
FITTING LINES TO DATA SETS IN THE PLANE

Suppose we have a set of observations (Xj, Yj) in the plane for j =
1, ..., n with n ≥ 2 and we want to fit a line as well as possible to the
points.

1. Classical y-on-x regression.

This is the oldest and best-known form of regression. Many text-
books present only this form. It is suitable when: Xj are fixed “design
points” xj, or at least have much less random variation in them than
the Yj do, and one wants to predict values of y for other values of x.
To fit a line y = a+ bx to the data, one minimizes the sum of squared
vertical distances from the points to the line,

(1) S(a, b) =
n∑

j=1

(Yj − a− bxj)
2.

The line is only unique if not all xj are equal, so let’s assume that

(2) s2x =
1

n− 1

n∑

j=1

(xj − x)2 > 0,

where x =
∑n

j=1
xj/n. First let b be fixed and consider minimization

with respect to a. Clearly S(a, b) → +∞ as a → ±∞, and S(a, b) is
quadratic in a, so it’s minimized where

∂S(a, b)/∂a = −2
n∑

j=1

Yj − a− bxj = 0.

Letting Y = 1

n

∑n

j=1
Yj, we get Y −a− bx = 0, so the minimizing value

of a given b satisfies

(3) â = â(b) = Y − bx.

This implies that whatever b is, the line y = â(b) + bx will go through
the point (x, Y ).
Plugging the value a = â(b) from (3) into (1) gives

(4) S(b) = S(â(b), b) =
n∑

j=1

(Yj − Y − b(xj − x))2.

Date: 18.650, Sept. 21, 2015.

1



FITTING LINES TO DATA SETS IN THE PLANE 2

This is a quadratic function of b. The coefficient of b2 is (n− 1)s2x > 0
by (2). Thus S(b) → +∞ as b → ±∞, and S(b) is minimized when

(5) 0 = S ′(b) =
n∑

j=1

−2(Yj − Y )(xj − x) + 2b(xj − x)2.

Let the sample covariance of x and Y be defined by

(6) scov(x, Y ) =
1

n− 1

n∑

j=1

(xj − x)(Yj − Y ).

In terms of this, the unique solution of (5) for b is

(7) b = b̂ = scov(x, Y )/s2x.

Then â = â(̂b) gives us a unique value of a = â, called the (estimated)
“intercept” in the regression, meaning that it’s the value of y at the

point where the line y = â+ b̂x crosses the y axis. Naturally, b̂ is called
the (estimated) slope.

2. Correlation

For any Y1, ..., Yn not all equal, and X1, ..., Xn not all equal, recall-
ing s2X := 1

n−1

∑n

j=1
(Xj − X)2 and sX :=

√
s2X , likewise let s2Y =

1

n−1

∑n

j=1
(Yj − Y )2 and sY =

√
s2Y . The sample correlation of X and

Y is defined by rX,Y = scov(X, Y )/(sXsY ), which is dimensionless. The

slope b̂ of the y-on-x regression can be written as b̂ = rX,Y sY /sX (as
also stated in Rice, §14.2.3 p. 561).
When Xj are random variables, not necessarily design points xj,

so the prescribed conditions for y-on-x regression may not hold, and
Yj also are random variables, so that x-on-y regression as in the next
section may also not satisfy the usual regression models, the sample
correlation rX,Y is still well-defined.

3. Regressing x on y

It can happen that data are given such that Yj are design points
or contain little random contribution or error, while Xj are random
variables, and we want to predict the value of x given a new value of y.
Then we can just reverse the roles of x and y to do x-on-y regression.
This will minimize the sum of squares of horizontal deviations of the
data points from a line. It will be uniquely defined if sY > 0. We will
get a line x = c+ dy which will also pass through x = X, y = Y . The

estimated value of d will satisfy d̂ = rX,Y sX/sY .
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If all the points are on a line, then that line will clearly be the
best-fitting line either for vertical deviations (y-on-x) or horizontal de-
viations (x-on-y) because these deviations will be 0 in that case. It
may be surprising that these are the only times these two regressions
agree:

Theorem 1. For given observations (X1, Y1), . . . , (Xn, Yn) in the plane,
where n ≥ 2, s2X > 0 and s2Y > 0, the lines given by y-on-x and x-on-y
regression only agree when all the points (Xi, Yi) are on a line.

Proof. Both regression lines pass through the point (X, Y ). The slope
of the y-on-x line is r · sY /sX .
The slope of the x-on-y line, if we take the y axis as horizontal and

the x axis as vertical, is then r·sX/sY . In the original orientation where
the x axis is horizontal and the y axis is vertical, the slope is replaced
by its reciprocal, which is (1/r)sY /sX . So, the two lines are only the
same if r = 1/r so r2 = 1, r = ±1. Then the points (Xi, Yi) are all on
a line (with positive slope if r = 1 or negative slope if r = −1). �

About notation: Rice on p. 561 uses definitions of sample covariances
and variances with a factor of 1

n
rather than 1

n−1
. Note that in his next

three displays after the definitions, such factors will appear both in the
numerator and denominator, so they will divide out. One just needs
to be consistent in using one factor or the other. Also note that what
Rice calls sxx and syy are estimators of sample variance (as opposed to
standard deviation).
Theorem 1 implies that the two regression lines will in nearly all

cases be different (if n ≥ 3). If the y-on-x regression line has a positive
slope, but the correlation r < 1, then the x-on-y line always has a larger
slope, by a factor of 1/r2. In many situations, the assumptions for y-
on-x and x-on-y regression may not hold. There is another possible
method, as follows.

4. Line-fitting by distance: errors-in-variables

regression.

Now suppose Xj and Yj are both random variables, measured in the
same units, so that Euclidean distances in the plane are also in these
units. A third way to fit a line to the set of points (X1, Y1), . . . , (Xn, Yn)
is to minimize the sum of squared perpendicular distances of the points
to the line. Such distances make good sense when Xj and Yj are in
the same units, not such good sense otherwise. If they are in different
units one can just find the sample correlation rX,Y mentioned above.
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For any point p and line L in the plane, let d(p, L) be the perpen-
dicular distance from p to L. Given observations (Xj, Yj), j = 1, ..., n,
a line Lo will be called a bfsd line (best-fitting by squared distance line)
if
∑n

j=1
d((Xj, Yj), L)

2 is minimized at L = Lo.
Let La,b be the line y = a + bx for any real numbers a, b. Let L∞;c

be the vertical line x ≡ c, −∞ < y < ∞. So every line in the plane is
either a line La,b or a line L∞;c for some a, b or c. Then bfsd lines are
characterized as follows.

Theorem 2. For any given (Xj , Yj), j = 1, ..., n, there is at least one
bfsd line. All such lines go through the point (X, Y ). If sX = sY = 0,
or sX = sY > 0 and r = rX,Y = 0, then every line through (X, Y ) is a
bfsd line.
In all other cases the bfsd line L is unique.
If sX > 0 = sY then L = LY ,0, or if sX = 0 < sY then L = L

∞;X .

If sX > 0 and sY > 0 then: if r = 0 and s2X > s2Y then L = LY ,0, or

if s2X < s2Y then L = L
∞;X .

If sX > 0, sY > 0 and r 6= 0 (the general case) then Lo = La,b

has slope b = tan θ (which, given θ, uniquely determines the line as
(y − Y ) = b(x−X)) and θ is as follows:
If sX > sY then θ = θI where

(8) θI =
1

2
tan−1

[
2 scov(X, Y )

s2X − s2Y

]
.

If sX < sY then θ = θII , defined as θI + π/2.
If sX = sY then since r 6= 0, scov(X, Y ) 6= 0 and:
if scov(X, Y ) > 0, θ = π/4, b = 1;
if scov(X, Y ) < 0, θ = −π/4, b = −1.

Proof. In each of the following cases, all the points (Xj , Yj) are on
the given line L, so

∑n

j=1
(d((Xj, Yj), L)

2) = 0 and L is a bfsd line:

sX > 0 = sY , so Y ≡ Y is constant and L = LY ,0 is horizontal; or

Xj ≡ X is constant, sX = 0 < sY and L = L
∞;X , the vertical line

x ≡ X; or all (Xj, Yj) equal one point (X, Y ), i.e. sX = sY = 0, and
L is any line through (X, Y ), either a line y − Y = b(x − X) for any
finite slope b, or the vertical line L

∞;X .
To find the distance d((X, Y ), L) from a point (X, Y ) to a line L, if

L = L∞;c it’s |X−c|. If L = La,0 it’s |Y −a|. So suppose L = La,b with
b 6= 0. Here are two ways of evaluating the distance. First, here’s a
geometric-trigonometric way. The vertical distance from (X, Y ) to La,b

is clearly |Y − a− bX|. A line M through (X, Y ) perpendicular to La,b
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forms an angle θ at (X, Y ) with a vertical line. Then the perpendicular
distance from (X, Y ) to La,b is |Y − a− bX| cos θ. On the other hand,
one can see by drawing a diagram or otherwise that the line La,b forms
the same angle θ with a horizontal line. Thus the slope of La,b, namely
b, equals tan θ. Here two different although symmetric diagrams could
be given depending on whether b > 0 or b < 0. (By the way the French
group of mathematical authors with the pseudonym Bourbaki decided
that diagrams couldn’t be part of proofs and so they have no diagrams
in their books.) Anyhow,

n∑

j=1

(d((Xj, Yj), La,b)
2) = cos2 θ

n∑

j=1

((Yj − bXj − a)2).

For fixed b, and so for fixed

1 + b2 = 1 + tan2 θ = sec2 θ = 1/ cos2 θ,

cos2 θ will also be fixed, and the minimization to find a in terms of the
other quantities is exactly as in y-on-x regression and gives the same
result. Namely, we have a quadratic function of a, which goes to +∞ as
|a| does. So it will be minimized at the unique point where the partial
derivative with respect to a is 0, which gives −2(Y − bX) + 2a = 0, or
a = Y − bX. This says that the point (X, Y ) is on the line La,b, again,
just as for y-on-x regression, and for each j

(9) Yj − a− bXj = Yj − (Y − bX)− bXj = (Yj − Y )− b(Xj −X).

The line La,b through (X, Y ) and the horizontal line LY ,0 form some
angles θ. As already indicated, we will take a θ such that the slope
b equals tan θ. Recall that for any real number x, tan−1 x is an an-
gle φ such that tanφ = x and −π/2 < φ < π/2. Then tan−1 x is
uniquely defined since the tangent function is strictly increasing for
−π/2 < θ < π/2 and takes all real values there. The tangent function
is periodic of period π. Thus, all angles φ such that tanφ = x are of
the form tan−1 x +mπ where m is an integer, positive, negative or 0.
On any interval of length π, containing just one of its endpoints, the
tangent function takes all real values once each, and also goes to ±∞
at one point. It’s convenient for present purposes to choose θ such that
−π/4 ≤ θ < 3π/4, which is an interval of length π containing only its
lower endpoint. For any real number (slope) b this gives a unique θ
such that tan θ = b.
The squared distance from La,b to (Xj, Yj) is, using (9),

[Yj − Y − (tan θ)(Xj −X)]2 cos2 θ,
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which since tan θ = (sin θ)/ cos θ equals

[(Yj − Y ) cos θ − (Xj −X) sin θ]2.

We want to find θ to minimize the sum of these squares, which is

f(θ) ≡ (n− 1)
[
s2Y cos2 θ − 2 scov(X, Y ) sin θ cos θ + s2X sin2 θ

]
.

Since f is smooth and periodic of period 2π (actually, of period π
because of the product and squaring), setting f ′(θ) = 0 we can expect
to find at least one minimum and at least one maximum. They will
turn out to be in perpendicular directions. We get

0 = f ′(θ)/(n− 1) = 2 sin θ cos θ(s2X − s2Y )− 2 cos(2θ) scov(X, Y ).

If s2X 6= s2Y this gives tan(2θ) = 2 scov(X, Y )/(s2X − s2Y ). There are
two solutions for θ, namely θI given by (8) and θII = θI + (π/2), since
tan(φ + π) = tanφ for any φ. Then −π/4 < θI < π/4 < θII < 3π/4,
so both θI and θII are in the chosen interval for θ. A point where
f ′(θ) = 0 will be a relative minimum if f ′′(θ) > 0. We have

f ′′(θ)/(n− 1) = 2 cos(2θ)(s2X − s2Y ) + 2 sin(2θ) · 2 scov(X, Y ).

At a point where f ′(θ) = 0 this becomes f ′′(θ)/(n − 1) = 2(s2X −
s2Y )/ cos(2θ). If s2X > s2Y we want θ = θI since cos(2θI) > 0 for a
minimum, and θII will give a maximum. If s2X < s2Y we want θ = θII
so that π/2 < 2θ < 3π/2 and cos(2θII) < 0 for a minimum, while θI
then gives a maximum.
Now, what if s2X = s2Y ? In that case f ′(θ) = −2 cos(2θ) scov(X, Y ).

If scov(X, Y ) = 0, f is a constant and all θ, in other words all lines
through (X, Y ), are equally good.
If scov(X, Y ) 6= 0 then we need cos(2θ) = 0, so we can take θ =

±π/4. Again we need to consider the second derivative, which is
f ′′(θ) = 4 sin(2θ) scov(X, Y ). To have f ′′(θ) > 0 for a minimum of
f , if scov(X, Y ) > 0 we want θ = π/4, giving a line with slope 1. If
scov(X, Y ) < 0 we want θ = −π/4, giving a line with slope −1. This
completes the proof of Theorem 2. �

If 1/(n − 1) is replaced by 1/n in both sample variances and the
sample covariance (as Rice does), the result is the same since these
factors cancel out, appearing both in the numerator and denominator
of (8), as long as it’s done consistently.

5. Outliers

For any of the three kinds of regression mentioned, outlying values of
xj or Yj can have a bad effect on the regression. Specifically, in y-on-x
regression, if the smallest design point x1 is far below the rest of the
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xj, or the largest one xn is far above, then the data point (x1, Y1) or
(xn, Yn) can have undue influence on the estimated slope, because the
outlying point has excess leverage on it. A reference on such problems
is the book by D. Belsley, the late E. Kuh, and R. E. Welsch (1980)
(all three authors were at MIT at the time).

6. Historical notes

Reportedly, Gauss discovered y-on-x regression in 1794, but he did
not publish it until 1809. Legendre first published it in 1805. There
was a publication on it by an American, Robert Adrain, in 1808, in a
journal he had just founded and which lasted only through 1814. Both
Gauss and Legendre used regression in predicting the future positions
of astronomical bodies. Adrain was concerned with surveying (land
measurement).

Acknowledgment. Daniel Kane suggested the trigonometric formula-
tion and result for best fitting by squared perpendicular distance in
February, 2005.
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