Student Name (UNI): ____

Instructions:

This exam contains 5 pages (including this cover page) and 5 questions. The total number of possible points is **34 points**. You will have **65 minutes** to complete this exam.

- Print your name and UNI in the space above.
- Answer the questions in the space provided on the question sheets. You may use extra paper.
- Clearly identify and simplify your answers. You will not receive full credit if there are multiple apparent answers, even if one of them is correct.
- Write legibly and show your work. You may receive partial credit for intermediate steps. Correct answers without any reasoning or work will not receive full credit.
- No calculators, computational devices, or consulting other people during the duration of this exam. Any cheating will result in an automatic failing grade in the course and potential administrative action.
- You may consult your notes and textbook for this exam. This does not include WebAssign, Courseworks, or other online resources.

Do not write in the table to the right.

Question	Points	Score
1	8	
2	12	
3	7	
4	4	
5	3	
Total:	34	

1. Consider the functions

$$f(x) = \begin{cases} \frac{1}{x} & \text{if } x \leq -1\\ x+1 & \text{if } x > -1 \end{cases}$$
$$g(x) = \cos(x)$$

(a) (2 points) State the domain and range of the function f(x).

(b) (3 points) Sketch the graph of the function f(x).

- (c) (3 points) Find the values: (i) f(-1)
 - (ii) f(0)
 - (iii) $(f \circ g)(0)$

2. Find the limit if it exists. If the limit does not exist, explain why.(a) (3 points)

$$\lim_{x \to \infty} \frac{x+1}{x}$$

(b) (3 points)

$$\lim_{x \to 1} \frac{x-1}{x^2-1}$$

(c) (3 points)

$$\lim_{x \to 2} 3^{\frac{1}{x-2}}$$

(d)	(3	points)
-----	----	---------

 $\lim_{x \to -1} \frac{4x^2 + 7x}{x^3 + 1}$

3. Consider the function

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & x > 0\\ x & x \le 0 \end{cases}$$

(a) (3 points) Is f continuous at x = 0? Explain why or why not.

(b) (4 points) Show that f is or is not differentiable at x = 0 (and compute f'(0) if it is differentiable) using the definition of the derivative.

- 4. (4 points) Sketch the graph of an example of a function that satisfies all of the given conditions:
 - $\lim_{x \to -\infty} f(x) = -\infty$
 - $\lim_{x \to 0} f(x) = 0$
 - f(0) = 1
 - $\lim_{x\to 2^-} = \infty$
 - $\lim_{x\to 2^+} = 2$
 - $\lim_{x \to \infty} f(x) = 2$

5. (3 points) What does it mean for a function f(x) to be differentiable at a? To receive full credit, provide the definition using limits.