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Goals of the talk

Goals of the talk is to explain the following things

1 (Descending from T-W level)

Given allowable T-W datum Qn with deformation rings Rn,
Sn, Sur

n , we can recover the original deformation ring by

RS ' Rn⊗SnS
ur
n

Moreover if given quotients

π0Rn � Rn, π0Sn � Sn, π0Sur
n � S

ur
n

each inducing isomorphism on t0, then the composite map
RS → Rn⊗SnS

ur
n → Rn⊗Sn

S
ur
n induces isomorphism on t0

and surjection on t1.



2 (The patching theorem)

Let ι : S◦∞ → R∞ be a continuous map where

S◦∞ = W (k) [[X1, . . . , Xs]] ,R∞ = W (k) [[X1, . . . , Xs−δ]]

making R∞ a finite S◦∞-module.
Let an = (pn, (1 +Xi)

pn − 1) ideals of S◦∞ and

Cn = R∞/an⊗S◦∞/an
Wn

Then given R0 ∈ pro-Artk with a collection of maps
fn : R0 → Cn satisfying some conditions on tangent complex
(e.g. inducing isomorphism on t0 and surjection on t1)
Then

π∗R0
∼= Tor

S◦∞
∗ (R∞,W (k))

as graded rings. (The left side is defined as the inverse limit
limj∈J π∗(R0)j)



3 (Main theorem)

There is an isomorphism

π∗RS ∼= Tor
S◦∞
∗ (R∞,W )

of graded rings hence the homology H∗(Y0,W )m carries the
structure of a free graded module over the graded ring π∗RS .



Brief motivation for the main theorem

1 For suitable Galois representations, the Langlands Program
predicts that the Mazur’s deformation ring should act on the
homology of an arithmetic group. But we have already seen
π0RS recovers the underived deformation ring, so such an
action might be upgraded to a graded action of π∗RS .



2 Numerology of the Betti number for an arithmetic group. For
instance if Γ ≤ SLn(Z) then the exterior algebra of a vector
space of dimension δ =

[
n−1

2

]
acts on H∗(Γ,Qp)χ. Now let

O be the ring of integers of Qp and ρ : Gal(Q/Q)→ GLn(O)
the Galois representation attached to χ and ρ̄ its mod p
reduction. Suppose the standard conjecture that ρ does not
have characteristic zero crystalline deformations. Then
π∗Rρ̄ ⊗π0Rρ̄ Qp is isomorphic to an exterior algebra on δ
generators. Thus it naturally suggests that π∗Rρ̄ might in
fact act freely on H∗(Γ,O)ρ̄.



3 While in C-G method it is already shown that the homology
H∗(Γ,O)ρ̄ has the structure of a free module under a certain
Tor-algebra arising in T-W limit process. So a simple way is to
identify π∗RS with the Tor-algebra.

Such identification is reasonable and natural. Note the
underived descending gives R = R∞ ⊗S∞ W .
As to be shown in the patching theorem, one way for the
Tor-algebra to come into the story is by the computation of
homotopy groups of the tensor product Rn⊗SnW (and take a
limit). So in derived case there should exist some identification
between π∗RS and the Tor-algebra coming from T-W limit.
Also this Tor-algebra is a priori obscure since it depends on all
the choices made in the limit process. And it would be nice if
it could be identified with a more intrinsic object.



A few background

1 We are always talking about functors F : Artk → sSet and we
have defined almost everything in a homotopy/weak
equivalence sense, e.g. homotopy (co)limits, homotopy
pullback, (pro-)representability.

2 In previous talks we have seen that there is a well-defined
derived deformation problem/functor to deal with. In
particular the deformation functor is pro-representable by
Lurie’s derived Schlessinger criterion. Also (underived) local
conditions can be imposed to this functor, and in this talk we
always assume a crystalline condition at p.



3 Almost all the notations and assumptions are given in [GV]
section 6, 7, 10 and 13.1. In particular Conjecture 6.1 in [GV]
assumes the existence of some Galois representation
associated to certain Hecke algebra.

4 For objects in pro-Artk, the derived tensor product really is
viewed as the representing ring of the homotopy pullback of
the representing functors, hence as long as they have the
same index category, the derived tensor product has functorial
properties.



Notations on Galois representation

Fix p and a finite field k of characteristic p with Witt vectors
W = W (k), Wn = W (k)/pn.

S a finite set of primes containing p, G a split semisimple algebraic
group over W (k), e.g. PGLn. T ⊂ G a maximal k-split torus.

G the split reductive Q-group whose root datum is dual to that of

G and G admits a smooth reductive model over Z
[

1
S−{p}

]
.

(More is coming...)



’Minimal level’ Galois representation

Assumptions on ρ:

a H0
(
Qp,AdρQp

)
= H2

(
Qp,AdρQp

)
= 0 (local deformation at

p is representable and formally smooth)

b For v ∈ S − {p}, the local cohomology Hj (Qv,AdρQv) = 0
for j = 0, 1, 2 (local deformation ring at S − {p} is W )

c ρ has big image: the image of ρ restricted to Q (ζp∞) contains
the image of Gsc(k) in G(k) here Gsc is the simply connected
cover. (existence of allowable T-W data[GV] remark after 6.2)



Allowable T-W datum

For ρ : π1Z
[

1
S

]
→ G(k), a set of (T-W) primes Q = {`1, ..., `n}

disjoint from S and each ρ(Frob`i) is conjugate to some t`i ∈ T (k)
whose centralizer in G is T , satisfying further conditions

a pn divides each `i − 1

b H2
l

(
Z
[

1
SQ

]
,Adρ

)
= 0 where local conditions lv at

v ∈ S ∪Q namely

lv =


H1
f , v = p

H1, v ∈ Q
0, v ∈ S − {p}



Combined with the assumptions on ρ, the vanishing condition b
means that in the sequence

H1
(
Z
[

1
SQ

]
,Ad ρ

)
A−→ H1(Qp,Adρ)

H1
f (Qp,Adρ)

→ H2
l︸︷︷︸

0

→ H2
(
Z
[

1
SQ

]
,Adρ

)
B−→
⊕
Q

H2 (Qv,Adρ)

A is surjective and B is injective.



Tangent complex

For a formally cohesive functor we can have associated tangent
complex and if

F = F0 ×hF01
F1

where F0,F01,F1 are all formally cohesive, then F is also formally
cohesive and tF is quasi-isomorphic to the mapping cone of
tF0 ⊕ tF1 → tF01.

Also for our derived deformation functor

tjFZ[ 1
S ],ρ = π−jtFZ[ 1

S ],ρ
∼= Hj+1

f

(
Z
[

1

S

]
,Adρ

)
, j > −1



Descending from T-W level

Consider a representation ρ : π1Z
[

1
S

]
→ G(k) satisfying conditions

given above. Denote RS the crystalline deformation ring of ρ. Let
Qn be an allowable T-W set. We are going to see how the derived
deformation ring at base level S could be recovered from the
derived deformation ring at level SQn and under some condition on
t0 and t1, even well approximated just using the usual (underived)
deformation ring at level SQn or a sufficiently deep quotient of it.



For a T-W prime q, we set

I ρZq the pullback of ρ under π1(Zq)→ π1(Z
[

1
S

]
), ρQq

pullback via π1Qq → π1Zq
I By assumption ρZq is conjugate to a ρTZq : π1Zq → T (k), ρTQq

pullback via π1Qq → π1Zq
I FZq ,FQq deformation functors for ρZq and ρQq , similarly for

FTZq and FT,�Zq where with � means the framed versions.

Then we have diagram where all squares are object-wise homotopy
pullback and s-maps are sections[GV] 8.2

FZ[ 1
S ]

//

��

FZq

��

FTZq
∼oo

��

sZq ,,
FT,�Zq

oo

��

F
Z
[

1
Sq

] // FQq FTQq
∼oo

sQq
22 F

T,�
Qq

oo



Apply to Qn we get

F ′S∐
Qn
×hF loc

n
′ F loc,ur′

n
∼
99K FS

where F loc,(ur)
n =

∏
q∈Qn F

T,(ur),�
q and a prime denotes a weakly

equivalent functor. Then on deformation rings the equivalence
above gives

RS ' Rn⊗SnS
ur
n

where here ' means that the functors they represent are naturally
weakly equivalent. Roughly speaking, ’a representation of

π1Z
[

1
SQ

]
unramified at Q is actually a representation of π1Z

[
1
S

]
’.



Suppose given pro-Artinian quotients

π0Rn � Rn, π0Sn � Sn, π0Sur
n � S

ur
n

with a diagram Rn ← Sn → S
ur
n commuting with the same

diagram for the π0 rings. Then we get

RS → Rn⊗SnS
ur
n → Rn⊗Sn

S
ur
n

Theorem
If the quotient maps all induce isomorphisms on t0 then the map
RS → Rn⊗Sn

S
ur
n induces isomorphism on t0 and surjection on t1.



Proof.
By properties of tangent complex, we have commutative diagram

0

��

// t0(Rn⊗Sn
S

ur
n )

j1
��

// t0(Rn)⊕ t0(S
ur
n )

f

��

// t0(Sn)

g

��
0 // t0(Rn⊗SnS

ur
n ) // t0 (Rn)⊕ t0(Sur

n ) // t0 (Sn)

where by assumption f and g are all isomorphisms hence so is j1.
Continue the commutative diagram

t0(Sn)

g

��

// t1(Rn⊗Sn
S

ur
n )

j2
��

// t1(Rn)⊕ t1(Sn)

��
t0 (Sn)

β // t1(Rn⊗SnS
ur
n )

γ // t1 (Rn)⊕ t1(Sur
n )

h // t1(Sn)



Note t1Sur
n = 0 since Sur

n is formally smooth.

Moreover by our assumption on ρ and Qn

t1Rn = //

h

��

H2
f

(
Z
[

1
SQn

]
,Adρ

)
'
��

H2
(
Z
[

1
SQn

]
,Adρ

)
B

��
t1Sn = // ⊕

v∈Qn
H2(Qv,Adρ(T ))

where the first isomorphism comes from the long exact sequence
for f -cohomology and use the fact that A is surjective and second
local cohomology at p is 0. The last term is by [GV] 8.3. Hence in
the above diagram h is injective, γ is 0, β is surjective. Since g is
isomorphism, j2 is surjective. This finishes the proof.



For future use, we also want to understand Sq and Sur
q better.

Lemma
The pro-rings S(ur)

q are homotopy discrete, i.e. the map

S(ur)
q → π0S(ur)

q = S
(ur)
q induces weak equivalence of represented

functors[GV] 8.6. And the commutative diagram is a homotopy
pullback

S◦q

��

// Sq

��
W (k) // Sur

q

where S◦q = W [[Y1, . . . , Yr]] /((1 + Yi)
pN − 1) for r = rank(G),

N = ordp(q − 1) and the diagram is still a homotopy pullback
after they all quotient by pn.



Remark

With the same notations, actually in the above lemma[GV] 8.14

Sq = W [[X1, . . . , Xr, Y1, . . . , Yr]] /((1 + Yi)
pN − 1)

Sur
q = W [[X1, . . . , Xr]]

Canonically these rings can be identified as

S◦q = completed group algebra of T (Fq) = W [T(Fq)p]

Sq = completed group algebra of T (Qq)
tame

Sur
q = completed group algebra of T (Qq)

ur

where T is the dual torus to T in G and ( )p denotes the p-part.



Patching

Theorem
Let continuous map

S◦∞ = W (k) [[X1, . . . , Xs]]
ι→ R∞ = W (k) [[X1, . . . , Xs−δ]]

making R∞ a finite S◦∞-module. Let an = (pn, (1 +Xi)
pn − 1) and

Cn = R∞/an⊗S◦∞/an
Wn

We have natural maps en,m : Cn → Cm for n > m.



Then given R0 ∈ pro-Artk, tiR0 supported in degree 0, 1 and
satisfying the ’Euler characteristic’ relation

dim t0R0 − dim t1R0 = dim(R∞)− dim(S◦∞)

with a collection of maps fn : R0 → Cn such that for every n > m,

the composite fn,m : R0 → Cn
en,m→ Cm induces isomorphism on t0

and surjection on t1. Then as graded rings

π∗R0
∼= Tor

S◦∞
∗ (R∞,W (k))



Proof.
First for A = (j 7→ Aj) and B = (i 7→ Bi), A,B ∈pro-Artk let

pro-Artk(A,B) = limi colimj Artk(Aj , Bi)

and [A,B] = π0 (pro-Artk(A,B)). Then for our discussion where
A = R0 and B = Cn, we have [R0, Cn] is finite since π∗tR0

vanishes beside 0, -1.
Then by a compactness argument we could replace fn by gn with
same condition but additional compatibility gn and en+1,n ◦ gn+1

are homotopic. Then we can glue the natural transformations of
functors induced by gn

Hom (Cn,−)→ Hom (R0,−)

to get
hocolimn Hom (Cn,−)→ Hom (R0,−)

which is also an isomorphism on t0 and epimorphism on t1.



Claim actually it is an isomorphism on ti for all i by showing both
sides vanish besides 0, 1 and have the same ”Euler characteristic”.
We have an exact triangle in the derived category of k-modules

tCn → t (R∞/an)⊕ t (Wn)→ t (S◦∞/an)
[1]→

and taking cohomology and taking direct limit gives

lim
−→

tiCn → tiR∞ ⊕ tiW (k)︸ ︷︷ ︸
0

→ tiS◦∞
[1]→

and ti(R∞) = ti(S◦∞) = 0 since these are power series rings thus
formally smooth.
Then by exactness we have

dim t1C − dim t0C = dim colimn t
1Cn − dim colimn t

0Cn
= dim t0S◦∞ − dim t0R∞

= dim t1R0 − dim t0R0



Hence the pro-objects R0 and (n 7→ Cn) represent equivalent
functors and hence the induced map of homotopy groups

π∗R0 = lim
←−

π∗(R0)j → lim
←−

π∗Cn

is also an isomorphism. This concludes the proof since by
computation of homotopy groups of a tensor product[Q] theorem 6

and [GV] 7.6 we have

lim
←−

πiCn = lim
←−

Tor
S◦∞/an
i (R∞/an,Wn) ∼= Tor

S◦∞
i (R∞,W )



Obstructed T-W method

Assume associated to a given Hecke eigenclass there is a Galois
representation ρ : π1Z

[
1
S

]
→ G(k) (satisfying pages of

conditions), then the following data can be found (and more):

a map ι as in the patching theorem

b allowable T-W data Qn, associated covering groups ∆n and
deformation rings Rn

c function K(n)→∞ and commutative diagram

S◦∞
ι //

fn

��

R∞ //

gn

��

π0RZ[ 1
S ]

��
S◦n // Rn

// π0RZ[ 1
S ]/(p

n,mK(n))



inducing isomorphisms{
S◦∞/an → S◦n := Wn[∆n]

R∞/an ∼= R∞ ⊗S◦∞
S◦n → Rn := π0Rn/(p

n,mK(n))

d complex D∞ of free S◦∞-modules with

H∗
(
D∞ ⊗S◦∞

W
) ∼= H∗ (Y0,W )m

compatible with R∞-actions and H∗(D∞) is concentrated in
degree q where Hq(D∞) is a finite free R∞-module

e The map R∞ ⊗S◦∞ W � π0RZ[ 1
S ] is isomorphism and the

action of R∞ ⊗S◦∞
W on H∗(Y0,W )m extends to a free graded

action of Tor
S◦∞
∗ (R∞,W ) on H∗ (Y0,W )m



Remark

Let M = Hq(D∞) then actually the map D∞ →M is a projective
resolution. Hence

H∗(Y0,W )m = H∗(D∞ ⊗S◦∞ W ) ∼= Tor
S◦∞
∗ (M,W )

and since M is free over R∞, the whole homology carries a free
action of Tor

S◦∞
∗ (R∞,W ).



Sketch of the proof of main theorem

I The set-up from obstructed T-W method gives T-W sets Qn,
limit rings R∞, S◦∞ and isomorphims R∞/an ' Rn and more.
Put

∆̃n :=
∏
q∈Qn

T (Fq)p

and ∆n = ∆̃n/p
n. Then the diagram

Rn ← π0Sn ⊗W [∆̃n] Wn [∆n]︸ ︷︷ ︸
:=Sn

→ π0Sur
n /p

n︸ ︷︷ ︸
:=S

ur
n

admits a map from

Rn ← S◦n →Wn



This is because we have explicit descriptions of the objects

∆̃n =
∏

T(Fq)p ∼=
∏

(Z/pn
′
q)r

∆n =
∏

T(Fq)/pn ∼= (Z/pn)r·#Qn

where r = rank(G), n′q = ordp(q − 1). Then just as the
lemma before we have the following homotopy pullback

S◦n

��

// Sn

��
Wn

// S
ur
n



and induces a weak equivalence on derived tensor product.
Thus we get

RZ[ 1
S ] → Rn⊗SnS

ur
n → Rn⊗Sn

S
ur
n
∼← Rn⊗S◦n

Wn

where the last equivalence is from the lemma.

But the last term is isomorphic to R∞/an⊗S◦∞/an
Wn hence

we get maps RZ[ 1
S ] −→ R∞/an⊗S◦∞/an

Wn in pro-Artk.



I Now it suffices to check the tangent complex condition to
apply the patching theorem. We have to show tiRZ[ 1

S ] is

supported in degree 0, 1 and have the correct ’Euler
characteristic’. This is just a computation of the
f -cohomology.

Also we need to study the composite

RZ[ 1
S ] → R∞/an⊗S◦∞/an

Wn → R∞/am⊗S◦∞/am
Wm

for n > m and we want to show they induce isomorphism on
t0 and surjection on t1.



To show this, we apply the descending theorem from T-W
level. Then we are left to verify the quotients

π0Rn � Rn,m, π0Sn � Sn,m, π0Sur
n � S

ur
n,m

induce isomorphisms on t0 where

Rn,m = Rn/am, Sn,m = Sn/am,S
ur
n,m = S

ur
n /p

m

This is true because they are injective on tangent complex and
the ideals defining these quotients all live in the square of the
maximal ideal for n > m > 1.
Then the resulting map

RZ[ 1
S ] → Rn,m⊗Sn,m

S
ur
n,m

is isomorphism on t0 and surjection on t1.



Then we have commutative diagram

RZ[ 1
S ]

=

��

// R∞/an⊗S◦∞/an
Wn

��

// R∞/am⊗S◦∞/am
Wm

t

��
RZ[ 1

S ]
// Rn⊗Sn

S
ur
n

// Rn,m⊗Sn,m
S

ur
n,m

Here the map t induces isomorphisms on tangent complexes.
This finishes the proof.



References

GV Soren Galatius and Askhay Venkatesh. Derived Galois
deformation rings. Adv. Math. 327 (2018), 470-623.

I A. Iyengar, The derived deformation ring and patching. 2019.

Q Daniel G. Quillen. Homotopical algebra. Lecture Notes in
Mathematics, No. 43. Springer- Verlag, Berlin-New York,
1967.


