.

By solving f ′(z) = 3z2 − 3
4 = 0, we find that the critical points of f are ± 1

2 . The
critical orbit at 1

2 is bounded:

1
2 −1 −1f f

.

We can also know that the critical orbit at − 1
2 is also bounded:

− 1
2 − 1

2 .
f

Therefore, the pair (− 3
4 ,−

3
4 ) ∈M3

2.
Since | 34 |2 = 4, the Mandelbrot set M3

2 is not a unit polydisk.
Similarly, we can define the p-adic analog of the filled Julia set in Cp.
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Definition 4.6. For a given function F : Cp → Cp, we can define the p-adic
filled Julia set Qp(F ) as the set of points z where the orbit of z under F is bounded.

The p-adic filled Julia set is a useful tool for studying the arithmetic dynamics
of a given function in the p-adic field.

5. p-adic alternate Julia sets

In this section, we extend the definitions and results from [DRP09], [And13],
and [Sil13] to propose the definition of p-adic alternate filled Julia sets and some
basic properties of them. Based on the previous discussion, we can formulate the
definition of the orbits of two given alternating functions

F1 : Cp → Cp

and
F2 : Cp → Cp.

For our interest, we only discuss the system consisting of the quadratic family.

Definition 5.1. For two given functions

F1 : Cp Cp

z z2 + c1 and

F2 : Cp Cp

z z2 + c2

where c1 and c2 are constants in Cp, we define the orbit P c1c2
p (z0) of a given

starting point z0 ∈ Cp as the set {zi|z0 = z0, z2i = F2(z2i−1), z2i+1 = F1(z2i)}.

We can also define the p-adic alternate Julia set and Mandelbrot set in this
manner.

Definition 5.2. The p-adic alternate Julia set Kc1c2
p of F1 and F2 is the set of

points z where its orbit P c1c2
p (z) is bounded under the p-adic distance metric.

Definition 5.3. The p-adic Mandelbrot set of alternate Julia sets is the set of
(c1, c2) such that Kc1c2

p is connected.

In contrast to the normal quadratic p-adic set that only has one critical orbit,
the structure of the alternate p-adic Julia set is more complex. To describe the
structure of the alternate p-adic Julia set, we have the following theorem.

Theorem 5.4. The even terms z2i of the orbit P c1c2
p (z0) are bounded iff the odd

terms z2i+1 of the orbit are also bounded.

Proof. Suppose that for all n ∈ N, |z2n| ≤ r where r is a non-negative real number.
We have

|z2n+1|p = |z22n + c1|p
≤ max(|z22n|p, |c1|p)
≤ max(r2, |c1|p).
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Therefore, all odd terms are bounded. If the set of all even terms {z2n} is un-
bounded,

sup |z22n+1| = sup |z22n + c1|p
= sup |z22n|p →∞.

As a result, the odd terms are also unbounded if the even terms are unbounded.
Similarly, by symmetry we can show that if |z2n−1| is bounded, |z2n| = |z22n−1+ c2|
is also bounded and if |z2n−1| is unbounded then |z2n| = |z22n−1 + c2| should also
be unbounded. □

We can also form a quartic p-adic Julia set similar to what we have done in the
complex case.

Definition 5.5. The quartic p-adic filled Julia set Qc1c2
p corresponding to the

p-adic alternate filled Julia set can be defined as the p-adic filled Julia set Qp(F )
of the function F = F2 ◦ F1.

Theorem 5.6. Qc1c2
p is the p-adic alternate Julia set of F1 and F2.

Proof. From Theorem 5.4, we know that odd terms and even terms of the orbit at
a given point have the same boundedness properties. Therefore, the set of points
where the even terms of the orbits are bounded (which is Qc1c2

p ) is equivalent to
the p-adic alternate Julia set where both even terms and odd terms of the orbits
are bounded. □

To analyze the connectivity of the alternate Julia set, we can use the formulation
of the p-adic Mandelbrot set. We know from Theorem 4.5 that for all p ≥ 4, the
p-adic Mandelbrot set of order 4 polynomial is a poly-disk. On the other hand, for
p ≤ 3, the structure of the Mandelbrot set can be extremely complex, making it
difficult to infer the connectivity properties of the p-adic Julia set without running
computer simulations. We can construct the conjugated quartic polynomial by
selecting c1 and c2 and we can use the polynomial to determine the connectivity
of the p-adic filled Julia set with the help of the p-adic Mandelbrot set. The result
can be expanded to finite order polynomial functions F1 and F2 and their p-adic
Julia set of the conjugate function F = F2 ◦ F1 by adjusting the value of p based
on Theorem 4.5.
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