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Abstract. In this paper we will describe progress that has been
made on relating the structure of periodic and preperiodic points
of quadratics in Q to this structure in Qp for primes p.
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1. Introduction

Let fc(X) be the quadratic polynomial X2 + c, for c ∈ Q. Note that fc(X) can
represent the dynamics of any quadratic aX2+bX+c by using a linear conjugation
on X, which preserves dynamical properties. Define fn

c (X) to be f ◦ f ◦ · · · ◦ f(X),
with the composition performed n times.

Definition 1.1. We say that x is periodic if there exists m ∈ N such that
fm
c (x) = x, and x has period n if n is the minimal natural number such that
fn
c (x) = x.1 We say that x is preperiodic if f i

c(x) is periodic for some i ∈ N.

In Q, there is a main open conjecture about the periodic points of fc:

Conjecture 1.2 (Flynn–Poonen–Schaefer). [FPS97] There are no period n
points of fc in Q with n > 3.

In Section 2, we will explore what progress has been made towards resolving
Conjecture 1.2; in particular Conjecture 1.2 has been solved with n ≤ 6.2 We
will also look at some of the implications of Conjecture 1.2 for the structure of
preperiodic points in Q. While Conjecture 1.2 remains open, attempts at solving

Date: May 12, 2025.
1Note that this is sometimes referred to as exact period or primitive period in other texts.
2With n = 6, this solution is contingent on the Birch and Swinnerton-Dyer conjecture.
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or generalizing cases of it have motivated much of the field of arithmetic dynamics
in the 21st century.

Then, in Section 3 we will give some necessary background about the p-adic
numbers Qp and the local-global principle. This allows us to state the following
conjecture:

Conjecture 1.3 (The Quadratic Dynamic Local-Global Principle). [Kru16]
The polynomial fc has a period n point in Q if and only if it has a period n point
in Qp for all primes p, and in R.

In Section 3 we will see that the ‘only if’ direction is clearly true; in contrast,
the ‘if’ direction remains open.

In Section 4, we will use the ‘only if’ direction of Conjecture 1.3 to prove that
there are finitely many preperiodic points of fc in Q, which is what Theorem 4.1
states.

In Section 5, we will explore periodic points in Q2. Using the ‘only if’ direction
of Conjecture 1.3, this work in Q2 will allow us to resolve Conjecture 1.2 in the
case where c = m/n for n odd. In particular, we will show that for these values of
c, fc has only periodic points of period 1 or 2. All of the work in Sections 4 and 5
is done by elementary methods.

In Section 6, we will describe some more powerful results about Conjecture
1.3 which require more machinery. In particular, we will describe Krumm’s proof
of Conjecture 1.3 for n < 6 and his formulation of a more general conjecture,
Conjecture 6.2.

2. What is known in Q?

First, Walde and Russo [WR94, Theorem 1 and 3] studied periodic points of fc
in Q of periods 1, 2, and 3. They found that fc has a fixed point in Q exactly when

c = λ− λ2, for λ ∈ Q,

a point of period 2 exactly when

c = −1− µ− µ2 for µ ∈ Q,

and a point of period 3 exactly when

c = −τ6 + 2τ5 + 4τ4 + 8τ3 + 9τ2 + 4τ + 1

4τ2(τ + 1)2
, for τ ∈ Q, τ ̸= 0, τ ̸= −1.

Using elementary methods, this paper solved the case of understanding the dynam-
ics of period 1, 2, and 3 points of fc in Q. Examples of all of these are seen in
Figure 1: With λ = 1/2, then c = 1/4, and 1/2 is a fixed point of fc; with µ = 1/2,
then c = −7/4, and 1/2 is a period 2 point of fc, and with τ = 1, then c = −29/16,
and −1/4 is a period 3 point of fc.

The problem becomes much more complicated once the period becomes larger
than 3, with the main conjecture being Conjecture 1.2. To study points of period
n, it is necessary to introduce the dynatomic polynomial

Φn(X, c) =
∏
d|n

(fd
c (X)−X)µ(n/d) .
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Here, the product is taken over all divisors d ∈ N which divide n. In stating this
formula, we introduce the Möbius function µ(m) for a natural number m. Define

µ(m) :=


0 if m is divisible by the square of some prime
1 if m is the product of an even number of distinct primes
−1 if m is the product of an odd number of distinct primes

.

Then, it is not difficult to show that if x is a point of period n of fc, then
Φn(x, c) = 0, as discussed in [Sil07, Section 4.1]. This is because for a period n
point of fc, fn

c (x) − x = 0, but fm
c (x) − x ̸= 0 for m < n, which implies that

Φn(x, c) = 0. So, to show that there are no rational points of period n of any
polynomials fc, it suffices to show that Φn has no rational roots (x, c) for x, c ∈ Q.
This reformulates the dynamical problem of Conjecture 1.2 into a (very difficult)
algebraic geometry problem about rational points on an algebraic curve. For small
n, Conjecture 1.2 has been solved:

Theorem 2.1. [Mor98][FPS97][Sto08] There are no rational points on Φn for
n ∈ {4, 5, 6}. With n = 6, it is necessary to assume the Birch and Swinnerton-Dyer
conjecture to prove this.

Theorem 2.1 was shown for n = 4 by Morton in 1998, for n = 5 by Flynn and
Poonen and Schaefer in 1997, and for n = 6 by Stoll in 2008, assuming the Birch
and Swinnerton-Dyer conjecture (BSD). Thus, assuming BSD, there are no rational
points of period 4, 5, or 6 for any fc. All other cases of Conjecture 1.2 remain open.

Assuming Conjecture 1.2, Poonen [Poo98] also found that the preperiodic points
of fc will form a directed graph isomorphic to one of the 12 possibilities shown in
Figure 1. These have anywhere from 0 preperiodic points, such as with c = 1, to
8 preperiodic points, with c = −29/16. Hence, the preperiodic rational points of
fc for all values of c are also well-understood assuming the Flynn–Poonen–Schaefer
Conjecture.

3. Background about p-adic numbers

All of the material in this section can be found in an introductory text on the
p-adic numbers, such as [Gou20]. For a ∈ Z, define the p-adic valuation vp(a) to
be the maximum n ∈ N∪{0} such that pn|a, with vp(0) = ∞. For a/b in Q, define
vp(a/b) = vp(a) − vp(b). Then, define the p-adic absolute value |x|p = p−vp(x) for
x ∈ Q. Then, the completion of Q with respect to | · |p are the p-adic numbers Qp.
We can write Qp as the set of series

(3.1) Qp =

{ ∞∑
i=k

cip
i

∣∣∣∣∣k ∈ Z, ci ∈ {0, 1, . . . , p− 1}

}
.

For an element x in Qp represented as above, vp(x) is the minimum i such that ci
is nonzero. The set of elements x of Qp with vp(x) non-negative is called the p-adic
integers Zp. We can readily check that for x, y ∈ Qp,

(3.2) vp(xy) = vp(x) + vp(y), so |xy|p = |x|p|y|p .

Also, since adding two numbers cannot give a sum with less factors of p than both
numbers, for x, y ∈ Qp,

(3.3) vp(x+ y) ≥ min(vp(x), vp(y)), so |x+ y|p ≤ max(|x|p, |y|p) .
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Figure 1. The graph of the rational periodic points of fc for var-
ious values of c, due to [Poo98].

Whenever |x|p ̸= |y|p, we will have equality in Equation (3.3).
We now describe the solutions to quadratic equations in Q2, which will be useful

in Section 5.

Lemma 3.1. Let a ∈ Z be odd. Then, a has a root in Q2, meaning that there is
a solution to the equation X2 − a = 0 in Q2, if and only if a ≡ 1 (mod 8).

To help prove this, we state a strong form of Hensel’s Lemma:



THE LOCAL-GLOBAL PRINCIPLE IN DYNAMICS OF QUADRATICS 5

Lemma 3.2 (Strong Form Of Hensel’s Lemma). [Gou20, Theorem 4.5.3, Problem
120] For g(X) ∈ Z[X], if there exists α ∈ Zp such that |g(α)|p < |g′(α)|2p, then there
exists a unique x ∈ Zp such that g(x) = 0, and |x− α|p < 1.

We can think of α as an approximate root of g, and x as an exact root of g. This
ability to turn approximate roots into exact roots will be exactly what we need to
prove Lemma 3.1:

Proof of Lemma 3.1. Let g(X) = X2 − a ∈ Z[x], for a ∈ Z. We want to know for
which odd a there will exist a root x of g in Q2. By looking at squares modulo 8,
only 1 is a square, so there will be no root of g if a ≡ 3, 5, 7 (mod 8). With a ≡ 1
(mod 8), then |g′(1)|2 = 1

2 and |g(1)|2 ≤ 1
8 . So, by Lemma 3.2, since 1/8 < (1/2)2,

g has a root x in Q2, a square root of a. □

Now, we can state Hasse’s local-global principle, for f(X1, . . . , Xm) in Q[X1, . . . , Xm]:

(3.4) f(X1, . . . , Xm) = 0 has
a solution in Q L9999K

f(X1, . . . , Xm) = 0 has
a solution in Qp for all
primes p and in R

.3

This principle gets its name because Qp is called a local field, and Q is called a
global field, and this principle relates ‘local data’ about Qp to ‘global data’ about
Q. The 99K direction follows directly from the inclusions Q ⊆ Qp and Q ⊆ R.
The L99 direction is much more powerful, since solving the equations on the right
is typically easier using different forms of Hensel’s Lemma and the Intermediate
Value Theorem. Unfortunately, it is only sometimes true: for example, it is true
for quadratic forms by Hasse–Minkowski’s Theorem, but not true for general cubic
equations; this is discussed in [Gou20, Section 4.8]. We will also see in Theorem 6.3
that when viewing Φn(X, c) as a two-variable polynomial, we get a contradiction
to (3.4).

In the context of this paper, we can define a quadratic dynamic local-global
principle, stated in Conjecture 1.3:

(3.5) fc has a period
n point in Q L9999K

fc has a period
n point in Qp for all
primes p

.

This is a special case of Hasse’s principle, using that period n points are charac-
terized by roots of the dynatomic equation Φn(X, c) for fixed c. Again, the 99K
direction follows from the inclusions Q ⊆ Qp and Q ⊆ R. In Sections 4 and 5, we
will explore the contrapositive of this, seeing how showing nonexistence of periodic
points in Qp for some p will give nonexistence in Q. The L99 direction remains
unsolved in the general case, but in Section 6 we will see that it is solved for m < 6.

4. Finiteness of Preperiodic Points

In this section, we will examine an elementary argument that uses local data to
prove the finiteness of preperiodic points in Q. This section is a slight generalization
of [WR94, Theorem 6, Corollaries 4 and 5], who make the same arguments for
periodic points. While there are many proofs of this theorem, this argument is

3The choice of Qp and R on the right is not arbitrary; by Ostrowski’s Theorem, discussed in
[Gou20, Theorem 3.1.4], these are the completions of Q with respect to each nontrivial absolute
value.
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particularly elegant because of how elementary it is. For example, there is another
proof due to Northcott [Nor50], which uses fancy tools such as height functions.
(See [Sil07, Theorem 3.12] for more details.)

Theorem 4.1 (Finiteness of Preperiodic Points). There are finitely many prepe-
riodic points of fc in Q.

To prove this theorem, we use the following lemma about local data:

Lemma 4.2. Let λ be a preperiodic point of fc in Qp, with |λ|p > 1. Then
|λ|2p = |c|p.

Proof. Let λ be a preperiodic point of fc in Qp with |λ|p > 1.
Case 1: First, assume that |λ|2p > |c|p. Then, using (3.2) and (3.3),

|fc(λ)|p = |λ2 + c|p = |λ2|p = |λ|2p > |λ|p .

Notice that fc(λ) will also be preperiodic with |fc(λ)|p > 1 and |fc(λ)2|p > |c|p, so
we can repeatedly apply this result to get

|λ|p < |fc(λ)|p < |f2
c (λ)|p < · · · .

Therefore, λ cannot be preperiodic, since iterating fc on it causes its p-adic absolute
value to grow infinitely.

Case 2: Now, assume that |λ|2p < |c|p. Then, using (3.2) and (3.3),

|fc(λ)|p = |λ2 + c|p = |c|p .

Now, notice that

|c|p > |λ|2p > |λ|p > 1, so |fc(λ)|2p = |c|2p > |c|p .

Notice that fc(λ) will also have |fc(λ)|p > 1, so we can apply Case 1 to say that
fc(λ) is not a preperiodic point of fc. Therefore, λ is not preperiodic.

Therefore, combining Case 1 and Case 2 proves the lemma. □

Remark 4.3. For an example of a point in Case 1, take c = 1 and λ = 1
2 , with

p = 2, and then maps of f will give

1

2

fc−→ 5

4

fc−→ 41

16

fc−→ 1937

256

fc−→ · · · .

As n increases, the value of |fn
c (λ)|2 increases without bound, as seen by the rapidly

increasing powers of 2 in the denominators.

Remark 4.4. For an example of a point in Case 2, take c = 1
8 and λ = 1

2 , with
p = 2, and then maps of f will give

1

2

fc−→ 3

8

fc−→ 17

64

fc−→ 801

4096

fc−→ · · · .

Again, as n increases, the value of |fn
c (λ)|2 increases without bound.

We can now state another lemma, which turns Lemma 4.2 into a global form.

Lemma 4.5. Let λ = j/k be a preperiodic point of fc in Q, with c = m/n, and
both fractions in lowest terms. Then n = k2.
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Proof. First, notice that |j/k|p > 1 exactly when p|k, by the definition of | · |p. For
p such that p|k, let vp(k) = a, so |j/k|p = p−a and |m/n|p = p−2a by Lemma 4.2.
This means that vp(n) = 2a. So, for all primes p dividing k, which divide k a
times, then they divide n 2a times. It now suffices to show that if p ∤ k, then p ∤ n.
Assume p|n but p ∤ k. So, |m/n|p > 1 and |j/k|p ≤ 1. Then, using (3.2) and (3.3),

|fc(j/k)|p = |j2/k2 +m/n|p = |m/n|p .

Now, applying Lemma 4.2 shows that fc(j/k) is not preperiodic, which is a con-
tradiction. Therefore, if p ∤ k, then p ∤ n. So, for all primes, n has twice as many
factors of them as k, so n = k2. □

We are now ready to prove Theorem 4.1.

Proof. By Lemma 4.5, we can let λ = j/k be a preperiodic point of fc, and let
c = m/k2. Then, if |λ| > |c|+ 1, we have that

|fc(λ)| = |λ2 + c| ≥ |λ|2 − |c| > |λ|2 − |λ|+ 1 = (|λ| − 1)2 + |λ| ≥ |λ| .
So, repeating this,

|λ| < |fc(λ)| < |f2
c (λ)| < · · · ,

so λ is not preperiodic. Therefore, for λ = j/k to be preperiodic,

−1− |c| ≤ j/k ≤ |c|+ 1, so (−1− |c|)k < j < (|c|+ 1)k.

This gives a maximum of 2(|c|+ 1)k + 1 values of j, and thus values of λ. □

5. Using Q2 to understand Q

In this section we will use the 99K direction of (3.5), specifically by showing
the nonexistence of periodic points in Q2, and then using that this implies their
nonexistence in Q. We again follow [WR94, Theorems 7 and 8, Corollaries 6 and
7]. The results in this section will use elementary methods to narrow the search for
points of period > 2 of fc to the case where c = m/n, with n even and m odd.

Theorem 5.1. If c = m/n, with n odd and m even, then fc has zero or two
fixed points in Q, and no other periodic points.

We will prove this using a lemma about Q2.

Lemma 5.2. If c = m/n, with n odd and m even, then fc has two fixed points
in Q2, and no other periodic points.

It is clear that Lemma 5.2 implies Theorem 5.1 since Q ⊆ Q2. To rule out the
existence of one fixed point in Q, we will show in the proof of Lemma 5.2 that if
one fixed point is x, the other is 1− x, and x ̸= 1/2.

Proof Of Lemma 5.2. Let m = 2m′ for m′ ∈ Z. First, notice that fc has a fixed
point x whenever

x2 +
2m′

n
= x, so

(
x− 1

2

)2

=
n2 − 8m′n

(2n)2
.

This has a solution whenever n2−8m′n is a square in Q2. For n odd, n2−8m′n ≡ 1
(mod 8), so it is always a square by Lemma 3.1. So, fc has a fixed point x, satisfying
x2 + c = x, so c = x(1− x). Now, notice that

(1− x)2 + c = 1− 2x+ x2 + c = 1− x ,
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so 1−x is also a fixed point of fc. This gives two fixed points of fc, unless x = 1−x,
so x = 1/2 and c = 1/4, which is not possible by the assumption c = m/n for m
even and n odd. Now, we use that

|x|2 |1− x|2 = |c|2 =

∣∣∣∣2m′

n

∣∣∣∣
2

< 1 .

This means that either |x|2 < 1 or |1 − x|2 < 1; without loss of generality assume
the former, as we can swap x and 1− x to achieve this. Then,

|1− x|2 = max(|1|2, | − x|2) = 1 .

Now, let y ∈ Q2, y ̸= x, y ̸= 1−x. We will show that y is not periodic by considering
three cases:

Case 1: |y|2 < 1. Here,

|y − x|2 ≤ max(|y|2, | − x|2) < 1 .

Let |y − x|2 = 2−k, with k > 0, so v2(y − x) = k. Then, let y − x = 2ku, where
v2(u) = 0 so |u|2 = 1. Then, we will show that fn

c (y) approaches x. Notice that

(5.1) |fc(y)− x|2 = |(x+ 2ku)2 + c− x|2 = |2k+1ux+ 22ku2|2 ≤ 2−(k+1) .

So, |fc(y) − x|2 < |y − x|2. Also, |fc(y)|2 < 1. Doing this repeatedly, fn
c (y)

approaches x at every step, so y cannot be periodic.
Case 2: |y|2 = 1. Let z = 1 − x. Then, since |z|2 = 1, we have that v2(z) =

v2(y) = 0. Writing z and y as 2-adic expansions as in (3.1), both of them have
c0 ̸= 0, so c0 = 1. Therefore, y − z has c0 = 0, so v2(y − z) > 0. Let v2(y − z) = k
with k > 0, so |y − z|2 = 2−k. Then, let y − z = 2ku, where v2(u) = 0 so |u|2 = 1.
Then, we will show that fn

c (y) approaches z. Notice that

(5.2) |fc(y)− z|2 = |(z + 2ku)2 + c− z|2 = |2k+1uz + 22ku2|2 ≤ 2−(k+1) .

So, |fc(y) − z|2 < |y − z|2. Also, |fc(y)|2 = max(|y2|2, |c|2) = 1. Doing this
repeatedly, fn

c (y) approaches z at every step, so y cannot be periodic.
Case 3: |y|2 > 1. In this case we can apply Lemma 4.2 to show that y is not

periodic.
So, we have shown all cases, and we are done. □

Now, let us see why this proof only works in Q2, rather than Qp for other values
of p. One reason is because of the extra factor of 2 which appears in the cross term
of (x+2ku)2, leading to the k+1 in (5.1). So, could we do a similar thing with the
dynamics of X3 + c in Q3? In Case 1, this is probably possible, assuming there is
a fixed point x with |x|3 < 1. However, in Case 2, in (5.2), we rely on the fact that
k + 1 ≥ 2k, so we need k > 0. In other words, we needed that 2|y − z, for any y
and z such that |y|2 = |z|2 = 1. While this is true in Q2, the analogous statement
is not true in Q3. For example, |1|3 = |2|3 = 1, but 3 ∤ 2− 1. So, Case 2 cannot be
salvaged even for cubic dynamics in Q3. So, the work in the proof of Lemma 5.2
relies very heavily on working in Q2, and is hard to generalize to other primes. We
can observe this in Figure 1: we see nonfixed periodic points of fc with c = m/n
where p|m, for many different p ̸= 2.

Now, we consider fractions with odd numerator and denominator of c, and state
a theorem which is similar in spirit to Theorem 5.1.

Theorem 5.3. If c = m/n, with m and n odd, then fc has zero or two period 2
points in Q, and no other periodic points.



THE LOCAL-GLOBAL PRINCIPLE IN DYNAMICS OF QUADRATICS 9

Similarly to Theorem 5.1, this theorem is proved using a lemma in Q2.

Lemma 5.4. If c = m/n, with m and n odd, then fc has two period 2 points in
Q2, and no other periodic points.

It is clear that Lemma 5.4 implies Theorem 5.3 since Q ⊆ Q2. We will sketch
some parts of the proof of Lemma 5.4 since it is similar to Lemma 5.2.

Sketch of proof. Period 2 points of fc are solutions to the dynatomic polynomial

Φ2(X, c) =
f2
c (X)−X

fc(X)−X
= X2 +X + c+ 1 .

The polynomial Φ2(X, c) has two roots in Q2 exactly when the discriminant

∆ = 1− 4(c+ 1) =
−3n− 4m

n
=

−3n2 − 4mn

n2

is a square in Q2. This is true exactly if −3n2 − 4mn is a square in Q2. Since n
and m are odd, −3n2 − 4mn ≡ 1 (mod 8) so it is a square in Q2 by Lemma 3.1.
Therefore, Φ2(X, c) has a rational root x ∈ Q, and fc has a period 2 point x ∈ Q.
Then, fc(x) = x2 + c = −1 − x will also be a period 2 point. Let z = −1 − x.
Now, we sketch a similar method to Lemma 5.2. First, it is possible to show that
xz = c + 1, so |xz|2 < 1. Let |x|2 < 1 and |z|2 = 1. Through similar methods, we
can show that for y ̸= x, z,
(5.3)
if |y|2 < 1, then |fc(y)−z|2 < |y−x|2 < 1 and if |y|2 = 1, then |fc(y)−x|2 < |y−z|2 < 1 .

So, iterating will give that for all points with |y|2 ≤ 1, fn
c (y) will approach the orbit

of x and z. Specifically, for |y|2 < 1, fn
c (y) approaches x with even n and z with

odd n, and vice versa for |y|2 = 1. With |y|2 > 1, we again apply Lemma 4.2 to
show that y is not periodic. □

We now compare the proofs of Lemma 5.2 and Lemma 5.4. For c = m/n,
in Lemma 5.2 we found fixed points when n2 − 4mn is a square in Q2, and in
Lemma 5.4 we found period 2 points when −3n2 − 4mn is a square in Q2. Then,
using Lemma 3.1, there will be fixed points with n odd and m even, and period
2 points with n and m odd. Then, in both of (5.1) and (5.3), we showed that
|fc(y) − fc(x)|2 < |y − x|2, when |y − x|2 < 1, and the same holds when replacing
x by z, the second periodic point. This means that y will approach the orbit of x,
as fc is iterated on it, meaning y cannot be periodic. The only difference is that x
was fixed in (5.1), and x was in a period 2 orbit with z in (5.3).

So, in this special case where n is odd, the behavior of fc is particularly easy to
understand. Together, Lemma 5.2 and Lemma 5.4 characterize the behavior of all
fc(x) in Q2 with v2(c) ≥ 0, and Theorem 5.1 and 5.3 do the same in Q.

While attacking the general case of the Flynn–Poonen–Schaefer conjecture re-
mains very difficult, there has recently been further progress made using arithmetic
and combinatorial means, combined with some deeper theoretical results. Specifi-
cally, Eliahou and Fares [EF22] found that for any c = m/n, where 16 ∤ n, then fc
can only have rational periodic points of period 1 or 2. These authors also found
that if n has only one or two distinct prime factors, fc can only have periodic points
of period 1, 2, and 3. So, for values of c where n has the form n = paqb for primes
p and q and a, b ∈ N ∪ {0}, the Flynn–Poonen–Schaefer Conjecture holds.
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6. Bigger Local-Global Theorems

In this section, we will explore work done to study the L99 direction in the
quadratic dynamic local-global principle of (3.5) and Hasse’s local-global principle
of (3.4).

In Section 6.1, we will discuss Krumm’s work on trying to resolve this for
(3.5), and study progress made towards proving and strengthening Conjecture 1.3.
Krumm’s proofs are interesting because they use mostly Galois theory and algebraic
number theory, in contrast to most other proofs in this area of arithmetic dynamics,
such as the proofs of Theorem 2.1, which are done using algebraic geometry.

In Section 6.2, we will describe how Morton proved that the 2-variable dynatomic
polynomial Φ4(X, c) is a counterexample to the L99 direction of (3.4).

6.1. Krumm’s Theorems. For general primes p, Krumm [Kru16] proved that the
L99 direction in (3.5) holds true for n < 6. In the proof of the n = 5 case, he needed
to assume that a certain algebraic curve has only two rational roots.

With n = 1, n = 2, and n = 3, this involves showing that for any c where fc has
no period n point in Q, there is a prime p such that fc has no period n point in Qp.
With n = 4 and n = 5, this involves showing that for all c ∈ Q, there is a prime p
such that fc has no period n point in Qp. This is because of Theorem 2.1, which
says that there are no period 4 or 5 points of fc in Q for any c ∈ Q. In fact Krumm
proved a stronger statement:

Theorem 6.1. [Kru16, Theorem 1.3 and 1.4] For any c, there are infinitely many
primes p such that fc has no period 4 points in Qp. If we assume that a specific
genus 11 algebraic curve has only two rational points, which agrees with numerical
data, there are also infinitely many primes p such that fc has no period 5 points in
Qp.

In order to show these theorems, we introduce the Dirichlet density of a set S of
primes in Z, as done in [Kru16, Section 2]. Let M be the set of all primes in Z, so
S ⊆ M . Define

(6.1) δ(S) = lim
s→1+

∑
p∈S p−s∑
p∈M p−s

.

Then, it is clear that δ(M) = 1. With S being finite, δ(S) = 0, since the denomina-
tor of (6.1) diverges. It is also clear that for S and T disjoint, δ(S∪T ) = δ(S)+δ(T ).
So, δ(S) can be seen as a measurement of the size of a set S of primes, which ranges
from 0 to 1.

Let Tn,c denote the set of primes p for which Φn(X, c) has no root in Qp, with
c fixed. Then, Krumm showed that for n = 4 and n = 5, if Φn(X, c) has no root
in Q, then δ(M\Tn,c) < 1. This means that δ(Tn,c) > 0, so Tn,c is an infinite set.
Therefore, using the results of [Mor98] and [FPS97], which say Φn(X, c) has no
roots in Q with n = 4, 5, there are infinitely many primes p for which Φn(X, c) has
no root in Qp. So, fc has no period n points in Qp for all of these primes.

Further, in [Kru18], Krumm provided an explicit bound that, δ(T4,c) > 0.39. In
particular, more than 39% of primes p will have no period 4 points of fc in Qp. To
prove this theorem, he was able to explicitly calculate the Galois groups of Φ4(X, c)
for all c in Q. This is a much stronger form of Morton’s Theorem from Section 2
about the nonexistence of period 4 points of fc in Q. This motivates the following
conjecture, which is a big strengthening of Conjectures 1.2 and 1.3:
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Conjecture 6.2. [Kru19][Conjecture 1.1] For all n > 3 and all c ∈ Q,

δ(Tn,c) > 0 .

In [Kru18], Krumm proved Conjecture 6.2 for n = 4. In [Kru19], Krumm proved
Conjecture 6.2 for n = 5, 6, 7, 9 to hold for all c outside a finite set, but unfortunately
had no way to describe which values of c would be in such a finite set. These are
the strongest results known about Conjecture 6.2.

6.2. Morton’s Theorem and Hasse’s Principle. Another result of Morton in
[Mor98] is that the L99 direction in (3.4) fails for the two-variable function Φn(X, c)
for n = 4. In other words, it represents a counterexample to Hasse’s local-global
principle.

Theorem 6.3. [Mor98, Proposition 6] Fix a prime p. If we let c vary, the curve
Φn(X, c) = 0 has infinitely many points defined with X, c ∈ Qp or in R.

To prove this, Morton showed that for

(6.2) c = − 1

4q2
− 3

4
, q ∈ Qp , vp(q) ≥ 1 ,

then Φn(X, c) = 0 has a root in Qp.
In particular, Morton’s proof shows that for certain values of c ∈ Q, of the form

in (6.2), there exist some primes p such that Φn(X, c) = 0 has a root in Qp. For
example, with q = 15 and

c = − 1

4(15)2
− 3

4
= −

(
13

15

)2

,

then there are periodic points of fc of any period in Q3 and Q5. So, for all n, by
making choices of q and c using (6.2), there are infinitely many c ∈ Qp such that
fc(X) has a period n point in Qp. A similar statement can be proved in R using
the intermediate value theorem. This proves a contradiction to Hasse’s local-global
principle of (3.4).

In contrast, Krumm showed in Theorem 6.1 that for all fixed c ∈ Q, with n = 4, 5,
there are infinitely many primes p such that Φn(X, c) = 0 has no roots in Qp. So,
for these c given in (6.2), Φn(X, c) = 0 has a root in Qp for some primes p, but
does not have a root for infinitely many primes p. So, Morton’s contradiction to
Hasse’s local-global principle does not affect any of Krumm’s work.
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