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by R. M. Dudley
For0 < A < 4ooand k=0,1,..., let P(k,\) := Z?:o e N /j! and let x := x(k,\) :=

(k+ 3 —=X)/VA Foru € R let ¢(u) := (2m)" 2 exp(—u?/2) and ®(z) := [*_ ¢(u)du.
The following is essentially due to T. T. Cheng (1949, Theorem I):

Theorem 1 (T. T. Cheng). We have for any 0 < A < oo and k =0,1,2, ... that

1 — a2

6v/A
where the remainder R = R(k, \) satisfies for all A > 0

(1) P(k,)\) = ®(z)+

o(z)+ R

(2) IRl < 6x = cl A e e\ 2
with ¢; = 0.0752, co = 0.01 and c3 = 0.122.

Remarks. Cheng (1949) gave the statement with ¢; = 0.076, co = 0.043 and ¢3 = 0.13.
His proof as it stands gives the slightly smaller values of ¢; and c3 stated in Theorem
1. An improvement in the proof here will give the smaller ¢;. Johnson, Kotz and Kemp
(1992, §4.5, (4.40)) give further terms in the “formal” Edgeworth expansion, implying
that as A — 400,

Rk, \) = o(x) (_”“" +72i _3:”> O3,

Now, |2° — 72 4+ 3z|¢(x) is maximized at * = £1.5352. It follows that necessarily
in Theorem 1, ¢; > 0.02079. So it’s possible that the given ¢; = 0.0752 could be

substantially improved.

Proof. The proof will be given in detail, following Cheng’s proof but filling in further
steps.
The Poisson characteristic function is, for all ¢ € R,

e Z()\eit)j/j! = exp(\(e" —1)).
j=0
The series is absolutely and uniformly convergent, so for r =0,1,2, ...
(3) / emirteMe =D g — 2me A" /1l

Next, for ¢ not a multiple of 27,
k

Z ot (efi(kJrl)t _)f(e - 1) = (eit/Q _ e*i(kJr%)t)/(ZZ' sin(t/2)).
r=0 1



Also,

Thus by (3)
1 w ' eit/2 _ o—ilk+3)t
P - it 1
(k, 2) or J, P = D))
A i(k+5)t _ p—it/2
—it 1 € )

Foxp A =) gy

Let
2= 2tk N) = st (eit/2 _ o=k /(946in(1/2)).
Then
2rP(k,\) = / ANeost=oR(2)dt
0
T 1
= I+ / eNeost=1 gip ((k + 5) t— Asint) /(sin(t/2)) dt

0

where

4 t/2
Iy = /0 eeost=1) {cos()\ sint) + Z?I?((t;Q)) sin(A sint)} dt.

Claim. I, does not depend on .

To prove the claim let

t
G(\ ) = eMeost=Dgip <§ + Asin t) /sin(t/2)
__—2Xsin?(t/2) : E ; f E i
=e sin | 5 + 2\ sin 5 ) o8 {5 /sin(t/2).

OG(\1)JON = 2e 25D cos(t 4 Asint).

Then

Subclaim. For n = 1,2, ...,

anG()‘at) - A(cost—1) - n—j n 1 1
o 2¢ Z(—l) j cos(jt + Asint).

j=1



Proof of subclaim. For n = 1 the statement holds. If it holds for a given n, then

aTL+1C¥()\’ t) A(cost—1) - n—j n . .
N = 2e Z(—l) (]) [(cost — 1) cos(jt + Asint)

j=1

—(sint) sin(jt + Asin t)}

_ A(cost—1) - _1\n—J n . : . : :
2e Z( 1) (]) [COS((]+1)t+)\smt) cos(jt—i-)\smt)]

Jj=1

= 20 S st s s (1) ()]

m=1

which gives the subclaim by the Pascal’s triangle identity.

Now to continue with the proof of the Claim, G is an entire analytic function of the
variables A and t. (The possible singularities when ¢ is a multiple of 27 are removable.)
Thus, I, is an entire analytic function of A and we can differentiate under the integral
sign. We have by the subclaim for all n > 1

"G\ t) = wifm )
o = Z(—l) ! (]) cos(jt),
A=0 J=1
and foﬂ cos(jt)dt = 0 for all j =1,2,.... Thus by analyticity dIy/d\ = 0 and the claim
follows. 0J
So I, = I,(0) = [, 1dt = m. It follows that
1

(4) P(k,\) — 5 = I = I(\k)

(5) I = % /07r eNeost=D gip ((k: + %) t— )\sint> /(sin(t/2)) dt.

1 [ 2
(6) I = Py exp(—)\t2/2)¥ sin[V Azt + A(t — sint)]dt.
T™Jo
By definition of , v Az + A =k + (1/2). Let
Jo = 5= [ exp(—Mt?/2)(2/t)dt,
(7) g L [T enCsn?(t/2) | 2em(-AR/2) g
1 27 JO sin(t/2) L )

where J; > 0 because 0 < sinu < u for 0 < u < 7/2. Then for the same reason and
because |sinu| < 1 for all u,

(8) I —6L|<Jo+ Ji.
Now J; = Js + J3 where

Jy = % /O " exp(—2Xsin2(t/2)) cot(t/2) — exp(—\2/2)(2/4) dt



and
r[7 , 1 — cos(t/2)
Jy = — —2sin?(t/2)) ———— "% dt.
3 277 | exp(=2Asin(/2)— o)
It’s easily shown that cotu = = — ¥ + O(u®) as v — 0, from which |J5| < co. In J; we

can thus replace [ by lims g f5 We have setting v := 2sin(¢/2) that

/Wexp(—Z)\siHQ(t/Q))cot(t/?)dt = 2/ exp(—Av?/2)dv/v.
5 2

sin(6/2)

Now
5

0< 2/2(S exp(—\v?/2)dv/v < 2/ dv/v < 2[In(d) — In(2sin(6/2))] — 0

sin(6/2) 2sin(6/2)
as 6 — 0. Thus J, = — [ exp(—Av?/2)dv/v < 0, so
(9) Ji < Js.
We have
1 o0
(10) Jo < o t3 exp(—2Mt? /72 dt

because exp(—At?/2)(2/t) < £t exp(—2At?/7?) for all t > 7. Next,
(11)

I, < %/O“ exp(—Si2r/l\(ji/r;2)(t/2)) {sinQ(t/Q)Qcos(t/Q) N (1 cos (%)) Gin? (%) } gt

beause 1 — cosu < (sin®u) (1 — <) for 0 < u < 7/2, as follows from 0 < v(1 — v)?,
0 <v=-cosu < 1. It will be shown that

™

3 Co\s2/.2
T t° exp(—2At°/77)dt

For this, the first summand on the right in (11), via the subsitution v = 2sin(¢/2), gives
the first term on the right in (12). For the other terms it will be shown for u := /2 that

(1 — cosu)(sinu) exp(—2A(sin® u — 4u?/7%) < u®/2

(12) J3 < —/ vexp(—Av?/2)dv + ——

for 0 < w < /2. We have sinu > 2u/m on this range by concavity, 0 < sinu < u, and
1 — cosu < u?/2 by derivatives, so indeed (12) holds.
By (8), (10), (9), and (12) we get

|I — I 3= Jo tPexp(—2Xt?/n?)dt + LfOQUeXp —\v?/2)dv
(13) = 64_7rf0 wexp(—2Au/7? )du—i—&T/\ o —dexp(— /\UQ/Q)dU

— (B) B ) < gt < YR
For I itself we have by (6)
L = L [Ft T exp(—At?/2) sin(v/\xt) cos(A(t — sint))dt
+1 [t exp(—t2/2) cos(vAxt) sin(A(t — sint))dt



= Ji+ L [t exp(—\2/2) sin(v at)dt

14 50
(14) + Js + L [Tt exp(—At?/2) cos(VAxt) At? dt /6

where

Jy = — /OO t exp(—At?/2) sin(VAxt) [cos(A(t — sint)) — 1]dt,

1 o0
Joo= L / 1 exp(—M2/2) cos(vAwt)[sin(A(t — sint)) — M /6]dt.
0
Since |sinu| < 1 for all real u and |1 — cosv| < v?/2 for all real v by derivatives,
1 o0
g < L / £ exp(—M2/2) A2t — sint)2dt /2,
T Jo

and since 0 < t—sint < #3/6 for all t > 0 by derivatives, a substitution using the gamma
function gives

A2 & 1
1 < 1o —“\2/)dt = —.
(15) i< g | oAt = ooy

For J; we have sint < ¢ for all ¢ > 0, which applied twice gives
sin(A(t —sint)) — At?/6 < \(t —sint — t*/6) < 0.

We have moreover sint — t + t3/6 < /120 for all ¢ > 0 by derivatives. It follows by
another substitution and gamma function that

A ~ 2
A “A2/2
| J5] < T20n i t* exp(—At*/2)dt
(16) :ﬁ i u?'? exp(—Mu/2)du
2 1
= )\‘3/2\/j-— < 0.01/A%2,
m &80 /
By (14) we have
(17) L =Js+ s+ U + U,
where
1 o0
(18) v, = L / exp(—M2/2) sin(v/ et )dt /1,
T™Jo

(19) Uy := 6%/Omexp(—At2/2)t2Cos(\/th)dt.



Setting u := VAt gives

1 oo
Uy = —/ exp(—u?/2) sin(uz)du/u
T Jo
1 > . .
- L /_ exp(—ut /26 — e i
1 o0 x )
= - _ooexp(—uz/Q)/_ e dt du

T A (u—it)? ¢
_ E/_x/_ooexp<_T_5 du dt

1 v 1 v 1
= —V 27r/ e PRt = —/ e 12dt = P(z) — 5,
47T —z 27‘(’ 0 2
and by an integration by parts we get
1 2
U, = / e~/ ?[cos(ux) — rusin(uz du,
s = o [ feos(ur) - ausin(ur)
where
o0 1 oo
/ e/ cos(ux)du = 5/ exp(—(u?/2) —iuz)du = +/7/2exp(—1?/2).
0 —00
Another integration by parts for the other term in U, gives

1 — 22
U, =
6V 2T\

We see that U; + Uy + % gives the first two terms of the expansion in the theorem. Using
I+ 1= P(k,\) from (4), we get by (8), (13), (17), (15) and (16),

exp(—22/2).

1 1\ 1 0.01 0.122
Rk N < [ I -1 J 5 < |\ s+ —~+—=5+———
RN < 1= 01+ < (5+5) 25+ S+ S
which finishes the proof of the theorem. 0]
REFERENCES

Cheng, Tseng Tung (1949). The normal approximation to the Poisson distribution
and a proof of a conjecture of Ramanujan. Bull. Amer. Math. Soc. 55, 396-401.

Johnson, N. L., Kotz, S., and Kemp, A. W. (1992). Univariate Discrete Distributions,
2d ed. Wiley, New York.



