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Some notes relating to J. Beck’s paper
“Lower bounds on the approximation of the multivariate empirical process”

1 Introduction

This is not a self-contained exposition. It attempts to fill in details of the proof of Theorem 1
of J. Beck (1985), on slow convergence of the empirical process, for the uniform distribution on
the unit cube, to its limiting Gaussian process uniformly over balls in R

d as d becomes large.
This was the topic of the Stochastic Seminar at MIT and University of Connecticut, Storrs, in
the fall of 2006. Beside myself, Richard Nickl was a main contributor to the seminar. Dmitry
Panchenko and Wen Dong also made helpful suggestions. This exposition will only be readable
while also reading Beck’s paper.

The theorem is as follows. Let d ≥ 2 and let P be the uniform distribution on the unit
cube Id in R

d. For 0 < η ≤ 1 let B(d, η) be the collection of all sets B ∩ Id where B is a ball in
R

d of radius r with η/2 ≤ r ≤ η. Let GP be the Gaussian limit process of empirical processes
νn :=

√
n(Pn − P ).

Theorem 1 (Beck, 1985) Let X1, ..., Xn be i.i.d. (P ), and take the corresponding Pn and
νn. Then for any choice of GP , and a constant c1 = c1(d) depending only on d, the probability
that for all η with n−1/d ≤ η ≤ 1,

sup
A∈B(d,η)

√
n

|(νn − GP )(A)| > c1(d)(nηd)1/2−1/(2d)

is larger than 1 − e−n.

Here’s a try at some overview, which may be clear only after going through some of the rest
of this writeup and rereading the paper (Beck, 1985). In Beck’s paper, Lemma 3 is a corollary
of Sauer’s Lemma, showing that the class of all balls in d-space is not too large in a Vapnik-
Červonenkis sense. Lemmas 4 and 5 give regularity properties of related Gaussian processes.
The hypothesis of Lemma 1 is that some signed measure (which in the application will be
obtained from a discretization of a Gaussian process) has some such regularity. The conclusion
of Theorem 1 is that the empirical process

√
n(Pn −P ) for Pn obtained from Xj i.i.d. uniform

on the unit cube can be approximated uniformly over balls by its limiting Gaussian process
GP only within O(n−1/(2d)), except with small probability. Lemma 1 shows that, with high
probability (pertaining only to the Gaussian process), there is no way to choose Pn, however
“uniformly” one might distribute the Xj over the cube, to get any better approximation. This
illustrates the “irregularity of distribution” situation that Richard Nickl spoke about, cf. Beck
and Chen (1987).

In Beck’s paper, for each dimension d = 1, 2, ..., where only d ≥ 2 is of interest, we have
a fixed probability measure P on the sample space R

d, namely the uniform probability on the
unit cube Id.

Beck uses a “Σ” notation for the union of sets. This seems harmless when the sets are
disjoint cubes, although now unusual.

What Beck calls the Wiener ‘measure’ W is what we call the isonormal process WP indexed
by measurable sets, namely a Gaussian process with mean 0 and covariance EWP (A)WP (B) =
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P (A ∩ B). What Beck calls the Brownian ‘measure’ is what we call the GP process, also a
Gaussian process with mean 0 indexed by measurable subsets of R

d, and with covariance
EGP (A)GP (B) = P (A ∩ B) − P (A)P (B). It’s unnecessary to use ad hoc methods, such as
“inclusion-exclusion” to define such processes on cubes, then to approximate other sets from
inside and outside by unions of small cubes, as Beck does, just to define these processes. Still,
the degree of approximation via unions of cubes seems to be crucial to the paper.

2 About the proof of Theorem 1

The definitions of C and l on pp. 292-293 of the paper are not very clear. The notation C seems
unfortunate because C is not a constant, it depends on n and d. Actually, 5 to 4 lines from
below on p. 296 Beck says C must be “sufficiently large,” depending on d, let’s say C ≥ M(d)
for an M(d) to be defined when we reach the point it’s needed. (A first restriction is that
M(d) ≥ 4 for all d.) The other defining property of C is that Cn = 2ld for some integer l ≥ 1.
So let’s define in terms of M(d)

l := l(d, n) :=

⌈

log2(M(d)n)

d

⌉

(1)

and then set

C := C(d, n) := 2dl(d,n)/n. (2)

Here the argument d is given first because it influences the order of magnitude of C, whereas n
comes in through the requirement that l be an integer. With these definitions, one can check
that we do have 2ld = Cn and C ≥ M(d).

These talks are concerned only with Theorem 1 of Beck’s paper, pertaining to balls in R
d.

Lemmas 1, 3, 4, and 5 of his paper all are part of the proof of Theorem 1. Thus, Beck’s
Theorem 2 and Lemma 2 won’t be considered.

3 Definitions for Lemma 1

Since c∗(d) occurs in the hypothesis (d, n, C, ∗) of Lemma 1 (first display on p. 293 of Beck), it
seems logically preferable to define c∗(d) before stating Lemma 1. And, since c∗(d) is defined
in terms of c21(d), we also need to define c21(d) first.

The constant c21(d) is defined by Beck’s last equation in his (30) by

c21(d) = Cnvd(ρ0/2)d = vd2
ld−(l+2)d = vd/4d,

where vd is the volume of the unit ball in d dimensions, vd = πd/2/Γ
(

d
2 + 1

)

. So c21(d) is a

well-defined, explicit constant depending only on d. Now, let’s define

c∗(d) :=

(

2d+3
√

2√
2 − 1

+ 4d+1

)

· 1

c21(d)
. (3)

This also is explicit and depends only on d. The definition of c∗(d) above differs from Beck’s
given just after his (31) by the insertion of 4d+1, but it will be shown to give (31) as stated, in
subsection 7.3.
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Sometimes Beck refers to C as if it depends only on d, which is not correct, cf. (1) and
(2). Thus to clarify the statement of Lemma 1, I propose replacing “property (d, n, C, ∗)” by
“property (d, n, M(d), ∗)” where l is defined by (1) in terms of d, M(d), and n. This hypothesis
makes sense for any M(d) > 4. The particular M(d) to be used in proving the theorem will
be defined after finishing with Lemmas 3, 4, and 5. The last line of Lemma 1 I propose should
say that c5 = c5(d, M(d)) depends only on d and M(d), to avoid the relatively harmless, but
annoying, dependence on n. Once M(d) is specified, c5 will then actually depend only on d.

4 About Beck’s lemmas 3, 4, and 5

Let’s recall some basic definitions and facts about VC classes of sets (whereas Beck seems to
treat balls and half-spaces in R

d as special classes).
Let C be a class of subsets of a set X and F a finite subset of X. For any set T let |T | be

the number of elements of T if T is finite, or +∞ otherwise. Let C ⊓ F := {A ∩ F : A ∈ C}.
Let ∆C(F ) := |C ⊓ F |. For N = 1, 2, ..., let mC(N) := max{∆C(F ) : |F | = N} ≤ 2N . Let
S(C) := sup{N : mC(N) = 2N} Then C is called a VC (Vapnik-Chervonenkis) class if and
only if S(C) < +∞.

For nonnegative integers N and r let
( N
≤r

)

:=
∑r

j=0

(N
j

)

, which equals 2N if r ≥ N . It’s a
known fact that for any C and N ,

mC(N) ≤
(

N

≤ S(C)

)

,

called Sauer’s lemma, e.g. UCLT = Dudley (1999), Theorem 4.1.2. The statement has content
only for S(C) < N < ∞. The lemma is sharp, e.g. when C is the class of all sets having S or
fewer members, so that S(C) = S. Based on Sauer’s lemma (which they seem to have redis-
covered independently after earlier giving a less sharp inequality), Vapnik and Chervonenkis
showed that: if S = S(C), then

mC(N) ≤ 1.5NS/S!, N ≥ S + 2

(UCLT, Proposition 4.1.5). If N = S + 1, it’s easy to check that mC(N) ≤ 2N ≤ 2NS . If
N ≤ S then the same holds (with the factor of 2 being needed only for N = 1), so we get in
all cases

mC(N) ≤ 2NS(C). (4)

For the class B(d) of all balls in R
d we have S(B(d)) = d + 1 for all d. I actually published

a separate paper proving this (Dudley, 1979). It soon turned out to be a special case of a
more general fact. Consider the (d + 1)-dimensional vector space Ad of all affine functions
x = (x1, ..., xd) 7→ a1x1 + · · · + adxd + c for constants aj and c. Take the fixed function
f(x) := −‖x‖2 = −x2

1 − · · · − x2
d. Let H1 be the set of all functions f + h for h ∈ A(d).

Consider the class C of all positivity sets {x : g(x) > 0} for g ∈ H1. Then S(C) = d + 1 by
a general fact about classes formed in such a way, depending only on the fact that we have
a class of functions A(d) forming a real vector space of a given dimension, and on f only in
that it’s a fixed function. It was first proved by Wenocur and Dudley (1981) and is given in
UCLT, Theorem 4.2.1. Special cases were known earlier, e.g. for the class of half-spaces in R

d,
Radon (1921, p. 114). The class of sets we get in the present case is exactly B(d) (including
the degenerate case of the empty set when the constant c is too small).
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Now, looking at Beck’s Lemma 3, 2kd = N is the number of points in the kth integer
lattice in Id he considers, and d + 1 = S(B(d)), so we get the lemma from the above general
considerations (basically Sauer’s lemma), and with an improved constant 2 rather than 4d in
front.

Given Lemma 3, the next step is Lemma 4. Just before it, m is defined as the least integer
(≥ 1, as we need but Beck doesn’t mention) with

2m/m ≥ c0(d)n2 (5)

where c0(d) is a constant depending on d to be defined later. One can see from this that as
n → ∞, m is asymptotic to 2 log2 n.

To clarify Beck’s statement of Lemma 4, I’d suggest instead of “0 and l” in the first line it
should say “0 or l.”

In my old copy of Beck’s paper, I missed the bottom line of p. 294. It should say (that
the probability of the given event) “is greater than 1 − e−n−2”. (Although the issue of ZW
containing the paper was missing when I last looked for it in the MIT library, I have a copy of
an original MS of the paper Beck had sent me.)

5 Counting cubes

Dmitry Panchenko and Wen Dong suggested the main ideas for this section. For t = 0, 1, ...,
recall Beck’s notation for cubes of side 2−t included in the unit cube Id, for each i = (i1, ..., id)
where each ij is a nonnegative integer less than 2t,

I(t; i) :=

{

(x1, ..., xd) ∈ R
d :

ij
2t

≤ xj <
ij + 1

2t
, j = 1, . . . , d

}

. (6)

Each such cube will be called a t-cube. There are exactly 2td of them, and they are disjoint.
Each t-cube is a disjoint union of 2d (t + 1)-cubes. The cube I(t, i) contains a vertex

p(t; i) := (i1, ..., id)/2t.

In fact this is the only one of its vertices that it contains. The one 0-cube I(0; (0, 0, . . . , 0))
equals the unit cube Id except for the d faces xj = 1 which have 0 volume.

We are considering the class B(d) of all balls B(x, R) := {y : ‖x− y‖ < R} which can have
any center x ∈ R

d and any radius R > 0. For any given d, ball G = B(x, R), and t = 0, 1, ..., let
N7(G, t) be the number of (t + 1)-cubes included in G but not included in any t-cube included
in G (the left side of Beck’s inequality (7) in the special case k = 0). Let N6(G, t) be the
number of t-cubes I(t, j) such that the vertex p(t, j) ∈ G but the cube I(t, j) is not included
in G (the left side of Beck’s inequality (6) in the special case k = 0 and where t replaces m).

Claim. For each d = 2, 3, ... there is a constant C67(d) depending only on d such that

max

(

sup
G∈B(d)

N6(G, t), sup
G∈B(d)

N7(G, t)

)

≤ C67(d)2t(d−1)

for all t = 0, 1, . . ..
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Proof of claim: We will take C67(d) ≥ 2d − 1. This condition is exactly what is needed for
the claim to be valid for t = 0 (specifically for N7), so assume from now on that t ≥ 1.

Let λd be d-dimensional Lebesgue measure. This is what will be meant by volume in R
d.

Recall that the volume of the unit ball in R
d is vd := πd/2/Γ(1+ d

2). (This fits with the familiar
values for d = 1, 2, 3, and can be proved by induction from d to d + 2 for each d ≥ 2.) Thus
the volume of any ball B(x, R) is vdR

d. The total (d − 1)-dimensional area of the unit sphere
in R

d is Ad = (d/dR)vdR
d|R=1 = dvd. This also fits with familiar values for d = 2 and 3.

A t-cube has diameter δd,t :=
√

d/2t and has a center, such that each point has distance
from the center at most

√
d/2t+1.

Let G = B(x, R). For both suprema we want to bound, the cubes are or are included in
t-cubes that intersect G but are not entirely included in it. Thus these t-cubes are within δd,t

of the boundary sphere {y : ‖y − x‖ = R} and so are included in B(x, R + δd,t) and disjoint
from B(x, R − δd,t) (where the latter is empty if R ≤ δd,t). Also, all the cubes are subsets of
the unit cube Id.

Let’s find upper bounds for the d-dimensional volume V of the region

Id ∩ B(x, R + δd,t) \ B(x, R − δd,t).

If R ≤ δd,t then we use simply

V ≤ λd(B(x, R + δd,t)) ≤ vd(2δd,t)
d = 2ddd/2vd/2td. (7)

If δd,t < R ≤ 3
2

√
d then we ignore the Id and use t ≥ 1, giving the bound

V ≤ vd((R+δd,t)
d−(R−δd,t)

d) = dvd

∫ R+δd,t

R−δd,t

rd−1dr ≤ dvd(R+δd,t)
d−1 ·2δd,t ≤ dvd(2

√
d)d/2t.

(8)
The numbers N6 and N7 we need to bound are both 0 unless the boundary sphere of the ball
intersects Id, i.e. for some q ∈ Id, ‖x − q‖ = R, so assume that to hold. If R > 3

2

√
d then

the center x must be outside Id. The volume V will be bounded by integrating in spherical
coordinates with center x. Consider for G = B(x, R) the line L through x and the center
p := p(1, (1, 1, . . . , 1)) = (1/2, 1/2, . . . , 1/2) of Id. The distance ‖p − q‖ ≤

√
d/2 and so by the

triangle inequality ‖p − x‖ ≥ R − ‖p − q‖ ≥ R −
√

d/2.
For any q′ ∈ Id we also have ‖p− q′‖ ≤

√
d/2. Let M be the line through x and q′ and let

θ be the maximum value of the acute angle between L and M , namely

θ := θd,R = sin−1

( √
d/2

R −
√

d/2

)

. (9)

Thus θ ≤ sin−1(1/2) = π/6. In bounding V by an integral in spherical coordinates we have an
angular factor A which is the (d − 1)-dimensional area of a cap on the unit sphere.

Here is an idea of Dmitry Panchenko’s that could simplify some of the following but I didn’t
have time to incorporate it. Instead of only the unit sphere, let’s find an upper bound for the
(d − 1)-dimensional area B of the part C of any sphere included in the unit cube. Consider
radii from the center of the sphere passing through C and continuing until they encounter the
surface S of the unit cube. This gives a continuous one-to-one map of C onto a subset E of
S. Let αd−1 denote (d − 1)-dimensional area. Then B = αd−1(C) ≤ αd−1(E) ≤ αd−1(S) = 2d
because a tangent hyperplane to C is perpendicular to the radius and so areas in E, if anything,
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are larger; the last equation holds since Id has 2d faces, each of unit area. (Any notation in
this paragraph is unrelated to notation in the rest of the draft.)

Returning to the older argument, it will be shown that the “area” or (d − 1)-dimensional
volume of a “ball” in the geodesic distance on the unit sphere is bounded above by that of
a Euclidean (d − 1)-dimensional ball of the same radius, which is not at all surprising since
the sphere is positively curved. In fact it must be well known, but having happened to write
out the following proof, I had no time to search the literature for a reference. For small radii,
the bound is asymptotically sharp, which is again not surprising since locally the sphere is
approximately flat.)

In dimension d = 2, the “area” becomes an arc length on the unit circle, bounded above
by

A ≤ 2θ = v1θ. (10)

(Arcs of circles, spanning an angle less than π, with arc length distance, are actually isometric
to Euclidean intervals, so there is no curvature effect here.) If d ≥ 3, then

A ≤ Ad−1

∫ 1

cos θ
(1 − x2)(d−3)/2dx.

(The integrand equals 1 for d = 3, in accordance with the well-known fact that the area of a
zone on a sphere in R

3 is proportional to its height, and for θ = π/2 we get A2 = 2π, the area
of a hemisphere as desired.) With a change of variables y = 1 − x we get for d ≥ 3

A ≤ Ad−1

∫ 1−cos θ

0
(2y − y2)(d−3)/2dy.

We have 1 − cos φ ≤ φ2/2 for all real φ. For d = 3 we get an upper bound

A ≤ πθ2 = v2θ
2. (11)

For d ≥ 4 we have

A ≤ Ad−1

∫ 1−cos θ

0
(2y)(d−3)/2dy = Ad−12

(d−3)/2 2

d − 1
(1 − cos θ)(d−1)/2

and so

A ≤ Ad−1θ
d−1

d − 1
= vd−1θ

d−1. (12)

We have sin−1 x ≤ 2x for x ≤ π/4 and so from (9),

θ ≤
√

d

R −
√

d/2
. (13)

By the bounds (10), (11) and (12) we get that for each dimension d ≥ 2 and R > 3
2

√
d,

A ≤ vd−1θ
d−1 ≤ vd−1

( √
d

R −
√

d/2

)d−1

. (14)
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We also have a radial one-dimensional factor, which is bounded above by a factor in an in-
termediate term in (8), namely 2δd,t(R + δd,t)

d−1. Multiplying this by the right side of (14)
gives

V ≤ 2δd,tvd−1

(√
d(R + δd,t)

R −
√

d/2

)d−1

≤ 2vd−1d
d/22d−1/2t (15)

since R ≥ 3
2

√
d and t ≥ 1. Taking the maximum of three constants for each dimension, from

(7), (8), and (15) we find that for each dimension d ≥ 2 there is a constant β(d) such that
V ≤ β(d)/2t for all t = 1, 2, . . . and all values of R > 0. Now, the number of t-cubes that can
be included in a region of volume ≤ V is at most 2tdV ≤ β(d)2t(d−1), whereas the number of
(t + 1)-cubes is at most 2(t+1)dV ≤ 2dβ(d)2t(d−1). We thus obtain

sup
G∈B(d)

N6(G, t) ≤ 2tdV ≤ β(d)2t(d−1)

and

sup
G∈B(d)

N7(G, t)) ≤ 2dβ(d)2t(d−1),

giving the claim with C67(d) = 2dβ(d). ¤

In Beck’s bound (6) it will be helpful if m ≥ l, in fact the inequality could fail if m < l.
So let’s check that m ≥ l for n large enough. From (1) we have since d ≥ 2 that as n → ∞
l ∼ log2 n/d ≤ log2 n/2. From (5), recalling m ≥ 1 we have m ∼ 2 log2 n as n → ∞. So m > l
for n large enough, say for n ≥ n1(d) where n1(d) depends on M(d) and c0(d), neither of which
has been chosen yet.

Suppose that n ≥ n1(d). From the claim we obtain instead of Beck’s bounds (6) and (7)
of his paper, first for k = 0, some weaker bounds with some constants depending only on d in
place of 2d in each. With respect to t, the factor 2t(d−1) is the same. Moreover, decomposing a
k-cube into m-cubes for m ≥ k is the same as decomposing the 0-cube (unit cube) into (m−k)-
cubes, rescaling by a factor of 2k, which preserves the family of balls. Likewise, decomposing
a k-cube into t-cubes and then (t + 1)-cubes for t ≥ k is the same as decomposing the unit
cube into (t− k)-cubes, then (t + 1− k)-cubes. So we obtain the bounds of the form of Beck’s
(6) and (7), again with other constants in place of 2d in each, but for general k (k = l, in the
statement of Beck’s Lemma 4) in place of k = 0.

The Claim thus gives an inequality in place of Beck’s (6),

(6′)
cardJ(G, m, k, i) ≤ C67(d)2(m−k)(d−1), (16)

and an inequality in place of Beck’s (7),

(7′)
card{j : I(t + 1; j) ⊂ Gt+1(k; i) \ Gt(k; i)} ≤ C67(d)2(t+1−k)(d−1). (17)

Each of the cubes I(m; j) counted in (16) has volume 1/2md, and so the volume of their union

V for a fixed G is at most C67(d)2−m−k(d−1). So the standard deviation σ of B(V ) satisfies

σ =
√

λd(V )(1 − λd(V )) ≤
√

λd(V ) ≤
√

C67(d)2−[m+k(d−1)]/2.
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We thus get for a given V and any q > 0

Pr(|B(V )| ≥ q) ≤ 2
[

1 − Φ
(

qC67(d)−1/22[m+k(d−1)]/2
)]

.

Then by Beck’s Lemma 3 (as slightly improved, replacing 4d by 2) we get a bound for the
probability that the above event occurs for any V of the given form

Pr(∃V : |B(V )| ≥ q) ≤ 2 · 2(m−k)d(d+1)
[

1 − Φ
(

qC67(d)−1/22[m+k(d−1)]/2
)]

. (18)

Likewise, each (t + 1)-cube counted in (17) for a given G has volume 1/2t(d+1), so a union
Ut of such cubes has volume at most C67(d)2−k(d−1)−t−1, and the standard deviation τt of
B(Ut) satisfies τt ≤

√

C67(d)2−[k(d−1)+t+1]/2. We thus get, by (improved) Lemma 3 again, the
probability that |B(Ut)| ≥ qt for any such Ut and qt > 0 bounded above by

Pr{∃Ut : |B(Ut)| ≥ qt} ≤ 2(t+1−k)d(d+1)+2
(

1 − Φ
(

qt(C67(d))−1/22[t+1+k(d−1)]/2
))

. (19)

Thus we get, in place of Beck’s (8), an inequality, say (8′), with initial factors 4d replaced by
2 and 2−d/2 inside Φ’s replaced by C67(d)−1/2.

For c′8(d) not yet chosen, which is not the same as Beck’s c8(d) but plays essentially the
same role, set

q′ := c′8(d)
√

nm2−(m+k(d−1))/2

and for t = m, m + 1, ...,

q′t := c′8(d)
√

n(t + 1)2−(t+1+k(d−1))/2.

Then

q′ +
∞
∑

t=m

q′t = c′8(d)
√

n2−k(d−1)
∞
∑

t=m

√
t

2t/2

where the sum equals
√

m2−m/2S with, for m ≥ 2,

S =
∞
∑

r=0

√

1 +
r

m
2−r/2 ≤

∞
∑

r=0

(

1 +
1

m

)r/2

2−r/2 ≤ 1/(1 −
√

3/4) < 7.5.

We can now define c7(d), in the statement of Beck’s Lemma 4, as 7.5c′8(d), and the two will fit
together as they should. We still need to choose c′8(d).

Using 1 − Φ(x) ≤ exp(−x2/2) for x ≥ 0, we have

1 − Φ
(

q′C67(d)−1/22[m+k(d−1)]/2
)

= 1 − Φ(κ(d)
√

nm) ≤ exp(−κ(d)2mn/2)

where κ(d) = c′8(d)/
√

C67(d). To justify the first term on the last line of Beck’s p. 295, a
calculation shows it suffices if κ(d) ≥ d + 1 if n ≥ 2 and m ≥ 2, which will be true for n large
enough by (5).

The sum at the bottom of p. 295 starts at t = m. To justify the terms in the sum, a similar
calculation shows it suffices if κ(d) ≥ d + 2 for n ≥ 2. Thus the last line as a whole will hold
if we set

c′8(d) := (d + 2)
√

C67(d),

which is explicit since C67(d) is given in the Claim and its proof.
The rest of the proof of Lemma 4, in the three-line display at the top of p. 296, then

follows easily because: there are 2kd k-cubes I(k; i); a geometric series is summed; we have
2−d/(1 − 2−d) < for d ≥ 2; and k ≤ l ≤ m for n large enough.
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6 The rest of the proof of Theorem 1, assuming Lemma 1

Lemma 5 is easy. Beck refers to a paper of Révész. In the Lemma, q2/3 can be replaced
by q2/(2 + δ) for any δ > 0 as Révész does. Since B(d) is a (uniform) Donsker class, it is
in particular a GB-set and GC-set in L2(P ) and Lemma 5 follows from the Landau-Shepp-
Marcus-Fernique theorem given e.g. in UCLT, Theorem 2.2.8.

After Lemma 5, Beck’s inequality (10) follows directly by rescaling.

In the next display, c∗(d) has, in this version, already been defined in Section 3. In Beck’s
(11), the first inequality in terms of a sum of binomial upper tail probabilities

E(r + 1, R, p) :=
R

∑

j=r+1

(

R

j

)

pj(1 − p)R−j

is immediate. The bound by e−n−3, however, depends on M(d) in (1) which needs to be chosen
here large enough. It needs to be shown that can be done.

Of course, binomial tail probabilities are basic in empirical processes, when one deals with
empirical measures and processes on a single measurable set. In this case unfortunately there
seems to be no nice upper bound by a normal probability as in “Okamoto” cases. Rather we
have a small p and large R, a Poisson kind of case. We can apply the Chernoff inequality,
due to H. Chernoff in 1952 and given in UCLT, (1.3.9), which gives after the simplification
E(r + 1, R, p) ≤ E(r, R, p), for r ≥ Rp,

E(r, R, p) ≤
(

Rp

r

)r (

R(1 − p)

R − r

)R−r

. (20)

The quantities appearing are in this case, where t is any positive integer, p = c10(d) exp(−q2/3)
where c10(d) is as in Lemma 5, and as Beck states just after his (11), q = t

√

C(d, n)/(2c∗(d)),
R = 2l(d,n)d = C(d, n)n, r = n/t3/2. Here c∗(d) is as defined in Section 3. M(d), needed in
the definitions of l(d, n) (1) and thus C(d, n), is not yet chosen. We need to see next how to
choose M(d) so that Beck’s (11) holds.

To apply the inequality we need to check that r ≥ Rp, which reduces to t−3/2 ≥ Cp. That
isn’t immediate since C is not yet chosen and will be large. We’ll need to return to this issue
later.

Let’s first look at the right-hand factor F2 on the right in (20), where n cancels in the
fraction, giving

(

C(1 − p)

C − t−3/2

)n(C−t−3/2)

≤
(

C

C − 1

)nC

,

so for D := C − 1

F2 ≤
(

1 +
1

D

)n(D+1)

≤ e2n (21)

if C ≥ 2, so that D ≥ 1.

Now let’s look at the left-hand factor on the right in (20), namely F1 := (Rp/r)r, where
again n cancels in the fraction, giving F1 = F11F12 where F11 = (Ct3/2)r. For any number y
such as t3/2 with y ≥ 1, we have 1 ≤ y1/y ≤ 2. It follows that

F11 ≤ (2C)n ≤ exp((log 2 + log C)n). (22)

9



We have

F12 = pr =

(

c10(d) exp

(

− Ct2

12c∗(d)2

))nt−3/2

≤ F121F122

where F121 := c10(d)n assuming that c10(d) ≥ 1, as we can (cf. Lemma 5) and

F122 = exp

(

− Cn
√

t

12c∗(d)2

)

.

We then have by (21), (22) and the definition of F121

F2F11F121 ≤ en(K+log C)

where K = 2 + log 2 + log c10(d) doesn’t depend on t. The entire Chernoff bound applied to
just t = 1 will give us less than e−n−4 if M(d) is large enough so that for C ≥ M(d),

C ≥ 12c∗(d)2 [4 + K + log C] , (23)

as is possible. Then, because F122 becomes smaller as t becomes larger, while F11 and F121

have bounds not depending on t, we get that F1 < 1 for all t (which is not true for F2). This
implies that Rp < r and so Chernoff’s inequality does apply.

We also need to control the sum of the terms for t ≥ 2. The ratio of the tth term to the
t = 1 term in F122 is

exp

(

−Cn[
√

t − 1]

12c∗(d)2

)

.

The sum of these terms from t = 2 to +∞ converges for any C > 0. For C large enough, for
n = 1, by dominated convergence for sums, the sum is less than 1, which then holds also for all
n. Thus we need M(d) large enough to make the given sum less than 1 while (23) also holds
for C ≥ M(d). Then Beck’s bound (11) does hold.

A third and (we hope) last requirement on M(d) is that it should be large enough that if
Z is a N(0, 1) variable and C ≥ M(d), then

2

(

1 − Φ

(

C
√

n

4c∗(d)

))

≤ 2 exp

(

− C2n

32c∗(d)2

)

< e−n−2.

Such a choice is also possible. Then, M(d) is defined and so C = C(n, d) and l = l(n, d) are
defined in (2) and (1) respectively. Instead of saying that C = c9(d) (twice) it seems better to
say that C ≥ M(d).

Beck then defines c0(d), which appears in the definition (5) of m, as (4c7(d)c∗(d))2, recalling
again that c∗(d) is as defined in Section 3 above. That brings us to the bottom of p. 296 of
Beck’s paper.

The rest of the proof is actually straightforward. Starting from the top of p. 297, the
inequality in the first three lines is just a triangle inequality. The next line follows by Lemma 4
with k = l for the first term and the definition of B for the second. Also note that λ(I(l; i)) =
2−ld doesn’t depend on i. In the fifth line, the second term follows from line 3 from below on
p. 296. In the next line, labeled by (12), we use the inequality in the last two lines of p. 296
and the fact that 2ld = Cn (2). The probability lower bound stated just after (12) follows
from the reasons for the fourth and fifth lines. For (13), recall that Ball(d, ω) is the set of
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balls with radius r such that ω/2 ≤ r ≤ ω. Here Lemma 1 is applied straightforwardly. Then
Lemma 4 is applied for k = 0 (to the entire unit cube instead of small cubes) to give (14),
again straightforwardly, and Theorem 1 does follow as Beck states from his (13) and (14) and
the same bound at the bottom of p. 296.

7 About the proof of Lemma 1

The hardest part of the proof of Beck’s Theorem 1 may be Lemma 1. Its proof is in Section 3
of his paper, pp. 298-302. At any rate that is as long as the rest of the proof combined. This
section of course is much indebted to Richard Nickl’s three lectures and notes.

7.1 Constants in Fourier transforms

The choice of constants in Fourier transforms turns out to be of no real import to Beck’s
arguments, as will be seen at the end of this subsection. Still, the paper contains a few
equations that are not correct as stated because of such constants, so an attempt is made here
to straighten them out.

Let µ be a finite signed measure on the Borel sets of R
d. For a constant F with 0 < F < ∞,

the Fourier transform of µ (for the given F ) will be defined by

(Fµ)(t) := F d
∫

e−i(x,t)dµ(x)

where (x, t) =
∑d

j=1 xjtj . Then F(µ)(·) is a bounded, continuous, complex-valued function of t.

The most often used constants F are F = 1 or F = 1/
√

2π, each of which allows a particular
theorem to be stated without an additional constant. Beck, however, chooses F = 1/

√
π

(belatedly, in non-numbered displays after his (19) and (22)).

In defining the characteristic function of a probability measure, +i rather than −i is used
in the exponent. The difference is one of convention rather than substance, except that the
sign of i in an inverse Fourier transform should be opposite to that in the (direct) transform.

Sometimes, in analysis, other factors are used in the exponent such as ±2πi instead of ±i.
But that is not done in probability theory nor by Beck, so it won’t be further considered here.

For a function f ∈ L1(Rd, λd), there is a corresponding signed measure µ with dµ(x) =
f(x)dx, and we let

(Ff)(t) := F d
∫

e−i(x,t)f(x)dx.

Two finite signed measures µ and ν have a convolution, another finite signed measure µ ∗ ν
defined by

(µ ∗ ν)(A) = ∫ µ(A − y)dν(y).

If F = 1, it’s well known (e.g. in probability theory) that F(µ ∗ ν)(t) = F(µ)(t)F(ν)(t) for all
t. For general F we have

F(µ ∗ ν)(t) = F−d(Fµ)(t)(Fν)(t) (24)

for all t. Thus Beck’s equation (20) needs correction, by a factor of F d = πd/2 on the right for
his choice of F . It also has a typo, with a hat missing over f ∗ g.
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If f ∈ (L1 ∩ L2)(Rd, λd) (complex-valued), then by the well-known Plancherel theorem,
Ff ∈ L2(Rd, λd) also. If F = 1/

√
2π then

∫

|Ff(t)|2dt =
∫

|f(x)|2dx, and f 7→ Ff extends
uniquely to an isometry (unitary transformation) of L2(Rd) onto itself. For a general F , we
get

∫

|(Ff)(t)|2dt = (2πF 2)d
∫

|f(x)|2dx (25)

instead of Beck’s (21), which needs a correction factor of (2πF 2)d on the left, or 2d for Beck’s
F .

There is no choice of F that makes both Beck’s (20) and (21) correct as stated. With his
F , Beck’s (22) also needs correction factors of (π/2)d in the latter two expressions.

This (22) is not used for a while, until the last half page of the proof of Lemma 1. There
it is used in his (35), for the definition of ∆(·) which is unchanged. Then in the first equation
of Beck’s (36), a factor of (π/2)d should be inserted on the right. Putting that factor also
into the term on the right of the next inequality, the next equation becomes true. At any rate
the inequality between the first and last expressions in (36) will be true with the proviso that
c22)(d, C) first appearing and implicitly defined here would preferably be replaced by some
constant depending on d and M(d) and thus really only on d, as mentioned in Section 3.

For the Fourier transform of the indicator 1G(0,r) of the ball centered at 0 with radius r,

I checked Beck’s (23) and with his F found c14(d) = vd−1 = π(d−1)/2/Γ((d + 1)/2) and in his
(25), c15(d) = (2π)d/2. All that is needed for the proof is that c14(d) and c15(d) are constants
> 0 just depending on d.

7.2 Asymptotic expansions and Beck’s (24) through (29)

The Poisson integral for a Bessel function, given as Beck’s (24) with a reference, also appears in
the book of Watson (1941, §2.3, (3) p. 35), noting that for z = x real, an integral ∫1

−1 eiuxv(u)du
where v(·) is an even function equals the integral with eiux replaced by cos x. A function g(r, t)
is defined by Beck’s (25). Let cosd(x) := cos(x − (d + 1)π/4) and sind(x) = sin(x − (d +
1)π/4). Then display (26) says that the Bessel function Jd/2(x) which appears in (25) has the
asymptotic expansion

(

2

πx

)1/2


cosd(x)
∞
∑

j=0

B2j,d

x2j
− sind(x)

∞
∑

j=0

B2j+1,d

x2j+1



 (26)

as x → +∞, where the coefficients B(j, d) are given explicitly. The meaning of the asymptotic
expansion is that for any fixed d and N = 0, 1, ..., if SN (x) is the finite partial sum of the
terms with x−i−1/2 (i = 2j or 2j + 1) having i ≤ N , then Jd/2(x) − SN (x) = O(x−N−3/2) as

x → +∞ (note the factor of order x−1/2 outside the parentheses; truncating the sums inside
the parentheses gives an error of the order of the lowest-order term omitted). It is not asserted
that the series actually converge. If d is odd, then just one of the two series in (26) becomes a
finite sum, depending on the residue of d mod 4. If d is even, neither series is a finite sum. If the
sums have infinitely many terms it seems that the numerators of the coefficients become quite
large, for example of order (2j−1−d)!!2 if j is even, where for K odd K!! = K(K −2) · · · 3 ·1.
Watson (1941, p. 11) states that (in the special case of such a series for J0) the “series are,
however, not convergent but asymptotic.” But if one understands the meaning of asymptotic
expansion, the divergence is of no concern. Beck just takes the leading term and applies the
meaning for N = 0, giving his (27).
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After (28) Beck defines the function

h(ρ, t) =
2

ρ

∫ ρ

ρ/2
g2(r, t)dr.

By “uniformly large” Beck appears to mean bounded away from 0, specifically as in inequality
(29). On the left side of (29) we need an upper bound for the denominator h(ρ, t). We have
by (27) for ε = 2−d−2 that for γd(r, t) := c16(d)r(d−1)/2t−(d+1)/2 cosd(rt),

|g(r, t) − γd(r, t)| <
c16(d)r(d−1)/2

2d+2t(d+1)/2

for rt > c17(d, 2−d−2). Thus taking L2 norms for the uniform distribution U [ρ/2, ρ] having
density 2

ρ1[ρ/2,ρ] we get for ρt/2 > c17(d, 2−d−2) that

‖g(·, t) − γd(·, t)‖2 <
c16(d)

2d+2t(d+1)/2

[

2

ρ

∫ ρ

ρ/2
rd−1dr

]1/2

<
c16(d)ρ(d−1)/2

2d+2t(d+1)/2
.

It follows that

‖g(·, t)‖2 ≤ 9

8
c16(d)ρ(d−1)/2/t(d+1)/2.

Thus for c166(d) := 2c16(d)2 and ρt > 2c17(d, 2−d−2),

h(ρ, t) = ‖g(·, t)‖2
2 ≤ c166(d)

ρd−1

td+1
.

For a lower bound, we have for ρt/2 > c17(d, 2−d−2) that

‖g(·, t)‖2 ≥ c16(d)

t(d+1)/2

[

‖r(d−1)/2 cosd(tr)‖2 −
ρ(d−1)/2

2d+2

]

.

Now

2

ρ

∫ ρ

ρ/2
rd−1 cos2d(tr)dr ≥ 2

ρ

(

ρ

2

)d−1 ∫ ρ

ρ/2
cos2d(tr)dr =

ρd−2

2d−2

∫ tρ

tρ/2
cos2d(x)dx/t.

As ρt becomes large, we’re integrating cos2 over a large number of complete cycles, on each
of which its average value is 1/2, and the two possibly incomplete cycles near the endpoints
become negligible, so that the integral of cos2 is asymptotic to tρ/4. Thus

‖r(d−1)/2 cosd(tr)‖2 ≥
(

ρ

2

)(d−1)/2

· 1

2

for tρ ≥ c177(d) if c177(d) is large enough, in particular c177(d) ≥ 2c17(d, 2−d−2). Then

‖g(·, t)‖2 ≥ c16(d)ρ(d−1)/2

(2t)(d+1)/2
.

Thus h(ω, t) ≥ c167(d)ωd−1t−d−1 for ωt ≥ c177(d) where c167(d) := c16(d)2/2d+3.
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Let F ≍ G mean that positive functions F and G are of the same order of magnitude under
some condition (to be specified in each case), namely that F/G is bounded above and below
by strictly positive, finite constants depending only on d.

We have (taking ω = ρ above) that h(ρ, t) ≍ ρd−1/td+1 for ξ := ρt ∈ I2 := [c177(d), +∞).
It follows that Beck’s (29) holds with some c′20(d) for 0 < ρ ≤ ω ≤ 1 such that tρ ∈ I2.

Similarly, from Beck’s (28) we get that h(ρ, t) ≍ ρ2d for 0 < ρ ≤ 1 and ξ = ρt ∈ I0 :=
(0, c199(d)] where c199(d) is a small enough constant depending only on d, specifically smaller
than Beck’s c19(d, 1/2). For 0 < ρ ≤ ω ≤ 1 such that tω ∈ I0 we have

H(ω, ρ, t) :=
h(ω, t)/ωd−1

h(ρ, t)/ρd−1
≍ ωd+1

ρd+1
≥ 1 (27)

and then (29) holds for some c′′20(d).

For the intermediate range ξ = tρ ∈ I1 := [c199(d), c177(d)], Beck’s (26), (27), and (28) are
not useful but we can return to (25). With the relationship x := rt (already used in effect in
Beck’s proof), we get

h(ρ, t) =
2

ξ

∫ ξ

ξ/2
g2(x/t, t)dx =

c15(d)2

t2d
· 2

ξ

∫ ξ

ξ/2
xdJd/2(x)2dx,

where c15(d) is a constant depending only on d, first appearing in Beck’s (25), depending on
c14(d) in the Fourier transform of the indicator of the unit ball in his (23) and the constants in
the Bessel function in the Poisson formula (24) with k = d/2. According to my calculations,
c15(d)2 ≡ (2π)d.

From Beck’s (23), one can see that g(r, t) is an analytic function of the real variables t and
r. Thus from Beck’s (25) one could see that for each d = 1, 2, ..., the Bessel function Jd/2 is an
analytic function except for a possible singularity at 0. As shown in the book of Watson (1941)
in the first few pages of Chapter 3, Jd/2 extends to an entire holomorphic function of a complex
variable z if d is even (Watson §3.1, (8)). If d is odd then there is a singularity (branch point,√

z times a holomorphic function) at z = 0 (the same formula, extended by an argument on the
following page). In either case, Jd/2 on the open half-line (0,∞) is real analytic. For x ∈ I1,
which is a bounded interval bounded away from 0, Jd/2 is analytic with at most finitely many

zeroes. Thus ξ 7→
∫ ξ
ξ/2 xdJd/2(x)2dx is a continuous (indeed analytic) function of ξ, bounded

and bounded away from 0 for ξ ∈ I1. It follows that for ξ ∈ I1, h(ρ, t) ≍ t−2d. Now note that
for ξ = tρ ∈ I1, t ≍ 1/ρ. Thus we can also write h(ρ, t) ≍ ρd−1/td+1 for ξ ∈ I1, the same as for
ξ ∈ I2. And so, Beck’s (29) holds for some constant c′′′20(d) whenever tρ ∈ I1. (Then tω ∈ I1 or
I2, which one doesn’t matter.)

We still need to consider the case tρ ∈ I0 and tω ∈ I1 ∪ I2. Then

H(ω, ρ, t) ≍ t−d−1

ρd+1
=

1

(tρ)d+1
≥ c199(d)−d−1 > 0,

so (29) holds also in this last of the possible cases, and so it holds generally as stated, with
c20(d) the minimum of the corresponding constants in the different cases.

14



7.3 A suggested proof of Beck’s inequality (31)

This subsection was incorporated in one of Richard Nickl’s lectures and the handout for it.
The left side of inequality (31) is bounded above by

∑

i

∫

Rd
|β(G(x, r) ∩ I(l; i))|dx.

For each individual i, since I(l; i) is a cube of side 2−l and r ≤ ρ0 = 2−l−1, the cube G(x, r) ∩
I(l; i) can be non-empty only for x in a cube of side 21−l. Thus we can bound each integral by
an upper bound for the integrand times 2d(1−l) = 2d−dl = 2d/(Cn).

Let r ∈ [ρ0/2, ρ0] be fixed. For k = 0, 1, ..., let Ik := {i : 2k ≤ supx |β(G(x, r) ∩
I(l; i))|c∗(d)

√
n < 2k+1}. Then by condition (d, n, C, ∗) for t = 2k, card(Ik) ≤ n/23k/2. Let

I−1 := {i : sup
x

|β(G(x, r) ∩ I(l; i)| < 1/(c∗(d)
√

n)}.

Then card(I−1) ≤ 2d since each ball G(x, r) intersects at most 2d of the cubes I(l; i), as Beck
has just noted.

For i ∈ Ik with k ≥ 0, |β(G(x, r)∩I(l; i))| ≤ 2k+1/(c∗(d)
√

n) by definition of Ik. Therefore,
considering only the terms with k ≥ 0, we get a sum

2d(1−l)
∞
∑

k=0

n

23k/2
· 2k+1

c∗(d)
√

n

which by summing a geometric series in k gives

2d

Cn

2
√

n

c∗(d)
·

√
2√

2 − 1
=

2d+1
√

2

Cc∗(d)(
√

2 − 1)
· 1√

n
.

Including the k = −1 term gives a further summand 4d/(c∗(d)Cn3/2) ≤ 4d/(c∗(d)C
√

n). Then,
inserting the definition of c∗(d) from (3), we get the last term of Beck’s (31) as stated.

I don’t see why one can omit the k = −1 term entirely.

8 Side issues

One interesting possibility is to use an entirely different approach, not approximating by unions
of small cubes. Balls can be well approximated by other balls, although of course they don’t
fit together via disjoint unions unless possibly infinite unions.

Question: How does one exactly verify the inequalities given as (6) and (7) of Beck’s
paper, with the given constants? I was able to do it for (7) and d = 2. One simplifying
consideration in these proofs is that decomposing a cube of side 2−k into smaller cubes of
side 2−t−1 corresponds to decomposing the unit cube into subcubes of side 2k−t−1, as already
mentioned in the proof above by way of volumes. So, in proving the given bounds one can
assume k = 0.
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