
REDUCTION IN ARITHMETIC DYNAMICS

ANGELINE PENG

Abstract. In this expository piece, we will introduce and examine the behav-
iors of the reduction of dynamical systems in Qp. The results in this paper may
be generalized to any local field. We define reduction rigorously and provide
a characterization of good reduction using resultants. We then prove, among
others, two main results: the first, a statement on the possibilities of the exact
period of a point given the exact period of its reductions (4.8); and the second,
an algorithm for determining whether a rational function has potentially good
reduction (5.3).
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1. Introduction

The p-adic numbers were first introduced by Kurt Hensel in an attempt to per-
form Taylor expansions around a prime in Z [Gou20, Section 1.1]. This allowed him
to use techniques from analysis to prove number-theoretical facts. For example, one
might see Hensel’s lemma as an algebraic version of the implicit function theorem.
We may then utilize these tools when working over the rational numbers once we
take the inclusion Q ↪−→ Qp.

One specific tool that we examine in this paper is reduction.

Definition 1.1. The reduction modulo p map is the map π : Zp → Zp/pZp ∼= Fp.
We will write x to denote the image of x ∈ Zp under π.
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An obvious advantage of considering the reduction of our system is that Fp is
a finite field. There is some work done in understanding dynamical systems over
finite fields, but it is still a relatively new area.

The goal of this paper is to introduce reduction and the relationship between
dynamical systems before and after reduction. We will in section 2 by recalling some
essential definitions and facts about the p-adics. We also include some definitions
used in dynamical systems. We define good reduction in section 3 and give a
criterion for good reduction. Next, in section 4, we look more in detail at the
properties of reduction, the most important result of which is Theorem 4.8, which
tells us how the period of a point after reduction relates to the period of the point
before reduction. We then turn to bad reduction in section 5 and give an algorithm
to find a change of basis into good reduction, if it exists.

2. Preliminary Notions

In this section, we shall recall some definitions that will be used throughout the
remainder of the paper. In particular

2.1. p-adics. In this section, we shall recall the constructions of Qp and state
some facts. We omit the proofs and defer the reader to [Gou20], which provides an
in-depth treatment of the p-adic numbers.

Definition 2.1. Let p ∈ Z be a prime. The p-adic valuation is the map vp :
Z → R which maps x ∈ Z to the largest r such that pr divides x. More precisely,
let x = apr for a, r integers such that p ∤ a. Then,

v(x) := r.

We denote v(0) := ∞.
We extend vp to Q as follows: let a

b ∈ Q with a, b ∈ Z relatively prime. Define

vp

(a
b

)
:= vp(a)− vp(b).

We may use the p-adic valuation to define a nonarchimedean absolute value.
First, let us recall the definition of an absolute value.

Definition 2.2. An absolute value on K is a map | · | : K → R satisfying the
following three properties for all x, y ∈ K:

(1) |x| ≥ 0, and |x| = 0 if and only if x = 0,
(2) |xy| = |x| · |y|, and
(3) (triangle inequality) |x+ y| ≤ |x|+ |y|.

We say that | · | is nonarchimedean if it satisfies the following stronger version of
the triangle inequality:

|x+ y| ≤ max(x, y)

for all x, y ∈ K.

Definition 2.3. The p-adic absolute value is the map | · |p : Q → R defined as
follows: let x ∈ Q. Then,

|x|p := p−vp(x).

Fact 2.4. [Gou20, Proposition 2.1.5] The p-adic absolute value is a nonar-
chimedean absolute value.
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Definition 2.5. The p-adic numbers, Qp, is the completion of Q under the
p-adic absolute value.

The p-adic integers, Zp, are the p-adic numbers with nonnegative valuation.

Zp := {x ∈ Qp | |x|v ≤ 1}.
Fact 2.6. [Gou20, Proposition 4.4.2] The p-adic integers form a local ring (a

local ring is a ring with a unique maximal ideal) with maximal ideal

pZp := {x ∈ Zp | |x|v < 1}.
Recall that in a local ring, an element is either in the maximal ideal or a unit.

Thus,
Z∗
p = {x ∈ Zp | |x|v = 1}.

2.2. Dynamics. The main function that we consider are rational functions, and
the space over which it is acts on will be P1, which we shall define in the following
section. Afterwards, we recall some definitions from dynamics.

Definition 2.7. Let K be a field. A rational function is an element ϕ ∈ K(z).
The degree of ϕ is the maximum of the degrees of f and g as polynomials.

If we write a rational function ϕ = f
g , f, g ∈ K[z] coprime, it is a function

ϕ : K → K defined by ϕ(P ) := f(P )
g(P ) . However, it is not defined at points at which

g is zero. To remedy this, we extend the domain and target of rational functions to
P1(K) = K ∪ {∞}, where ∞ is called the point at infinity, and say that if there is
a P ∈ P1(K) such that g(P ) = 0 (necessarily, f(P ) ̸= 0), then we say ϕ(P ) := ∞.

Remark 2.8. If we extend ϕ to P1(K), one might wonder how we evaluate ϕ(∞).
A working answer is ϕ(∞) := 1

ϕ(0) =
g(0)
f(0) , which one might recognize as performing

a change of variables to switch ∞ and 0. The “morally correct” answer is by
homogenization. For more details, one may refer to chapter 5 of [Gal11], which
gives a lovely exposition of projective space.

In this paper, we have a rational function ϕ be an element of Qp(z) but a map
ϕ : P1(Qp) → P1(Qp), where Qp is a fixed algebraic closure of Qp.

Remark 2.9. There are many other, deeper results relating algebra and geometry
when working in P1(K), which one may find in some commutative algebra textbook,
such as [AM16]. In this paper, we only use the fact that every polynomial has a
root in this field. However, the issue with working in P1(Qp) with the topology
induced by the p-adic metric is that it is totally disconnected. To remedy this, we
may complete this into Cp := Qp once again such that it is complete with respect to
the p-adic metric. P1(Cp) is an instance of a Berkovich projective line. A reference
for further details on dynamics over Berkovich spaces is [BR10]. We may generalize
the results in this paper by having ϕ be a map on P1(Cp). For simplicity, we state
the results for Qp).

The following definitions will be used in 4.1 and may be deferred until then.

Definition 2.10. Given a rational function ϕ ∈ Qp(z), we say that P ∈ P1 is
(ϕ-)periodic if there is some integer n ≥ 1 such that ϕn(P ) = P . For a periodic
point, the smallest such n is called the exact period of P .

We say that P is (ϕ-)preperiodic if its orbit is finite. Equivalently, P is preperi-
odic if there is some i, n integers where n ≥ 1 such that ϕi(P ) = ϕi+n(P ).
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(move tihs or make a note that i’ll only use this later)
The following definitions will not be used until in 4.2 and may be deferred until

then.

Definition 2.11. Let P be a periodic point of ϕ with exact period m. Define
the multiplier of ϕ at P to be

λϕ(P ) := (ϕm)′(P )

For a periodic point P of a map ϕ, if

|λϕ(P )| > 1 P is repelling
|λϕ(P )| = 1 P is indifferent
|λϕ(P )| < 1 P is attracting
|λϕ(P )| = 0 P is a critical point

3. Reduction modulo a prime

We begin our discussion of reduction with precise definitions of the reduction
of both points and maps modulo a prime. Since these objects are defined via
equivalence classes, we must pick the correct representative so that our reduction
is well-defined.

3.1. Definitions. We know how to reduce using the map π : Zp → Fp. Let us
extend this P ∈ P1(Qp), which will reduce to a point P ∈ P1(Fp). We have to be a
little careful, because 0

0 is not a well-defined point.

Definition 3.1. Let P ∈ P1(Qp). If P = ∞, then P = ∞. Otherwise, we note
that Qp = Frac(Zp), where Zp is the integral closure of Zp in Qp, and so we may
write P = a

b for a, b ∈ Zp with max(|a|p, |b|p) = 1. Then, P = a
b
. Note that one of

a and b is nonzero. If b = 0, then we say P = ∞.

Remark 3.2. In the above definition, the reduction map is the natural extension
of π to a map π : Zp → Zp/pZp ∼= Fp. We may also extend the p-adic valuation to
Zp, the details of which are in [Gou20].

Now let us move on to rational functions. In a similar fashion as with points,
we must pick the correct representation of a rational function so the reduction does
not become 0

0 .

Definition 3.3. Let ϕ ∈ Qp(z) be a rational function. We may write ϕ = f
g for

some f, g ∈ Qp[z]. We say that f and g are normalized if f, g ∈ Zp[z] and at least
one coefficient of f or g is not in pZp. We call this representation the normalized
form of ϕ.

If ϕ = f
g is in normalized form, we define the reduction of ϕ modulo p as ϕ = f

g ,
where f denotes the polynomial formed by reducing each coefficient modulo p.

Remark 3.4. It is always possible to write a rational function in normalized form.

Example 3.5. Let ϕ = z2−5z
z2−2z−3 . Note that ϕ ∈ Q(z), and since Q ↪−→ Qp for

any p, we may talk about its reduction in various primes.
• The reduction modulo 5 is ϕ = z2

z2+3z+2 .
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• The reduction modulo 3 is ϕ = z2+z
z2+z = 1

In the example above, we see that reducing modulo 3 results in a constant func-
tion, whose behavior differs drastically from our original degree 2 rational function.
This motivates the following definition:

Definition 3.6. A rational map ϕ ∈ Qp(z) is said to have good reduction if
deg ϕ = deg ϕ. Otherwise, we say it has bad reduction.

As we’ll see in Section 4, nice properties hold when ϕ has good reduction: reduc-
tion commutes with composition, and periodic points are sent to periodic points.

Our goal in the remainder of this section is to give a criterion for bad reduction.
As we note in Example 3.5, while at first, the two polynomials f, g, have no common
zeroes, they may pick them up after the reduction. It would then be helpful to utilize
the following tool.

3.2. Resultants. The resultant is a commonly used tool in both number theory
and algebraic geometry. It tells us exactly when two polynomials share a common
divisor. It also interacts well with reduction, which allows us to use this tool in the
first place.

Definition 3.7. Let A be a ring. Given two polynomials over A, f = anx
n +

· · ·+ a1x+ a0 and g = bmx
m+ · · ·+ b1x+ b0 with anbm ̸= 0, the resultant of f and

g is defined by

Res(f, g) = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an an−1 . . . a0
an an−1 . . . a0

. . .
an an−1 . . . a0

bm bm−1 . . . b0
. . .

bm bm−1 . . . b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m

n

Proposition 3.8. [Lor96, Lemma 2.6] Let A be a unique factorization domain
and f, g ∈ A[x]. Then, f and g have a common divisor if and only if Res(f, g) = 0.

Proof. Suppose that h ∈ A[x] is a common divisor of f and g, and we write f = hu
and g = hv for some u, v ∈ A[x]. We write u = cn−1x

n−1 + · · · + c0 and v =
dm−1x

m−1 + · · · + d0, where notably, cn−1, dm−1 can be zero. Then, the equation
vf − ug = 0 is the same as

an −bm

an−1
. . . −bm−1

. . . −bm
... an

... −bm−1

an−1

...

a0
... −b0

. . . a0
. . . −b0


︸ ︷︷ ︸

B



dm−1

...
d0
cn−1

...
c0


= 0⃗



6 ANGELINE PENG

We can think of the resulting n + m-dimensional vector of the product as repre-
senting the coefficient of each xi in the polynomial vf − ug, starting with xn+m in
the first entry.

Since we have exhibited a nontrivial vector in the matrix B’s nullspace, we
conclude that its determinant must be zero. Notice that we may obtain B by
negating certain rows followed by the transpose of the matrix defining the resultant.
These matrix transformations do not change the matrix determinant if it is zero,
and so we conclude that Res(f, g) = 0.

For the converse, we may reverse the steps above. In particular, we may find
some vector in the nullspace and use it to construct u and v. Then, we may use
polynomial division to find h. In particular, we may consider doing the division in
Frac(A)[x], a Euclidean domain, and by Gauss’s lemma, h is in A[x], which gives
us a common divisor. □

We are now able to provide the promised characterization of when a rational map
has good reduction with this property. The key fact is that the resultant behaves
nicely after reduction.

Proposition 3.9. [Sil07, Theorem 2.15] Let ϕ ∈ Qp(z) with normalized form f
g .

Then, ϕ has good reduction if and only if Res(f, g) ∈ Z×
p

Proof. ϕ has bad reduction if and only ϕ is equal to a rational function with smaller
degree. This happens only when f and g have common roots. By Proposition 3.8,
this is true if and only if Res(f, g) = 0.

Note that the resultant is a sum of products of the coefficients of its input
polynomials. Since the reduction map is a homomorphism, we see that Res(f, g) =
Res(f, g). The reduction is zero if and only if Res(f, g) ∈ Z×

p . □

This characterization immediately gives us the following corollary on primes of
bad reduction. It also showcases the usefulness of considering the reduction of a
rational function over Q.

Corollary 3.10. Let ϕ ∈ Q(z) be a rational function. Then, ϕ has good reduc-
tion at all but finitely many primes.

Example 3.11. Continuing with ϕ = z2−5z
z2−2z−3 from Example 3.5, let us compute

its resultant.

Res(z2 − 5z, z2 − 2z − 3) =

∣∣∣∣∣∣∣∣
1 −5 0

1 −5 0
1 −2 −3

1 −2 −3

∣∣∣∣∣∣∣∣ = −36.

Thus, we see that ϕ has bad reduction at p = 2, 3 and good reduction elsewhere.

4. Good reductions

In the following section, we consider the case of when ϕ has good reduction.
We first consider the exact period of periodic points, and then move on to how
a neighborhood of a periodic point, characterized by the multiplier, behaves after
reduction.

First, let us establish the fact that dynamics does in fact behave nicely after a
reduction.
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Proposition 4.1. [Sil07, Theorem 2.18] Let ϕ ∈ Qp(z) be a rational function
with good reduction. Then,

(1) ϕ(P ) = ϕ(P ) for all P ∈ P1(Qp)
(2) Let ψ ∈ Qp(z) be another rational function with good reduction. Then, ϕ◦ψ

has good reduction, and ϕ ◦ ψ = ϕ ◦ ψ.

Proof. (1) Write ϕ = f
g normalized and let P ∈ Qp. Since the reduction map is a

homomorphism, f(P ) = f(P ) and similarly for g. ϕ has good reduction, so f and
g do not share a common root. Thus, we cannot have f(P ) = g(P ) = 0, and so we
conclude that

ϕ(P ) =
f(P )

g(P )
=
f(P )

g(P )
= ϕ(P )

as desired.
(2) We notice that ϕ ◦ ψ is already in normalized form. Thus, we can write

ϕ ◦ ψ = ϕ ◦ ψ since the reduction map is a homomorphism.
The degree of the composition of rational functions is the sum of the degrees. If

both ϕ and ψ has good reduction, then

deg(ϕ ◦ ψ) = deg ϕ+ degψ = deg ϕ+ degψ = deg(ϕ ◦ ψ)

□

Remark 4.2. The converse of Proposition 4.1(2) is not true. In particular, it
might be true that the composition of two maps with bad reduction has good
reduction. As an example, consider ϕ = p2x2 and let ψ = x2

p . We see that ϕ = 0

and ψ = ∞, both constant functions. However, ϕ ◦ ψ = x4, a degree 4 rational
function.

4.1. Reduction of Periodic Points. In this section, we will showcase some of
the results that we may obtain from considering the reductions of the functions,
starting from some more immediate results, which we omit the proof of.

Fact 4.3. [Sil07, Corollary 2.20] Let ϕ ∈ Qp(z) be a rational map with good
reduction. Periodic points of ϕ reduce to periodic points of ϕ, and preperiodic points
of ϕ reduce to preperiodic points of ϕ.

Fact 4.4. [Sil07, Corollary 2.20] If P is a periodic point of ϕ with exact period
n and its reduction P has exact period m for ϕ, then m|n.

We can say something stronger than Fact 4.4 about the exact period of a point,
as we’ll see in the following theorem. Before we start, let us state without proof
some useful lemmas about changing coordinates.

Lemma 4.5. [Sil07, Proposition 2.9] Let P,Q ∈ P1(Qp) and h ∈ PGL2(Qp).
Then,

P = Q ⇐⇒ h(P ) = h(Q)

Then, we note that since

Definition 4.6. Let ϕ ∈ Qp(z) be a rational function, and let h ∈ PGL2(Qp)
be a fractional linear transformation. Then, define

ϕh := h−1 ◦ ϕ ◦ h
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Lemma 4.7. [Sil07, Proposition 2.11] Let P1, P2, P3 ∈ P1(Qp) be three distinct
points with distinct reductions. Then, there exists a unique h ∈ PGL2(Qp) such
that h(P1) = 0, h(P2) = 1, and h(P3) = ∞.

These lemmas tell us respectively that changing the coordinates does not change
the periodicity of the points and that in most cases, we allowed to find the change
of coordinates that we are looking for.

The following theorem gives us an explicit relation between the exact period of a
point and that of its reduction. Its proof is essentially a (potentially slow) algorithm
to recover the exact period of a point given the exact period of its reduction, which
is often much easier to find in the finite field Fp.

Theorem 4.8. [Sil07, Theorem 2.21] Let ϕ ∈ Qp(z) be a rational map of degree
d ≥ 2 with good reduction. Let P ∈ P1(Qp) be a periodic point of ϕ. Let m be the
exact period of P . Let r is the (multiplicative) order of λϕ(P ) in F×

p . Then, the
exact period of P is one of

m, mr, mrpe

for some e ∈ Z, e ≥ 1.

Proof. We can reduce this to the case of P being a fixed point by letting ψ0 = ϕm.
We may also perform a change of coordinates such that P = 0, and so we let
ψ = ψh0 . This is helpful as the reduction of 0 is 0.

If ϕ(0) = 0 then we are in the first case and we are done. Assume otherwise that
ϕ(0) ̸= 0. Write ϕ(z) = a0z

d+···+a0
bdzd+···+b0 where each ai, bi ∈ Zp.

We know that
ψ(0) = 0 =⇒ ψ(0) =

a0
b0

≡ 0 mod p

Thus, a0 ∈ (p), and b0 ∈ Z×
p , otherwise, the reduction is identically zero, contra-

dicting good reduction. Without loss of generality, we may assume b0 = 1. Thus,

ψ(z) =
a0 + a1z + · · ·+ adz

d

1 + b1z + · · ·+ bdzd
.

Consider the Taylor expansion of ϕ around z = 0,

ψ(z) = a0 + ψ′(0)z +
A(z)

1 + zB(z)
z2

where A(z), B(z) ∈ Zp[x]. Note that λψ(P ) = ψ′(0). For ease of notation, let us
write this as λ. Let’s consider what happens when we iterate ψ twice.

ψ2(0) = a0 + λϕ(0) +
A(ϕ(0))

1 + ϕ(0)B(ϕ(0))
(ϕ(0))2

= a0 + λa0 +
A(a0)

1 + a0B(a0)
(a0)

2

We note that this is all divisible by a0 ∈ (p), so we can’t just mod out by p. Let us
consider modding out by a20 instead.

ψ2(0) ≡ a0(1 + λ) mod a20

Repeating this process until we get to n, we have

ψn(0) ≡ a0(1 + λ+ · · ·+ λ
n−1

) mod a20
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Finally, we note that ψn(P ) = 0 as n is the exact period of P . Plugging this in, we
conclude that

1 + λ+ · · ·+ λ
n−1 ≡ 0 mod a0

=⇒ 1 + λ+ · · ·+ λ
n−1 ≡ 0 mod p (∗)

We thus see from (∗) that λ
n − 1 ≡ 0 mod p.

Case 1: λ ̸= 1. Then r, the order of λ in Fp, divides n. If n = r, then we fall into
the second case of the theorem and we are done. Otherwise, let us replace φ = ψr

and n′ = n/r, so P has exact period n′ under φ. We may continue doing this kind
of substitution until λφ(P ) = 1. Then, we may address this in the following case.
Case 2: λ ≡ 1 mod p. Plugging λ = 1 into the (∗) equation, we have

1 + 1 + · · ·+ 1 = n ≡ 0 mod p

so p | n. We then let φ = ψp, n′ = n/p. We are done if φ(P ) = P . Otherwise,
continue iterating until n′ = 1. Thus, there is some e such that n = mrpe. □

4.2. Multipliers Post Reductions. Good reduction imposes pretty stringent
conditions on the local behavior of a periodic point, as we shall explore in this
section. The observations in this subsection will help us define conditions for when
we are allowed to salvage a bad reduction through a change of coordinates.

Proposition 4.9. If ϕ ∈ Qp(z) is a rational function with good reduction, then
no periodic point of ϕ is repelling.

Proof. Let P have exact period n. As before, we may replace ϕn with ϕ and assume
that P is a fixed point. Then, let us make a change of variables such that P = 0.
If ϕ = f

g in normalized form, then we note that f(0) = 0. We may write ϕ as

ϕ(z) =
f(z)

g(z)
=

a1z + · · ·+ adz
d

b0 + b1z + · · ·+ bdzd

Computing the multiplier, we have

λϕ(P ) =
f ′(0)g(0)− f(0)g′(0)

(g(0))2
=
a1b0
b20

=
a1
b0

Since ϕ has good reduction, b0 ∈ Z×
p . Otherwise, z would be a common root of f

and g. Taking the absolute value, we have

|λϕ(P )|v =
∣∣∣∣a1b0

∣∣∣∣
v

= |a1|v ≤ 1

and thus no periodic points are repelling. □

Proposition 4.10. [Sil07, Corollary 2.23(a)] [Ben14, Lemma 2.2] Let ϕ ∈ Qp(z)
a rational map that has good reduction. If P an attracting fixed point, then for any
other fixed point Q ∈ P1(Qp), they do not have the same reduction, i.e. P ̸= Q.

Proof. Perform a change of coordinates such that P = 0. Since 0 is a fixed point,
we may write ϕ = f

g in the normalized form as before:

ϕ(z) =
f(z)

g(z)
=

a1z + · · ·+ adz
d

b0 + b1z + · · ·+ bdzd
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Suppose we have another fixed point x that reduces to 0. Note that the point at
infinity cannot reduce to 0, and so we can assume x is an affine point. We must
have |x|p < 1. Consider then the absolute value of ϕ(x):

|ϕ(x)|p =
|a1x+ · · ·+ adx

d|
|b0 + · · ·+ bdxd|

= |x| · |a1 + · · ·+ adx
d−1|

|b0 + · · ·+ bdxd|
Since ϕ is in normalized form, |ai|, |bi| ≤ 1 for all i. Since ϕ has good reduction,
|b0| ≥ 1, otherwise the linear term z will be a common factor of f and g. Thus, the
absolute value of the denominator is

|b0 + · · ·+ bdx
d| = max(b0, b1x, . . . , bdx

d) = 1

Since 0 is an attracting point,

1 > |λ0(ϕ)| = |λ0(f)| = |a1|

Thus, we conclude that

|a1 + · · ·+ adx
d−1|

|b0 + · · ·+ bdxd|
= |a1 + · · ·+ adx

d−1| ≤ |a1| < 1

which implies that |ϕ(x)| = |x| < |x|, a contradiction. □

The following, while a result about the local behavior of a periodic point, will
be most useful as a lemma for the proof of Theorem 5.3.

Lemma 4.11. [Ben14, Lemma 2.3] Let ϕ ∈ Qp(z) a rational function with good
reduction and deg ϕ ≥ 2. Let P ∈ P1(Qp) be an indifferent fixed point. Then,

(1) ϕ−1(P ) \ {P} is nonempty, i.e. there exists at least one point Q ∈ P1(Qp)
such that ϕ(Q) = P .

(2) for all Q ∈ ϕ−1(P ), Q ̸= P , we have Q ̸= P

Proof. (1) As before, perform a change of coordinates such that P = 0, then write
ϕ = f

g in normalized form. We are looking for a point y such that ϕ(y) = 0. Thus,
y must be a root of f . Furthermore, since x is indifferent and thus not a critical
point, the derivative of f at 0 must be nonzero. Thus, 0 is not a repeated root of
f . Since the degree of f is at least 2, there must be another distinct root of f .

(2) We must show that f has no roots in (p) \ {0}. We note that we can write
f as

f(z) = z(a1 + · · ·+ adz
d−1)

If we have f(z) = 0 for some z, then we would expect the absolute value of the
right hand side to be zero. However, from the proof of Proposition 4.9, we know
that |a1| = 1. Thus, |a1 + · · ·+ adz

d−1| ≥ 1 > 0, a contradiction. □

5. Potentially good reductions

As we saw, good reduction is nice. Sometimes, bad reduction may be fixed
simply by a change of coordinates. This is called potentially good reduction. In
this section, we will look at an algorithm by [Ben14] which allows to determine
when a rational function has potentially good reduction.

Definition 5.1. A rational function ϕ ∈ Qp(z) has potentially good reduction if
there exists some h ∈ PGL2(Qp) such that ϕh has good reduction.
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Before proving the theorem, let us quickly state and prove a lemma about the
fixed points of a rational function.

Lemma 5.2. Let ϕ ∈ Qp(z) with degree d.
(1) ϕ has d+ 1 fixed points, counted with multiplicity.
(2) the multiplicity of a fixed point x is more than 1 if and only if λx(ϕ) = 1.

Proof. (1) Let ϕ = f
g , f, g ∈ Zp[x] polynomials of degree d. Then, the fixed points

are simply the roots of the following polynomial:

f(x)− xg(x)

This is a degree d + 1 polynomial. After dehomogenizing, we conclude that there
are d+ 1 fixed points of ϕ, counted with multiplicity.

(2) Let Φ(z) = ϕ(z)− z. Then,

Φ′(z) = ϕ′(z)− 1.

x is a double root of Φ(z) if and only if it is the root of Φ′(z) as well. Thus,
λx(ϕ) = 1 ⇐⇒ x is a fixed point with multiplicity more than 1. □

It is easy to check whether a rational function has good reduction. The following
theorem will provide with an algorithm that tells us how to check if a rational
function has potentially good reduction by finding one, and only one, candidate
conjugate to check for good reduction.

Theorem 5.3. [Ben14, Main Theorem] Let ϕ ∈ Qp(z) with degree greater than
2. Let its fixed points be x1, . . . , xd+1, repeated with multiplicity. Then,

(1) if any of the xi are repelling, then ϕ does not have potentially good reduction.
(2) if xi is indifferent for some i, then we may pick y1 ∈ ϕ−1(xi) \ {xi} and

y2 ∈ ϕ−1(y1), and xi, y1, y2 are distinct. By 4.7, we may let h ∈ PGL2(Qp)
such that h(xi) = 0, h(y1) = 1, h(y2) = ∞. Then, the map ϕh has good
reduction if and only if ϕ has potentially good reduction.

(3) Otherwise, all fixed points are attracting points. We may pick three distinct
points, without loss of generality say x1, x2, x3. Let h ∈ PGL2(Qp) such
that h(x1) = 0, h(x2) = 1, h(x3) = ∞. Then, ϕh has good reduction if and
only if ϕ has potentially good reduction.

Proof. (1) follows from Proposition 4.9. Otherwise, let λi = λxi
(ϕ) for each i.

In the case of (2), that is, |λi| = 1 for some i, then we may apply Lemma 4.11(1)
to pick y1 ∈ ϕ−1(xi) \ {xi}. Let y2 ∈ ϕ−1(y1). Note that y2 ̸= y1, otherwise

y1 = ϕ(y2) = ϕ(y1) = x

and we picked y1 ̸= x. Lastly, note that y2 ̸= xi either, by a similar argument.
Let h be defined as in the theorem statement. If ϕh has good reduction, then by

definition, ϕ has potentially good reduction. On the other hand, if ϕ has potentially
good reduction, then let h̃ ∈ PGL2(Qp) such that ϕh̃ has good reduction.

Since h̃ preserves fixed points and multipliers, g(xi) is also an indifferent fixed
point of ϕh̃, and h̃(y1) ∈ (ϕh̃)−1(h̃(xi)). By Lemma 4.11(2), h̃(xi) ̸= h̃(y1). Then,
since ϕh̃ has good reduction,

ϕh̃(h̃(y2)) = ϕh̃(h̃(y2)) = h̃ ◦ ϕ ◦ h̃−1 ◦ h̃(y2) = h̃(y1)
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Thus, we may apply the same argument as before to show that the reductions of
h̃(xi), h̃(y1), and h̃(y2) are all distinct. Thus, there is some r ∈ PGL2(Qp) such
that sends h̃(xi), h̃(y1), and h̃(y2) to 0, 1,∞ respectively.

Since these transformations are unique, we must have h = r ◦ h̃. Then, we may
write ϕh = r ◦ ϕh̃ ◦ r−1. We note that since ϕh̃, r, r−1 has good reduction, ϕh has
good reduction.

(3) Lastly, let us assume that no xi are repelling or indifferent. They must then
be all attracting, and so |λi| < 1. Then, by Lemma 5.2(2), none of the xi’s are
repeated. Thus, x1, x2, x3 are all distinct, and we may define h as outlined in the
theorem statement.

If ϕ has potentially good reduction, let h̃ be such that ϕh̃ has good reduction.
Since conjugation does not change multipliers, h̃(xi) is still an attracting point for
i ∈ {1, 2, 3}. We may then apply Proposition 4.10 to conclude that they do not
have the same reduction.

Thus, there is some map r ∈ PGL2(Qp) with good reduction that maps these
points to 0, 1,∞ respectively. Then, we conclude that h = r ◦ h̃ and so ϕh =

r ◦ ϕh̃ ◦ r−1 has good reduction as well. □

Example 5.4. Let us check if ϕ = z2−5z
z2−2z−3 has potentially good reduction at

the prime 3. The polynomial

z2 − 5z − z(z2 − 2z − 3) = 0

has solutions z = 0, 1, 2. We then note that 0 is a repelling point:

ϕ′(0) =
3(02 − 2 · 0 + 5)

(02 − 2 · 0− 3)2
=

5

3

Since | 53 |3 = 3 > 1.
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