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Abstract. Generalized Cunningham chains are sets of the form {fn(z)}n≥0

where all its elements are prime numbers and f is a linear polynomial with
integer coefficients. Its size is called its length ℓ(z). We generalize this defini-
tion further to include starting terms that are not prime, and we obtain the
expected bound of ℓ(z) < z if z is big enough, which is a new result that is not
dependent on the prime factorization of z.
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1. Introduction and basic definitions

Given an integer polynomial P , consider the set P (Z) = {P (z) : z ∈ Z}. Which
elements of it are prime numbers? Are there even any prime numbers in it at all?

The Bouniakowsky conjecture encapsulates all these questions, as explained in
[Peg25]: given a polynomial P of degree greater than 1, positive leading coefficient
and with

gcd(P (1), P (2), . . . , P (z), . . . ) = 1,

it conjectures that there are infinitely many primes of the form P (z) for z ∈ Z+.

No polynomial is known that makes the conjecture true. For example, it is
famously not known whether there are infinitely many primes of the form z2 + 1
with z ∈ Z+.

The issue becomes worse if we consider orbits of P , that is, sets of the form
OP (z) = {P i(z) : i ≥ 1} where

P i(z) = P (P (. . . (P︸ ︷︷ ︸
i times

(z)) . . . ))

with P ∈ Z[x] and z ∈ Z. Consider the specific case P (z) = z2 − 2z + 2 and
an initial value of z = 3. OP (3) is the set of Fermat numbers, which have a long
history of study. Despite this, we do not know if there are an infinite number of
Fermat primes, and more importantly, we do not even know if there are an infinite

Date: May 14, 2025.
1



2 ALEJANDRO REYES

number of composite Fermat numbers (see [Kel25] for a list of known factorizations
of Fermat numbers), which is more surprising given the intuitive abundance of
composite numbers in comparison to prime numbers.

In this paper we will focus on the simple case of linear polynomials. A specific
case that is of significant interest is the polynomial P (z) = 2z + 1. Prime numbers
p such that 2p+ 1 is also prime are called Sophie Germain primes, and lists

{p, 2p+ 1, 2(2p+ 1) + 1, . . . , 2n(p+ 1)− 1}
of orbits using 2z+1 starting at a prime number such that all terms of the list are
prime are called Cunningham chains. Löh conducted an exhaustive search for Cun-
ningham chains with starting term less than 250 in [L8̈9, Section 2. Computations].
A small example of a Cunningham chain is {41, 83, 167}.

A generalized Cunningham chain is a list

{p, f(p), f2(p), . . . , f ℓ−1(p)}
where all its elements are prime and f(z) = az + b with a, b relatively prime (note
that this is necessary in order for f(p) to be prime).

A complete generalized Cunningham chain (using the same f) is a list

{p, f(p), f2(p), . . . , f ℓ(p)−1(p)}
that is a generalized Cunningham chain, has f ℓ(p)(p) composite and has f−1(p)
composite or not an integer (so it cannot be extended forwards or backwards). We
say this Cunningham chain has length ℓ(p).

For f(z) = 2z + 1, one can prove that ℓ(p) ≤ p− 1 with Fermat’s little theorem
and Kanado gives a better bound of ℓ(p) <

p

2
in page 2 of [Kan22].

In this paper, we will generalize these proofs to all linear f .

We will be using a slightly modified definition for Cunningham chains in order
to cover a wider breadth of cases.

Definition 1. Given integers z, a, b with a, b relatively prime, a rooted Cun-
ningham chain is a list

{f(z), f2(z), . . . , f ℓ(z)(z)}
such that all its elements are prime and f ℓ(z)+1(z) is composite (here, f(z) = az+b).
We say ℓ(z) is its length and that it has root z.

Notably, in this definition z is excluded from the list itself, so it is not necessary
for it to be prime. Definition 1 generalizes all non-generalized complete Cunning-
ham chains (that is, complete Cunningham chains that use f(z) = 2z + 1) except

{2, 5, 11, 23, 47} because they are rooted Cunningham chains with root
p− 1

2
, even

if
p− 1

2
is not prime. It is also important to mention that this definition of length is

one less than if you include a prime n into the list, which was our previous definition
of length.
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The goal of this paper is to prove the following two elementary bounds on the
length of a rooted Cunningham chain that generalize the bounds for Cunningham
chains.

Theorem 2. For coprime positive integers a, b with a > 1, define f : Z+ → Z+

as f(z) = az + b. For all z ∈ Z>1 coprime with a, the rooted Cunningham chain

{f(z), f2(z), . . . , f ℓ(z)(z)}
has length ℓ(z) < z.

Theorem 3. For coprime positive integers a, b with a > 1, define f : Z+ → Z+

as f(z) = az + b. There exists M ∈ Z+ such that for all z ∈ Z+ with z > M , the
rooted Cunningham chain

{f(z), f2(z), . . . , f ℓ(z)(z)}
has length ℓ(z) < z.

The case a = 1 transforms the Cunningham chain into an arithmetic progression.
Results on the distribution of primes in an arithmetic progressions are covered else-
where in greater detail, such as with Dirichlet’s theorem on arithmetic progressions
or Green and Tao’s paper [GT08] which directly addresses lengths.

Theorems 2 and 3 give the same bound with different conditions on z. Theorem
2 is easier to prove and is analogous to the result on non-generalized Cunningham
chains. However, it requires z to be relatively prime to a, so there is an infinite
subset of Z+ that is not addressed by Theorem 2. Theorem 3 requires additional
machinery but uses the same essential ideas as Theorem 2, and it provides the
desired bound for all but finite z ∈ Z+. In both cases we have restricted the linear
maps to a, b positive. In the case of Theorem 2, this gets rid of some pesky cases
such as the one where z remains fixed by f , but the condition on the coefficients
being positive can be relaxed and Theorem 2 remains true. For Theorem 3, setting
a, b to be positive avoids the same issues, but if we relax similar conditions the
bound becomes ℓ(z) < z+C for some constant C > 0 dependent on a and b, so we
omit this case.

In Section 2, we will provide a proof of Theorem 2 using Fermat’s little theorem
and some casework, and in Section 3 we will provide a proof of Theorem 3 using
two additional lemmas.

2. Proof of Theorem 2

Firstly, note that f(z) = az + b > z + b > z so f(z) > z always. We can also
calculate fn(z) explicitly:

fn(z) = anz + b+ ab+ a2b+ · · ·+ an−1b

= anz + b · a
n − 1

a− 1
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Proof of Theorem 2: If z and b share a common factor d > 1, then d divides

both anz and b · a
n − 1

a− 1
while being smaller than their sum, so fn(z) is composite

for all n. We may then assume that z and b are coprime for the rest of the proof.

Since z > 1, we may take a prime divisor p of z. Because z is coprime with a, p
does not divide a. We proceed with two cases, considering whether p divides a− 1
or not.

Case 1: p divides a− 1.

fp(z) = apz + b+ ab+ a2b+ · · ·+ ap−1b

≡ ap · 0 + b+ 1b+ 12b+ · · ·+ 1p−1b (mod p)
≡ pb (mod p)
≡ 0 (mod p)

Therefore, p divides fp(z). Because p is a divisor of z and f(z) > z, p ≤ z <
fp(z), so fp(z) is composite and the length ℓ(z) obeys ℓ(z) < p ≤ z, as desired.

Case 2: p does not divide a− 1.

Using Fermat’s little theorem, ap−1−1 is divisible by p. Because a−1 and p are
coprime and both divide ap−1 − 1, their product divides ap−1 − 1 as well, which is

equivalent to
ap−1 − 1

a− 1
being divisible by p. Then

fp−1(z) = ap−1z + b · a
p−1 − 1

a− 1

≡ ap−1 · 0 + b · 0 (mod p)
≡ 0 (mod p)

Therefore, p divides fp−1(z). Because p is a divisor of z and f(z) > z, p ≤ z <
fp−1(z), so fp−1(z) is composite and the length ℓ(z) obeys ℓ(z) < p − 1 < z, as
desired. □

The main idea of this proof of Theorem 2 is that the simplest way to obtain that
the expression

fn(z) = anz + b · a
n − 1

a− 1

is composite is to find a common factor of anz and b · a
n − 1

a− 1
.

The set of z’s that share all their prime factors with a is always infinite: pick
any prime factor q of a and {q, q2, . . . , qn, . . . } is an infinite subset of z’s that have
this property. So the boundedness of z’s that do not obey Theorem 3 is not an easy
consequence of Theorem 2.
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One way of exploiting Theorem 2 to eliminate the condition of z being co-
prime with a is to consider f(z) instead of z directly. f(z) = az + b is al-
ways coprime with a, so if we instead consider the rooted Cunningham chain
{f2(z), f3(z), . . . , f ℓ(f(z))(z)} with root f(z), we can apply Theorem 2. This will
tell us ℓ(f(z)) < f(z), which in turn tells us ℓ(z) ≤ ℓ(f(z))+1 < f(z)+1 = az+b+1
by appending f(z) to the beginning of the list {f2(z), f3(z), . . . , f ℓ(f(z))(z)}. We
conclude that ℓ(z) < az + b + 1 in all cases, which is already a linear bound, but
this is not as satisfying as a general bound as it depends on the size of a, b.

Let us look at an example of how this proof of Theorem 2 and subsequent
discussion works. Take f(z) = 2z + 3 and consider the rooted Cunningham chain
{5, 13, 29, 61} with root 1. Because Theorem 2 requires the root of the Cunningham
chain to have at least one prime factor, we cannot apply it directly. However, as
we discussed in the previous paragraph, if we consider f(1) = 5 we’ll be able to
leverage this prime factor to get a composite number further down the line, and
because 5 is coprime with a − 1 = 1, we know that this will be maximally at the
term f4(5). Indeed, f4(5) = f(61) = 125 = 53.

How can we prove Theorem 3 if we require our prime factors to divide z? It is
not immediately clear that we’ll be able to leverage the bijective nature of linear
maps modulo some prime p as we have been implicitly doing by using Fermat’s little
theorem to prove that some small enough term further along the Cunningham chain
is composite. But it turns out that we will be able to do it by considering a specific
sequence, as we will explain in the next section.

3. Proof of Theorem 3

Our answer lies in the sequence (sn)n≥1 defined explicitly as

s1 = z − b

s2 = z − b− ab

...

sn = z − b− ab− · · · − an−1b

= z − b · a
n − 1

a− 1
...

or defined inductively as s1 = z − b, sn+1 = sn − anb.

Consider a prime divisor p of sn = z − b− ab− · · · − an−1b. We have

fm(z) = amz + b+ ab+ · · ·+ am−1b

≡ am · (b+ ab+ · · ·+ an−1b) + b+ ab+ · · ·+ am−1b (mod p)

≡ b · (1 + a+ a2 + · · ·+ am−1 + am + · · ·+ am+n−1) (mod p)

≡ b ·
(
am+n − 1

a− 1

)
(mod p)



6 ALEJANDRO REYES

This is an eerily similar expression to what we had before in the proof of Theorem
2. In fact, it is exactly the same as what we had when p | z, with the exponent on
a changed from m to n+m. This is no coincidence: a nice feature of linear maps
is that they have an explicit inverse that is also a linear map, explicitly,

f−1(z) =
z − b

a
.

We have

f−n(z) =
z − b− ab− · · · − an−1b

an
=

sn
an

,

so we may suspect that we should somehow be able to include the numerator of this
expression in our previous framework in order to obtain other composite numbers,
and our suspicions would be correct.

Before proving Theorem 3, we will examine the prime factorizations for elements
of the sequence (sn)n≥1 closely with two crucial lemmas.

Lemma 4. Let a have k distinct prime factors. If z > b+ ab + a2b + · · · ak+1b,
then there exists a prime p that divides si for some index i with 1 ≤ i ≤ k + 1 but
does not divide a.

In order to prove Lemma 4, we need a better description of the prime factor-
izations of the elements of the sequence (sn)n≥1. We will get this description from
Lemma 5. Let νp(x) be the p-adic valuation of x.

Lemma 5. If p is a prime factor of a, then for each n ∈ Z+ we will have two
possibilities: {

νp(sn+1) = nνp(a) if νp(sn) > nνp(a)

νp(sn+1) ≥ νp(sn) otherwise

Additionally, if νp(sn+1) = nνp(a), then for every n1 > n we will have

νp(sn1) = nνp(a)

Proof of Lemma 5: If νp(sn) > nνp(a), then

νp(sn+1) = νp(sn − anb)

= min{νp(sn), νp(anb)}
= min{νp(sn), nνp(a)}
= nνp(a)

and we may prove by induction the claim that for every n1 > n we will have
νp(sn1

) = nνp(a). The above is the base case n1 = n+1. For the inductive step, if
νp(sn1

) = nνp(a) for n1 > n, then
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νp(sn1+1) = νp(sn1
− an1b)

= min{νp(sn1
), νp(a

n1b)}
= min{nνp(a), n1νp(a)}
= nνp(a)

as desired.

Otherwise, we’ll have νp(sn) ≤ nνp(a), so pνp(sn) divides both sn and anb. There-
fore, it divides their difference, sn+1, which yields νp(sn+1) ≥ νp(sn). □

Lemma 5 gives us a characterization of indices n for which the p-adic valuation
of sn breaks out of a weakly ascending pattern, in relation to a specific prime p. In
order to formalize this, consider the following definition.

Definition 6. For a prime p that divides a, we’ll say that it is n-stable if
νp(sn+1) = nνp(a).

Each prime that divides a may only be n-stable for at most one n, because of
the last sentence of Lemma 5. Lemma 5 gives us all the necessary tools to prove
Lemma 4.

Proof of Lemma 4: Assume the contrary. Then each si is divisible only by the
k primes that divide a.

By Lemma 5 and the fact that each prime is n-stable for at most one n, there is
at least one 1 ≤ i ≤ k+ 1 such that none of the k distinct primes that divide a are
i-stable. For this specific i, we’ll have that νp(si+1) ≥ νp(si) for all p that divide a.

By our initial assumption, these are actually all the primes that are in the prime
factorizations of si and si+1, so this actually yields that si divides si+1. Therefore,

si | si+1 − si = aib

⇒ z − b− ab− · · · − ai−1b | aib
⇒ z − b− ab− · · · − ai−1b ≤ aib

⇒ z ≤ b+ ab+ · · ·+ aib ≤ b+ ab+ · · · ak+1b

which is a contradiction with our assumption on the size of z. □

From Lemma 4 we can essentially repeat the same proof we had for Theorem
2 to prove Theorem 3, but with a prime divisor of this si that does not divide a
instead of a prime divisor of z.

Proof of Theorem 3: If z and b share a common factor f(z) is composite, so
assume that gcd(z, b) = 1. If z > b+ab+ · · ·+ak+1b = M , then by Lemma 4 there
exists a prime p that divides si (from the sequence (sn)n≥1) for some index i with
1 ≤ i ≤ k + 1 but does not divide a.

Because z ≡ b+ ab+ · · ·+ ai−1b (mod p), we’ll have
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fn(z) = anz + b+ ab+ · · ·+ an−1b

≡ an(b+ ab+ · · ·+ ai−1b) + b+ ab+ · · ·+ an−1b (mod p)

≡ b · (1 + a+ a2 + · · ·+ an+i−1) (mod p)

≡ b ·
(
an+i − 1

a− 1

)
(mod p)

We again proceed with two cases, considering whether p divides a− 1 or not.

Case 1: p divides a− 1.

Let r ∈ {1, 2, . . . , p} be the residue of −i (mod p). We’ll have

fr(z) ≡ b · (1 + a+ a2 + · · ·+ ar+i−1) (mod p)

≡ b · (10 + 11 + 12 + · · ·+ 1r+i−1) (mod p)
≡ b · (r + i) (mod p)
≡ 0 (mod p)

So p divides fr(z). Because it is a divisor of si and f(z) > z, p ≤ si < z < fp(z),
so fr(z) is composite and the length ℓ(z) obeys ℓ(z) < r ≤ p < z as desired.

Case 2: p does not divide a− 1.

Using Fermat’s little theorem, a(p−1)m − 1 is divisible by p for all k ∈ Z+.
Because a−1 and p are coprime and both divide a(p−1)m−1, their product divides

a(p−1)m − 1 as well, which is equivalent to
a(p−1)m − 1

a− 1
being divisible by p.

Let r ∈ {1, 2, . . . , p− 1} be the residue of −i (mod p− 1). Then

fr(z) ≡ b · a
r+i − 1

a− 1
≡ b · 0 (mod p)
≡ 0 (mod p)

since r + i is a multiple of p− 1.

So p divides fr(z). Because p is a divisor of si and f(z) > z, p ≤ si < z < fr(z),
so fr is composite and the length ℓ(z) obeys ℓ(z) < r ≤ p− 1 < z as desired. □
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