
DYNAMICAL PSEUDORANDOM NUMBER GENERATORS

CLARISE HAN

Abstract. Pseudorandom number generators (PRNGs) are essential to cryp-
tography, simulations, and randomized algorithms. This paper explores the
mathematical foundations and properties of dynamical PRNGs, which, in the
context of arithmetic dynamics, are generators based on iterated arithmetic
dynamical maps over finite fields. We first examine the classical linear congru-
ential generators (LCGs) and demonstrate their vulnerability to partial-output
attacks. In contrast, we then investigate a family of nonlinear multivariate
polynomial systems with controlled degree growth, which offer strong unifor-
mity guarantees. By comparing linear and nonlinear constructions, we high-
light the trade-offs between efficiency, security, and pseudorandomness and the
potential of nonlinear dynamical systems in building robust PRNGs.

Contents

1. Introduction 1
2. Background 2
2.1. Dynamical PRNGs 2
2.2. Examples of Dynamical PRNGs 2
2.3. Criteria for “Good” Dynamical PRNGs 3
3. Linear Dynamical PRNG 6
3.1. Construction 6
3.2. Example 7
3.3. Attack 8
3.4. Masked Attack 8
4. Nonlinear Dynamical PRNG 11
4.1. Construction 12
4.2. Example 13
4.3. Degree Growth 13
4.4. Discrepancy 14
References 15

1. Introduction

Random number generators (RNGs) lie at the heart of many computational ap-
plications, including cryptography, simulations, and randomized algorithms. There
are two main types: true random number generators (TRNGs) and pseudorandom
number generators (PRNGs). TRNGs generate truly random numbers based on

Date: May 14, 2025.
1

2 CLARISE HAN

unpredictable physical processes, such as thermal noise. While this provides high-
quality randomness, it also causes the outputs to be expensive to generate and
non-reproducible.

Due to these drawbacks, most practical applications turn to PRNGs. A PRNG,
broadly speaking, is an algorithm that produces a sequence of numbers that appears
random despite being deterministically generated. A PRNG can be viewed as a
dynamical system, generating sequences by iterating a map f : S → S on a state
space S, starting from an initial value u0 called the seed:

u0, un+1 = f(un), n = 0, 1,

A fundamental challenge in designing PRNGs is achieving a suitable balance be-
tween pseudorandomness, security against prediction, and computational efficiency.

Historically, many widely-adopted PRNGs have relied on linear maps. A canoni-
cal example is the linear congruential generator (LCG) over a finite field Fp, defined
by the recurrence relation

un+1 ≡ aun + b (mod p),

where a, b, u0 ∈ Fp and a ̸= 0. While LCGs are efficient and easy to implement,
their linear structure renders them vulnerable in cryptographic settings. Even
partial knowledge of an LCG’s output (e.g., masking certain coordinates of each
output) can be exploited to recover the LCG’s seed and predict future values, as
demonstrated in [GIGPS13].

These limitations have led researchers to explore nonlinear PRNGs, which are
typically more resistant to structural attacks due to the generators’ added complex-
ity. Of particular interest are polynomial systems with controlled degree growth,
as in the system defined in [OS10], where iterated polynomials exhibit polynomial
rather than exponential degree growth, enabling more efficient computation and
stronger uniformity guarantees.

This paper explores the mathematical foundations, constructions, and proper-
ties of PRNGs. In Section 2, we formalize the notion of a dynamical PRNG and
outline criteria for PRNG effectiveness. Section 3 examines linear generators over
finite fields and their insecurity against partial-output attacks. Section 4 analyzes
nonlinear polynomial systems with controlled degree growth, focusing on their im-
plications on pseudorandom guarantees.

2. Background

2.1. Dynamical PRNGs.

Definition 2.1. A dynamical PRNG is defined by a pair ⟨S, f⟩, where S is
the state space and f : S → S is a deterministic map. The generator produces
sequences via iteration:

u0, un+1 = f(un), n = 0, 1,

In the context of arithmetic dynamics, f is often a polynomial or rational func-
tion, and S is typically a finite field or residue ring.

2.2. Examples of Dynamical PRNGs. Key examples of dynamical PRNGs in-
clude the following:

DYNAMICAL PSEUDORANDOM NUMBER GENERATORS 3

2.2.1. Linear Congruential Generators (LCGs).

un+1 ≡ aun + b (mod m),

where a, b ∈ Z/mZ and a ̸= 0. LCGs are efficient but suffer from predictability due
to their linear structure.

2.2.2. Inversive Congruential Generators (ICGs).

un+1 ≡ au−1
n + b (mod m),

where a, b ∈ Z/mZ, a ̸= 0, and u−1
n denotes the modular inverse of un modulo

m. ICGs are nonlinear, which improves their resistance to prediction due to their
increased complexity. However, computing modular inverses is often more compu-
tationally intensive than linear operations.

2.2.3. Power Generators.
un+1 ≡ udn (mod m),

where d ∈ Z>1 and gcd(un,m) = 1 to ensure the exponentiation is well-defined
modulo m.

2.2.4. Polynomial Systems. More generally, one can consider polynomial systems
over finite fields. Given a system of r polynomials F = {f0, . . . , fr−1} in r variables
over a finite field Fq, the sequence is defined by

un+1 = F(un), u0 ∈ Fr
q.

2.3. Criteria for “Good” Dynamical PRNGs. The effectiveness of dynami-
cal PRNGs can be evaluated based on three primary criteria: pseudorandomness,
security, and efficiency [AK09, Section 9].

2.3.1. Pseudorandomness. Pseudorandomness refers to how closely the output se-
quence of a PRNG resembles a truly random sequence, measured using a chosen
set of statistical tests.

The most fundamental requirement is uniformity, meaning that the outputs
should be evenly distributed. Another important property is a long period, which
ensures that the output sequence does not repeat prematurely. In practice, pseudo-
randomness is typically assessed using standard test suites like NIST and DIEHARD.

In this paper, we focus primarily on uniformity, which can be quantified using a
metric called discrepancy. Intuitively, the discrepancy of a sequence measures the
worst-case deviation between the sequence’s distribution and the uniform distribu-
tion: the more uniform a sequence, the lower its discrepancy. We define discrepancy
formally as follows:

Definition 2.2. Consider a sequence Γ of N points in the m-dimensional unit
cube [0, 1)m, represented as

Γ = (γn,0, . . . , γn,m−1)
N−1
n=0 ,

where each point (γn,0, . . . , γn,m−1) ∈ [0, 1)m.
Let B be a subinterval or “box” of this m-dimensional unit cube of the form

B = [α1, β1)× . . .× [αm, βm) ⊆ [0, 1)m,

where 0 ≤ αj ≤ βj ≤ 1 for each j = 1, . . . ,m. The volume of such a box is denoted
by |B| =

∏m
j=1(βj − αj).

4 CLARISE HAN

Define TΓ(B) as the number of points in Γ that fall inside the box B. Since the
points are distributed in [0, 1)m, the expected number of points in B under uniform
distribution is N · |B|.

Then, the discrepancy ∆(Γ) of the sequence Γ is given by the worst-case deviation
between the actual and expected proportions of points in any box B. Formally,

∆(Γ) = sup
B⊆[0,1)m

∣∣∣∣TΓ(B)

N
− |B|

∣∣∣∣ ,
where the supremum is taken over all boxes B ⊆ [0, 1)m as defined above.

To analyze the uniformity of sequences generated by PRNGs, we can bound the
discrepancy. For a sequence Γ of N points as defined in Definition 2.2, the trivial
discrepancy bound is ∆(Γ) ≤ 1. This is because if all the points in the sequence
are the same and we consider the box that contains all the points, which has zero
volume, we get TΓ(B) = N and |B| = 0, which gives the maximum discrepancy
of
∣∣N
N − 0

∣∣ = 1. The general discrepancy bound is given by the Koksma-Szüsz
inequality from [DT97, Theorem 1.21]:

Lemma 2.3. For a positive integer parameter L > 1 and a sequence Γ of N
points as defined in Definition 2.2, we can bound the discrepancy as follows:

∆(Γ) < O

 1

L
+

1

N

∑
|a0|,...,|am−1|≤L

a2
0+···+a2

m−1>0

m−1∏
j=0

1

|aj |+ 1

∣∣∣∣∣∣
N−1∑
n=0

exp

2πi

m−1∑
j=0

ajγn,j

∣∣∣∣∣∣
 ,

where a ∈ Zm is an m-dimensional integer vector.

More details about the Koksma-Szüsz inequality and proof can be found in
[DT97, Theorem 1.21]. In later sections, we will use this inequality as a tool to
bound discrepancy.

The inner absolute value of the Koksma-Szüsz inequality corresponds to the
exponential sum, defined formally as follows:

Definition 2.4. For a sequence (un) of length N and an integer vector a ∈ Zm,
the exponential sum is

Sa(N) =

N−1∑
n=0

e

(
m−1∑
i=0

aiun,i

)
,

where e(z) = exp(2πiz/p) maps z to a point on the unit circle.

Thus, bounding the exponential sum helps bound the discrepancy. The trivial
bound for the exponential sum is |Sa(N)| ≤ N since the exponential sum adds
N terms e(z) with magnitude 1, so the maximum magnitude of the exponential
sum is N . The general exponential bound is given by the Weil Bound from [LN97,
Chapter 5]:

Lemma 2.5. For a non-constant polynomial F ∈ Fp[X0, . . . , Xm] of total degree
D, we can bound the exponential sum as follows:∣∣∣∣∣ ∑

x0,...,xm=1

e(F (x0, . . . , xm))

∣∣∣∣∣ < Dp
m+1

2 .

DYNAMICAL PSEUDORANDOM NUMBER GENERATORS 5

More details about the Weil Bound and proof can be found in [LN97, Chapter
5]. In later sections, we will see how stronger exponential sum bounds, enabled by
controlled degree growth of the polynomial, can be used to improve the discrepancy
bound, thus giving more robust uniformity guarantees.

2.3.2. Security. Security refers to the computational difficulty of predicting the
PRNG based on the outputs. This property is essential in cryptographic applica-
tions, where predictability of outputs can lead to a complete compromise of security.
A standard security test is the next-bit test : given the first i outputs of a PRNG, no
polynomial-time adversary should be able to predict the (i+1)-th output. Another
important security test is resistance to state compromise extensions: if an attacker
gains access to part of an output of a PRNG, they should not be able to recover
past or future outputs.

Security tests assume that the attacker knows the algorithm being used, which is
formalized by Kerckhoffs’s principle, a foundational concept in cryptography stating
that a system should remain secure even if the system’s underlying algorithm,
except the initial seed, is public knowledge.

Example 2.6. For example, for LCGs, under Kerckhoffs’s principle, an attacker
would know that the PRNG has the form un+1 ≡ aun + b (mod p), but does not
know the value of u0.

2.3.3. Efficiency. Efficiency refers to the computational cost of producing each out-
put of the PRNG. This cost is typically measured by the number and complexity
of basic operations required per iteration, including arithmetic operations (addi-
tion, multiplication, subtraction, division) and bitwise logical operations (XOR,
OR, AND, NOT).

In theoretical analysis, the cost of these basic operations depends on the bit-
length k of the operands, as outlined in Table 1. Under the standard model of
computation, we assume operations are carried out via grade-school methods:

Example 2.7. For example, addition requires O(k) time: each bit of the two
inputs is processed once, with a carry that may propagate. Subtraction also pro-
cesses inputs bit-by-bit, requiring O(k) time. Similarly, bitwise logical operations
operate bit-by-bit and require O(k) time.

In contrast, multiplication requires O(k2) time: each bit of the first operand must
be multiplied by each bit of the second. More efficient algorithms like Karatsuba
or FFT-based multiplication can reduce this to sub-quadratic time, but the O(k2)
model remains standard for baseline analysis.

Division and modular reduction also require O(k2) time in the standard model.
Division is typically implemented via long division, which involves O(k) steps, each
performing O(k)-bit comparisons and subtractions. Modular reduction is usually
performed by computing the quotient and remainder through division: given x =
qm + r, we recover x mod m = r. Therefore, modular reduction has the same
complexity as division. When the modulus m has a special form (e.g., a power of
2), modular reduction can be much faster since it can be implemented using bitwise
masking or shifts.

In practice, when k is small enough to fit within a machine word (e.g., 32 or 64
bits), arithmetic and bitwise logical operations are implemented directly in hard-
ware and execute in constant time. However, for cryptographic applications that

6 CLARISE HAN

operate on large integers (e.g., 256-bit or 2048-bit fields), the theoretical complex-
ities become more relevant.

Operation Theoretical Complexity Practical Complexity
Addition and Sub-
traction

O(k) O(1)

Multiplication O(k2) O(1)
Division and Modu-
lar Reduction

O(k2) O(1) (optimized for con-
stants or powers of 2)

Bitwise Logical O(k) O(1)

Table 1. Operation Complexity.

We will now analyze the efficiency of some example PRNGs.

Example 2.8. LCGs use the recurrence un+1 ≡ aun+b (mod m), which involves
one multiplication, an addition, and a modular reduction per iteration. Thus, for
k-bit inputs, the theoretical cost is O(k2) per iteration.

Example 2.9. Inversive congruential generators (ICGs) use the recurrence un+1 ≡
au−1

n +b mod m. Each iteration involves computing a modular inverse, followed by
a multiplication, an addition, and a modular reduction. The inversion is computed
using the extended Euclidean algorithm (EEA), which finds integers x, y such that
unx + my = gcd(un,m). If gcd(un,m) = 1, then x ≡ u−1

n mod m. The EEA
takes O(logm) iterations, each involving O(k2) arithmetic on k-bit integers, so the
modular inversion step requires O(k3). Thus, for k-bit inputs, the theoretical cost
is O(k3) per iteration, which is much less efficient than the LCG.

Using these three criteria, we can compare PRNGs, as summarized in Table 2.

3. Linear Dynamical PRNG

Although computationally efficient, linear generators over finite fields have severe
security vulnerabilities. From just a few outputs, the generator can be predicted.
Even hiding certain coordinates of each output does not protect the generator,
which has been shown using an algorithm developed by [GIGPS13].

In this section, we will first formalize linear generators over finite fields and give
an example. Then, we will discuss how such generators can be attacked using raw
outputs. After that, we will present the algorithm that predicts the generator using
masked outputs.

3.1. Construction.

Definition 3.1 (Linear Generator Over a Finite Field). Let p be a prime number
and s be a positive integer. Let q = ps where Fq is the finite field over q elements.
The linear generator over Fq produces a sequence (un) defined by the recurrence
relation:

un+1 = aun + b, a, b ∈ Fq, a ̸= 0, n = 0, 1, 2, . . .(3.1)

where u0 ∈ Fq is the initial seed.

DYNAMICAL PSEUDORANDOM NUMBER GENERATORS 7

PRNG Type Pseudorandomness Efficiency Security
Linear Con-
gruential Gen-
erator (f(x) =
(ax+ b) mod p)

Max uniformity
when b ̸≡ 0
(mod p), a ≡ 1
(mod p) when p odd,
a ≡ 1 (mod 4) when
p = 2 [AK09]

Fast because only lin-
ear operations needed
to generated each out-
put; assuming k-bit in-
tegers, the theoretical
cost is O(k2) per itera-
tion (see Example 2.8)

Very poor
since there
are many
attacks (e.g.,
[GIGPS13])
(see Section
3)

Inversive Con-
gruential Gen-
erator (f(x) =
(ax−1 + b) mod
p)

Stronger discrepancy
than general bounds:
O(N−1/2p1/4 log p),
where N is the
sequence length
and N ≥ p1/2 log p
[GNS99]

Slow because modu-
lar inverse is computa-
tionally expensive; as-
suming k-bit integers,
the theoretical cost is
O(k3) per iteration (see
Example 2.9)

Better than
linear since
the at-
tacks are
weaker (e.g.,
[BGPGS03])

Power Gener-
ator (f(x) =
xd mod p)

Stronger discrepancy
than general bounds:
O(N−5/9p1/4), where
N is the sequence
length [EM08]

Slow due to exponen-
tiation; the degree
growth after k it-
erations is O(dk)
(exponential degree
growth)

Better than
linear since
the at-
tacks are
weaker (e.g.,
[KKK20]);
secure for
large d ≈ p

Nonlinear
Polynomial
System Gen-
erator [OS10]
(system with
m + 1 polyno-
mials over the
finite field Fp)

Stronger discrepancy
than general bounds:
O(N

− 1
4(m+1)2

+o(1)

(logN)m), where N
is the sequence length
and N ≈ pm+1 (see
Section 4)

Not that slow because
the degree growth after
k iterations for a sys-
tem with m+1 polyno-
mials is O(km) (poly-
nomial degree growth)
(see Section 4)

Not fully
tested

Table 2. PRNG Effectiveness Summary.

Each element in Fq can be represented in Fp using a unique coordinate vector.
Given a basis (γ1, . . . , γs) of Fq over Fp, each α ∈ Fq can be expressed uniquely
using the basis expansion as

α = c1γ1 + · · ·+ csγs, c1, . . . , cs ∈ Fp

where (c1, . . . , cs) is the coordinate vector of α, whose elements can be called the
coefficients of α in the basis (γ1, . . . , γs).

We use w(α) to denote the weight of α, which refers to the number of nonzero
coefficients in the basis expansion of α.

3.2. Example.

Example 3.2. Let F4 be the finite field with 4 = 22 elements. We can construct
F4 as F2[θ]/(θ

2 + θ + 1), where θ is a root of the irreducible polynomial x2 + x+ 1
over F2. Given the basis (1, θ) of F4 over F2, every element of F4 can be written
uniquely as c1 + c2θ for c1, c2 ∈ F2.

8 CLARISE HAN

To construct the linear generator from Definition 3.1, define the recurrence:

un+1 = un + (θ + 1), u0 = 0,

where the multiplier a = 1 and the increment b = θ+1. Then the sequence (un) is:

u0 = 0,

u1 = u0 + (θ + 1) = θ + 1,

u2 = u1 + (θ + 1) = (θ + 1) + (θ + 1) = θ,

u3 = u2 + (θ + 1) = θ + (θ + 1) = 1,

u4 = u3 + (θ + 1) = 1 + θ + 1 = 0,

with the first four elements repeating. Note that this generator cycles through all
four elements of F4 and thus has the maximal period of 4. Thus, strong uniformity
of LCGs can be made possible with careful choices of a and b, as further described
in [AK09, Chapter 9] and summarized in Table 2.

3.3. Attack. The linear structure of linear generators makes them susceptible to
security attacks. Given a sequence of consecutive outputs, we will show how we
can recover the multiplier a and the increment b, as well as the initial seed u0.
Suppose we observe t ≥ 3 consecutive outputs w0, . . . , wt−1. Then, we know that
w1 = aw0 + b and w2 = aw1 + b. Subtracting these equations, we have w2 − w1 =
a(w1 − w0), so

a =
w2 − w1

w1 − w0
.

Once a is known, we can solve for b:

b = w1 − aw0.

Now that we know a and b, with any single output un, we can compute

un−1 = (un − b)a−1

to recursively recover all past outputs, including u0.

3.4. Masked Attack. Given the predictability of linear generators, a proposed
strategy to overcome this is to discard or “mask” certain coordinates of the outputs.
We formalize masking through the concept of I-approximations:

Definition 3.3 ([GIGPS13, Definition 1]). Given a basis (γ1, . . . , γs) of Fq over
Fp, let two elements α, β ∈ Fq have coordinate vectors (c1, . . . , cs) and (d1, . . . , ds),
respectively. Let I ⊆ {1, 2, . . . , s} be a set of coordinate positions. Then α and β
are called I-approximations of each other if ci = di for all i ̸∈ I.

In other words, α and β differ only in the coordinates indexed by I. Equivalently,
α− β ∈ L(I), where

L(I) =

{∑
i∈I

ciγi | ci ∈ Fp, ∀i ∈ I

}
.

A masked output is defined as follows:

Definition 3.4. Let un ∈ Fq be a true output of the generator and wn ∈ Fq be
an I-approximation of un. Then wn is called an I-masked output of un.

DYNAMICAL PSEUDORANDOM NUMBER GENERATORS 9

Let us now see how we can attack the linear generator using masked outputs
rather than true outputs. Given a and b from Eq. 3.1 and a sequence of I-masked
outputs wn for each true output wn, we will show how we can recover which coor-
dinates are masked (i.e., the set I) and the initial seed u0 using an algorithm by
[GIGPS13] that runs in polynomial time of complexity (log q)O(1).

The algorithm operates in two stages:
• recovering the set of hidden positions I.
• recovering the initial seed u0.

3.4.1. Recovering the Set I. First, we will describe how the algorithm finds I.

Theorem 3.5 ([GIGPS13, Theorem 2]). Given s+ 1 consecutive I-masked out-
puts w0, w1, . . . , ws of the true outputs u0, u1, . . . , us, and |I| = k, we can recover I
in polynomial time, as long as the error terms (ϵ0, . . . , ϵs), where ϵi = ui−wi ∈ L(I)
for i = 0, . . . , s, are not in a certain exceptional set E(a, b, I) ⊂ L(I)s+1, where

E(a, b, I) =

(x0, . . . , xs) ∈ L(I)s+1 |

(
s∑

i=0

aixi

)
j

= 0


with cardinality |E(a, b, I)| = pk(s+1)−1.

Proof. Since Fq is an s-dimensional extension of Fp, the multiplier a in Eq. 3.1
satisfies a minimal polynomial

P (a) = a0 + a1a+ . . .+ asa
s = 0 for ai ∈ Fp

where at least one of a0, . . . , as ∈ Fp is not zero.
We consider two cases for b in Eq. 3.1: b = 0 and b ̸= 0. If b = 0, then un = anu0.

Then
a0u0 + a1u1 + . . .+ asus = 0.

With ϵi = ui − wi, we get
a0ϵ0 + . . .+ asϵs = w

where
w = −a0w0 − . . .− asws.

Expanding w in the basis (γ0, . . . , γs), we get

w =

s∑
i=1

diγi.

If dj ̸= 0, then the algorithm returns j ∈ I. If dj = 0, the algorithm returns j /∈ I,
which is correct unless (ϵ0, . . . , ϵs) ∈ E(a, b, I), where E(a, b, I) is the hyperplane

E(a, b, I) =

(x0, . . . , xs) ∈ L(I)s+1 |

(
s∑

i=0

aixi

)
j

= 0

 .

Since |E(a, b, I)| = pk(s+1)−1, the failure probability is

|E(a, b, I)|
|L(I)s+1|

=
pk(s+1)−1

pk(s+1)
=

1

p
.

Thus, the algorithm is correct with probability 1− 1/p ≥ 1/2.

10 CLARISE HAN

If we repeat the process with multiple tuples of consecutive approximations and
make a majority decision on whether j ∈ I, the probability of an incorrect result
becomes exponentially smaller.

For b ̸= 0, define vn = un− b(1+a+ . . .+an−1). Since vn = anu0, the argument
for the b = 0 case applies to vn, concluding the proof.

□

3.4.2. Recovering the Seed u0. Next, we will describe how the algorithm uses the
recovered I to find u0.

Theorem 3.6 ([GIGPS13, Theorem 3]). Given a set I ⊆ {1, . . . , s} with
|I| = k and t consecutive I-masked outputs w0, w1, . . . , wt−1 of the true outputs
u0, u1, . . . , ut−1 where k+1 ≥ t > 2, we can recover u0 in polynomial time, as long
as the multiplier a in Eq. 3.1 is not in a certain exceptional set F (I) ⊂ Fq with
cardinality |F (I)| < 2pδt +

(
k

t−2

)
p2k−t+2, where δt is the largest divisor of s less

than t. We define F (I) as F (I) = F1 ∪ F2, where

F1 = {a ∈ Fq | aα = β, 0 < w(α) ≤ k − (t− 2), w(β) ≤ k},

F2 = {a ∈ Fq | F (a) = 0, F (X) ∈ Fp[X]∗, deg F ≤ t− 1},
where w(α) is the weight of α as defined in Section 3.1.

Proof Sketch. From Eq. 3.1 and the error terms ϵi = ui − wi for i = 0, . . . , t − 1,
we get

ϵi+1 + wi+1 = a(ϵi + wi) + b for i = 0, . . . , t− 2.

Isolating the error terms, we derive aϵi−ϵi+1 = wi+1−(b+awi) for i = 0, . . . , t−
2. Letting ei = wi+1 − (b+ awi) for i = 0, . . . , t− 2, we can formulate the system

aηi − ηi+1 = ei for i = 0, . . . , t− 2(3.2)

where we are trying to solve for the variables ηi. By construction, this system
has at least one solution (η0, . . . , ηt−1) = (ϵ0, . . . , ϵt−1), which can be found using
Gaussian elimination.

If this solution is unique, we can recover the initial seed

u0 = w0 + ϵ0.

However, this fails if the solution is not unique. We will show that this happens
when a is in a certain set F (I) = F1 ∪ F2, where

F1 = {a ∈ Fq | aα = β, 0 < w(α) ≤ k − (t− 2), w(β) ≤ k},

F2 = {a ∈ Fq | F (a) = 0, F (X) ∈ Fp[X]∗, deg F ≤ t− 1},
where w(α) is the weight of α as defined in Section 3.1.

Let the system given by Eq. 3.2 have another solution (ϵ̃0, . . . , ˜ϵt−1). Since
(ϵ0, . . . , ϵt−1) and (ϵ̃0, . . . , ˜ϵt−1) are solutions, we have that aϵi − ϵi+1 = ei and
aϵ̃i − ˜ϵi+1 = ei, so a(ϵi − ϵ̃i)− (ϵi+1 − ˜ϵi+1) = 0 for i = 0, . . . , t− 2. If we define the
difference

di = ϵi − ϵ̃i for i = 0, . . . , t− 1,

then (d0, . . . , dt−1) is a nontrivial solution to

ayj − yj+1 = 0 for j = 0, . . . , t− 2.

This implies that dj = ajd0.

DYNAMICAL PSEUDORANDOM NUMBER GENERATORS 11

We will now use these differences di to characterize F1 and F2. Let’s fix a basis
of Fq over Fp and consider the linear subspace formed by d0, . . . , dt−1 over Fp. Then
we have the following two cases that correspond to sets F1 and F2:

The first case is when d0, . . . , dt−1 are linearly independent over Fp. Then,
Gaussian elimination shows that there exists a nonzero element α that is a linear
combination of d0, . . . , dt−2 with weight w(α) ≤ k − (t− 2), such that β = aα has
all nonzero components within the set I. This corresponds to a ∈ F1.

The second case is when d0, . . . , dt−1 are linearly dependent over Fp. Then, for
some j ∈ {1, . . . , t− 1}, we have dj = c0d0+ c1d1+ . . .+ cj−1dj−1. Since dj = ajd0,
we get aj = c0 + c1a + . . . + cj−1a

j−1. Thus, a satisfies a polynomial equation of
degree ≤ t− 1 over Fp, which corresponds to a ∈ F2.

Analyzing the sizes of F1 and F2, we can bound the size of the set F (I) = F1∪F2.
For F1, we count the possible choices for α with w(α) ≤ k − (t − 2) and β with
w(β) ≤ k to get the bound |F1| ≤

(
k

t−2

)
∗ p2k−t+2. For F2, we know that, by

definition, any a ∈ F2 is a root of a polynomial with degree ≤ t− 1 over Fp. Since
a ∈ Fq = Fps , a has a minimal polynomial that is irreducible over Fp, so

∏
a∈F2

(X−
a) |

∏
j|s,j<t(X

pj − a). Thus, |F2| ≤
∑

j|s,j<t p
j ≤

∑δt
j=1 p

j ≤ 2pδt . Therefore, the
combined set F (I) = F1 ∪ F2 has cardinality |F (I)| < 2pδt +

(
k

t−2

)
p2k−t+2.

Thus, the failure probability is bounded by

|F (I)|
|Fq|

<
2pδt +

(
k

t−2

)
p2k−t+2

ps
= 2pδt−s +

(
k

t− 2

)
p2k−t+2−s.

If we consider a special optimal case, we can further simplify the bound for
|F (I)|. Using the trivial estimate δt ≤ t− 1, we get |F (I)| < 2pt−1 +

(
k

t−2

)
p2k−t+2.

Then if we use the optimal number of masked outputs t = k + 1, we get |F (I)| <
2pk+1+

(
k

k−1

)
pk+1 = (k+2)pk+1. Thus, for this special case, the failure probability

is bounded by |F (I)|
|Fq| < (k+2)pk+1

ps = (k + 2)pk−s+1. □

4. Nonlinear Dynamical PRNG

The security limitations of linear generators exposed by [GIGPS13] motivate the
study of nonlinear alternatives.

One such nonlinear generator is the inversive generator, which has attracted at-
tention due to its potential for producing pseudorandom sequences. Although it
has been attacked, as in [BGPGS03], the attacks are much weaker than for linear
generators. Rather strong estimates on the randomness properties of sequences
generated by inversive generators are available, as demonstrated in [GNS99]. How-
ever, the inversive generator involves a modular inversion at each step, which is a
computationally expensive operation, as seen in Example 2.9.

Another promising nonlinear alternative is the power generator. These genera-
tors have also been attacked, as in [KKK20], but the attacks are much weaker than
for linear generators. Additionally, the power generator can produce pseudoran-
dom sequences with strong statistical properties, which has been demonstrated by
[EM08]. However, while the power generator offers improved uniformity over linear
generators, it is still not immune to the computational challenges inherent in more
complex nonlinear systems.

12 CLARISE HAN

Motivated by these limitations, the authors of [OS10] construct a family of mul-
tivariate polynomial systems where iterations exhibit controlled degree growth, en-
abling both efficient computation and robust uniformity guarantees. Although the
security of this system has not yet been fully tested, it is more complex than the
linear case, making it harder to predict.

In this section, we will first define the nonlinear multivariate polynomial system
by [OS10] and give an example. Then we will provide results for the degree growth
and the uniformity bounds in terms of exponential sum and discrepancy.

4.1. Construction.

Definition 4.1 (Nonlinear Polynomial System [OS10]). Let Fp be a finite field,
and let F = {f0, . . . , fm} be a system of m+1 polynomials in Fp[X0, ..., Xm] defined
as follows:

f0(X0, . . . , Xm) = X0g0(X1, . . . , Xm) + h0(X1, . . . , Xm)(4.1)
f1(X0, . . . , Xm) = X1g1(X2, . . . , Xm) + h1(X2, . . . , Xm)

...
fm−1(X0, . . . , Xm) = Xm−1gm−1(Xm) + hm−1(Xm)

fm(X0, . . . , Xm) = aXm + b

where

a, b ∈ Fp, a ̸= 0, gi, hi ∈ Fp[Xi+1, . . . , Xm], i = 0, 1, . . . ,m− 1.

We impose certain conditions on the polynomials gi and hi:
• Each gi must have a unique leading monomial Xsi,i+1

i+1 . . . X
si,m
m :

gi(Xi+1, . . . , Xm) = X
si,i+1

i+1 . . . Xsi,m
m + g̃i(Xi+1, . . . , Xm)

where deg g̃i < deg gi = si,i+1 + · · ·+ si,m.
• The degree of hi is bounded by the degree of gi:

deg hi ≤ deg gi.

We define the iterations of the system from Definition 4.1 formally as follows:

Definition 4.2. For the system F = {f0, . . . , fm} from Definition 4.1, the k-th
iteration of the polynomials fi for each i = 0, . . . ,m is given by the recurrence
relation

f
(0)
i = fi, f

(k)
i = f (k−1)(f0, . . . , fm), k = 0, 1,(4.2)

Definition 4.3. Iterating the system from Definition 4.1, we can construct a
dynamical PRNG. The output sequence is generated by the recurrences

un+1,i ≡ fi(un,0, . . . , un,m) (mod p), n = 0, 1, . . . ,

for i = 0, . . . ,m with some initial values u0,0, . . . , u0,m ∈ Fp. In terms of iterations,
we have

un+k,i ≡ f
(k)
i (un,0, . . . , un,m) (mod p), n, k ≥ 0, i = 0, . . . ,m.

Using vector notation wn = (un,0, . . . , un,m) and F = (f0(X0, . . . , Xm), . . . ,
fm(X0, . . . , Xm)), we can write

wn+1 = F(wn).

DYNAMICAL PSEUDORANDOM NUMBER GENERATORS 13

In terms of iterations, we have

wn+k = F(k)(wn).

The sequence (wn) is eventually periodic with period T ≤ pm+1 because each vector
wn has m+1 components with p possible values, so there are pm+1 possible vectors
which must eventually repeat by the pigeonhole principle.

Since the last component in each vector wn is generated by the linear polynomial,
making this last component vulnerable to security attacks, we discard it and use

un = (un,0, . . . , un,m−1)

as each output in the output sequence of the PRNG.

4.2. Example.

Example 4.4. Let F101 be the finite field. To construct the PRNG from Defi-
nition 4.3, we first define the system F = {f0, f1} of 2 polynomials in F101[X0, X1]
from Definition 4.1:

f0(X0, X1) = X0X1 + 3

f1(X0, X1) = 2X1 + 5.

Then the output sequence of the PRNG is generated by the recurrences

un+1,0 ≡ X0X1 + 3 (mod 101)

un+1,1 ≡ 2X1 + 5 (mod 101),

where the initial values are u0,0 = 1 and u0,1 = 1, so w0 = (u0,0, u0,1) = (1, 1).
Then the sequence (wn) is given by the following calculations:

n un,0 un,1
0 1 1
1 f0(1, 1) = 1 ∗ 1 + 3 = 4 f1(1, 1) = 2 ∗ 1 + 5 = 7
2 f0(4, 7) = 4 ∗ 7 + 3 = 31 f1(4, 7) = 2 ∗ 7 + 5 = 19
3 87 43
4 7 91

Discarding the last component of each wn, we get our PRNG output sequence
(un) = (1, 4, 31, 87, 7), which does indeed look random.

4.3. Degree Growth. One of the fundamental challenges in polynomial systems
is managing degree growth of iterations, which impacts the PRNG’s computational
efficiency and pseudorandomness guarantees. In typical polynomial systems, re-
peated iteration causes degrees to grow exponentially.

Example 4.5. For example, when iterating the polynomial f(x) = xd, the degree
after k iterations is dk.

However, for the polynomial system from Definition 4.1, the degree grows poly-
nomially rather than exponentially:

Lemma 4.6 ([OS10, Lemma 1]). Let dk,i be the degree of the polynomial fi from
the system defined by Definition 4.1 after k iterations. Then

dk,i =
1

(m− i)!
km−isi,i+1 . . . sm−1,m + ψi(k), i = 0, . . . ,m− 1

14 CLARISE HAN

where ψi(T) ∈ Q[T] is a polynomial of degree less than m− i. For the last compo-
nent, dk,m = 1 for all k.

Proof Sketch. Intuitively, this polynomial degree growth stems from the triangular
structure of the system from Definition 4.1. Since each polynomial fi depends only
on variables Xj with indices j ≥ i, the system avoids the large combinations of
terms that would normally occur in general multivariate polynomial systems and
cause exponential degree growth. □

Example 4.7. For example, in the system from Example 4.4 where m = 1, we
can see that for i = 0, we have degree dk,0 = 1

(1−0)!k
1−0s0,1 + ψi(k) = O(k), which

is linear, and for i = 1, we have degree dk,1 = 1.

This controlled degree growth offers two main benefits. First, the computational
efficiency of this system is improved compared to that of general polynomial sys-
tems. Second, the polynomial degree growth enables tighter bounds on uniformity
guarantees.

4.4. Discrepancy. To analyze uniformity, we can bound the discrepancy for the
PRNG from Definition 4.3 as follows:

Theorem 4.8 ([OS10, Theorem 6]). Let the sequence (un) generated by the
PRNG defined by Definition 4.3 have length N and period T where N ≤ T . For
the scaled sequence (

un,0
p
, . . . ,

un,m−1

p

)
, n = 0, . . . , N − 1,

and any fixed integer ν ≥ 1, the discrepancy DN satisfies the bound

DN = O(pαm,νN−βm,ν (log p)m)

where

αm,ν =
2m2 + 2mν + 2m+ ν

4ν(m+ ν)
and βm,ν =

1

2ν
.

To prove this theorem, we will use the exponential sum bound for the same
PRNG from Definition 4.3:

Theorem 4.9 ([OS10, Theorem 4]). For the sequence (un) generated by the
PRNG from Definition 4.3 with length N and period T where N ≤ T , and any fixed
integer ν ≥ 1, the exponential sum satisfies the bound

max
gcd(a0,...,am−1,p)=1

|Sa(N)| = O(pαm,νN1−βm,ν)

where

αm,ν =
2m2 + 2mν + 2m+ ν

4ν(m+ ν)
and βm,ν =

1

2ν
.

Proof Sketch. This can be proven using the Weil Bound from [LN97, Chapter 5]:∣∣∣∣∣ ∑
x0,...,xm=1

e(F (x0, . . . , xm))

∣∣∣∣∣ < Dp
m+1

2 ,

and the crucial fact that the system has polynomial degree growth with iterations,
as given by Theorem 4.6. This keeps the total degree D small, tightening the
exponential bound and giving us the desired bound. □

DYNAMICAL PSEUDORANDOM NUMBER GENERATORS 15

We are now ready to sketch the proof of Theorem 4.8:

Proof Sketch. We will use the general discrepancy bound given by the Koksma-
Szüsz inequality from [DT97, Theorem 1.21]:

∆(Γ) < O

 1

L
+

1

N

∑
|a0|,...,|am−1|≤L

a2
0+···+a2

m−1>0

m−1∏
j=0

1

|aj |+ 1

∣∣∣∣∣∣
N−1∑
n=0

exp

2πi

m−1∑
j=0

ajun,j/p

∣∣∣∣∣∣
 .

Taking L = p− 1 and applying the exponential sum bound from Theorem 4.9, we
get the desired discrepancy bound. □

This discrepancy bound from Theorem 4.8 exponentially improves upon the gen-
eral bound. Consider T,N close to the maximum pm+1, i.e., T ≥ N ≥ pm+1+o(1),
where o(1) is an approximation error term. Then p ≈ N

1
m+1 . For ν = 1, we have

αm,1 = 2m2+4m+1
4(m+1) and βm,1 = 1

2 . Then we can rewrite the bound as

DN = O((N
1

m+1)αm,1N−βm,1(log p)m)

= O
(
N

− 1
4(m+1)2

+o(1)
(log p)m

)
.

Compared to the general bound, this bound O
(
N

− 1
4(m+1)2

+o(1)
(log p)m

)
achieves

a power-law improvement.

References

[AK09] Vladimir Anashin and Andrei Khrennikov. Applied Algebraic Dynamics. De Gruyter,
Berlin, New York, 2009.

[BGPGS03] Simon R. Blackburn, Domingo Gomez-Perez, Jaime Gutierrez, and Igor E. Shparlin-
ski. Predicting the inversive generator. In Cryptography and coding, volume 2898 of
Lecture Notes in Comput. Sci., pages 264–275. Springer, Berlin, 2003.

[DT97] Michael Drmota and Robert F. Tichy. Sequences, discrepancies and applications,
volume 1651 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1997.

[EM08] Edwin D. El-Mahassni. On the distribution of the power generator over a residue ring
for parts of the period. Revista Matematica Complutense, 21:319–325, 2008.

[GIGPS13] Jaime Gutierrez, Alvar Ibeas, Domingo Gomez-Perez, and Igor E. Shparlinski. Pre-
dicting masked linear pseudorandom number generators over finite fields. Design,
Codes and Cryptography, (67):395–402, 2013.

[GNS99] Frances Griffin, Harald Niederreiter, and Igor E. Shparlinski. On the distribution
of nonlinear recursive congruential pseudorandom numbers of higher orders. In Ap-
plied algebra, algebraic algorithms and error-correcting codes (Honolulu, HI, 1999),
volume 1719 of Lecture Notes in Comput. Sci., pages 87–93. Springer, Berlin, 1999.

[KKK20] Novak Kaluđerović, Thorsten Kleinjung, and Dusan Kostic. Improved key recovery
on the legendre PRF. Cryptology ePrint Archive, Paper 2020/098, 2020.

[LN97] Rudolf Lidl and Harald Niederreiter. Finite fields, volume 20 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge, second
edition, 1997. With a foreword by P. M. Cohn.

[OS10] Alina Ostafe and Igor E. Shparlinski. On the degree growth in some polynomial
dynamical systems and nonlinear pseudorandom number generators. Mathematics of
Computation, 79(269):501–511, 2010.

Massachusetts Institute of Technology
Email address: clariseh@mit.edu

	1. Introduction
	2. Background
	2.1. Dynamical PRNGs
	2.2. Examples of Dynamical PRNGs
	2.3. Criteria for ``Good'' Dynamical PRNGs

	3. Linear Dynamical PRNG
	3.1. Construction
	3.2. Example
	3.3. Attack
	3.4. Masked Attack

	4. Nonlinear Dynamical PRNG
	4.1. Construction
	4.2. Example
	4.3. Degree Growth
	4.4. Discrepancy

	References

