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Abstract. In this expository paper, we introduce the Dynamical Mordell–
Lang Conjecture, an important conjecture in arithmetic dynamics. After pro-
viding some general background, we state and sketch a proof of the Skolem–
Mahler–Lech Theorem about linear recurrence sequences, which can be viewed
as a special case of the Dynamical Mordell–Lang Conjecture. We also indicate
how the techniques used to prove the Skolem–Mahler–Lech Theorem can be
extended to special cases of the Dynamical Mordell–Lang Conjecture.

1. Introduction

The Dynamical Mordell–Lang Conjecture is an important conjecture in arith-
metic dynamics which describes how dynamical systems interact with a fixed sub-
variety. Consider the following setup. Let X be a quasiprojective variety over C,
and suppose we have endomorphism Φ on X. This creates a dynamical system on
X by repeatedly iterating Φ. Let Φn for n a nonnegative integer denote the n-th
iterate of Φ. Fix some point α ∈ X, and let V ⊂ X be some subvariety. We are
interested in how the orbit of α, defined to be {Φn(α) : n ≥ 0}, interacts with V .

One particularly simple case is when V is a periodic subvariety of X, which
means that there exists N with ΦN (V ) ⊂ V . Furthermore, suppose there exists
some m such that Φm(α) ∈ V . For example, we could have

Φ : A2 → A2

(x, y) 7→ (y, x2)

with V = {x = 0} and α = (1, 0), in which case N = 2 and m = 0. Then since V is
a periodic subvariety, ΦNk+m(α) = (ΦN ◦ · · · ◦ΦN )(Φm(α)) ∈ V for all k. In other
words, there is an arithmetic progression {Nk +m : k ∈ N} of indices n for which
Φn(α) ∈ V . By imposing some constraint on the variety V such that it has a well-
behaved structure with respect to Φ, we have found that the set of indices for which
Φn(α) ∈ V also has a nice structure. The Dynamical Mordell–Lang Conjecture is
that the converse holds.

Conjecture 1.1 (Dynamical Mordell–Lang). [BGKT12] Let X be a quasipro-
jective variety over C, and let Φ be an endomorphism of X, V ⊂ X be a closed
subvariety, and α ∈ X. Then the set of integers n ≥ 0 such that Φn(α) ∈ V is the
finite union of arithmetic progressions, possibly of common difference zero.

The Dynamical Mordell–Lang Conjecture gets its name from the original Mordell–
Lang Conjecture, now a theorem by Faltings [Fal94]. The dynamical case specializes
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to Falting’s Theorem when X is an abelian variety and Φ is the translation-by-P
map for some P ∈ X(C).

The Dynamical Mordell–Lang Conjecture was first proposed in 2009 by Ghioca
and Tucker in [GT09], motivated by more general goals of Zhang in extending
results from arithmetic geometry to dynamical systems [Zha06]. Conjecture 1.1 is
known in a few special cases, like the following.

Theorem 1.2. The Dynamical Mordell–Lang Conjecture is known if

(1) [BGT10] the map Φ is an étale endomorphism, or
(2) [Xie23, Theorem 1.4] the map Φ is an endomorphism of A2 defined over C

Although Conjecture 1.1 is stated over C, the Dynamical Mordell–Lang Conjec-
ture in its most general form can be formulated over any field K, for example in
[BGT16, Conjecture 3.1.1.1]. Such considerations have been important as a build-
ing block for establishing results over C. For example, in [Xie17] Xie proved a
statement analogous to statement (2) in Theorem 1.2 over Q, which forms a large
part of the proof of (2) in [Xie23]. More recently, some work has also been done over
fields of positive characteristic, although the problem is significantly more difficult
in this case [XY25].

In this expository paper, we hope to give an idea of some of the techniques cur-
rently used to approach the Dynamical Mordell–Lang Conjecture. One of these,
known as the “p-adic arc lemma” uses so-called p-adic analytic parameterizations
of the orbits {Φn(α)}. In Section 2, we introduce this technique by stating and
sketching a proof of the Skolem–Mahler–Lech Theorem, a classical theorem about
arithmetic progressions. Surprisingly, the techniques used to prove the Skolem–
Mahler–Lech Theorem are broadly the same as those used to prove case (1) in The-
orem 1.2. In Section 3 we show how to translate the Skolem–Mahler–Lech Theorem
into more geometric language and indicate how the method of proof generalizes to
more general settings (e.g. when X is affine and Φ is an automorphism).

2. The Skolem–Mahler–Lech Theorem

The Skolem–Mahler–Lech Theorem is a classical result about linear recurrence
sequences, which we will see in Section 3 are a special case of the setting of the Dy-
namical Mordell–Lang Conjecture. Moreover, the method of proof of the Skolem–
Mahler–Lech Theorem is very closely related to current approaches to the Dynami-
cal Mordell–Lang Conjecture. In this section, we explain the result and give a brief
outline of the proof.

Definition 2.1. A linear recurrence sequence over a field K is a sequence
a0, a1, . . . with each ai ∈ K such that there exists bi ∈ K so that the sequence
satisfies a recurrence

an =

m∑
i=1

bian−i

for n ≥ m.

Example 2.2. The Fibonacci sequence (F0 = 0, F1 = 1, F2 = 1, F3 = 2, and
so on) is a linear recurrence sequence over C. It satisfies the recurrence Fn =
Fn−1 + Fn−2.
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One natural question to ask about linear recurrence sequences is to examine their
dynamical behavior. For example, some sequences like the Fibonacci sequence do
not repeat at all after the first few terms. Others are periodic, like the following
example.

Example 2.3. Consider the sequence defined by a0 = 0 and a1 = 1 and the
recurrence an = an−1 − an−2. The first few values of this sequence are:

n 1 2 3 4 5 6 7 8 9 · · ·
an 0 1 1 0 −1 −1 0 1 1 · · ·

As we can see, a7 = a1 and a8 = a2, so since the value of an only depends on the
previous two values, the sequence repeats after the 6th entry.

One natural question to ask is the following.

Question 2.4. Given a linear recurrence sequence an and a constant c, for which
n does an = c?

For example, for the Fibonacci sequence we might ask when Fn = 1, in which
case the answer is n = 1 and n = 2 only. For the sequence in Example 2.3, we
might ask when an = 1, in which case the answer is all n for which n ≡ 2, 3 mod 6.
From these examples, we might conjecture that in general, the set of n for which
an = c has a nice structure: the set can be divided into a finite number of pieces,
each of which is a single index or an arithmetic progression. As it turns out, this is
correct.

Theorem 2.5 (Skolem–Mahler–Lech Theorem). [BGT16, Theorem 2.5.4.1] Let
an be a linear recurrence sequence over C. Then the set of n for which an = 0 is a
union, possibly empty, of finitely many arithmetic progressions, possibly of common
difference zero.

Remark 2.6. Technically, Theorem 2.5 does not quite answer Question 2.4: in
Question 2.4 above we considered the question of when an = c for arbitrary c,
but Theorem 2.5 only answers the question for c = 0. As it turns out, these are
equivalent, because of the following fact.

Fact 2.7. [BGT16, Lemma 2.5.1.3] Let an and bn be two linear recurrence se-
quences. Then cn := an + bn is also a linear recurrence sequence.

The question of when a linear recurrence sequence an equals c can be reduced
to when the sum of the sequences an and the constant sequence bn := −c equals
zero. (The constant sequence is, of course, a linear recurrence sequence with the
recurrence relation bn = bn−1.) By Fact 2.7, this sum is another linear recurrence
sequence, so by the Skolem–Mahler–Lech Theorem, the set of n for which it equals
zero is the finite union of arithmetic progressions.

Surprisingly, the proof of the Skolem–Mahler–Lech Theorem uses methods from
p-adic analysis. This ultimately stems from the fact that Z embeds into Qp as
a compact set. We will sketch the proof below; a full proof can be found in the
literature in Section 2.5 [BGT16], with the original proof from a paper of Hansel’s
[Han85]. The proof consists of three main steps:

(1) Find a closed formula for the nth term an, of the form

an =

m∑
i=1

fi(n)r
n
i ,
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for some polynomials fi ∈ C[x] and complex numbers ri ∈ C.
(2) Find a suitable prime p so that the entire formula in step 1 embeds “nicely”

in Zp, in the sense that the coefficients of the fi and all of the ri lie in Zp,
together with some other conditions.

(3) Consider a suitable p-adic analytic function gk(z) using the an. Then use
results from p-adic analysis to analyze the zeros of gk(z).

In the three subsections that follow, we introduce the tools necessary for each
step, and in Subsection 2.4 we provide a complete proof sketch of the Skolem–
Mahler–Lech Theorem putting all the results together.

2.1. Formula for a Linear Recurrence Sequence. For the first step of the
proof, we illustrate how one finds a closed formula for a linear recurrence sequence
with the example of the closed form for the Fibonacci sequence, which may perhaps
already be familiar to the reader.

Example 2.8 (closed form for the Fibonacci sequence). Using the recurrence
Fn+2 = Fn+1 + Fn, we see that(

1 1
1 0

)(
Fn+1

Fn

)
=

(
Fn+2

Fn+1

)
,

so using the initial values F1 = 1 and F0 = 0, it follows that(
1 1
1 0

)n (
1
0

)
=

(
Fn+1

Fn

)
.

In particular, to find a formula for the nth term Fn, it suffices to analyze how
the powers of a certain matrix behave. As it turns out, the matrix in this case is
diagonalizable, as follows:(

1 1
1 0

)
=

(
φ φ
1 1

)(
φ 0
0 φ

)(
φ φ
1 1

)−1

,

so (
1 1
1 0

)n

=

(
φ φ
1 1

)(
φ 0
0 φ

)n (
φ φ
1 1

)−1

.

Expanding this, we get a closed form for the Fibonacci numbers, namely

Fn =
1√
5
(φn − φn).

This takes the form given in step 1 of the proof, where the ri are φ and φ, and the
polynomials fi are constants f1 = 1√

5
and f2 = − 1√

5
.

However, in general things need not be so simple. In particular, the characteristic
polynomial of the relevant matrix might have repeated roots, and hence the matrix
might not be diagonalizable. But as the following example illustrates, it is still
possible to find a closed form.

Example 2.9. Consider the linear recurrence sequence an defined by a0 = 1,
a1 = 2, a2 = 2, and an = 3an−1 − 4an−3. As before we can write down a matrix
relation for the coefficients:3 0 −4

1 0 0
0 1 0

an−1

an−2

an−3

 =

 an
an−1

an−2

 .
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This time, however, the matrix
(

3 0 −4
1 0 0
0 1 0

)
is not diagonalizable: its characteristic

polynomial is x3 − 3x2 +4, which has a multiple root at x = 2 and a single root at
x = −1. However, it is still possible to find a closed form: we guess a solution of
the form

an = (An+B)2n + C(−1)n,

for some A,B,C ∈ C. Since 2 is a double root of the characteristic polynomial,
instead of having a constant coefficient in front of 2n, we use a linear polynomial
in n. (In general, for a root r of multiplicity k, we would have a degree k − 1
polynomial in n as the coefficient of rn.) It is not hard to check that an of this form
satisfy the recurrence relation; in general this follows from the fact that a double
root of a polynomial is also a root of its derivative. To find a closed form for an it
suffices to solve for A, B, and C such that a0 = 1, a1 = 2, and a2 = 2. This gives
A = − 1

3 , B = 11
9 , and C = − 2

9 , so our closed form is

an =

(
−1

3
n+

11

9

)
2n − 2

9
(−1)n.

For general linear recurrence sequences, a similar procedure works: find the
characteristic polynomial and its roots, and guess a solution which is a sum of
exponential functions of the roots, possibly with polynomial coefficients in the case
of a multiple root. The general statement is the following.

Theorem 2.10. [BGT16, Proposition 2.5.1.4] Let an be a linear recurrence se-
quence over C. Then there exist polynomials fi ∈ C[z] and ri ∈ C such that
an =

∑m
i=1 fi(n)r

n
i .

2.2. An Embedding Lemma. Having found a closed form for the terms of the
sequence, the next two steps in the proof view this formula as an analytic function.
To motivate this, consider the simplest case where an is some linear recurrence
sequence over R and the roots of the corresponding characteristic polynomial are
all real and distinct. Then we can write an =

∑m
i=1 cir

n
i for some ci, ri ∈ R.

As a function in n, this is real analytic, since it is a finite linear combination of
exponential functions. We would like to find x ∈ Z such that the function

f(x) =

m∑
i=1

cir
x
i

is zero. However we do not have enough control over the zeros, since Z is not
compact in R. One can imagine many real analytic functions with infinitely many
zeros, scattered in arbitrary ways.

To gain more control over the roots of analytic functions, we move to the p-adics
Qp. The key property is that, unlike the integers in R, the integers in Qp are
compact, since they embed into Zp = {x ∈ Qp : |x|p ≤ 1}. We will see in the third
step in the proof that we can control the roots of analytic functions over Cp, the
algebraic closure of Qp. In particular, the zeros are isolated, just as in C, so over a
compact set there can only be finitely many of them.

As suggested earlier, the second step of the proof of the Skolem–Mahler–Lech
Theorem relies on the following lemma, first proven by Lech in [Lec53]. Since the
proof is rather technical, we omit it here.
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Lemma 2.11. [BGT16, Proposition 2.5.3.1] Suppose K is a field which is finitely
generated over Q, and let S ⊂ K be a finite subset. Then there exist infinitely many
primes p so that there exists an embedding σ : K → Qp, and moreover σ(S) ⊂ Zp.

2.3. Some p-adic Analysis. The third step in the proof the Skolem–Mahler–Lech
Theorem relies on the following facts from p-adic analysis about analytic functions.

Lemma 2.12. [BGT16, Lemma 2.3.4.2] Let a ∈ Cp with |a − 1|p < p−1/(p−1).
Then the function f(z) = az defined by exp(log(1+(a−1))z) is analytic on |z|p < 1.

Proof (sketch). We recall the following facts about the p-adic logarithm and the
p-adic exponential, which can be found in, for example, [Gou20, Section 5.7 &
7.1]. The p-adic exponential function log(z) can be defined using a power series
expansion around z = 1, as follows:

log(1 + z) =
∞∑
i=1

(−1)i+1 z
i

i
.

It turns out that log(1 + z) is analytic for |z|p < 1, or in other words log(z) is
analytic for |z − 1|p < 1. Similarly we can define the p-adic exponential function

exp(z) :=

∞∑
i=0

zi

i!

which is analytic for all z with |z|p < p−1/(p−1). Then the lemma follows easily using
the construction given in the statement and facts about composition of analytic
functions. □

Lemma 2.13. [BGT16, Lemma 2.3.6.1] Suppose F (z) =
∑∞

i=0 aiz
i is a power

series in Cp which is convergent around some open disc around z = 0. If F is not
identically zero, then the zeros of F are isolated.

We omit the proof of Lemma 2.13 for the sake of brevity. By applying Lemma
2.13 to the compact region |z|p ≤ 1, we find that the zeros of F which lie in Zp are
isolated. This is more commonly known as Strassmann’s Theorem [Str28].

Theorem 2.14 (Strassmann). [Cas78, Chapter 3, Exercise 21] Suppose F (z) =∑∞
i=0 aiz

i is a power series with ai ∈ Qp, and suppose ai → 0. If F is not identically
zero, then there are only finitely many a ∈ Zp with F (a) = 0.

2.4. Proof of the Theorem. With all these tools in place, we can finally sketch
the proof of the Skolem–Mahler–Lech Theorem.

Proof sketch (of Theorem 2.5). Step 1: From Theorem 2.10, we can write

an =

n∑
i=1

fi(n)r
n
i

for some fi ∈ C[z] and ri ∈ C.
Step 2: From Lemma 2.11, we can choose a prime p so that the coefficients of

the fi and the ri lie in Zp, and moreover, each of the ri is nonzero mod p (i.e.
|ri|p = 1). This is because there are infinitely many p satisfying the first constraint,
and the second constraint only removes finitely many p.

Step 3: Now observe that by Fermat’s little theorem,

|rp−1
i − 1|p ≤ 1/p
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for all i. Let

N =

{
2 if p = 2

p− 1 if p ̸= 0
.

Then
|rNi − 1|p < p−1/(p−1),

since for p odd, p−1/(p−1) < 1
p , while for p even, |r2i − 1|2 ≤ 1

4 < 1
2 = p−1/(p−1).

Now let k be a nonnegative integer at most N . Define the function

gk(z) :=

m∑
i=1

fi(k +Nz)(ri)
k+Nz =

m∑
i=1

fi(k +Nz)rki (r
N
i )z,

which is just ak+Nz by the closed formula from step 1. By Lemma 2.12, the ex-
ponential function (rNi )z is analytic. Since the fi are just polynomials and rki is
a constant, it follows that gk(z) is analytic. But by Theorem 2.14, gk(z) is either
identically zero or has finitely many zeros in the disc {z ∈ Cp : |z|p ≤ 1}.

In the former case, this means gk(z) = 0 for all z ∈ Cp, so certainly gk(z) = 0
for all integers z. This means ak+Nz = 0 for all z ≥ 0, or in other words we
have an arithmetic progression of indices corresponding to zeros of a. In the latter
case, since every integer z ∈ Z has p-adic absolute value at most 1, we have only
finitely many integers z so that ak+Nz = 0. In either case, the indices i of the
form k +Nz with ai = 0 are a finite union of arithmetic progressions, possibly of
common difference zero.

Every index i ≥ 0 can be written as k + Nz for some 0 ≤ k < N and integer
z ≥ 0. Applying the same analysis as above for every k, since there are only finitely
many possible k, we obtain that the indices i with ai = 0 are a finite union of
arithmetic progressions. □

3. Generalizations of Skolem’s Method

At first glance it is not clear how the Skolem–Mahler–Lech Theorem has anything
to do with the Dynamical Mordell–Lang Conjecture. The relationship between
the two becomes clearer after we reformulate the Skolem–Mahler–Lech Theorem
in more geometric language, as follows. Let (b1, . . . , bm) ∈ Cm be a m-tuple of
complex numbers. Consider the affine space Am with the Zariski topology and the
function

Φ : Am → Am

(x1, . . . , xm) 7→ (x2, . . . , xm, b1xm + · · ·+ bmx1)

Let V = {x1 = 0} be the hyperplane in Am with first coordinate zero, and let
α ∈ Am. The Dynamical Mordell–Lang Conjecture in this case states that the set
of n such that Φn(α) ∈ V should be the finite union of arithmetic progressions.
In fact, this statement is exactly the Skolem–Mahler–Lech Theorem. Let an be a
linear recurrence sequence, with recurrence relation an = b1an−1 + · · · + bman−m.
Suppose that (a0, . . . , am−1) = α are the starting values for the recurrence. Then
Φn(α) = (an, . . . , an+m−1), so the question of when Φn(α) ∈ V is just the question
of when an = 0. By the Skolem–Mahler–Lech Theorem, we know that the answer
is a finite union of arithmetic progressions.

In fact, the connection between the Skolem–Mahler–Lech Theorem and the Dy-
namical Mordell–Lang Conjecture is much deeper than just its translation into
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dynamical language, which is perhaps unimpressive. Consider the following result,
which is the Dynamical Mordell–Lang Conjecture in the case of linear maps.

Theorem 3.1. [BGT16, Theorem 4.1.0.4] Suppose Φ : Am → Am is a linear
automorphism, in the sense that it is given by

Φ((x1, . . . , xm)) = (f1(x1), . . . , fm(xm))

for some linear functions fi ∈ C[z]. Let V ⊂ Am be some subvariety, and let
α ∈ Am. Then the set of n ≥ 0 so that Φn(α) ∈ V is the finite union of arithmetic
progressions.

Proof. First observe that we can assume V = V (F ) for a single polynomial F ∈
C[x1, . . . , xm]. This is because if V = V ((F1, . . . , Fk)) = ∩iV (Fi) then the set
of n ≥ 0 such that Φn(α) ∈ V is the intersection of the sets of n ≥ 0 such that
Φn(α) ∈ V (Fi). If each of these sets is a finite union of arithmetic progressions, then
since the intersection of two arithmetic progressions is an arithmetic progression
(or empty), we are done.

Now we observe the following fact about iterating linear functions. If f(z) =
az + b is a linear function, then by simple calculation

fn(z) =

{
anz +

(
an−1
a−1

)
b if a ̸= 1

z + nb if a = 1
.

In particular, in either case the formulas are sums of polynomials in n times expo-
nentials in n. Hence we can write

F (fn
1 (x1), . . . , f

n
m(xm)) =

ℓ∑
i=1

gi(n)r
n
i

for some polynomials gi ∈ C[n] and ri ∈ C. Since this is the same form as the
formula for a linear recurrence sequence, we can use the same second two steps
from the proof of the Skolem–Mahler–Lech Theorem, as these did not use anything
other than the form of the formula. So we conclude

∑ℓ
i=1 gi(n)r

n
i is zero for n lying

in a finite union of arithmetic progressions, as desired. □

A more general result was proven by Bell in [Bel06] for automorphisms of affine
varieties, using very similar techniques.

Theorem 3.2. [Bel06, Theorem 1.3] Let X be an affine variety over C, Φ be
an automorphism of X, and α ∈ X. Let V be a subvariety of X. Then the set of
n ∈ Z such that Φn(α) ∈ V is the finite union of arithmetic progressions.

Proof sketch. The proof consists of four main steps:
(1) Reduce the problem to the case where X = An, using a result of Srinivas

[Sri91] on embedding dimensions.
(2) Find p such that the coefficients of the automorphism Φ, the defining equa-

tions of V , and point α embeds into Qp, with integer coefficients.
(3) Split the orbit {Φn(α)} into pieces in arithmetic progression and find p-adic

analytic parameterizations of each piece.
(4) For each parameterization, argue by Strassmann’s theorem (Theorem 2.14)

that it is either identically zero (hence an arithmetic progression of n sat-
isfies Φn(α) ∈ V ) or has only finitely many zeros.

□
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Very broadly, the approach is the same as the proof of the Skolem–Mahler–Lech
Theorem: the second step here corresponds to the second step in the previous proof,
and the last step corresponds to the third step in the previous proof. However in
this proof the third step is significantly more complicated. Whereas in the case of
linear recurrence sequences it is possible to find a p-adic analytic function for the
nth iterate of a generic point (i.e. regardless of the initial values of the recurrence),
in this case it turns out that no such formula holds. This is because general auto-
morphisms of An are quite complicated, unlike the linear automorphisms considered
in Theorem 3.1. However, for fixed points α it is still possible to write down these
analytic parameterizations, although it requires a lot of work.

In their paper [BGT10, Theorem 3.3], Bell, Ghioca, and Tucker use a broadly
similar approach to prove the case of the Dynamical Mordell–Lang Conjecture for
so-called étale (flat and unramified) maps. The key difficulty in this proof is similar
to the difficult in Theorem 3.2, which is finding a p-adic analytic parameterization
of the orbits. A promising future approach to proving the Dynamical Mordell–Lang
Conjecture in more general cases is to find these parameterizations for larger classes
of maps [BGT16, Section 1.6].
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