\qquad

Instructions

This exam contains 5 pages (including this cover page) and 5 questions. The total number of possible points is $\mathbf{3 4}$ points. You will have $\mathbf{6 5}$ minutes to complete this exam.

- Print your name and UNI in the space above.
- Answer the questions in the space provided on the question sheets. Clear identify your answers.
- Write legibly and show your work, you may receive partial credit for intermediate steps. For questions requiring explanations, correct answers without any reasoning or work may not receive full credit.
- No calculators, computational devices, or consulting other people during the duration of this exam. Any cheating will result in an automatic failing grade in the course and potential administrative action.

Question		Points	Score
	1	8	
	2	12	
	3	7	
	4	4	
	5	3	
Total:		34	

- You may consult your notes and textbook for this exam.
- Upload your exam to Gradescope at the end of the time allotted.

Do not write in the table to the right.

1. Consider the functions

$$
\begin{aligned}
& f(x)= \begin{cases}\frac{1}{x} & \text { if } x \leq-1 \\
x+1 & \text { if } x>-1\end{cases} \\
& g(x)=\cos (x)
\end{aligned}
$$

(a) (2 points) State the domain and range of the function $f(x)$.
(b) (3 points) Sketch the graph of the function $f(x)$.
(c) (3 points) Find the values:
(i) $f(-1)$
(ii) $f(0)$
(iii) $(f \circ g)(0)$
2. Find the limit if it exists. If the limit does not exist, explain why.
(a) (3 points)

$$
\lim _{x \rightarrow \infty} \frac{x+1}{x}
$$

(b) (3 points)

$$
\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-1}
$$

(c) (3 points)

$$
\lim _{x \rightarrow 2} 3^{\frac{1}{x-2}}
$$

(d) (3 points)

$$
\lim _{x \rightarrow-1} \frac{4 x^{2}+7 x}{x^{3}+1}
$$

3. Consider the function

$$
f(x)= \begin{cases}x \sin \left(\frac{1}{x}\right) & x>0 \\ x & x \leq 0\end{cases}
$$

(a) (3 points) Is f continuous at $x=0$? Explain why or why not.
(b) (4 points) Show that f is or is not differentiable at $x=0$ (and compute $f^{\prime}(0)$ if it is differentiable) using the definition of the derivative.
4. (4 points) Sketch the graph of an example of a function that satisfies all of the given conditions:

- $\lim _{x \rightarrow-\infty} f(x)=-\infty$
- $\lim _{x \rightarrow 0} f(x)=0$
- $\mathrm{f}(0)=1$
- $\lim _{x \rightarrow 2^{-}}=\infty$
- $\lim _{x \rightarrow 2^{+}}=2$
- $\lim _{x \rightarrow \infty} f(x)=2$

5. (3 points) What does it mean for a function $f(x)$ to be differentiable at a ?

To receive full credit, provide the definition using limits.

