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Abstract

This thesis will introduce the study of powers in number fields through two similar questions. The

first is the Grunwald–Wang theorem that examines the relationship between being an n-th power in

a number field K globally and being an n-th power almost everywhere locally (a “Hasse Principle”

for n-th powers). We also discuss the history and motivation of the Grunwald–Wang theorem and

provide some examples.

We will then consider a question for two irreducible polynomials Xn − a and Xn − b over a

field K of characteristic 0 such that respective roots α and β generate isomorphic degree-n radical

extensions of K. In this second scenario, we analyze if the ratio bj/a must be an n-th power in K

for some integer j coprime to n when K(α) ∼= K(β).

In both questions, the presence of distinct quadratic subextensions of cyclotomic and radical

extensions give rise to explicit classes of counterexamples. Finally, we explore how properties of

2-power cyclotomic extensions provide obstructions in both situations.
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Chapter 1

Introduction

The proof did not apply when, roughly speaking, [K : F ] was even.

–Xianghao Wang [11, p.471]

1.1 Motivation

In elementary number theory, one can use quadratic reciprocity to prove that a nonzero integer a is

a square in Z if it is a quadratic residue modulo p for all but finitely many primes p. We can then

attempt to generalize this result to higher powers: if an integer a is an n-th power modulo p for all

but finitely many primes p, then is a an n-th power in Z? By Hensel’s lemma, we may translate the

question to the p-adic numbers Qp since for all odd p - a, a is an n-th power in Qp if and only if a

is an n-th power modulo p. We may also further generalize the question by replacing Z with any

number field K, so we may now ask the question:

Question 1.1.1. Let K be a number field. If a ∈ K× is an n-th power in Kp for all but finitely

many primes p of K, then is a an n-th power in K?

In 1933, Wilhelm Grunwald published a paper giving an erroneous proof for “Grunwald’s theo-

rem”, a statement about the existence of prescribed cyclic extensions of K that implies that Ques-

tion 1.1.1 always has an affirmative answer, using analytic number theory and class field theory [5].

This was supplemented by a second published proof of Grunwald’s theorem by George Whaples in

1942 that eliminated the need for analytic number theory [13]. However, they were both wrong!

There are counter-examples to Question 1.1.1 even when K = Q:

Example 1.1.2. Let K = Q, n = 8, and a = 16. Observe that 16 = 24 = (−2)4 = (1 + i)8, so 16

is an 8th power modulo an odd prime p if one of {−1, 2,−2} is a quadratic residue modulo p. But

for every odd prime p, one of {−1,−2, 2} is a quadratic residue modulo p, so 16 is always an 8-th
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CHAPTER 1. INTRODUCTION 2

power modulo an odd prime p and so 16 is an 8-th power in Qp for all odd primes p. On the other

hand, 16 is not an 8-th power in Q.

Example 1.1.3. Let K = Q(
√

7), n = 8, and a = 16. By the reasoning in Example 1.1.2, 16 is an

8-th power in Qp for all odd primes p. Furthermore, Q2(
√

7) = Q2(i), so 16 is also an 8-th power

in the 2-adic completions of K (as well as the archimedean completions, both of which are R). Yet,

16 is not an 8-th power in Q(
√

7) so we now have a counter-example in which there are no omitted

places.

In 1948, Xianghao (also spelled Shianghao or Shianghaw) Wang pointed out Example 1.1.2 [11].

In 1950, Hasse and Wang independently proved the correct formulation of Grunwald’s statement,

known as the Grunwald–Wang theorem, with a description of all counter-examples [6, 12]. We pro-

vide an overview of the Grunwald–Wang theorem and some of the intricacies of 2-power cyclotomic

extensions that lead to the counter-examples to Question 1.1.1 in Chapter 2.

Note that Question 1.1.1 asks when Xn− a has a root in a number field K for a ∈ K×. Instead,

let us consider the opposite extreme: when Xn − a and Xn − b are irreducible over K.

Let α be a root of Xn − a and β a root of Xn − b, so the extensions K(α)/K and K(β)/K

are intrinsic to a and b, respectively, by irreducibility over K. When bj/a = cn for some c ∈ K×

for j ∈ Z coprime to n (a symmetric condition on a and b since then aj
′
/b ∈ (K×)n for j′ ≡ j−1

(mod n)), then βj/c is a root of Xn − a and so K(α) ⊂ K(β). Equality between K(α) and K(β)

is then forced by comparing K-degrees. The sufficiency of this condition on a and b motivates a

necessity question [4]:

Question 1.1.4. If K(α) ∼= K(β) over K, then is bj/a necessarily an n-th power in K for some

integer j coprime to n?

In Chapter 3, we explore Question 1.1.4 and how affirmative answers may be given for various

cases depending on the intersection of K and Q(ζn). As with the examination of the Grunwald–

Wang theorem, the intricacies of 2-power cyclotomic fields lead to some classes of counter-examples.

When K ∩Q(ζn) = Q, there are precisely two families of counter-examples, and they occur only

when n is divisible by 8. The lowest-degree case of the first family (Example 3.4.3) with K = Q and

“simplest” coefficients is as follows:

Example 1.1.5. Let K = Q, n = 8, a = −1, b = −16. By Eisenstein’s criterion, X8+1 is irreducible

over Q. By the argument below, X8 + 16 is also irreducible over Q.

Let x be a root of X8 + 16. Note that z := (1/2)x2 is a root of the polynomial Φ8 := X4 + 1.

Then, x2 = 2z for z a primitive 8-th root of unity, so x is either quadratic over Q(z) = Q(ζ8) or

x ∈ Q(ζ8). Suppose that x ∈ Q(ζ8). Then 2z = x2 is a square in Q(ζ8) which implies that the

quantity iz = z3 (since z is a primitive 8-th root of unity) is a square since

iz =
−2z

(1 + i)2
.
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But z3 is also a primitive 8-th root of unity so if z3 is a square in Q(ζ8) then Q(ζ8) must contain a

primitive 16-th root of unity. By degree considerations, this is impossible. Therefore, x is quadratic

over the quartic field Q(ζ8), i.e. [Q(x) : Q] = 8. Hence, X8 + 16 is irreducible.

For a root α of X8 + 1, observe that α4 = i and so i ∈ Q(α). Let β := (1 + i)α, so Q(α) = Q(β).

Then β8 = 16α8 = −16 so β is a root of X8 + 16. On the other hand, bj/a = (−1)j+124j is never

an 8-th power in Q for any odd j ∈ Z.

The lowest-degree case of the second family (Example 3.4.4) with K = Q and minimal coefficients

is as follows:

Example 1.1.6. Let K = Q, n = 16, a = −1, b = −256. By Eisenstein’s criterion, X16 + 1 is

irreducible over Q. By a similar argument as the one given for X8 + 16 above, X16 + 256 is also

irreducible over Q.

For a root α of X16 +1, observe that α8 = i and so i ∈ Q(α). Let β := (1+ i)α, so Q(α) = Q(β).

Then β16 = 256α16 = −256 so β is a root of X16 + 256. On the other hand, bj/a = (−1)j+128j is

never an 16-th power in Q for any odd j ∈ Z.

In Chapter 3, we shall systematically construct these two families of examples and show that they

are the only examples wherein Question 1.1.4 has a negative answer when K ∩Q(ζn).



Chapter 2

The Grunwald–Wang Theorem

In the spring of 1948, Bill Mills, one of the students Artin had brought with him from

Indiana, talked on “Grunwald’s theorem” in the seminar. Some days later I was with

Artin in his office when Wang appeared. He said he had a counterexample to a lemma

which had been used in the proof. An hour or two later, he produced a counterexample

to the theorem itself... Of course he [Artin] was astonished, as were all of us students,

that a famous theorem with two published proofs, one of which we had all heard in the

seminar without our noticing anything, could be wrong. But it was a good lesson!

–John Tate [10, p.30]

2.1 The Story

From a historical perspective, the story of the Grunwald–Wang theorem originates from the work

of Grunwald’s advisor Helmut Hasse. In his proof of the Albert–Brauer–Hasse–Noether theorem on

central simple algebras over number fields, Hasse proved the following existence theorem in 1931

[10, p.27]:

Theorem 2.1.1 (Hasse’s existence theorem). Let K be a number field and S a finite set of primes

of K. Let np ∈ N be given for each p ∈ S. Then there exists a cyclic extension L/K of degree

lcmp∈S{np} such that np | [Lp : Kp] for each p ∈ S where Lp denotes the completion of L at any

place above p.

While this theorem was enough for the purpose of proving the Albert–Brauer–Hasse–Noether

theorem, Hasse wanted a version of the existence theorem “in its greatest possible generality” [10,

p.28]. At Hasse’s urging the following year, Grunwald used the methods from his doctoral thesis to

prove a stronger existence theorem prescribing the completion Lp as a cyclic degree-np extension of

Kp:

4



CHAPTER 2. THE GRUNWALD–WANG THEOREM 5

Claim 2.1.2 (“Grunwald’s theorem”). Let K be a number field and S a finite set of primes of K.

Let Ep/Kp be a given cyclic extension for each p ∈ S. Then there exists a cyclic extension L/K of

degree lcmp∈S [Ep : Kp] such that Lp
∼= Ep over Kp for each p ∈ S.

Recall that in Chapter 1, we have a counter-example to Question 1.1.1 in Example 1.1.2. We

may use this counter-example to produce a direct counter-example to “Grunwald’s theorem” itself:

Example 2.1.3. Let K = Q and let S = {2}. Let E2 be the unramified extension of Q2 of degree

8. Then there no cyclic extensions L/Q of degree 8 such that L2
∼= E2 over Q2.

Proof. Suppose L2
∼= E2. By the Kronecker–Weber theorem, we have K ⊂ Q(ζn) for some n ∈ N.

Taking n to be the minimal such integer, we know from (2) being unramified in L/Q and from

consideration of inertia groups in Gal
(
Q(ζn)/Q

)
that n must be odd. Also note that Gal(L/Q) ∼= C8

where C8 is the cyclic group of order 8. Then we have the induced surjective map f : (Z/nZ)× � C8.

Define g : C8 � C8/C4 = {1,−1} to send 1 to the Jacobi symbol ( 2
n ). Then we have the composition

of maps

(Z/nZ)× C8 C8/C4 = {1,−1}.f g

Note that 2 ∈ (Z/nZ)× corresponds to the Frobenius element Frob2 at 2Z through the isomorphism

Gal
(
Q(ζn/Q)

) ∼= (Z/nZ)×. Since L2
∼= E2, Frob2 corresponds to the generator σ of Gal(E2/Q2)

(i.e. f(2) = 1). Since f(2) is therefore a generator of C8 and g is surjective,
(
2
n

)
= g ◦ f(2) = −1.

By the definition of Jacobi symbols,

(
2

n

)
=

∏
prime q|n

(
2

q

)ordp(n)

,

and so the Legendre symbol
(

2
p

)
equals −1 for some prime p | n. By quadratic reciprocity, this only

occurs when p ≡ ±3 (mod 8).

Using the factorization (Z/nZ)× =
∏

prime q|n(Z/qordq(n)Z)×, we have an induced surjective map

on the direct factor (Z/pZ)× of (Z/pordp(n))×:

(Z/pZ)× C8 C8/C4.
fp g

In particular, fp still sends 2 to the generator of C8 by the same reasoning for f . Observe that C8
∼=

(Z/pZ)×/ ker fp, so p ∼= 1 (mod 8). Hence 2 is a square in (Z/pZ)×, so fp(2) ∈ C4, contradicting

the fact that fp(2) is a generator of C8.

Remark 2.1.4. An alternative proof of Example 2.1.3 proceeds as follows. Example 1.1.2 shows that

16 becomes a norm in Qp for all odd primes p and is trivially a norm at even places since R>0

is divisible, so 16 is a norm in Q2 by the product formula for the norm residue symbol for cyclic
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extensions. But then E2/Q2 of degree 8 cannot be unramified because the ordinal of 16 is not

divisible by 8.

When Wang found Example 2.1.3 in 1948, many were concerned that Hasse’s existence theorem

and the dependent Albert–Brauer–Hasse–Noether theorem could also be false. However, Hasse

[6] and Wang [12] independently gave correct formulations of what is now known as the Grunwald–

Wang theorem in 1950. Although Hasse claimed that his existence theorem (Theorem 2.1.1) could be

proven independently of the Grunwald–Wang Theorem, the only published proof was the deduction

given by Grunwald from Claim 2.1.2 [10, p.27–28].

2.2 The Theorem

Here is a first version of the Grunwald–Wang Theorem, as in [1, Chapter X, Theorem 5]:

Theorem 2.2.1. Let K be a number field, S a finite set of primes of K, and CK the idèle class

group of K. Moreover, let m be the greatest integer such that ηm ∈ K, where ηm := ζm + ζ−1m .

Let χp be a given local continuous character on Gab
Kp

of some finite order np for each p ∈ S.

Then there exists a continuous finite order character χ of Gab
K whose restriction to Gab

Kp
is χp for all

p ∈ S and whose order is lcmp∈S np except exactly when the following conditions all occur (in which

case the order can be arranged to be 2 lcmp∈S np):

1. A := {−1, 2 + ηm,−2− ηm} 6⊂ K2;

2. n is divisible by 2m+1;

3. S0 :=
{

primes p of K : p | 2 and A 6⊂ K2
p

}
⊂ S.

Not only did Theorem 2.2.1 fix the errors in “Grunwald’s Theorem”, it also gave Hasse’s ex-

istence theorem as a direct consequence [6, 12]. However, the relation between the formulation of

Theorem 2.2.1 in terms of characters and the local-global statement about powers in Question 1.1.1

is not immediately evident. While the original paper by Wang [12] proving Theorem 2.2.1 hints at

an answer to Question 1.1.1, a clearer connection can be drawn through class field theory.

Looking at a (continuous) character

χ : GK → µn(C) ∼= Z/nZ

reduces to the study of a character

χab : Gab
K → Z/nZ.

The Artin map from the idèle class group CK to Gab
K induces a bijection between the open sub-

groups of finite index and induces isomorphisms between the associated quotients. This fundamental
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information gives us an isomorphism

Homcont(G
ab
K ,Z/nZ) ∼= Homcont(CK ,Z/nZ) = Homcont(CK/C

n
K ,Z/nZ).

But CnK ⊂ CK is closed with CK/C
n
K compact and even profinite (this rests on compactness of

the norm-1 idèle class group, or equivalently the main finiteness theorems for class groups and unit

groups in algebraic number theory). Using the compatible local Artin map, Theorem 2.2.1 is thereby

a statement about the surjectivity of the natural map

Homcont(CK/C
n
K ,Z/nZ) −→

∏
p∈S

Homcont

(
Kp
×/
(
Kp
×)n ,Z/nZ). (2.1)

With some exact sequence considerations, one can show that the functor Homcont(−,Z/nZ) from

profinite abelian groups that are killed by n to discrete Z/nZ-modules is exact and satisfies “double

duality”. Thus, the surjectivity of (2.1) is precisely the injectivity of

∏
p∈S

Kp
×/
(
Kp
×)n −→ CK/C

n
K . (2.2)

We claim that the kernel of (2.2) is a quotient of the kernel X1
S(K,µn) of the map

K×/
(
K×

)n −→∏
p/∈S

Kp
×/
(
Kp
×)n (2.3)

which contains the local-to-global information on n-th powers in K outside of the local information

at S. To see this, consider the following commutative exact diagram (where IK is the idèle group of

K):

1 K× IK CK 1

1 K× IK CK 1

tn tn tn

from which we get the exact cokernel sequence in a commutative diagram

K×/ (K×)
n

IK/I
n
K CK/C

n
K 1

1
∏

p/∈S Kp
×/
(
Kp
×)n ∏

p/∈S Kp
×/
(
Kp
×)n 1

This yields an exact sequence of kernels of the vertical maps

X1
S(K,µn)

∏
p∈S Kp

×/
(
Kp
×)n CK/C

n
K ,
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giving the kernel of (2.3) as a quotient of X1
S(K,µn) (with some extra work, one can show that

they are actually equal [9, Chapter 6]).

In effect, X1
S(K,µn) encodes the obstruction for the local-to-global principle for n-th roots in

K outside of the local information at S. By the discussion above, X1
S(K,µn) also captures the

surjectivity of (2.1), thus tying Theorem 2.2.1 back to Question 1.1.1. In this setting, we have a

second version of the Grunwald–Wang Theorem [1, Chapter X, Theorem 1]:

Theorem 2.2.2. Let K be a number field and S a finite set of places of K. Fix n ∈ N. Let

P (n, S) := {x ∈ K : x ∈ Kn
p for all p /∈ S}. Then P (n, S) = Kn except in the special case given in

Theorem 2.2.1, in which case P (n, S) = Kn ∪ (2 + ηm)n/2Kn:

Write n = 2er where e := ord2(n) ≥ 0 and r is odd. The proof of the Grunwald–Wang theorem

separately considers whether K(ζ2e)/K is cyclic or not. In the cyclic case (such as whenever e ≤ 2),

the subfields of K(ζ2e)/K are easier to work with in a sense, and so one can show that P (n, S) = Kn

with careful consideration.

The non-cyclic case is more delicate, and is characterized by the fact that K(ζ2m+1)/K has three

quadratic subextensions K(i),K(ηm+1), and K(iηm+1). Note that if there exists a ∈ P (n, S)\Kn

then a ∈ Kr and a ∈ P (2e, S), so a /∈ K2e . In a sense, the failure of “Grunwald’s theorem” occurs

specifically within the 2-power cyclotomic extensions K.

In fact, the “special case” in the Grunwald–Wang theorem arises from essentially the same

counter-example even when K is any number field. The global extension K(ζ2m+1)/K induces a local

extension of Kp of degree at most 2 for each p /∈ S0. For each p /∈ S0, one of {−1, 2+ηm,−2−ηm} is

a square in Kp by definition of S0, but each have (2 +ηm)n/2 as their n-th power. Thus, (2 +ηm)n/2

is an n-th power in Kp for each p /∈ S0 but is only an n/2-th power globally. Thus, the kernel of

(2.3) is order 2 in K×/ (K×)
n

in the “special case.” It is important to note that the failure only

occurs up to a factor of 2.

When K = Q, the characterization of the non-cyclic case Q(ζm)/Q is precisely when m is

divisible by 8 due to the fact that Q(ζ8) has three quadratic subextensions Q(i),Q(
√

2), and Q(
√
−2)

(related to Example 2.1.3). Here is a corollary to the Grunwald–Wang theorem:

Corollary 2.2.3. Let a ∈ Q and n ∈ N. Then a is an n-th power in Qp for all but finitely many

primes p ∈ Q if and only if either:

1. a is an n-th power in Q, or

2. n is divisible by 8 and a = 2n/2bn for some b ∈ Q.

With Corollary 2.2.3 and the observation that X8 − 16 | Xn − 2n/2 in Q[x] for any integer

n ≥ 8, we see that the counter-examples to “Grunwald’s theorem” over Q all effectively arise from

Example 2.1.3. related to Question 1.1.4.



Chapter 3

Isomorphism Question for Radical

Extensions

If the m-th roots of unity are not in k, the symbol k( m
√
α) has no well-defined meaning

and a careless use of it may lead to mistakes.

–Emil Artin and John Tate [1, Chapter IX, Section 1]

3.1 First Steps

In this chapter, we aim to analyze Question 1.1.4 which was originally posed over Q by Ewan

Delanoy on MathOverFlow in 2014 [4] and is restated here in more natural generality.

Question 3.1.1. Let K be a field of characteristic 0 and let a, b ∈ K× such that Xn−a and Xn− b
are irreducible over K for some n ∈ N. Assume that a root of each generate K-isomorphic degree-n

extensions. Is bj/a necessarily an n-th power in K for some integer j coprime to n?

When K contains a primitive n-th root of unity, the answer is affirmative by Kummer theory

(Proposition 3.2.3). When K does not contain a primitive n-th root of unity, we can sometimes

deduce an affirmative answer to Question 1.1.4 by reducing to the K(ζn)-case when Xn − a and

Xn−b remain irreducible over K(ζn). Indeed, for such cases (admittedly quite special), it is sufficient

to show that whenever z ∈ K× is an n-th power in K(ζn) then z is an n-th power in K. In other

words, it is sufficient that the map

φ : K×/
(
K×

)n −→ K(ζn)×/
(
K(ζn)×

)n
be injective when lifting to K(ζn) preserves irreducibility.

9
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The irreducibility of Xn − a and Xn − b over K(ζn) is automatic whenever φ is injective as a

consequence of the following irreducibility criterion from [8, Chapter VI, Theorem 9.1]:

Theorem 3.1.2. Let K be a field of characteristic 0. For n > 1 and a ∈ K×, Xn − a is irreducible

over K if and only if a is not a p-th power in K for all primes p dividing n and, when n is divisible

by 4, a /∈ −4(K×)4.

Remark 3.1.3. To see that the condition of Theorem 3.1.2 that a /∈ −4(K×)4 is necessary, suppose

that n = 4m and a = −4c4 with m ∈ Z and c ∈ K×. Then Xn − a is reducible over K because

X4m + 4c4 = (X2m + 2cXm + 2c2)(X2m − 2cXm + 2c2).

Let us now see the relevance of Theorem 3.1.2. This says that Xn − a is irreducible over K(ζn)

if and only if a /∈ K(ζn)p for all primes p dividing n and, when n is divisible by 4, a /∈ −4(K(ζn)×)4.

Likewise, via the given irreducibility of Xn−a over K, we know that a /∈ Kp for all primes p dividing

n and, when n is divisible by 4, that a /∈ −4(K×)4. By the injectivity of φ, a /∈ K(ζn)p for each

p dividing n and a /∈ −4(K(ζn)×)4. Therefore, Xn − a is irreducible over K(ζn) and likewise for

Xn − b through the same argument.

Thus, for a given K and n, it is sufficient for φ to be injective for Question 1.1.4 to have an

affirmative answer. The kernel of φ is controlled by Galois cohomology groups, as we shall see in

Section 3.2. In Section 3.3, we determine precisely when φ is injective. When n is a power of an odd

prime p, or when n is a power of 2 with i ∈ K, we will show that the relevant Galois cohomology

groups are trivial. However, injectivity when n is odd depends on certain congruence conditions on

its prime factors and fails in most cases when n is even due to the non-cyclicity of 2-power cyclotomic

extensions, as we shall see in Proposition 3.3.3.

Due to the role of the 2-power cyclotomic extensions, it is more feasible to understand Ques-

tion 1.1.4 when K and Q(ζn) have trivial intersection. In this setting, there are examples for which

Question 1.1.4 has a negative answer due to the existence of distinct quadratic subextensions of

K(α)/K, reminiscent (yet somehow not as an instance) of the Grunwald–Wang theorem. As we

shall sketch in Section 3.4, a direct algebraic argument given by Brian Conrad [3] determines that

when K ∩Q(ζn) = Q, the answer is affirmative precisely away from two explicit classes of counter-

examples that occur when 8 | n (requiring 16 | n for the second class).

Altogether, the steps from Kummer theory, Section 3.3, and Section 3.4 demonstrate the following

result:

Theorem 3.1.4. Let K be a field of characteristic 0 and choose an integer n > 1. Let a, b ∈ K× be

such that Xn−a and Xn− b are irreducible over K and a single root of each generate K-isomorphic

degree-n extensions.

Then bj/a is an n-th power in K for some positive integer j coprime to n if any of the following

hold:
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1. K ∩Q(ζn) = K,

2. Q ( K ∩Q(ζn) ( K and either:

(a) n is odd and for each prime p | n, either µp(K) = 1 or q 6≡ 1 (mod p) for every other

prime q | n,

(b) n is a power of 2 and i ∈ K,

3. K ∩Q(ζn) = Q and either:

(a) 8 - n,

(b) one of −a or −b is not a square in K.

Remark 3.1.5. The arguments used to prove these statements are generally algebraic in nature, so

we may relax the statements to allow K to be a field of characteristic not dividing some integer n.

We restrict our attention to the characteristic 0 case since it is the motivating case of interest and

avoids distracting hypotheses and notation.

Case (1) of Theorem 3.1.4 amounts to Proposition 3.2.3 from Kummer theory. Both parts of

Case (2) follows from applying Proposition 3.3.3 to reduce to Case (1): since Xn − a and Xn − b
remain irreducible over K(ζn) because the map K×/ (K×)

n −→ K(ζn)×/ (K(ζn)×)
n

is injective, we

may apply Proposition 3.2.3. Case (3) is discussed as Theorem 3.4.5 below.

Remark 3.1.6. The conditions in Case (2a) of Theorem 3.1.4 are much wider in scope for odd n than

the restrictive hypothesis “K ∩Q(ζn) = Q” in Case (3). It would be good to find some analogous

condition for n ∈ 8Z allowing K ∩Q(ζn) 6= Q, but this seems rather difficult.

3.2 Kummer Theory Preliminaries

First, let us recall the necessary basic results from Kummer theory. We can study the structure of

n-th powers in a field K with characteristic 0 using the following classic theorem first proven by

Ernst Kummer in 1861 and given in its more general form by Emmy Noether in 1933 (although the

result is named after David Hilbert for reporting it in his Zahlbericht [7, Theorem 90]).

Theorem 3.2.1 (Hilbert’s Theorem 90 [2, Chapter V, Proposition 3]). If L/K is a Galois extension

of fields, then H1(L/K,L×) is trivial.

This yields the following useful result.

Corollary 3.2.2. Fix n ∈ N. Let K be any field of characteristic 0 and let K be a separable closure,

with GK := Gal(K/K). Then K×/ (K×)
n ∼= H1(K/K,µn) naturally in K, where µn denotes the

n-th roots of unity in K.
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Proof. Observe that we have the short exact sequence

1 µn K
×

K
×

1.tn

The induced long exact sequence of cohomology, combined with the fact that H1
(
GK ,K

×)
= 0

due to Theorem 3.2.1, yields the exact sequence

(
K
×)GK

(
K
×)GK

H1
(
K/K,µn

)
0.tn

Since GK fixes precisely K, we have that
(
K
×)GK

= K×. Therefore, we see that K×/ (K×)
n ∼=

H1
(
K/K,µn

)
as desired. The naturality in K is clear by design.

When we allow K to contain the n-th roots of unity, then GK acts trivially on µn and so

K×/ (K×)
n ∼= H1(GK , µn) ∼= Hom(GK , µn) (the cocycles are continuous so the homomorphisms

have open kernel). Any φ ∈ Hom(GK , µn) determines a cyclic Galois extension E/K of degree d

dividing n (via kerφ and the Galois correspondence) along with a specified isomorphism Gal(E/K) ∼=
µd. Any two such isomorphisms are related through the action of (Z/nZ)× � (Z/dZ)×, and

kerφk = kerφ for any k coprime to n, so each cyclic subgroup of K×/ (K×)
n

uniquely determines

a cyclic extension of K. Conversely, a cyclic extension L of K of degree d dividing n admits an

isomorphism from Gal(L/K) onto µd ⊂ µn.

By the hypothesis of Question 1.1.4, Xn − a and Xn − b generate K-isomorphic degree n exten-

sions. Thus, a and b must generate the same subgroup of K×/ (K×)
n

when K contains the n-th

roots of unity, so one obtains:

Proposition 3.2.3. In the setting of Question 1.1.4, bj/a is an n-th power in K for some positive

integer j coprime to n if K contains the n-th roots of unity.

3.3 Lifting to Cyclotomic Extensions

To obtain an affirmative answer to Question 1.1.4 for a specified K, by Proposition 3.2.3 and the

discussion early in Section 3.1 that it suffices that the map

φ : K×/
(
K×

)n −→ K(ζn)×/
(
K(ζn)×

)n
is injective. Such injectivity holds if H1

(
K(ζn)/K, µn

)
is trivial, due to Corollary 3.2.2 applied to

K and K(ζn) and the inflation-restriction sequence for H1. In this section, we consider the case

that K contains only m-th roots of unity where m is a proper divisor of n. First, we show that

H1
(
K(ζn)/K, µn

)
= 1 when m = pe and n = pf for e < f with the additional stipulation that 2 ≤ e
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when p = 2 (i.e. i ∈ K). Then, we will build up to more general m and n under suitable hypotheses

on the prime factors of n and m. Throughout what follows, K is a field of characteristic 0.

Lemma 3.3.1. Fix f ≥ 0 and let pe be the order of µpf (K). Let L := K(ζpf ). Then Hi(L/K, µpf )

is trivial for all i > 0 if either p is odd or e ≥ 2.

Remark 3.3.2. The proof of Lemma 3.3.1 requires e ≥ 2 when p = 2 because Gal(L/K) may not be

cyclic otherwise.

Proof. Observe that whenever p is odd or e ≥ 2, L is a cyclic Galois extension of K of degree

ϕ(pf )/ϕ(pe) (so pf−e when e > 0). Furthermore, when e > 0 (with e ≥ 2 when p = 2), σ : ζpf 7→
ζ1+p

e

pf
is a generator of Gal(L/K). If e = 0 (so p > 2) then let σ : ζpf 7→ ζ`pf with ` ∈ (Z/pfZ)×

be a generator of Gal(L/K). Thus, Hi(L/K, µpf ) is isomorphic to the Tate cohomology group

Ĥ−1(L/K, µpf ) when i > 0 is odd and to Ĥ0(L/K, µpf ) when i > 0 is even. Let ∆(x) := σ(x)/x.

Recall from the definition of Ĥ−1 and Ĥ0 for cyclic groups that

Ĥ−1(L/K, µpf ) =
kerNL/K

∣∣
µ
pf

∆(µpf )

Ĥ0(L/K, µpf ) =
ker ∆|µ

pf

NL/K(µpf )
.

We claim that both kerNL/K
∣∣
µ
pf

and ∆(µpf ) are equal to µpf−e , so Ĥ−1(L/K, µpf ) is trivial.

If e = 0, NL/K(x) ∈ µpf (K) = µpe(K) = {1} for any x ∈ µpf , so kerNL/K
∣∣
µ
pf

= µpf when e = 0.

Also notice that when e = 0, ∆(x) = x`−1 is an automorphism of µpf since ` − 1 ∈ (Z/pfZ)× (as

l 6≡ 1 (mod p) due to ` being a generator of (Z/pfZ)× and hence of (Z/pZ)× when f > 0), so

∆(µpf ) = µpf when e = 0.

Now suppose e > 0. For x ∈ µpf , we have

NL/K(x) =
∏

τ∈Gal(L/K)

τ(x)

=
∏

j∈Z/pf−eZ

σj(x)

=
∏

j∈Z/pf−eZ

x1+jp
e

= xp
f−e+

(pf−e−1)pf

2 . (3.1)

If p is odd then (pf−e−1)pf
2 ≡ 0 (mod pf ), so NL/K(x) = xp

f−e

for x ∈ µpf and hence x ∈
kerNL/K

∣∣
µ
pf

if and only if xp
f−e

= 1 when p is odd. Therefore, kerNL/K
∣∣
µ
pf

= µpf−e when p
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is odd (and e > 0). If p = 2 and e ≥ 2, then

2f−e +
(2f−e − 1)2f

2
= 2f−e(1 + 2f−1 − 2e−1).

Therefore, for any x ∈ µ2f we have NL/K(x) = x2
f−e(1+2f−1−2e−1). Since 1 + 2f−1− 2e−1 is odd (as

e ≥ 2), x ∈ kerNL/K
∣∣
µ
2f

if and only if x2
f−e

= 1. Hence kerNL/K
∣∣
µ
2f

= µ2f−e . We see directly

(when e > 0) that

∆(µpf ) = {σ(x)/x : x ∈ µpf } = {xp
e

: x ∈ µpf } = µpf−e ,

so Ĥ−1(L/K, µpf ) = 1 always.

Similarly, we claim that both ker ∆|µ
pf

and NL/K(µpf ) are equal to µpe , so Ĥ0(L/K, µpf ) is

trivial. Clearly ker ∆|µ
pf

= {x ∈ µpf : σ(x) = x} = µpf (K) = µpe by definition of e. When e = 0,

we saw above that NL/K(x) = 1 for all x ∈ µpf . To see that NL/K(µpf ) = µpe when e > 0, if p = 2

we use (3.1) and that 1 + 2f−1 − 2e−1 is odd, whereas for p > 2 we use that NL/K(x) = xp
f−e

as

seen already (when e > 0). Thus, Ĥ0(L/k, µpf ) = 1.

Now let us consider general n ∈ N and m | n such that n/m has the same odd prime factors

as n. Due to the issue with the cyclicity of 2-power cyclotomic fields, we also require that if n is

divisible by 4 then m is divisible by 4.

Proposition 3.3.3. Choose n > 1. Assume that µn(K) = µm(K) for a proper divisor m | n as

above, so in particular if n is divisible by 4 then i ∈ K. Then

φ : K×/
(
K×

)n −→ K(ζn)×/
(
K(ζn)×

)n
is injective if for each prime p | n, either µp(K) = 1 or q 6≡ 1 (mod p) for all other primes q | n.

Proof. Write n =
∏k
i=1 p

fi
i for distinct primes pi and exponents fi ∈ N. Write m =

∏k
i=1 p

ei
i for

non-negative ei ≤ fi. Let L := K(ζn).

By Corollary 3.2.2, φ is identified with the kernel of the restriction mapH1(K,µn) −→ H1(L, µn),

so kerφ ∼= H1(L/K, µn) by the inflation-restriction exact sequence. Furthermore, µn =
⊕k

i=1 µpfii
,

so

H1(L/K, µn) ∼=
k⊕
i=1

H1(L/K, µ
p
fi
i

).

Hence, φ is injective if and only if H1(L/K, µ
p
fi
i

) is trivial for each i ∈ {1, . . . , k}.
Fix an i ∈ {1, . . . , k}. Then m = peii s and n = pfii r with r, s ∈ N both coprime to p. Let

E := K(ζ
p
fi
i

), a Galois intermediate field of L/K, and let N := Gal(L/E) C G := Gal(L/K). The
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low-degree spectral sequence for group cohomology gives an exact sequence

1 H1
(
E/K,µN

p
fi
i

)
H1
(
L/K, µ

p
fi
i

)
H1
(
L/E, µ

p
fi
i

)G/N
H2
(
E/K,µN

p
fi
i

)
.Inf Res

But by Lemma 3.3.1 for E/K (note that if pi = 2, the condition that i ∈ K when 4 | n forces

ei ≥ 2),

H1
(
E/K,µ

p
fi
i

)
= H2

(
E/K,µ

p
fi
i

)
= 1.

Therefore, the restriction gives an isomorphism

H1
(
L/K, µ

p
fi
i

)
∼= H1

(
L/E, µ

p
fi
i

)G/N
,

and the latter H1 is isomorphic to

Hom
(

Gal(L/E), µ
p
fi
i

)G/N
= Hom

(
Gal(L/E), µ

G/N

p
fi
i

)
= Hom

(
Gal(L/E), µ

p
fi
i

(K)
)
,

and since fi > 0 this is trivial if and only if either µpi(K) = 1 or pi - [L : E] (as holds whenever

pj 6≡ 1 (mod pi) for all j 6= i since L = E(ζs) has E-degree dividing ϕ(s)).

Thus, φ is injective if for each i ∈ {1, . . . , k} either µpi(K) = 1 or pj 6≡ 1 (mod pi) for each

j ∈ {1, . . . , k} with j 6= i.

One of the consequences of Proposition 3.3.3 is that if K has a real embedding and n is odd, then

Question 1.1.4 has an affirmative answer because µp(K) = 1 for all primes p dividing n. Furthermore,

if n is a power of 2 or if n is odd and q 6≡ 1 (mod p) for all distinct prime factors p, q of n, then we

also have an affirmative answer to Question 1.1.4.

The proof of Proposition 3.3.3 informs us that the injectivity of φ fails whenever both µp ⊂ K

and p |
[
K(ζn) : K

(
ζpordp(n)

)]
for any prime p | n. Therefore, a completely different approach to

Question 1.1.4 is needed for this more difficult class of cases. Nevertheless, Proposition 3.3.3 yields

Case (2) of Theorem 3.1.4.

3.4 Disjointness from Cyclotomic Fields

We know that the approach in Section 3.3 reducing to the Kummer theory case fails if 8 | n and

the 2-power cyclotomic extensions are not cyclic over K (this is why Proposition 3.3.3 provides an

affirmative answer to Question 1.1.4 when n is a power of 2 and i ∈ K). At the opposite extreme

of Kummer theory, we now consider the case K ∩Q(ζn) = Q. In this setting, we can extract more

information about the 2-power cyclotomic extensions and their subfields. In an unpublished note by

Conrad [3], this case of Question 1.1.4 was answered completely. Here, we present a brief overview

of the results. For the remainder of this section, assume K ∩Q(ζn) = Q.
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In the most interesting case 8 | n complications to Question 1.1.4 arise from non-cyclic 2-power

cyclotomic field extensions (reminiscent of the Grunwald–Wang theorem). This phenomenon turns

out to be related to whether there is more than one quadratic subextension of K(α)/K where αn = a.

The uniqueness of such a subextension turns out to be a sufficient condition for an affirmative answer

whenever n is even (though determining when such uniqueness holds in reasonable generality is a

rather nontrivial matter, as we shall see).

It is obvious by degree reasons that there is a unique quadratic subextension of the degree-n

extension K(α)/K when ord2(n) = 1, and with a bit more work one can show this uniqueness holds

for any even n when −a is not a square in K. This is optimal:

Lemma 3.4.1. If n is divisible by 4 and −a is a square in K, there are distinct quadratic subexten-

sions of K(α)/K.

Proof. Note that −1 cannot be a square in K since −a is a square in K but a is not (as n is even

and Xn− a is irreducible) Write −a = h2 with h ∈ K×. Since Xn− a = (Xn/4)4 + h2 is irreducible

over K, neither 2h nor −2h can be squares in K by Theorem 3.1.2. Since (αn/4)4 = −h2, we see

that (αn/4)2 = ±ih. Since ∓i = 2/(1± i)2, we have for some pair of signs that

αn/4 = ±
√

2h

1± i
,

and hence K(i,
√

2h) = K(αn/4), a quartic extension of K. Since neither −1 nor 2h are squares

in K, this gives rise to quadratic subextensions K(i)/K and K(
√

2h)/K. Since K(i,
√

2h)/K is

quartic, this forces K(i)/K and K(
√

2h)/K to be distinct.

Remark 3.4.2. The reasoning in [3] for why the presence of distinct quadratic subextensions of

K(α)/K is an obstruction to an affirmative answer to Question 1.1.4 is reminiscent of how the

existence of distinct quadratic subextensions of K(ζn)/K is an obstruction to an affirmative answer

in the Grunwald–Wang theorem (Theorem 2.2.2) when K(ζ2e)/K is non-cyclic, with 2e the 2-part

of n (and 8 | n).

The situation is sometimes salvageable when both −a and −b are squares in K, by careful group-

theoretic study of the subextensions of K(α)/K and K(β)/K via considerations of their Galois

closures. However, Conrad’s analysis reveals that there are two classes of examples with negative

answers to Question 1.1.4.

Example 3.4.3. Suppose n is divisible by 8 (so−1 and±2 are not squares inK, sinceK∩Q(ζ8) = Q

and Q(ζ8) ⊃ Q(i),Q(
√

2),Q(
√
−2)). Let h ∈ K× be such that h is not a p-th power in K for any

odd prime p dividing n and assume that all of ±h and ±2h are not squares in K. Let g := 2n/4h

(so ±g and ±2g are not squares in K either). Define a := −h2 and b := −g2 = 2n/2a.
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By Theorem 3.1.2, Xn − a and Xn − b are irreducible over K. Note that αn/2 is a square root

of −h2 = αn, so i ∈ K(α). Letting β = (1 + i)α, we have that βn = 2n/2αn = b, so K(α) = K(β).

One can show that bj/a is not an n-th power in K for any j coprime to n [3, Example 2.3].

An example of this situation with K = Q is given by X8 + h2 and X8 + 16h2 for h any odd

squarefree integer.

Example 3.4.4. Suppose n is divisible by 16. Let h ∈ K× such that h is not a p-th power in K

for any odd prime p dividing n. Let g := 2n/8h. Define a := −h4 and b := −g4 = 2n/2a and let

e = ord2(n) ≥ 4.

If both ±h are not 2e−3-th powers in K, then both ±h are at most 2e−4-th powers in K; let f

and f ′ be the maximal integers such that h ∈ K2f and h ∈ K2f
′

. Then h = s2
f

and −h = (s′)2
f′

for non-squares s, s′ ∈ K×. If f > 0 then h = (−s)2f , so −s is not a square in K by maximality of

f . If f ′ > 0, then h = −(s′)2
f′

with ±s′ both non-squares in K by the same argument. If f = 0

and f ′ = 0, then −s = s′ is not a square in K. Therefore, h = ±s2f for some sign, some s ∈ K×,

and some integer 0 ≤ f ≤ e− 4 such that ±s are both non-squares in K. In this case, we make the

additional assumption that neither of ±2s are squares in K.

Since ±2 are not squares in K, h4 and g4 cannot be written as h4 = 4k4 or g4 = 4`4 for k, ` ∈ K×.

Thus, by Theorem 3.1.2, Xn − a and Xn − b are irreducible over K. Note that αn/2 = ±ih2, so

i ∈ K(α). Letting β = (1 + i)α, we have that βn = 2n/2αn = b and K(α) = K(β). One can show

that bj/a is not an n-th power in K for any j coprime to n [3, Example 2.4].

An example of this situation with K = Q is given by X16 + h4 and X16 + 256h4 for h any odd

squarefree integer.

Somewhat surprisingly, given the intricate nature of the preceding two constructions, they are

the only cases that provide negative answers to Question 1.1.4 when K ∩Q(ζn) = Q:

Theorem 3.4.5. In the setting of Question 1.1.4, if K ∩Q(ζn) = Q then bj/a is an nth power for

some positive integer j coprime to n if and only if a and b do not arise from the constructions in

Example 3.4.3 and Example 3.4.4. In particular, the answer is affirmative if 8 - n or if one of −a
or −b is not a square in K.

This is proved by a rather long induction on ord2(n), the difficulty lying in navigating around

the known counter-examples. For instance, if ord2(n) ≥ 4 and a = −h2 with one of ±h a square in

K (so avoiding Example 3.4.3), the subextensions of K(α)/K with degree divisible by 8 turn out to

be precisely K(αm) for m | n such that 8 | n/m. Thus, such subextensions are uniquely determined

by their degree over K and that enables one to apply an inductive process using n/2 and K(α2)/K

(taking much care to avoid Example 3.4.4!).
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