Derived Hecke algebras
 Columbia Student Number Theory Seminar

Stanislav Atanasov

April 22, 2020

Motivation: Cohomology of arithmetic groups

G - semisimple algebraic group over \mathbf{Q}
K_{∞} - choice of maximal compact
$X:=\mathbf{G}(\mathbf{R}) / K_{\infty}$ - the symmetric space for \mathbf{G}

Goal

Given an arithmetic subgroup $\Gamma \subseteq \mathbf{G}(\mathbf{Q})$, understand

$$
H^{*}(\Gamma, R) \simeq H^{*}(\Gamma \backslash X, R)
$$

for $R=\mathbf{C}, \mathbf{Q}, \mathbf{Z}, \mathbf{Q}_{p}, \mathbf{Z}_{p}, \ldots$

Motivation: Cohomology of arithmetic groups

Why study $H^{*}(\Gamma, R)$?

- Generalizes the theory of modular forms (Eichler-Shimura, Matsushima, Franke, etc.)
- Admits natural integral structure
- Detects torsion

Motivation: Cohomology of arithmetic groups

Why study $H^{*}(\Gamma, R)$?

- Generalizes the theory of modular forms (Eichler-Shimura, Matsushima, Franke, etc.)
- Admits natural integral structure
- Detects torsion

We restrict ourselves to the tempered part $H^{*}(\Gamma, R)_{\text {temp }} \subseteq H^{*}(\Gamma, R)$, which can be computed using (\mathfrak{g}, K_{∞})-cohomology.

Motivation: Cohomology of arithmetic groups

Let $\delta:=\operatorname{rkG}-\operatorname{rk} K_{\infty}$ and $j_{0}:=\frac{\operatorname{dim}(\Gamma \backslash X)-\delta}{2}$.

Borel

In the notation from above,

$$
\operatorname{dim} H^{j_{0}+j}(\Gamma, \mathbf{C})_{\text {temp }}=\binom{\delta}{j} \operatorname{dim} H^{j_{0}}(\Gamma, \mathbf{C})_{\text {temp }}
$$

for $j \in[0, \delta]$ and vanishes outside.

Motivation: Cohomology of arithmetic groups

Let $\delta:=\operatorname{rk} \mathbf{G}(\mathbf{R})-\operatorname{rk} K_{\infty}$ and $j_{0}:=\frac{\operatorname{dim}(\Gamma \backslash X)-\delta}{2}$.

Borel's theorem

In the notation from above,

$$
\operatorname{dim} H^{j_{0}+j}(\Gamma, \mathrm{Q}(\chi))_{\chi}=\binom{\delta}{j} \operatorname{dim} H^{j_{0}}(\Gamma, \mathrm{Q}(\chi))_{\chi}
$$

for $j \in\left[j_{0}, j_{0}+\delta\right]$ and vanishes outside. Moreover, this equality respects "eigenspaces" with respect to Hecke characters $\chi: \mathbb{T} \rightarrow \overline{\mathbf{Q}}$.

Motivation: Cohomology of arithmetic groups

Let $\delta:=\operatorname{rk} \mathbf{G}(\mathbf{R})-\operatorname{rk} K_{\infty}$ and $j_{0}:=\frac{\operatorname{dim}(\Gamma \backslash X)-\delta}{2}$.

Borel's theorem

In the notation from above,

$$
\operatorname{dim} H^{j_{0}+j}(\Gamma, \mathrm{Q}(\chi))_{\chi}=\binom{\delta}{j} \operatorname{dim} H^{j 0}(\Gamma, \mathrm{Q}(\chi))_{\chi}
$$

for $j \in\left[j_{0}, j_{0}+\delta\right]$ and vanishes outside. Moreover, this equality respects "eigenspaces" with respect to Hecke characters $\chi: \mathbb{T} \rightarrow \overline{\mathbf{Q}}$.

Venkatesh conjectures that this "spectral degeneration" is explained by an action of a motivic cohomology group over Q!

Motivation: Cohomology of arithmetic groups

Main goal

Give a satisfactory explanation for the redundancies in $H^{*}(\Gamma, \overline{\mathbf{Q}})_{\text {temp }}$.
Idea: Construct a "natural" δ-dimensional Q -space V with $\bigwedge^{*} \mathrm{~V} Q H^{*}(\Gamma, \overline{\mathbf{Q}})_{\chi}$ such that $H^{*}(\Gamma, \overline{\mathbf{Q}})_{\chi}$ is freely generated in dimension j_{0}.

Motivation: Cohomology of arithmetic groups

Main goal

Give a satisfactory explanation for the redundancies in $H^{*}(\Gamma, \overline{\mathbf{Q}})_{\text {temp }}$.
Idea: Construct a "natural" δ-dimensional Q -space V with $\bigwedge^{*} \mathrm{~V} Q H^{*}(\Gamma, \overline{\mathbf{Q}})_{\chi}$ such that $H^{*}(\Gamma, \overline{\mathbf{Q}})_{\chi}$ is freely generated in dimension j_{0}.

Venkatesh's conjecture

We may take $\mathrm{V}=H_{\text {mot }}^{1}\left(\left(M_{\text {coad }}\right)_{\mathbf{z}}, \mathbf{Q}(1)\right)$, where $M_{\text {coad }}$ is the coadjoint motive corresponding to

$$
\operatorname{Ad}^{*} \rho_{\chi}: \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \rightarrow{ }^{L} \hat{G}\left(\overline{\mathbf{Q}}_{p}\right) \rightarrow \operatorname{GL}\left(\hat{\mathfrak{g}}^{*} \otimes \overline{\mathbf{Q}}_{p}\right)
$$

Motivation: Cohomology of arithmetic groups

Main goal

Give a satisfactory explanation for the redundancies in $H^{*}(\Gamma, \overline{\mathbf{Q}})_{\text {temp }}$.
Idea: Construct a "natural" δ-dimensional Q -space V with $\bigwedge^{*} \mathrm{~V} Q H^{*}(\Gamma, \overline{\mathbf{Q}})_{\chi}$ such that $H^{*}(\Gamma, \overline{\mathbf{Q}})_{\chi}$ is freely generated in dimension j_{0}.

Venkatesh's conjecture

We may take $\mathrm{V}=H_{\text {mot }}^{1}\left(\left(M_{\text {coad }}\right)_{\mathbf{z}}, \mathbf{Q}(1)\right)$, where $M_{\text {coad }}$ is the coadjoint motive corresponding to

$$
\operatorname{Ad}^{*} \rho_{\chi}: \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \rightarrow{ }^{L} \hat{G}\left(\overline{\mathbf{Q}}_{p}\right) \rightarrow \mathrm{GL}\left(\hat{\mathfrak{g}}^{*} \otimes \overline{\mathbf{Q}}_{p}\right)
$$

The action of $\mathrm{V} \otimes \mathbf{Q}_{p}$ can be explicated via derived Hecke operators.

Setup

Let \mathbf{G} be a split reductive group over a number field F. Fix a place v of F of characteristic p_{v} and let $q_{v}=\# k_{v}$. Set $G_{v}:=\mathbf{G}\left(F_{v}\right)$. Let

$$
V_{v} \subseteq U_{v} \subseteq G_{v}
$$

with V_{v} - pro- p_{v}, normal of finite index inside U_{v}. Let S be a finite ring with q_{v} invertible. (e.g. U_{v}-maximal compact/Iwahori, $S=\mathbf{Z} / \ell^{n}$)

Setup

Let G be a split reductive group over a number field F. Fix a place v of F of characteristic p_{v} and let $q_{v}=\# k_{v}$. Set $G_{v}:=\mathbf{G}\left(F_{v}\right)$. Let

$$
V_{v} \subseteq U_{v} \subseteq G_{v}
$$

with V_{v} - pro- p_{v}, normal of finite index inside U_{v}. Let S be a finite ring with q_{v} invertible. (e.g. U_{v}-maximal compact/Iwahori, $S=\mathbf{Z} / \ell^{n}$) The classical Hecke algebra is given by

$$
\begin{aligned}
H_{S}\left(G_{v}, U_{v}\right):=S\left[G_{v} / / U_{v}\right]=S\left[G_{v}\right] U_{v} \times U_{v} & \simeq \operatorname{Hom}_{S\left[G_{v}\right]}\left(S\left[G_{v} / U_{v}\right], S\left[G_{v} / U_{v}\right]\right) \\
\varphi\left(\left[e U_{v}\right]\right) & \leftarrow \varphi
\end{aligned}
$$

Derived Hecke algebra

Derived Hecke algebra

In the above notation, the derived Hecke algebra for $\left(G_{v}, U_{v}\right)$ over S is

$$
\mathcal{H}_{S}\left(G_{v}, U_{v}\right):=\operatorname{Ext}_{S\left[G_{v}\right]}^{*}\left(S\left[G_{v} / U_{v}\right], S\left[G_{v} / U_{v}\right]\right)
$$

Alternatively, if $\mathrm{P}^{\bullet} \rightarrow S\left[G_{v} / U_{v}\right]$ is a projective resolution of G_{v}-modules, then

$$
\mathcal{H}_{S}\left(G_{v}, U_{v}\right)=H^{*}\left(\underline{\operatorname{Hom}}_{S\left[G_{v}\right]}\left(\mathrm{P}^{\bullet}, \mathrm{P}^{\bullet}\right)\right)
$$

Derived Hecke algebra

Derived Hecke algebra

In the above notation, the derived Hecke algebra for $\left(G_{v}, U_{v}\right)$ over S is

$$
\mathcal{H}_{S}\left(G_{v}, U_{v}\right):=\operatorname{Ext}_{S\left[G_{v}\right]}^{*}\left(S\left[G_{v} / U_{v}\right], S\left[G_{v} / U_{v}\right]\right)
$$

Alternatively, if $\mathrm{P}^{\bullet} \rightarrow S\left[G_{v} / U_{v}\right]$ is a projective resolution of G_{v}-modules, then

$$
\mathcal{H}_{S}\left(G_{v}, U_{v}\right)=H^{*}\left(\underline{\operatorname{Hom}}_{S\left[G_{v}\right]}\left(\mathrm{P}^{\bullet}, \mathrm{P}^{\bullet}\right)\right)
$$

Note that $\mathcal{H}^{0}\left(G_{v}, U_{v}\right)$ recovers the classical Hecke algebra.

Derived invariants of a complex

- If P is projective U_{v} / V_{v}-module, then P is also projective as U_{v}-module.
- If $\mathbf{R}^{\bullet} \rightarrow T$ is projective resolution in $S[W]$-modules, then $H^{*}\left(\operatorname{Hom}_{W^{\prime}}\left(\mathbf{R}^{\bullet}, \mathbf{R}^{\bullet}\right)\right)=H^{*}\left(W^{\prime}, T\right)$ for $W^{\prime} \subseteq W$ of finite index.

Let $\mathbf{Q}^{\bullet} \rightarrow S$ in $\operatorname{Rep}^{\mathrm{sm}}\left(S\left[U_{v} / V_{v}\right]\right)$, then $\mathbf{P}^{\bullet}=\operatorname{Ind}_{U_{v}}^{G_{v}} \mathbf{Q}^{\bullet} \rightarrow S\left[G_{v} / V_{v}\right]$ in $\operatorname{Rep}^{\mathrm{sm}}\left(S\left[G_{v}\right]\right)$.
Let M^{\bullet} be a complex of G_{v}-modules. Define derived U_{v}-invariants of $M^{\bullet}:=\underline{\operatorname{Hom}}_{G_{v}}\left(\mathbf{P}^{\bullet}, M^{\bullet}\right)=\underline{\operatorname{Hom}}_{U_{v}}\left(\mathbf{Q}^{\bullet},\left(\mathbf{M}^{\bullet}\right)^{V_{v}}\right)$

Clearly,
$\underline{\text { End }}_{G_{v}}\left(\mathbf{P}^{\bullet}\right) Q \operatorname{Hom}_{G_{v}}\left(\mathbf{P}^{\bullet}, M^{\bullet}\right) \rightsquigarrow \mathcal{H}_{S}\left(G_{v}, U_{v}\right) Q H^{*}\left(\right.$ derived U_{v}-inv. of $\left.M^{\bullet}\right)$

Arithmetic manifolds

For $K \subseteq \mathbf{G}\left(\mathbf{A}_{f}\right)$, fix $K^{(v)}=\prod_{w \neq v} K_{w}$. Recall that

$$
Y(K)=\mathbf{G}(F) \backslash X_{\infty} \times \mathbf{G}\left(\mathbf{A}_{f}\right) / K
$$

is the corresponding arithmetic manifold (possibly orbifold). Denote $\mathcal{H}_{v, S}=\mathcal{H}_{v}\left(G_{v}, K_{v}\right)$. For $U_{v} \subseteq G_{v}$, set
$C^{\bullet}\left(U_{v}\right)=$ chain complex of $Y\left(K^{(v)} \times U_{v}\right)$ with coefficients in S

If $\mathrm{M}^{\bullet}:=\lim _{U_{v}} \mathbf{C}^{\bullet}\left(U_{v}\right)$ and $V_{v} \subseteq K_{v}$ as before, we have

$$
\left(\mathrm{M}^{\bullet}\right)^{V_{v}} \simeq \mathrm{C}^{\bullet}\left(V_{v}\right)
$$

Furthermore, one can show that the natural map

$$
\mathbf{C}^{\bullet}\left(K_{v}\right)=\mathbf{C}^{\bullet}\left(U_{v}\right)^{K_{v} / V_{v}} \rightarrow \underline{\operatorname{Hom}}_{S\left[K_{v} / V_{v}\right]}\left(S, \mathrm{C}^{\bullet}\left(V_{v}\right)\right) .
$$

is a quasi-isomorphism in $\mathbf{D}\left(\operatorname{Mod}_{S}\right)$, so that we obtain a quasi-isomophism

$$
\mathbf{C}^{\bullet}(Y(K))=\mathbf{C}^{\bullet}\left(K_{v}\right) \simeq \text { derived } K_{v} \text {-inv. of } \mathrm{M}^{\bullet} .
$$

Passing to homology, this yields $\mathcal{H}_{v, S} Q H^{*}(Y(K), S)$.

Explicit description of $\mathcal{H}(G, U)$: invariant functions

For $x, y \in G / U$, denote by $G_{x y} \subseteq G$ the pointwise stabilizer of (x, y). In this model, elements of $\mathcal{H}(G, U)$ are assignments,

$$
\mathcal{H}(G, U) \ni h \rightsquigarrow(x, y) \mapsto h(x, y) \in H^{*}\left(G_{x y}, S\right),
$$

satisfying

- h is G-invariant,
- h has finite support modulo G.
with product

$$
h_{1} * h_{2}(x, y)=\sum_{z \in G / U} h_{1}(x, z) \cup h_{2}(z, y)
$$

where cup-products are computed inside $H^{*}\left(G_{x y z}, S\right)$.

Explicit description of $\mathcal{H}(G, U)$: double cosets

Given $x \in G / U$, represented by $x=g_{x} U$, set $U_{x}:=U \cap g_{x} U g_{x}^{-1}$. We show that

$$
\bigoplus_{x \in[U \backslash G / U]} H^{*}\left(U_{x}, S\right) \xrightarrow{\sim} \mathcal{H}_{v, S}
$$

as follows: given $z \in[U \backslash G / U]$ and $\alpha \in H^{*}\left(U_{z}, S\right)$, associate the function $h_{z, \alpha}$ on $G / U \times G / U$ satisfying

- $h_{z, \alpha}(x, y)=0$ if $(z, e U) \notin G \cdot(x, y)$,
- $h_{z, \alpha}(z, e U)=\alpha$.

Explicit description of $\mathcal{H}(G, U)$: double cosets

Given $x \in G / U$, represented by $x=g_{x} U$, set $U_{x}:=U \cap g_{x} U g_{x}^{-1}$. We show that

$$
\bigoplus_{x \in[U \backslash G / U]} H^{*}\left(U_{x}, S\right) \xrightarrow{\sim} \mathcal{H}_{V, S} .
$$

as follows: given $z \in[U \backslash G / U]$ and $\alpha \in H^{*}\left(U_{z}, S\right)$, associate the function $h_{z, \alpha}$ on $G / U \times G / U$ satisfying

- $h_{z, \alpha}(x, y)=0$ if $(z, e U) \notin G \cdot(x, y)$,
- $h_{z, \alpha}(z, e U)=\alpha$.

$$
\mathcal{H}_{v, S}=\bigoplus_{\lambda \in X_{*}(T)^{+}} H^{*}\left(M_{\lambda}\left(k_{v}\right), S\right)
$$

with $\# M_{\lambda}\left(k_{v}\right)=\left(q_{v}-1\right)^{r_{\lambda}}$ for dominant λ. These vanish if $\left(q_{v}-1\right) \in S^{\times}$.
Assume $q_{v}=1$ in S. If $S=\mathbf{Z} / \ell^{n}$ this is reminiscent of Taylor-Wiles primes of level n. The analogy is explained by Koszul duality.

Describing the \mathcal{H}_{v}-action

The action $\mathcal{H}_{v, S} Q H^{*}(Y(K), S)$ should arise from action on $H^{*}\left(K_{v}, S\right)$. Pick $\alpha \in H^{*}\left(K_{v}, S\right)$, then $\alpha=\operatorname{lnf}(\beta)$ for $\beta \in H^{*}\left(K_{v} / K_{v, 1}, S\right)$. If $K_{1}=K^{(v)} \times K_{v, 1}$, we have

$$
\begin{aligned}
& Y\left(K_{1}\right) \\
& \quad K_{v} / K_{v, 1} \rightsquigarrow Y(K) \rightarrow B K_{v} / K_{v, 1} \\
& Y(K)
\end{aligned}
$$

Pulling back along the map to the classifiying space, we get

$$
H^{*}\left(K_{v}, S\right) \rightarrow H^{*}(Y(K), S), \quad \alpha \rightarrow\langle\alpha\rangle
$$

The images of these classes are "Hecke-trivial." Indeed, for any $\langle\alpha\rangle$ as above and any Hecke operator T supported at w, not dividing $|S|$ or K, we have

$$
T\langle\alpha\rangle=\operatorname{deg}(T)\langle\alpha\rangle
$$

For that reason these commute with the Hecke operators.
The action of $h_{z, \alpha}$ on $H^{*}(Y(K), S)$ is given by

$$
H^{*}(Y(K)) \xrightarrow{\pi_{1}^{*}} H^{*}\left(Y\left(K_{z}\right)\right) \xrightarrow{\cup\langle\alpha\rangle} H^{*}\left(Y\left(K_{z}\right)\right) \xrightarrow{\left[g_{z}\right] \circ \pi_{2, *}} H^{*}(Y(K))
$$

Summary

- $\mathcal{H}_{S}(G, U):=\operatorname{Ext}_{S[G]}^{*}(S[G / U], S[G / U])=H^{*}\left(\underline{\operatorname{Hom}}_{S[G]}\left(\mathrm{P}^{\bullet}, \mathrm{P}^{\bullet}\right)\right)$
- $\mathcal{H}_{S}(G, U) Q \mathcal{H}^{*}$ (derived U-invariants of M^{\bullet})
- $\mathbf{M}^{\bullet}:=\lim _{U} \mathrm{C}^{\boldsymbol{\bullet}}\left(U_{v}\right) \rightsquigarrow \mathcal{H}_{v, S} Q{H^{*}}^{*}(Y(K), S)$
- $\oplus_{x \in[U \backslash G / U]} H^{*}\left(U_{x}, S\right) \xrightarrow{\sim} \mathcal{H}_{\nu, S}$, so elements are indexed $h_{z, \alpha}$ with $z \in[U \backslash G / U]$, and $\alpha \in H^{*}\left(U_{x}, S\right)$
- The element $h_{z, \alpha}$ acts on $H^{*}(Y(K), S)$ via

$$
H^{*}(Y(K)) \xrightarrow{\pi_{1}^{*}} H^{*}\left(Y\left(K_{z}\right)\right) \xrightarrow{\cup\langle\alpha\rangle} H^{*}\left(Y\left(K_{z}\right)\right) \xrightarrow{\left[g_{z}\right] \circ \pi_{2, *}} H^{*}(Y(K))
$$

Derived Satake isomorphism

Suppose $S=\mathbf{Z} / \ell^{r}$ and $q_{v}=1$ in S. Assume \mathbf{G} is split over F_{v}. Let \mathbf{A} be a torus and $W=W(\mathbf{G}, \mathbf{A})$ the associated W eyl group. Assume $\ell \nmid|W|$.

Theorem (Derived Satake isomorphism)
In the above notation, we have

$$
\mathcal{H}_{v, \mathbf{Z} / \ell^{r}}\left(G_{v}, K_{v}\right) \xrightarrow{\sim} \mathcal{H}_{v, \mathbf{Z} / \ell^{r}}\left(A_{v}, A_{v} \cap K_{v}\right)^{W}
$$

given by restriction.

Example

Suppose $q \equiv 1(\bmod \ell)$. Then

$$
\mathcal{H}_{q, \mathbf{Z} / \ell}\left(\mathrm{PGL}_{2}\left(\mathbf{Q}_{q}\right), \mathrm{PO}_{2}\left(\mathbf{Q}_{q}\right)\right)=\mathbf{Z} / \ell\left[x_{0}^{ \pm 1}, y_{1}, z_{2}\right]^{\mathbf{Z} / 2}
$$

with x_{0}, y_{1}, z_{2} of degrees $0,1,2$, respectively, and $\mathbf{Z} / 2$-action permuting $x_{0}^{ \pm 1}$ and negating y_{1} and z_{2}.

Example

Pick $\mathbf{G}=\operatorname{Res}_{F / \mathbf{Q}} \mathrm{PGL}_{2}$ over imaginary quadratic field F / \mathbf{Q}. Let $\mathfrak{q} \triangleleft \mathcal{O}_{F}$ be relatively prime to ℓ, and set $k_{\mathfrak{q}}=\mathcal{O}_{F} / \mathfrak{q}$. Let $\alpha: k_{\mathfrak{q}}^{\times} \rightarrow \mathbf{Z} / \ell^{m}$ be a homomorphism. Pulling it back via

$$
\Gamma_{0}(\mathfrak{q}) \rightarrow k_{\mathfrak{q}}^{\times}, \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto a / d
$$

we obtain $\langle\alpha\rangle \in H^{1}\left(\Gamma_{0}(\mathfrak{q}), \mathbf{Z} / \ell^{m}\right)$. Construct a derived Hecke operator
$T_{\mathfrak{q}, \alpha}: H^{1}\left(\mathrm{PGL}_{2}\left(\mathcal{O}_{F}\right)\right) \xrightarrow{\pi_{1}^{*}} H^{1}\left(\Gamma_{0}(\mathfrak{q})\right) \xrightarrow{\cup\langle\alpha\rangle} H^{2}\left(\Gamma_{0}(\mathfrak{q})\right) \xrightarrow{\pi_{2, *}} H^{2}\left(\mathrm{PGL}_{2}\left(\mathcal{O}_{F}\right)\right)$.

Example

Pick $\mathbf{G}=\operatorname{Res}_{F / \mathbf{Q}} \mathrm{PGL}_{2}$ over imaginary quadratic field F / \mathbf{Q}. Let $\mathfrak{q} \triangleleft \mathcal{O}_{F}$ be relatively prime to ℓ, and set $k_{\mathfrak{q}}=\mathcal{O}_{F} / \mathfrak{q}$. Let $\alpha: k_{\mathfrak{q}}^{\times} \rightarrow \mathbf{Z} / \ell^{m}$ be a homomorphism. Pulling it back via

$$
\Gamma_{0}(\mathfrak{q}) \rightarrow k_{\mathfrak{q}}^{\times}, \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto a / d
$$

we obtain $\langle\alpha\rangle \in H^{1}\left(\Gamma_{0}(\mathfrak{q}), \mathbf{Z} / \ell^{m}\right)$. Construct a derived Hecke operator
$T_{\mathfrak{q}, \alpha}: H^{1}\left(\mathrm{PGL}_{2}\left(\mathcal{O}_{F}\right)\right) \xrightarrow{\pi_{1}^{*}} H^{1}\left(\Gamma_{0}(\mathfrak{q})\right) \xrightarrow{\cup\langle\alpha\rangle} H^{2}\left(\Gamma_{0}(\mathfrak{q})\right) \xrightarrow{\pi_{2, *}} H^{2}\left(\mathrm{PGL}_{2}\left(\mathcal{O}_{F}\right)\right)$.
We need to use torsion coefficients - there are no homomorphisms $\alpha: k_{\mathfrak{q}}^{\times} \rightarrow \mathbf{Z}!$

Langlands-Fontaine-Mazur

Galois cohomology and reciprocity laws

Fix $\chi: \mathbb{T} \rightarrow \mathbf{Z}_{p}$ (no congruences) at level $Y(K)$. Conjecturally, we may attach a Galois representation

$$
\rho_{\chi}: \underbrace{\operatorname{Gal}(\bar{F} / F)}_{=: G_{F}} \rightarrow \mathrm{GL}_{2}\left(\mathbf{Z}_{p}\right)
$$

unramified away from a set of primes T containing all primes above p. Assume ρ is crystalline at all primes above $p>2$. Set $\rho_{m}:=\rho_{\chi}\left(\bmod p^{m}\right)$. Denote by $\mathrm{Ad}^{*} \rho$ the \mathbf{Z}_{p}-linear dual to $\operatorname{Ad} \rho$. For $\mathfrak{q} \notin T$, let $F_{\mathfrak{q}}$ be the completion of F, and embed
\mathbf{Z}_{p} with trivial $G_{F_{q}}$ action $\left.\hookrightarrow \operatorname{Ad} \rho\right|_{G_{F_{q}}}$

$$
1 \mapsto 2 \rho\left(\operatorname{Frob}_{\mathfrak{q}}\right)-\operatorname{tr}\left(\rho\left(\operatorname{Frob}_{\mathfrak{q}}\right)\right)
$$

Similarly, the embedding $\mathbf{Z} /\left.p^{m} \hookrightarrow \operatorname{Ad} \rho_{m}\right|_{G_{F_{\mathbf{q}}}}$ yields

$$
\mathbf{Z} / p^{m} \times \operatorname{Ad}^{*} \rho(1) \rightarrow \mu_{p^{m}} .
$$

By local reciprocity,

$$
H^{1}\left(G_{F_{\mathfrak{q}}}, \mathbf{Z} / p^{m}\right) \times H^{1}\left(G_{F_{\mathfrak{q}}}, \operatorname{Ad}^{*} \rho(1)\right) \rightarrow \mathbf{Z} / p^{m}
$$

and restricting the second argument to classes unramified away from T and crystalline at p, we get a pairing

$$
H^{1}\left(G_{F_{\mathfrak{q}}}, \mathbf{Z} / p^{m}\right) \times H_{f}^{1}\left(\mathcal{O}_{\mathfrak{q}}\left[\frac{1}{T}\right], \operatorname{Ad}^{*} \rho(1)\right) \rightarrow \mathbf{Z} / p^{m}
$$

$$
H^{1}\left(G_{F_{\mathrm{q}}}, \mathbf{Z} / p^{m}\right) \times H_{f}^{1}\left(\mathcal{O}\left[\frac{1}{T}\right], \operatorname{Ad}^{*} \rho(1)\right) \rightarrow \mathbf{Z} / p^{m}
$$

Let $\alpha: k_{\mathfrak{q}}^{\times} \rightarrow \mathbf{Z} / p^{m}$, and extend arbitrarily to $\tilde{\alpha}: F_{\mathfrak{q}}^{\times} /(1+\mathfrak{q}) \rightarrow \mathbf{Z} / p^{m}$. Up to unramified classes, this yields $\tilde{\alpha} \in H^{1}\left(G_{F_{\mathfrak{q}}}, \mathbf{Z} / p^{m}\right)$. The pairing with $H_{f}^{1}\left(\mathcal{O}_{\mathfrak{q}}\left[\frac{1}{T}\right], \operatorname{Ad}^{*} \rho(1)\right)$ is independent of the choice of lift $\tilde{\alpha}$, so we obtain a well-defined homomorphism

$$
[\mathfrak{q}, \alpha]: H_{f}^{1}\left(\mathcal{O}_{\mathfrak{q}}\left[\frac{1}{T}\right], \operatorname{Ad}^{*} \rho(1)\right) \rightarrow \mathbf{Z} / p^{m}
$$

which we relate to $T_{\mathfrak{q}, \alpha}$.

Slogan

The Selmer group $H_{f}^{1}\left(\mathcal{O}_{\mathfrak{q}}\left[\frac{1}{T}\right], \operatorname{Ad}^{*} \rho(1)\right)$ provides indexing of the derived Hecke operators via the homomorphisms $[\mathfrak{q}, \alpha]$ with $\mathfrak{q} \notin T$ and $\alpha: k_{v}{ }^{\times} \rightarrow \mathbf{Z} / p^{m}$.

Reciprocity laws

It is believed that

$$
[\mathfrak{q}, \alpha]=\left[\mathfrak{q}^{\prime}, \alpha^{\prime}\right] \stackrel{?}{\Rightarrow} T_{\mathfrak{q}, \alpha}=T_{\mathfrak{q}^{\prime}, \alpha^{\prime}}
$$

Currently, we only know this is "asymptotically" true.

Lemma (Venkatesh)

There is $N_{0}(m)$ such that for primes \mathfrak{q} and \mathfrak{q}^{\prime} satisfying
(1) $\operatorname{Nm}(\mathfrak{q})=\operatorname{Nm}\left(\mathfrak{q}^{\prime}\right) \equiv 1\left(\bmod p^{N_{0}(m)}\right)$,
(2) the eigenvalues of $\rho\left(\right.$ Frob $\left._{\mathfrak{q}}\right)$ (resp. $\rho\left(\right.$ Frob $\left._{\mathfrak{q}^{\prime}}\right)$) modulo p are distinct elements of \mathbf{Z} / p, and
(3) $[\mathfrak{q}, \alpha]=\left[\mathfrak{q}^{\prime}, \alpha^{\prime}\right]$,
the actions of $T_{\mathfrak{q}, \alpha}$ and $T_{\mathfrak{q}^{\prime}, \alpha^{\prime}}$ on $H^{*}\left(Y(K), \mathbf{Z} / p^{m}\right)$ are the same.

Selmer groups as p-adic avatars of motivic cohomology

Let:

- p-prime,
- G - semisimple algebraic group over Q,
- Π - tempered cohomological cuspidal representation for \mathbf{G} with $\Pi^{K_{0}} \neq 0$,
- $\chi: \mathbb{T}_{K_{0}} \rightarrow \mathbf{Q}$ - Hecke character corresponding to Π,
- $\rho_{\chi}: \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \rightarrow{ }^{L} \hat{G}\left(\mathbf{Q}_{p}\right)$ - Galois representation associated to χ,
- $M_{\text {coad }}$ - coadjoint (Chow) motive over \mathbf{Q} corresponding to $\operatorname{Ad}^{*} \rho_{\chi}$, i.e.

$$
H_{e t}^{0}\left(\left(M_{\text {coad }}\right)_{\overline{\mathbf{Q}}}, \mathbf{Q}_{p}\right) \simeq \operatorname{Ad}^{*} \rho_{\chi}
$$

By work of Voevodsky, one may define motivic cohomology group $H_{\text {mot }}^{1}\left(M_{\text {coad }}, \mathrm{Q}(1)\right)$, admitting comparison map

$$
H_{\text {mot }}^{1}\left(M_{\text {coad }}, \mathbf{Q}(1)\right) \otimes_{\mathbf{Q}} \mathbf{Q}_{p} \rightarrow H^{1}\left(G_{\mathbf{Q}}, \operatorname{Ad}^{*} \rho_{\chi}(1)\right) .
$$

Scholl constructs subspace $H_{\text {mot }}^{1}\left(\left(M_{\text {coad }}\right) \mathbf{z}, \mathbf{Q}(1)\right) \subseteq H_{\text {mot }}^{1}\left(M_{\text {coad }}, \mathbf{Q}(1)\right)$ of "classes with good integral models." The restriction of the comparison map is conjectured to land in a Bloch-Kato cohomology

$$
\underbrace{H_{\text {mot }}^{1}\left(\left(M_{\text {coad }}\right)_{\mathbf{z}}, \mathbf{Q}(1)\right)}_{=: \mathrm{V}} \otimes_{\mathbf{Q}} \mathbf{Q}_{p} \rightarrow H_{f}^{1}\left(\mathbf{Z}\left[\frac{1}{T}\right], \operatorname{Ad}^{*} \rho_{\chi}(1)\right)
$$

and, furthermore, to be an isomorphism.

By work of Voevodsky, one may define motivic cohomology group $H_{\text {mot }}^{1}\left(M_{\text {coad }}, \mathrm{Q}(1)\right)$, admitting comparison map

$$
H_{\text {mot }}^{1}\left(M_{\text {coad }}, \mathbf{Q}(1)\right) \otimes_{\mathbf{Q}} \mathbf{Q}_{p} \rightarrow H^{1}\left(G_{\mathbf{Q}}, \operatorname{Ad}^{*} \rho_{\chi}(1)\right) .
$$

Scholl constructs subspace $H_{\text {mot }}^{1}\left(\left(M_{\text {coad }}\right) \mathbf{z}, \mathbf{Q}(1)\right) \subseteq H_{\text {mot }}^{1}\left(M_{\text {coad }}, \mathbf{Q}(1)\right)$ of "classes with good integral models." The restriction of the comparison map is conjectured to land in a Bloch-Kato cohomology

$$
\underbrace{H_{\text {mot }}^{1}\left(\left(M_{\text {coad }}\right) \mathbf{z}, \mathbf{Q}(1)\right)}_{=: \mathrm{V}} \otimes_{\mathbf{Q}} \mathbf{Q}_{p} \rightarrow H_{f}^{1}\left(\mathbf{Z}\left[\frac{1}{T}\right], \mathrm{Ad}^{*} \rho_{\chi}(1)\right),
$$

and, furthermore, to be an isomorphism. Beilinson's conjecture yields

$$
\operatorname{dim}_{\mathbf{Q}} \mathrm{V}=\operatorname{ord}_{s=0} L\left(s, \operatorname{Ad}^{*} \rho_{\chi}(1)\right)=\delta
$$

Conjecture

Conjecture (Venkatesh)

In the above notation, let

$$
\wedge^{*} \mathrm{~V}_{\mathbf{Q}_{p}} Q \boldsymbol{H}^{*}\left(Y\left(K_{0}\right), \mathbf{Q}_{p}\right)_{\Pi}
$$

be the action furnished by the comparison map with $H_{f}^{1}\left(\mathbb{Z}\left[\frac{1}{T}\right], \operatorname{Ad}^{*} \rho_{\chi}(1)\right)$. Then the action of $\wedge^{*} \mathrm{~V}$ preserves the rational structure on $H^{*}\left(Y\left(K_{0}\right), \mathbf{Q}\right)_{\square}$

