Derived Hecke algebras Columbia Student Number Theory Seminar

Stanislav Atanasov

April 22, 2020

Stanislav Atanasov

Derived Hecke algebras

April 22, 2020 1 / 26

 \mathbf{G} – semisimple algebraic group over \mathbf{Q} \mathcal{K}_{∞} - choice of maximal compact $\mathcal{X} := \mathbf{G}(\mathbf{R})/\mathcal{K}_{\infty}$ - the symmetric space for \mathbf{G}

Goal

Given an arithmetic subgroup $\Gamma \subseteq \mathbf{G}(\mathbf{Q})$, understand

$$H^*(\Gamma, R) \simeq H^*(\Gamma \backslash X, R)$$

for $R = \mathbf{C}, \mathbf{Q}, \mathbf{Z}, \mathbf{Q}_p, \mathbf{Z}_p, \dots$

Why study $H^*(\Gamma, R)$?

- Generalizes the theory of modular forms (Eichler-Shimura, Matsushima, Franke, etc.)
- Admits natural integral structure
- Detects torsion

Why study $H^*(\Gamma, R)$?

- Generalizes the theory of modular forms (Eichler-Shimura, Matsushima, Franke, etc.)
- Admits natural integral structure
- Detects torsion

We restrict ourselves to the *tempered part* $H^*(\Gamma, R)_{temp} \subseteq H^*(\Gamma, R)$, which can be computed using $(\mathfrak{g}, K_{\infty})$ -cohomology.

Let
$$\delta \coloneqq \operatorname{rk} \mathbf{G} - \operatorname{rk} \mathcal{K}_{\infty}$$
 and $j_0 \coloneqq \frac{\dim(\Gamma \setminus X) - \delta}{2}$.

Borel

In the notation from above,

$$\dim H^{j_0+j}(\Gamma,\mathbf{C})_{\mathsf{temp}} = \binom{\delta}{j} \dim H^{j_0}(\Gamma,\mathbf{C})_{\mathsf{temp}}$$

for $j \in [0, \delta]$ and vanishes outside.

Let
$$\delta\coloneqq \mathrm{rk}\,\mathbf{G}(\mathbf{R}) - \mathrm{rk}\,\mathcal{K}_\infty$$
 and $j_0\coloneqq rac{\mathsf{dim}(\Gammaackslash X)-\delta}{2}$.

Borel's theorem

In the notation from above,

dim
$$H^{j_0+j}(\Gamma, \mathbf{Q}(\chi))_{\chi} = \begin{pmatrix} \delta \\ j \end{pmatrix}$$
 dim $H^{j_0}(\Gamma, \mathbf{Q}(\chi))_{\chi}$

for $j \in [j_0, j_0 + \delta]$ and vanishes outside. Moreover, this equality respects "eigenspaces" with respect to Hecke characters $\chi : \mathbb{T} \to \overline{\mathbf{Q}}$.

Let
$$\delta\coloneqq \mathrm{rk}\,\mathbf{G}(\mathbf{R}) - \mathrm{rk}\,\mathcal{K}_\infty$$
 and $j_0\coloneqq rac{\mathsf{dim}(\Gammaackslash X)-\delta}{2}$.

Borel's theorem

In the notation from above,

dim
$$H^{j_0+j}(\Gamma, \mathbf{Q}(\chi))_{\chi} = \begin{pmatrix} \delta \\ j \end{pmatrix}$$
 dim $H^{j_0}(\Gamma, \mathbf{Q}(\chi))_{\chi}$

for $j \in [j_0, j_0 + \delta]$ and vanishes outside. Moreover, this equality respects "eigenspaces" with respect to Hecke characters $\chi : \mathbb{T} \to \overline{\mathbf{Q}}$.

Venkatesh conjectures that this "spectral degeneration" is explained by an action of a motivic cohomology group over ${\bf Q}!$

Main goal

Give a satisfactory explanation for the redundancies in $H^*(\Gamma, \overline{\mathbf{Q}})_{\text{temp}}$.

Idea: Construct a "natural" δ -dimensional Q-space V with $\bigwedge^* V \bigcirc H^*(\Gamma, \overline{\mathbf{Q}})_{\chi}$ such that $H^*(\Gamma, \overline{\mathbf{Q}})_{\chi}$ is freely generated in dimension j_0 .

Main goal

Give a satisfactory explanation for the redundancies in $H^*(\Gamma, \overline{\mathbf{Q}})_{\text{temp}}$.

Idea: Construct a "natural" δ -dimensional Q-space V with $\bigwedge^* V \bigcirc H^*(\Gamma, \overline{\mathbf{Q}})_{\chi}$ such that $H^*(\Gamma, \overline{\mathbf{Q}})_{\chi}$ is freely generated in dimension j_0 .

Venkatesh's conjecture

We may take $V = H^1_{mot}((M_{coad})_{\mathbb{Z}}, \mathbb{Q}(1))$, where M_{coad} is the coadjoint motive corresponding to

$$\mathrm{Ad}^* \rho_{\chi} : \mathrm{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to {}^L \hat{\mathcal{G}}(\overline{\mathbf{Q}}_{\rho}) \to \mathrm{GL}(\hat{\mathfrak{g}}^* \otimes \overline{\mathbf{Q}}_{\rho}).$$

Main goal

Give a satisfactory explanation for the redundancies in $H^*(\Gamma, \overline{\mathbf{Q}})_{\text{temp}}$.

Idea: Construct a "natural" δ -dimensional **Q**-space V with $\bigwedge^* V \bigcirc H^*(\Gamma, \overline{\mathbf{Q}})_{\chi}$ such that $H^*(\Gamma, \overline{\mathbf{Q}})_{\chi}$ is freely generated in dimension j_0 .

Venkatesh's conjecture

We may take $V = H^1_{mot}((M_{coad})_{\mathbb{Z}}, \mathbb{Q}(1))$, where M_{coad} is the coadjoint motive corresponding to

$$\mathrm{Ad}^* \rho_{\chi} : \mathrm{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to {}^L \hat{\mathcal{G}}(\overline{\mathbf{Q}}_p) \to \mathrm{GL}(\hat{\mathfrak{g}}^* \otimes \overline{\mathbf{Q}}_p).$$

The action of $V \otimes \mathbf{Q}_p$ can be explicated via derived Hecke operators.

Setup

Let G be a split reductive group over a number field F. Fix a place v of F of characteristic p_v and let $q_v = \#k_v$. Set $G_v := \mathbf{G}(F_v)$. Let

$$V_v \subseteq U_v \subseteq G_v$$

with V_v - pro- p_v , normal of finite index inside U_v . Let S be a finite ring with q_v invertible. (e.g. U_v -maximal compact/lwahori, $S = \mathbf{Z}/\ell^n$)

Setup

Let G be a split reductive group over a number field F. Fix a place v of F of characteristic p_v and let $q_v = \#k_v$. Set $G_v := \mathbf{G}(F_v)$. Let

$$V_v \subseteq U_v \subseteq G_v$$

with V_{ν} - pro- p_{ν} , normal of finite index inside U_{ν} . Let S be a finite ring with q_{ν} invertible. (e.g. U_{ν} -maximal compact/lwahori, $S = \mathbf{Z}/\ell^n$) The classical Hecke algebra is given by

 $\begin{aligned} H_{\mathcal{S}}(G_{v},U_{v}) &\coloneqq S[G_{v}//U_{v}] = S[G_{v}]^{U_{v} \times U_{v}} \simeq \operatorname{Hom}_{S[G_{v}]}(S[G_{v}/U_{v}],S[G_{v}/U_{v}]) \\ \varphi([eU_{v}]) \leftrightarrow \varphi \end{aligned}$

Derived Hecke algebra

Derived Hecke algebra

In the above notation, the derived Hecke algebra for (G_v, U_v) over S is

$$\mathcal{H}_{\mathcal{S}}(G_{v}, U_{v}) \coloneqq \operatorname{Ext}^{*}_{\mathcal{S}[G_{v}]}(\mathcal{S}[G_{v}/U_{v}], \mathcal{S}[G_{v}/U_{v}])$$

Alternatively, if $\mathbf{P}^{ullet} o S[G_v/U_v]$ is a projective resolution of G_v -modules, then

$$\mathcal{H}_{\mathcal{S}}(G_{\mathbf{v}}, U_{\mathbf{v}}) = H^* \big(\underline{\operatorname{Hom}}_{\mathcal{S}[G_{\mathbf{v}}]}(\mathbf{P}^{\bullet}, \mathbf{P}^{\bullet}) \big).$$

Derived Hecke algebra

Derived Hecke algebra

In the above notation, the derived Hecke algebra for (G_v, U_v) over S is

$$\mathcal{H}_{\mathcal{S}}(G_{v}, U_{v}) \coloneqq \operatorname{Ext}^{*}_{\mathcal{S}[G_{v}]}(\mathcal{S}[G_{v}/U_{v}], \mathcal{S}[G_{v}/U_{v}])$$

Alternatively, if $\mathbf{P}^{ullet} o S[G_v/U_v]$ is a projective resolution of G_v -modules, then

$$\mathcal{H}_{\mathcal{S}}(G_{\mathbf{v}}, U_{\mathbf{v}}) = H^*(\underline{\operatorname{Hom}}_{\mathcal{S}[G_{\mathbf{v}}]}(\mathbf{P}^{\bullet}, \mathbf{P}^{\bullet})).$$

Note that $\mathcal{H}^0(G_{\nu}, U_{\nu})$ recovers the classical Hecke algebra.

Derived invariants of a complex

• If P is projective U_v/V_v -module, then P is also projective as U_v -module.

• If $\mathbb{R}^{\bullet} \to T$ is projective resolution in S[W]-modules, then $H^*(\operatorname{Hom}_{W'}(\mathbb{R}^{\bullet}, \mathbb{R}^{\bullet})) = H^*(W', T)$ for $W' \subseteq W$ of finite index.

Let $\mathbf{Q}^{\bullet} \to S$ in $\operatorname{Rep}^{\operatorname{sm}}(S[U_v/V_v])$, then $\mathbf{P}^{\bullet} = \operatorname{Ind}_{U_v}^{\mathcal{G}_v} \mathbf{Q}^{\bullet} \to S[\mathcal{G}_v/V_v]$ in $\operatorname{Rep}^{\operatorname{sm}}(S[\mathcal{G}_v])$. Let \mathbf{M}^{\bullet} be a complex of \mathcal{G}_v -modules. Define

derived U_{v} -invariants of $\mathsf{M}^{\bullet} := \underline{\operatorname{Hom}}_{\mathcal{G}_{v}}(\mathsf{P}^{\bullet}, \mathsf{M}^{\bullet}) = \underline{\operatorname{Hom}}_{\mathcal{U}_{v}}(\mathsf{Q}^{\bullet}, (\mathsf{M}^{\bullet})^{V_{v}})$

Clearly,

 $\underline{\operatorname{End}}_{G_v}(\mathsf{P}^{\bullet}) \operatorname{Q} \underline{\operatorname{Hom}}_{G_v}(\mathsf{P}^{\bullet},\mathsf{M}^{\bullet}) \rightsquigarrow \mathcal{H}_{\mathcal{S}}(G_v,U_v) \operatorname{Q} H^*(\text{derived } U_v\text{-inv. of }\mathsf{M}^{\bullet})$

Arithmetic manifolds

For
$$K \subseteq \mathbf{G}(\mathbf{A}_f)$$
, fix $\mathcal{K}^{(v)} = \prod_{w \neq v} \mathcal{K}_w$. Recall that $Y(\mathcal{K}) = \mathbf{G}(F) ackslash X_\infty imes \mathbf{G}(\mathbf{A}_f) / \mathcal{K}$

is the corresponding arithmetic manifold (possibly orbifold). Denote $\mathcal{H}_{v,S} = \mathcal{H}_v(G_v, K_v)$. For $U_v \subseteq G_v$, set

 $C^{\bullet}(U_{\nu})$ = chain complex of $Y(K^{(\nu)} \times U_{\nu})$ with coefficients in S

If $\mathsf{M}^{\bullet} := \varprojlim_{U_{v}} \mathsf{C}^{\bullet}(U_{v})$ and $V_{v} \subseteq K_{v}$ as before, we have $(\mathsf{M}^{\bullet})^{V_{v}} \simeq \mathsf{C}^{\bullet}(V_{v})$

Furthermore, one can show that the natural map

$$\mathbf{C}^{\bullet}(K_{\nu}) = \mathbf{C}^{\bullet}(U_{\nu})^{K_{\nu}/V_{\nu}} \to \underline{\mathrm{Hom}}_{\mathcal{S}[K_{\nu}/V_{\nu}]}(S, \mathbf{C}^{\bullet}(V_{\nu})).$$

is a quasi-isomorphism in $D(Mod_S)$, so that we obtain a quasi-isomophism

$$C^{\bullet}(Y(K)) = C^{\bullet}(K_{v}) \simeq \text{derived } K_{v} \text{-inv. of } M^{\bullet}.$$

Passing to homology, this yields $\mathcal{H}_{v,S} \bigcirc H^*(Y(K), S)$.

Explicit description of $\mathcal{H}(G, U)$: invariant functions

For $x, y \in G/U$, denote by $G_{xy} \subseteq G$ the pointwise stabilizer of (x, y). In this model, elements of $\mathcal{H}(G, U)$ are assignments,

$$\mathcal{H}(G, U) \ni h \rightsquigarrow (x, y) \mapsto h(x, y) \in H^*(G_{xy}, S),$$

satisfying

• h is G-invariant,

• *h* has finite support modulo *G*.

with product

$$h_1 * h_2(x, y) = \sum_{z \in G/U} h_1(x, z) \cup h_2(z, y),$$

where cup-products are computed inside $H^*(G_{xyz}, S)$.

Explicit description of $\mathcal{H}(G, U)$: double cosets

Given $x \in G/U$, represented by $x = g_x U$, set $U_x := U \cap g_x U g_x^{-1}$. We show that

$$\bigoplus_{\in [U\setminus G/U]} H^*(U_x,S) \xrightarrow{\sim} \mathcal{H}_{v,S}.$$

as follows: given $z \in [U \setminus G/U]$ and $\alpha \in H^*(U_z, S)$, associate the function $h_{z,\alpha}$ on $G/U \times G/U$ satisfying

• $h_{z,\alpha}(x,y) = 0$ if $(z,eU) \notin G \cdot (x,y)$,

х

•
$$h_{z,\alpha}(z, eU) = \alpha$$
.

Explicit description of $\mathcal{H}(G, U)$: double cosets

Given $x \in G/U$, represented by $x = g_x U$, set $U_x := U \cap g_x U g_x^{-1}$. We show that

$$\bigoplus_{x\in [U\setminus G/U]} H^*(U_x,S) \xrightarrow{\sim} \mathcal{H}_{v,S}.$$

as follows: given $z \in [U \setminus G/U]$ and $\alpha \in H^*(U_z, S)$, associate the function $h_{z,\alpha}$ on $G/U \times G/U$ satisfying

•
$$h_{z,\alpha}(x,y) = 0$$
 if $(z,eU) \notin G \cdot (x,y)$,

•
$$h_{z,\alpha}(z, eU) = \alpha$$
.

$$\mathcal{H}_{v,S} = igoplus_{\lambda \in X_*(\mathcal{T})^+} H^*(M_\lambda(k_v),S)$$

with $\#M_{\lambda}(k_{\nu}) = (q_{\nu}-1)^{r_{\lambda}}$ for dominant λ . These vanish if $(q_{\nu}-1) \in S^{\times}$.

Assume $q_v = 1$ in S. If $S = \mathbf{Z}/\ell^n$ this is reminiscent of Taylor-Wiles primes of level *n*. The analogy is explained by *Koszul duality*.

Stanislav Atanasov

Describing the \mathcal{H}_{v} -action

The action $\mathcal{H}_{v,S} \cap H^*(Y(K), S)$ should arise from action on $H^*(K_v, S)$. Pick $\alpha \in H^*(K_v, S)$, then $\alpha = \ln f(\beta)$ for $\beta \in H^*(K_v/K_{v,1}, S)$. If $K_1 = K^{(v)} \times K_{v,1}$, we have

$$\begin{array}{l} Y(K_1) \\ \downarrow_{K_{\nu}/K_{\nu,1}} \rightsquigarrow Y(K) \rightarrow BK_{\nu}/K_{\nu,1} \\ Y(K) \end{array}$$

Pulling back along the map to the classifiying space, we get

$$H^*(K_{\nu}, S) \to H^*(Y(K), S), \quad \alpha \to \langle \alpha \rangle$$

The images of these classes are "Hecke-trivial." Indeed, for any $\langle \alpha \rangle$ as above and any Hecke operator T supported at w, not dividing |S| or K, we have

$$T\langle \alpha \rangle = \deg(T)\langle \alpha \rangle.$$

For that reason these commute with the Hecke operators.

The action of $h_{z,\alpha}$ on $H^*(Y(K), S)$ is given by

 $H^*(Y(K)) \xrightarrow{\pi_1^*} H^*(Y(K_z)) \xrightarrow{\cup \langle \alpha \rangle} H^*(Y(K_z)) \xrightarrow{[g_z] \circ \pi_{2,*}} H^*(Y(K))$

Summary

- $\mathcal{H}_{\mathcal{S}}(G, U) := \operatorname{Ext}_{\mathcal{S}[G]}^{*}(\mathcal{S}[G/U], \mathcal{S}[G/U]) = H^{*}(\operatorname{\underline{Hom}}_{\mathcal{S}[G]}(\mathsf{P}^{\bullet}, \mathsf{P}^{\bullet}))$
- $\mathcal{H}_{S}(G, U) \bigcirc H^{*}($ derived *U*-invariants of $M^{\bullet})$
- $\mathsf{M}^{\bullet} \coloneqq \varprojlim_{U} \mathsf{C}^{\bullet}(U_{v}) \rightsquigarrow \mathcal{H}_{v,S} \bigcirc H^{*}(Y(K),S)$
- $\bigoplus_{x \in [U \setminus G/U]} H^*(U_x, S) \xrightarrow{\sim} \mathcal{H}_{v,S}$, so elements are indexed $h_{z,\alpha}$ with $z \in [U \setminus G/U]$, and $\alpha \in H^*(U_x, S)$
- The element $h_{z,\alpha}$ acts on $H^*(Y(K),S)$ via

$$H^*(Y(K)) \xrightarrow{\pi_1^*} H^*(Y(K_z)) \xrightarrow{\cup \langle \alpha \rangle} H^*(Y(K_z)) \xrightarrow{[g_z] \circ \pi_{2,*}} H^*(Y(K))$$

Derived Satake isomorphism

Suppose $S = \mathbf{Z}/\ell^r$ and $q_v = 1$ in S. Assume G is *split* over F_v . Let A be a torus and $W = W(\mathbf{G}, \mathbf{A})$ the associated Weyl group. Assume $\ell \nmid |W|$.

Theorem (Derived Satake isomorphism)

In the above notation, we have

$$\mathcal{H}_{\mathbf{v},\mathbf{Z}/\ell^r}(\mathit{G}_{\mathbf{v}},\mathit{K}_{\mathbf{v}}) \xrightarrow{\sim} \mathcal{H}_{\mathbf{v},\mathbf{Z}/\ell^r}(\mathit{A}_{\mathbf{v}},\mathit{A}_{\mathbf{v}}\cap \mathit{K}_{\mathbf{v}})^W$$

given by restriction.

Example

Suppose $q \equiv 1 \pmod{\ell}$. Then

$$\mathcal{H}_{q,\mathbf{Z}/\ell}(\mathrm{PGL}_2(\mathbf{Q}_q),\mathrm{PO}_2(\mathbf{Q}_q)) = \mathbf{Z}/\ell[x_0^{\pm 1},y_1,z_2]^{\mathbf{Z}/2}$$

with x_0, y_1, z_2 of degrees 0, 1, 2, respectively, and $\mathbb{Z}/2$ -action permuting $x_0^{\pm 1}$ and negating y_1 and z_2 .

Example

Pick $\mathbf{G} = \operatorname{Res}_{F/\mathbf{Q}}\operatorname{PGL}_2$ over imaginary quadratic field F/\mathbf{Q} . Let $\mathfrak{q} \triangleleft \mathcal{O}_F$ be relatively prime to ℓ , and set $k_{\mathfrak{q}} = \mathcal{O}_F/\mathfrak{q}$. Let $\alpha : k_{\mathfrak{q}}^{\times} \to \mathbf{Z}/\ell^m$ be a homomorphism. Pulling it back via

$$\Gamma_0(\mathfrak{q}) o k_{\mathfrak{q}}^{ imes}, \quad egin{pmatrix} a & b \ c & d \end{pmatrix} \mapsto a/d,$$

we obtain $\langle \alpha \rangle \in H^1(\Gamma_0(\mathfrak{q}), \mathbb{Z}/\ell^m)$. Construct a derived Hecke operator

 $T_{\mathfrak{q},\alpha}:H^1(\operatorname{PGL}_2(\mathcal{O}_F))\xrightarrow{\pi_1^*}H^1(\Gamma_0(\mathfrak{q}))\xrightarrow{\cup\langle\alpha\rangle}H^2(\Gamma_0(\mathfrak{q}))\xrightarrow{\pi_{2,*}}H^2(\operatorname{PGL}_2(\mathcal{O}_F)).$

Example

Pick $\mathbf{G} = \operatorname{Res}_{F/\mathbf{Q}}\operatorname{PGL}_2$ over imaginary quadratic field F/\mathbf{Q} . Let $\mathfrak{q} \triangleleft \mathcal{O}_F$ be relatively prime to ℓ , and set $k_{\mathfrak{q}} = \mathcal{O}_F/\mathfrak{q}$. Let $\alpha : k_{\mathfrak{q}}^{\times} \to \mathbf{Z}/\ell^m$ be a homomorphism. Pulling it back via

$$\Gamma_0(\mathfrak{q}) o k_\mathfrak{q}^{ imes}, \quad egin{pmatrix} a & b \ c & d \end{pmatrix} \mapsto a/d,$$

we obtain $\langle \alpha \rangle \in H^1(\Gamma_0(\mathfrak{q}), \mathbb{Z}/\ell^m)$. Construct a derived Hecke operator

$$T_{\mathfrak{q},\alpha}:H^{1}(\mathrm{PGL}_{2}(\mathcal{O}_{F}))\xrightarrow{\pi_{1}^{*}}H^{1}(\Gamma_{0}(\mathfrak{q}))\xrightarrow{\cup\langle\alpha\rangle}H^{2}(\Gamma_{0}(\mathfrak{q}))\xrightarrow{\pi_{2,*}}H^{2}(\mathrm{PGL}_{2}(\mathcal{O}_{F})).$$

We need to use torsion coefficients – there are no homomorphisms $\alpha: k_q^{\times} \to \mathbf{Z}!$

Langlands-Fontaine-Mazur

Galois cohomology and reciprocity laws

Fix $\chi : \mathbb{T} \to \mathbf{Z}_p$ (no congruences) at level Y(K). Conjecturally, we may attach a Galois representation

$$\rho_{\chi}: \underbrace{\operatorname{Gal}(\overline{F}/F)}_{=:G_F} \to \operatorname{GL}_2(\mathbf{Z}_p)$$

unramified away from a set of primes T containing all primes above p. Assume ρ is crystalline at all primes above p > 2. Set $\rho_m := \rho_{\chi} \pmod{p^m}$. Denote by $\operatorname{Ad}^* \rho$ the \mathbb{Z}_p -linear dual to $\operatorname{Ad} \rho$. For $\mathfrak{q} \notin T$, let $F_{\mathfrak{q}}$ be the completion of F, and embed

$$\mathbf{Z}_{
ho}$$
 with trivial $G_{F_{\mathfrak{q}}}$ action $\hookrightarrow \operatorname{Ad} \left. \rho \right|_{G_{F_{\mathfrak{q}}}}$
 $1 \mapsto 2
ho(\operatorname{Frob}_{\mathfrak{q}}) - \operatorname{tr}(
ho(\operatorname{Frob}_{\mathfrak{q}}))$

Similarly, the embedding $\mathbf{Z}/p^m \hookrightarrow \operatorname{Ad} \left. \rho_m \right|_{G_{F_q}}$ yields $\mathbf{Z}/p^m \times \operatorname{Ad}^* \rho(1) \to \mu_{p^m}.$

By local reciprocity,

$$H^1(G_{F_{\mathfrak{q}}}, \mathbf{Z}/p^m) imes H^1(G_{F_{\mathfrak{q}}}, \mathrm{Ad}^* \rho(1)) o \mathbf{Z}/p^m,$$

and restricting the second argument to classes unramified away from T and crystalline at p, we get a pairing

$$H^1(G_{F_{\mathfrak{q}}}, \mathbf{Z}/p^m) imes H^1_f(\mathcal{O}_{\mathfrak{q}}[rac{1}{T}], \mathrm{Ad}^*
ho(1)) o \mathbf{Z}/p^m.$$

$$H^1(G_{F_{\mathfrak{q}}}, \mathbf{Z}/p^m) imes H^1_f(\mathcal{O}[rac{1}{T}], \mathrm{Ad}^*
ho(1)) o \mathbf{Z}/p^m.$$

Let $\alpha : k_{\mathfrak{q}}^{\times} \to \mathbf{Z}/p^m$, and extend arbitrarily to $\tilde{\alpha} : F_{\mathfrak{q}}^{\times}/(1+\mathfrak{q}) \to \mathbf{Z}/p^m$. Up to unramified classes, this yields $\tilde{\alpha} \in H^1(G_{F_{\mathfrak{q}}}, \mathbf{Z}/p^m)$. The pairing with $H^1_f(\mathcal{O}_{\mathfrak{q}}[\frac{1}{T}], \mathrm{Ad}^*\rho(1))$ is independent of the choice of lift $\tilde{\alpha}$, so we obtain a well-defined homomorphism

$$[\mathfrak{q}, \alpha] : H^1_f(\mathcal{O}_{\mathfrak{q}}[\frac{1}{T}], \mathrm{Ad}^*\rho(1)) \to \mathbf{Z}/p^m,$$

which we relate to $T_{q,\alpha}$.

Slogan

The Selmer group $H^1_f(\mathcal{O}_{\mathfrak{q}}[\frac{1}{T}], \operatorname{Ad}^*\rho(1))$ provides indexing of the derived Hecke operators via the homomorphisms $[\mathfrak{q}, \alpha]$ with $\mathfrak{q} \notin T$ and $\alpha : k_v^{\times} \to \mathbf{Z}/p^m$.

Reciprocity laws

It is believed that

$$[\mathfrak{q},\alpha] = [\mathfrak{q}',\alpha'] \stackrel{?}{\Rightarrow} T_{\mathfrak{q},\alpha} = T_{\mathfrak{q}',\alpha'}$$

Currently, we only know this is "asymptotically" true.

Lemma (Venkatesh)

There is $N_0(m)$ such that for primes q and q' satisfying

- the eigenvalues of ρ(Frob_q) (resp. ρ(Frob_{q'})) modulo p are distinct elements of Z/p, and

the actions of $T_{\mathfrak{q},\alpha}$ and $T_{\mathfrak{q}',\alpha'}$ on $H^*(Y(K),\mathbf{Z}/p^m)$ are the same.

Selmer groups as *p*-adic avatars of motivic cohomology

Let:

- p -prime,
- \mathbf{G} semisimple algebraic group over \mathbf{Q} ,
- Π tempered cohomological cuspidal representation for ${\bf G}$ with $\Pi^{{\cal K}_0} \neq 0,$
- $\chi: \mathbb{T}_{\mathcal{K}_0} \to \mathbf{Q}$ Hecke character corresponding to Π ,
- $\rho_{\chi} : \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to {}^{L}\hat{\mathcal{G}}(\mathbf{Q}_{p})$ Galois representation associated to χ ,
- M_{coad} coadjoint (Chow) motive over ${f Q}$ corresponding to ${
 m Ad}^*$ $ho_\chi,$ i.e.

$$H^0_{et}((M_{coad})_{\overline{\mathbf{Q}}}, \mathbf{Q}_p) \simeq \mathrm{Ad}^* \ \rho_{\chi}.$$

By work of Voevodsky, one may define motivic cohomology group $H^1_{mot}(M_{coad}, \mathbf{Q}(1))$, admitting comparison map

$$H^1_{mot}(M_{coad}, \mathbf{Q}(1)) \otimes_{\mathbf{Q}} \mathbf{Q}_{\rho} \to H^1(\mathcal{G}_{\mathbf{Q}}, \mathrm{Ad}^* \ \rho_{\chi}(1))$$

Scholl constructs subspace $H^1_{mot}((M_{coad})_{\mathbb{Z}}, \mathbb{Q}(1)) \subseteq H^1_{mot}(M_{coad}, \mathbb{Q}(1))$ of "classes with good integral models." The restriction of the comparison map is conjectured to land in a Bloch-Kato cohomology

$$\underbrace{\mathcal{H}^{1}_{mot}((\mathcal{M}_{coad})_{\mathbf{Z}}, \mathbf{Q}(1))}_{=:\mathcal{V}} \otimes_{\mathbf{Q}} \mathbf{Q}_{\rho} \to \mathcal{H}^{1}_{f}(\mathbf{Z}[\frac{1}{T}], \mathrm{Ad}^{*} \rho_{\chi}(1)),$$

and, furthermore, to be an isomorphism.

By work of Voevodsky, one may define motivic cohomology group $H^1_{mot}(M_{coad}, \mathbf{Q}(1))$, admitting comparison map

$$H^1_{mot}(M_{coad}, \mathbf{Q}(1)) \otimes_{\mathbf{Q}} \mathbf{Q}_{\rho} \to H^1(G_{\mathbf{Q}}, \mathrm{Ad}^* \ \rho_{\chi}(1))$$

Scholl constructs subspace $H^1_{mot}((M_{coad})_{\mathbb{Z}}, \mathbb{Q}(1)) \subseteq H^1_{mot}(M_{coad}, \mathbb{Q}(1))$ of "classes with good integral models." The restriction of the comparison map is conjectured to land in a Bloch-Kato cohomology

$$\underbrace{\mathcal{H}_{mot}^{1}((\mathcal{M}_{coad})_{\mathbf{Z}},\mathbf{Q}(1))}_{=:\mathbb{V}}\otimes_{\mathbf{Q}}\mathbf{Q}_{\rho}\to\mathcal{H}_{f}^{1}(\mathbf{Z}[\frac{1}{T}],\mathrm{Ad}^{*}\ \rho_{\chi}(1)),$$

and, furthermore, to be an isomorphism. Beilinson's conjecture yields

$$\dim_{\mathbf{Q}} \mathbf{V} = \operatorname{ord}_{s=0} L(s, \operatorname{Ad}^* \rho_{\chi}(1)) = \delta.$$

Conjecture

Conjecture (Venkatesh)

In the above notation, let

 $\wedge^*\mathrm{V}_{\mathbf{Q}_p} \, \bigcirc \, H^*(Y(K_0),\mathbf{Q}_p)_{\Pi}$

be the action furnished by the comparison map with $H^1_f(\mathbf{Z}[\frac{1}{T}], \operatorname{Ad}^* \rho_{\chi}(1))$. Then the action of $\wedge^* V$ preserves the rational structure on $H^*(Y(K_0), \mathbf{Q})_{\Pi}$