
Solutions to 18.650 PS1 due Wednesday, Sept. 16, 2015

1. (a) (10 points) X has distribution N(0, 1/36), so 6X has N(0, 1). So for
any c > 0, P (|X| < c) = P (|Z| < 6c) where Z has N(0, 1). To make this
= 0.6 we want to make P (|Z| > 6c) = 0.4 and so by symmetry of N(0, 1)
around 0, we want P (Z > 6c) = 0.2. So for the standard normal distribution
function Φ we want Φ(6c) = 0.8. The closest approximation given in Rice’s
Table 2 of the “Cumulative Normal Distribution” is Φ(0.84) = 0.7795. In R
one could (but this was not suggested in the problem) get the more precise
quantile qnorm(.8) = 0.8416. Dividing by 6 would give c = 0.1403. Taking
0.84/6 gives 0.14.

So: any answer for c equaling 0.140 to the given number of places can be
accepted as orrect.
(b) (10 points, 5 each part): To solve P (|t(5)| < t0) = 0.9 for t0, from Rice’s
Table 4 for the t distribution, we want by symmetry of t distributions around
0 that P (t(5) > t0) = 0.05 and so we want the 0.95 quantile of t(5) which
from Rice’s Table 4 is 2.015. The other part has the identical answer 2.015.
(If you got from R, or otherwise, the more precise qt(.95,5) = 2.01505, 5
points extra credit.)

2. (a) (5 points) The sample mean X = 6.676407.
(b) (5 points) The sample variance s2X = 3.34239e-05 (R’s notation) meaning
3.34239 · 10−5. The sample standard deviation is sX = 0.005781342.
(c) (10 points) We need the 0.975 quantile of the t distribution with 7 = 8−1
degrees of freedom, which is tq := t.975(7) = 2.365 according to Rice’s Table
4. (R gives qt(.975,7) = 2.364624.) The endpoints of the interval are X ± h
where h = tq · sX/

√
8

.
= .0048341. The endpoints are then X − h = 6.6716,

X+h = 6.6812, giving as many significant digits (5) as in the data, or better
rounded to [6.672, 6.681], as only 4 digits are given in the t quantile.

3. The following answers are based on quantiles from Rice’s tables. Using
quantiles found from R, which was not required, would give more precise
answers.
(a) (7 points) We have SUM :=

∑

8

j=1
(Xj − X)2 = 2.3397 · 10−4, which

is 7s2X . For a χ2(7) distribution, from Rice’s Table 3, the .975 quantile
χ2

.975(7)
.
= 16.01. So the lower endpoint of the 95% confidence interval for

σ2 is SUM/16.01
.
= 1.461 · 10−5, rounding to 4 significant digits as in the

quantile. The .025 quantile is 1.69 according to the table, and so the upper
endpoint is SUM/1.69

.
= 1.38 · 10−4, rounding to 3 significant digits as in
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the quantile. For σ, taking square roots of the endpoints (before rounding),
we get [0.0038228, 0.011766] or [0.00382, 0.01177].
(b) (3 points) Only the Schwarz et al. 1998 given error estimate of .0094
is within the confidence interval. All the others, including the CODATA
number, are less than the lower endpoint 0.00382. This is related to the fact,
mentioned in an email, that the experimenters are giving lower bounds for
errors they can account for.
(c) (10 points) The sample variance of the two estimates is 1.757813e-06.
Since 2 − 1 = 1 that equals the new SUM. Divided by χ2

.975(1) = 5.02 from
Rice Table 3 gives the lower endpoint a(X)

.
= 3.50162e-07 whose square root

is 5.92·10−4, rounded to 3 digits because the quantile has just 3. For the upper
endpoint, χ2

.025(1) = .00098 from Rice’s table, so we get SUM/0.00098
.
=

1.79369 ·10−3. So the 95% confidence interval for σ2 is [3.50 ·10−7, 1.8 ·10−3].
Taking the square root to get the upper endpoint of the interval for σ gives
.
= 0.042, rounding to 2 digits which is all the quantile has. So the confidence
interval for σ is [.000592, .042].

Of the given error numbers given after ± in the two studies, the largest
is 0.00014, which is less than the lower endpoint 0.000592. In this case the
CODATA value .00080 is in the interval.

4. (a) (7 points) Following the hint, the solutions of G′(t) = γG(t) are of
the form G(t) = Ceγt for constants C. For a fixed time t0 we will then
have G(t) = G(t0) exp(γ(t − t0)). In this case t − t0 is no more than 117
years. We have ex = 1 + x to a very good approximation in case x is very
small. The estimates for γ are no more than 10−11 per year and some of
them are smaller. In 117 years G should have changed by a fraction no more
than about 10−9. The average of the estimates in 1895–97 minus the 2010
CODATA value is about 6.6577 − 6.674

.
= −0.0163 which divided by 6.67

gives a fraction about .0025. This is much larger than 10−9, so no, it is not
plausible that the average change in estimates between the 1890’s and recent
times resulted from actual changes in G.

(It seems that astrophysicists’ measurements of possible changes in G are
much more accurate than laboratory physicists’ measurements of G itself.)
(b) (4 points) So the difference−0.016 given in part (a) seems to have resulted
from bias in the older measurements.
(c) (3 points) Brayn (1897) declared the smallest error, ±0.002.
(d) (4 points) Eötvös (1896) had the largest and so most realistic error es-
timate, in fact 0.013 is of the order of magnitude of the actual error (bias)
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−0.016 as we now see it.
(e) (2 points) There is no mathematically “correct” answer to this question.
Any reasonable argument can be given the 2 points. No calculation is ex-
pected. In my opinion: Brayn came later in time than the other two. Very
possibly he was aware of their findings. This may have contributed to his
giving an unrealistically small error estimate of ±.002, which is wide enough
to include the other two 1890’s estimates, but far from including 1998–2010
estimates.

Eötvös invented an apparatus, improving on earlier “torsion balance”
instruments, which others later called the Eötvös pendulum. Einstein cited
Eötvös in regard to the equality of gravitational and inertial mass. Budapest
University in Hungary was renamed for Eötvös in 1950. C. V. Boys, a then-
leading English physicist, used his own, apparently different, form of torsion
balance. In a brief Web search, nothing more was found about Brayn than
his numbers in the G data base.

In over a century since 1900, the technology for estimating G has improved
substantially.

5. (i) (a) (3 points) RFO - reject for other reasons; although normality is
not rejected by the test, with p-value > .05, we know that the data were
generated with U [0, 1] distribution, not a normal distribution.
(b) (3 points) RBT, Reject by test, the p-value is less than .05 (also, we know
that the data were generated as standard exponential).
(c) (3 points) AP, accept provisionally.
(ii) (a′) (5 points) A U [0, 1] distribution is symmetric around its mean µ =
1/2, so its skewness is 0. By a calculation neglecting the symmetry, and so
not required, if X has this distribution, then

E

(

(

X − 1

2

)3
)

= E(X3)− 3E(X2)/2 + 3EX/4− 1/8

=
1

4
− 3

2
· 1
3
+

3

8
− 1/8 = (2− 4 + 3− 1)/8 = 0.

(b′) (6 points) For a standard exponential distribution, the mean is 1, and
the variance is E((X − 1)2) = 2− 2 + 1 = 1 also. We have

E((X − 1)3) = E(X3)− 3E(X2) + 3EX − 1 = 6− 6 + 3− 1 = 2

so the skewness is 2. A N(0, 1) distribution is symmetric around its mean 0,
so the skewness for it is 0.
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In regard to skewness, the U [0, 1] distribution is more like a normal dis-
tribution than is the standard exponential distribution. (This gives an in-
dication why the exponential distribution is easier to distinguish from the
normal with a relatively small n in the Shapiro–Wilk test.)
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