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Abstract. We introduce the notion of postcritically finite (PCF) maps and
their corresponding PCF parameters in the moduli space. We state and prove
some fundamental results regarding their multiplicity and their geometric prop-
erties. We state the characterization of algebraic curves containing infinitely
many PCF parameters, which is a special case of the Dynamical André–Oort
conjecture, and give a proof of a special case of the former. We apply the
theorem to quadratic PCF parameters.
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1. Introduction

In order to introduce postcritically finite maps, let us first recall the following
definitions.

Definition 1.1. Let f ∈ C(z) be a rational function of degree d ≥ 2. Consider
the iterates of f :

fn(z) := (f ◦ · · · ◦ f)︸ ︷︷ ︸
n

(z),

f0(z) := z.

The orbit of a point α ∈ C is the set O(α) = {fn(α) : n ≥ 0}.

Definition 1.2. Let f ∈ C(z) be a rational function of degree d ≥ 2. A point
α ∈ C is said to be a critical point if

f ′(α) = 0.

A rational map f is said to be postcritically finite (PCF) if the orbit of each critical
point is finite.
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Example 1.3. Consider the map z 7→ z2+ i. The only critical point of this map
is 0. Observe that

f(0) = i,

f(i) = −1 + i,

f(−1 + i) = −i,

f(−i) = −1 + i,

...

hence the orbit of 0 is the set {0,+i,−i,−1 + i}, implying that z 7→ z2 + i must be
postcritically finite.

In this paper we consider the case where f ∈ C[x] is a polynomial of the form

fc(z) = adz
d + ad−1z

d−1 + · · ·+ a1z + c, ai ∈ R, c ∈ C.

In particular, we shall treat a1, . . . ad as fixed and parametrize the function by its
constant term c. If the function fc is postcritically finite, we call the parameter c a
PCF parameter. In the previous example, we saw that c = i is a PCF parameter of
the map z 7→ z2 + c. Using a similar computation, we can determine that c = −i is
also a PCF parameter. As we shall see in the following section this is no coincidence.

In this paper, we will be interested primarily in PCF parameters of the quadratic
polynomial fc(z) = z2 + c. One can get an insight of the geometric properties of
PCF parameters by finding them numerically and plotting them, as seen in 1. A
qualitative similarity between the set of PCF parameters and the Mandelbrot set
is readily apparent from the figure.

In particular, we will be studying the geometric properties through algebraic
curves in C containing PCF parameters.

Question 1.4. What algebraic curves in C contain an infinite number of PCF
parameters of the map z 7→ z2 + c?

In Section 2 we take a look at some fundamental properties of PCF parameters,
paying special attention to the case d = 2. We introduce the problem of finding
the number of PCF parameters lying on an algebraic curve. In Section 3 we give
the main theorem, a special case of the Dynamical André–Oort conjecture, which
characterizes algebraic curves containing infinitely many PCF parameter pairs of
z 7→ zd+ c. In Section 4 we return to the quadratic case and investigate the special
case of lines in C.

2. Fundamental results

In the following section, we develop an intuition for the geometry and distribution
of PCF parameters of quadratic functions z 7→ z2 + c, which we call quadratic
PCFs. We relate the concept of quadratic PCF parameters to the Mandelbrot set
and provide bounds for the number of parameters conditioned on the properties of
the orbit of the critical point.

The only critical point of fc(z) = z2 + c is 0. Therefore, c is a PCF parameter
if and only if the orbit of 0 is finite. This allows for a particularly tangible charac-
terization of quadratic PCFs. In particular, 0 is postcritically finite if and only if
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Figure 1. PCF parameters of the map z 7→ z2 + c, with critical
orbit size ≤ 10 [Fav]

there exist n ∈ N, k ∈ N0, such that

fn+k
c (0) = fk

c (0),

or equivalently
fn+k
c (0)− fk

c (0) = 0.

Notice that the lefthand side can be viewed as a polynomial in c, denoted Pn,k(c).
In other words, c is a PCF parameter if and only if it is a root of Pn,k for some n
and k.

The following properties follow immediately from the fact that Pn,k is a polyno-
mial with integer coefficients.

Proposition 2.1. The set of quadratic PCF parameters is invariant under com-
plex conjugation.

Proposition 2.2. The quadratic PCF parameters are algebraic integers.

What is more, the above characterization gives a result in the number of PCF
parameters.

Proposition 2.3. There are infinitely many quadratic PCF parameters. More-
over, there are infinitely many real quadratic PCF parameters.

Proof. It suffices to consider only the polynomials Pn,0. In particular, let c be a
common root of Pn1,0 and Pn2,0 for some distinct n1, n2 ∈ N. Therefore, we have
that fn1(0) = fn2(0) = 0, hence the exact period of 0 (i.e. the lowest n such that
fn(0) = 0) must divide both n1 and n2. Thus, looking at the roots of Pp,0, where
p is prime, we can generate infinitely many distinct PCF parameters.
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Moreover, note that polynomials Pp,0 have a zero constant term, a non-zero
linear term. Indeed the first property follows from the fact that Pp,0 for any p
and the second property follows from the recursive relation Pp,0 = (Pp−1,0)

2 + c.
Therefore, 0 is a single root of every Pp,0. As the polynomial is of even degree 2p, it
must have another real root. This way, we can find infinitely many real roots. □

Moreover, a result by [Sil12, Theorem 6.7] shows that the number of quadratic
PCF parameters with an orbit of a given length must be finite.

Let us now return to the geometric properties of quadratic PCF parameters.
Looking at the plot of a finite subset of quadratic PCF in Figure 1, we see that
the parameters accumulate on the boundary of the Mandelbrot set. Recall that the
Mandelbrot set is defined as:

M2 =
{
c ∈ C : the orbit of 0 under z 7→ z2 + c is bounded

}
,

therefore, PCF parameters must lie in the Mandelbrot set. Carleson–Gamelin
[CG96] proved the following density result for quadratic PCF parameters.

Proposition 2.4 (by [CG96, Section VIII, Theorem 1.5]). The quadratic PCF
parameters are dense in ∂M2, the boundary of the Mandelbrot set M2.

A natural question to pose is whether there exists some geometric relationship
between the PCF parameters in the moduli space. Stated differently, suppose that
we are constructing an algebraic curve in the moduli space of a given degree, what
can be said about the number of PCF parameters lying on the curve? As we will see
in the followup discussion, in most cases only a finite number of such parameters
can be contained on a particular curve.

Theorem 2.5 (by [DM23, Theorem 1.3]). Let d ≥ 2. There exists a constant
M(d) < ∞, such that the number of PCF paramaters on any algebraic curve of
degree d is at most M(d), provided that the curve has no special components.

The special components refer to the lines containing infinitely many PCF pa-
rameters, as characterized by Theorem 3.4, which we are yet to state.

3. The dynamical André–Oort conjecture

In this section, we state the dynamical André–Oort conjecture. We explain its
significance for polynomials of the form z 7→ zd + c by providing a theorem, which
considers a special case of the conjecture, and doing so characterizes the algebraic
curves containing infinitely many PCF parameters. We provide a sketch of the
proof of a special case, where the algebraic curve can be identified with the graph
of some polynomial.

The intricate correspondence between concepts in arithmetic geometry and in
dynamical systems allows for a formulation of problems surrounding PCF rational
maps in terms of abelian varieties. If Ag is a moduli space of principally polarized
abelian varieties, then the points Ag corresponding to varieties with complex mul-
tiplication, which we call CM points, are analogous to points parametrizing PCF
maps. A more detailed treatement of the relevant definitions and the correspon-
dence can be found in [Sil12, Section 6.5].

Before diving into the dynamical formulation of the André–Oort conjecture, let
us recall some key definitions of algebraic geometry. For more details see [Har97,
Section 1].
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Definition 3.1. The affine n-space over C, denoted An
C is the set of all n-sutples

of elements of C. A subset Y ⊂ An
C is called an algebraic set if there exists a subset

T of the polynomial ring C[x1, . . . , xn], such that

Y = {P ∈ An
C : f(P ) = 0 ∀f ∈ T}.

If an algebraic set cannot be expressed as a union of two proper algebraic subsets,
we call it an irreducible algebraic variety.

In the case n = 2 and T consisting of a single non-constant polynomial f, we
call the corresponding algebraic set Y an irreducible algebraic plane curve.

The classical André–Oort conjecture characterizes irreducible varieties contain-
ing a Zariski closure of CM points (see [PST+24] for more details). Recall that a
set is Zariski closed if and only if it is the set of common zeros of a collection of
polynomials. Relevant to our discussion, the recent findings by Baker and DeMarco
[DM23] allowed us to formulate an analogous conjecture regarding PCF parameters
on algebraic varieties.

Before we state the dynamical analogue of the conjecture, we need to familiarize
ourselves with the following definition.

Definition 3.2. An n-tuple of critical points {c1, . . . , cn} of a rational map f
is said to have dynamically dependent orbits if there exists a non-zero algebraic
relation P such that

P (c1, . . . , cn) = 0,

and such that P is invariant under the map (f, . . . , f). Otherwise, we say that
the critical points of f are dynamically independent. If {fv| v ∈ V } is a family of
functions, parametrized by points on an algebraic variety, we say that an n-tuple
of critical points is dynamically independent on V if it is dynamically independent
for every fv.

On an intuitive level, the orbits of critical points are dynamically independent if
no two of them exhibit "similar" behavior (e.g. same preperiod or period length)
under a given family of functions.

Conjecture 3.3 (The Dynamical André–Oort Conjecture by [BDM13, Conjec-
ture 1.4]). Let {ft : t ∈ V }, where V is an irreducible algebraic variety over C, be
an N -dimensional algebraic family of rational maps of degree d ≥ 2. Then fτ is
PCF for a Zariski-dense subset of V if and only there are at most N dynamically
independent critical points on V.

Note that a subset of a variety V is Zariski dense if its closure under the Zariski
topology is V.

Let us consider the case where N = 1 and V is an algebraic curve in C2. We
define the family of functions as

{
f(a,b) = (zd + a, zd + b)|(a, b) ∈ V

}
. If we desire

that V contains infinitely many pairs of PCF parameters, the conjecture suggests
that the orbits of the critical point (0, 0) in the first and the second coordinate must
be dynamically dependent. Indeed, as we see in the following theorem, this must
indeed hold, and the set of relations between a and b is remarkably sparse.

Theorem 3.4 ([GKNY17, Theorem 1.1]). Let C be an irreducible algebraic plane
curve in C2, and let d ≥ 2 be an integer. There exist infinitely many pairs of
parameters (a, b) ∈ C, such that both z 7→ zd + a and z 7→ zd + b are postcritically
finite, if and only if one of the following conditions holds:
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(1) C is the curve {x = α}, where α is a PCF parameter,
(2) C is the curve {y = β}, where β is a PCF parameter,
(3) C is the locus of the equation y − ζx = 0, where ζ is a (d − 1)-st root of

unity.

In the case of quadratic polynomials, we see that the third condition corresponds
to the diagonal {x = y} in C, whereas in the cubic case, we also allow for the
diagonal {x = −y}.

The if direction of Theorem 3.4 can be verified briefly. Note that for the cases
(1) and (2) the theorem obviously holds, as the number of PCF parameters of maps
of the form z 7→ zd + c is infinite by Proposition 2.3. For curves of the form (3), we
note that if fc(z) = zd + c is PCF, then also fζc(z) = zd + ζc is PCF, as

fζc(z) = zd + ζc

= (z/ζd−1)d + ζc

= ζ
(
(z/ζ)d + c

)
= ζfc(z).

Here, we made use of the fact that ζd−1 = 1 and the fact that there exists
infinitely many PCF parameters c for a given d.

For the only if direction of the theorem, we show the proof of the special case,
where the curve C is the graph of a polynomial h ∈ C[z] as given by [GKN16,
Theorem 1.2]. First, let us consider the definition of the d-th multibrot set Md,
which is a generalization of the Mandelbrot set, and the filled-in Julia set.

Definition 3.5. The multibrot set Md which is the set of all c ∈ C, such that
the (possibly infinite) orbit of 0 under the map z 7→ zd + c remains bounded, i.e.

sup
n∈N

|fn(0)| < ∞.

Definition 3.6. The so-called filled-in Julia set of a function f : C → C is the
set of points z0, such that fn(z0) remains bounded, i.e.

{z0 ∈ C : sup
n∈N

|fn(z0)| < ∞}.

The boundary of the filled-in Julia set is called the Julia set.

The proof relies on the following two properties of the multibrot set.

Theorem 3.7 ([GKN16, Theorem 1.2]). For each d ≥ 2, there does not exist a
polynomials h(z), whose filled-in Julia set is Md.

Proposition 3.8 ([GKN16, Proposition 2.2]). Let µ(z) = Az + B be an auto-
morphism of C, such that µ(Md) = Md. Then A = ζ and B = 0, where ζ is a
(d− 1)-st root of unity.

Proof of Theorem 3.4 when C is a graph of a polynomial. It suffices to show that
h can be at most linear, and if so, it must be of the form (3).

The boundary of the multibrot set Md corresponds to points c ∈ C, whose every
open neighborhood contains infinitely many distinct PCF parameters. Therefore,
the closure of the set of PCF parameters must contain Md. A result by Ghioca–
Krieger–Nguyen [GKN16, Theorem 2.1] shows that t ∈ C is a PCF parameter if and
only if h(t) is a PCF parameter. Therefore, by continuity of h and its nonsingularity
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away from the origin, the open mapping theorem gives that the boundary ∂Md is
totally invariant under h, i.e. h−1(∂Md) = ∂Md. Applying the same reasoning for
C\Md, which is an open neighborhood of ∞, we see that the set C\Md, must also
be totally invariant. Therefore, h−1(Md) = Md.

If h is linear, it must therefore be an affine symmetry of C. Hence, Proposition
3.8 implies that h must be of the form (3).

Assume, towards a contradiction, that h has degree d ≥ 2 and let Kh and Jh
denote its filled-in Julia set and its Julia set, respectively. By Montel’s theorem,
Jh is the minimal closed set containing at least 3 points that are totally invariant
under h. Therefore, Jh ⊂ ∂Md and Kh ⊂ Md. On the other hand, every points of
Md is bounded by iteration, therefore, by definition, Md ⊂ Kh. We conclude that
Md = Kh, which contradicts Theorem 3.7. □

4. Quadratic polynomials

We would like to apply Theorem 3.4 to the case of real algebraic curves in
R2 passing through complex PCF parameters c of the map z 7→ z2 + c. Assume
an algebraic curve is given by the set of zeros of a polynomial P (x, y) ∈ R[x, y].
Substituting

(4.1)
x 7→ 1

2
(z + w),

y 7→ 1

2i
(z − w)

gives rise to a polynomial in z and w of the same degree as the original poly-
nomial, but with complex coefficients. This procedure allows us to identify the
algebraic curves in R2 (which we can identify with C) with algebraic curves in C2.

Moreover, the substitution preserves the PCF parameters on the curve. In fact,
if a PCF parameter c lies on the real algebraic curve, then the corresponding com-
plex algebraic curve must contain (c, c), which is a pair of PCF parameters by
Proposition 2.1. The converse likewise holds.

We have now developed a sufficient amount of material to answer the following
question 1.4.

Let a line in C ∼= R2 be given by

{(x, y) ∈ R2|ax+ by = c}

for some a, b, c ∈ R. Using the substitution (4.1), we acquire the following line in
C2 {

(z, w) ∈ C2 :
1

2
a(z + w) +

1

2i
b(z − w) = c

}
,

or equivalently {
(z, w) ∈ C2 :

1

2
z(a− ib) +

1

2
w(a+ ib) = c

}
.

Theorem 3.4 shows that the corresponding C2 lines are vertical/horizontal lines
through a PCF parameter and the diagonal {z = w}. Observe that since a and b
are real parameters, no lines in R2 correspond to vertical/horizontal lines in C2.
On the other hand, having a = c = 0 gives rise to the diagonal {z = w}, therefore,
the real axis in C contains infinitely many PCF parameters.
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Having dealt with the infinite case, the set of lines containing at least as little
as 3 PCF points appears to be surprisingly sparse. In fact, the only known line
containing more than 2 PCF points is the imaginary axis containing the {0,+i,−i},
which we have shown to be PCF parameters. The imaginary axis in C corresponds
to the complex line w = −z in C2.

A particularly interesting case left to consider are horizontal lines in C that
contain at least two PCF parameters, a trivial example of which is the real axis
uncovered above.

In other cases, where a horizontal line contains two distinct PCF parameters c1
and c2, they must have the same nonzero imaginary part. The complex line defined
by z + w = c := c1 + c2 ∈ R, thus contains the four PCF points

(c1, c2), (c1, c2), (c2, c1), (c2, c1).

The result by [DM23, Theorem 1.6] shows that in the space C2 there are at most
finitely many lines not of the type described in Theorem 3.4 that contain more than
two PCF parameters. Therefore, returning to our line in C, there can exist at most
finitely many horizontal lines containing two or more PCF parameters. However,
at the present time, we do not know any examples other than the real line.

Figure 2. Mandelbrot set with the marked real and imaginary
axis and a line going through a pair of PCF points c1 ≈ −1.401155
and c2 ≈ −0.125 + 0.649519i.
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