
ORDER STATISTICS, QUANTILES, AND SAMPLE

QUANTILES

1. Order statistics

Let X1, . . . , Xn be n real-valued observations. One can always ar-
range them in order to get the order statisticsX(1) ≤ X(2) ≤ · · · ≤ X(n).
SinceX(k) actually depends on n, not only on k, a more precise notation
for it is Xk:n.

1.1. Uniform order statistics — beta distributions. To find the
distribution of an order statistic, let X1, . . . , Xn be i.i.d. with a distri-
bution function F . For any x, the probability that Xk:n ≤ x is the
probability that k or more of the Xj with j ≤ n are ≤ x. Expressed in
terms of binomial probabilities this gives

(1) Pr(Xk:n ≤ x) = E(k, n, F (x)),

the probability that in n independent trials with probability F (x) of
success on each, there are k or more successes.
Gamma and beta probabilities are treated in the file gammabeta.pdf

on the course website. For any a > 0 and b > 0, the beta function
B(a, b) is defined as

∫ 1

0
xa−1(1 − x)b−1dx, with 0 < B(a, b) < +∞.

Recall that for a > 0, the gamma function is defined by Γ(a) =
∫∞

0
xa−1e−xdx. For any integer k ≥ 1 we have Γ(k) = (k−1)!. We have

Γ(a+ 1) = aΓ(a) for all a > 0. Letting a ↓ 0, we have Γ(a+ 1) → 1, so
Γ(a) = Γ(a+ 1)/a → +∞.
The identity B(a, b) = Γ(a)Γ(b)/Γ(a + b) relating beta and gamma

functions holds for all a, b > 0 (Theorem 1.5.5 of gammabeta.pdf).
The beta(a, b) density is defined by βa,b(x) = xa−1(1 − x)b−1/B(a, b)
for 0 < x < 1 and 0 elsewhere. The corresponding distribution function
is written as Ix(a, b) =

∫ x

0
βa,b(u)du. There is an identity relating the

binomial and beta distributions: for 0 ≤ p ≤ 1 and k ≥ 1,

(2) E(k, n, p) ≡ Ip(k, n− k + 1)

(gammabeta.pdf, Theorem 1.5.12). This is proved by differentiating
with respect to p, which gives a telescoping sum on the left. For k = 0,
simply E(0, n, p) ≡ 1. Combining with (1) gives

(3) Pr(Xk:n ≤ x) = IF (x)(k, n− k + 1).
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Order statistics are defined for k = 1, ..., n, so k ≥ 1 as desired in (2).
The equation (3) simplifies if F is the U [0, 1] distribution function,
F (x) = 0 for x < 0, F (x) = x for 0 ≤ x ≤ 1, and F (x) = 1 for
x > 1. Let Uk:n be the kth order statistic from n i.i.d. U [0, 1] random
variables. Then

(4) Pr(Uk:n ≤ x) = Ix(k, n− k + 1).

This gives not only the distribution function but also the density,
namely βk,n−k+1, of Uk:n. It will be seen in Corollary 1(b) that it’s
possible, starting with U [0, 1] order statistics, to get them for other,
general distributions.
If X has a βa,b distribution, it’s known (Rice, Appendix A, Common

Distributions) that EX = a/(a+ b), which can be seen as follows:

EX =
B(a+ 1, b)

B(a, b)
=

Γ(a+ 1)Γ(b)Γ(a+ b)

Γ(a+ b+ 1)Γ(a)Γ(b)
=

a

a+ b
.

From this and (4) it follows that

(5) EUj:n =
j

n+ 1
, j = 1, . . . , n.

2. Quantiles

Let X be a real random variable with distribution function F , so
that P (X ≤ x) = F (x) for all x. Let’s define the left limit of F at x
by F (x−) := limy↑x F (y), which equals F (x) for a continuous F but is
less than F (x) if x is a possible value of X with a discrete distribution.
Let 0 < p < 1. Then a number x is called a pth quantile of F , or of X,
if F (x) = p, or more generally if F (x−) ≤ p ≤ F (x). The definition
with F (x) = p applies to all continuous distribution functions F . The
more general definition is needed for discrete distributions where there
may be no x with F (x) = p.
We have F (x−) = P (X < x) and P (X ≥ x) = 1−F (x−). So, x is a

pth quantile of F or X if and only if F (x) ≥ p and P (X ≥ x) ≥ 1− p.
A pth quantile x of F is uniquely determined if F is strictly increasing

in a neighborhood of x, or if F (x−) < p < F (x). Then it is called the
pth quantile of F or X and can be written as xp. If F (x−) < F (x),
then x is a pth quantile of F for all p such that F (x−) ≤ p ≤ F (x).
For a lot of continuous distributions used in statistics such as χ2

and F distributions, specific quantiles such as the 0.95, 0.975, and 0.99
quantiles are tabulated. If F is continuous and is strictly increasing
on the interval J (possibly a half-line or the whole line) of x for which
0 < F (x) < 1, then F has an inverse function F−1 from (0, 1) onto J ,
such that F−1(p) = xp and F (F−1(p)) ≡ p for 0 < p < 1.



ORDER STATISTICS, QUANTILES, AND SAMPLE QUANTILES 3

A more general distribution function F may not have an inverse
as just defined but there are substitutes for it defined as follows. For
0 < p < 1 let F←(p) := inf{x : F (x) ≥ p}. Then ap := F←(p) is always
a pth quantile of F . Similarly let F→(p) := bp := sup{x : F (x) ≤ p}.
The following statements are not proved here. Part of the proof is left

as a problem. The set of pth quantiles of F is the finite closed interval
[ap, bp], which often reduces to a point. For a discrete distribution such
as a binomial distribution, there are selected values of p such that ap <
bp. For example, for the distribution function F of the binomial(n, 1/2)
distribution, each value p = B(k, n, 1/2) for k = 1, ..., n− 1 is attained
on the interval [k, k + 1), ap = k and bp = k + 1.
Another way to choose a pth quantile is, when it is not unique, to

take themidpoint pth quantile as the midpoint (ap+bp)/2 of the interval
of pth quantiles. This definition is used in defining the median of F , or
of a random variable X with distribution function F , namely, as the
midpoint 1/2 quantile of F .
The following will let us define random variables with any distribu-

tion, given one with a U [0, 1] distribution.

Theorem 1. Let F be any probability distribution function and V a
random variable having a U [0, 1] distribution. Then F←(V ) has distri-
bution function F .

Proof. First, it will be shown that for any real x and any y with
0 < y < 1, y ≤ F (x) if and only if F←(y) ≤ x. For “only if,” suppose
y ≤ F (x). Then F←(y) ≤ x by definition of F←. For “if,” suppose
F←(y) ≤ x. Then there exists a sequence xn decreasing down to some
u ≤ x with F (xn) ≥ y. By right-continuity of distribution functions,
F (u) ≥ y, and so F (x) ≥ F (u) ≥ y as desired.
Then, for any x, Pr(F←(V ) ≤ x) = Pr(V ≤ F (x)) = F (x) as V has

a U [0, 1] distribution, so the theorem is proved. �

If one can generate a U [0, 1] random variable V (as any reasonable
computer system can) and evaluate F←, then one can generate a ran-
dom variable with distribution function F as F←(V ).

Examples. Let F be the standard exponential distribution function:
F (x) = 0 for x ≤ 0 and F (x) = 1 − e−x for 0 < x < ∞. For
0 < V < 1, F←(V ) = F−1(V ) is the unique X such that 1− e−X = V ,
or e−X = 1− V , so X = − ln(1− V ). Noting that U := 1− V also has
a U [0, 1] distribution, we are taking X = − ln(U) to get X standard
exponential.
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For the standard normal distribution function Φ, there is no simple
closed form expression for Φ itself, nor for Φ−1, although it can be
computed (as in R, qnorm(p)). There are competing ways to generate
a N(0, 1) variable which may be preferred. Anyhow, R can generate n
i.i.d. N(µ, σ2) random variables by rnorm(n, µ, σ).

Corollary 1. Let F be any distribution function and let V1, ..., Vn be
i.i.d. U [0, 1]. Then (a) Xj := F←(Vj) are i.i.d. F , and (b) Xj:n =
F←(Vj:n) for j = 1, . . . , n.

Proof. Part (a) follows directly from Theorem 1. Then (b) follows
since F← is a nondecreasing function. �

For any X1, . . . , Xn i.i.d. with a distribution function F , and k =
1, . . . , n, Xk:n is equal in distribution to F←(Vk:n). But since F← is
a nonlinear function on 0 < v < 1 (unless F is a U [a, b] distribution
function), it may not be easy to evaluate EXk:n. For example, if F
is the N(0, 1) distribution function Φ and Z1, ..., Zn are i.i.d. N(0, 1),
then the expectations EZk:n can be computed but not so easily. (Such
expectations are used in the Shapiro–Wilk test of normality.)
The least pth quantile F←(p) is useful for some theoretical purposes

as in Theorem 1. But for practical purposes, and even in theory for
defining the median, the midpoint pth quantile seems preferable.

3. Empirical distribution functions and sample quantiles

For any observations X1, . . . , Xn, the empirical distribution function
is defined by Fn(x) =

1
n

∑n
j=1 1Xj≤x where 1Xj≤x = 1 if Xj ≤ x and 0

otherwise. In other words, it’s the fraction of Xj for j ≤ n that are
≤ x.
Here Fn is important in nonparametric statistics. Up to now we’ve

had estimation of finite-dimensional parameters θ. Here a general dis-
tribution function F , an object in an infinite-dimensional space, is es-
timated by Fn. A simple hypothesis H0 that X1, ..., Xn are i.i.d. with
distribution function F can be tested by evaluating Kn := supx |(Fn −
F )(x)|. If H0 is true and F is continuous, then

√
nKn has a specific

limiting distribution as n → ∞, so H0 can be tested (Kolmogorov’s
test, 18.465).
IfXj are all distinct, as they will be with probability 1 if they are i.i.d.

from a continuous distribution, then X(1) < X(2) < · · · < X(n). We will
have Fn(x) = 0 for x < X(1), Fn(x) = j/n for X(j) ≤ x < X(j+1) and
j = 1, ..., n − 1, and Fn(x) = 1 for x ≥ X(n). These relations actually
hold for any Xj, some of which may be tied. If X(j) = X(j+1), then
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there are no x with X(j) ≤ x < X(j+1), and Fn never takes the value
j/n.
Now let’s consider how to define pth quantiles ξp, for 0 < p < 1 as

always, of a finite sample X1, ..., Xn. Suppose we define ξp as a pth
quantile of Fn. Then if np is not an integer, there will be just one
value of j = 1, ..., n such that (j − 1)/n < p < j/n and Fn has a
unique pth quantile, namely X(j). We can write j = ⌈np⌉ where ⌈x⌉
is the smallest integer ≥ x. Whereas, if np is an integer j, then Fn

has an interval of pth quantiles with endpoints X(j) and X(j+1). In
this course, the pth quantile ξp of the finite sample will be defined as
the midpoint pth quantile of Fn. For p = 1/2 this agrees with the
generally accepted definition of sample median: if n = 2k + 1 is odd,
the sample median is the middle order statistic X(k+1). If n = 2k even,
then it’s (X(k)+X(k+1))/2. For p 6= 1/2 textbook authors give a variety
of different definitions of sample pth quantile (see the Appendix), but
taking the midpoint pth quantile of Fn seems to me to be the most
justified.
The following symmetry property is desirable in a definition of sam-

ple quantiles ξp: if all Xi are replaced by −Xi, reversing the order of
the order statistics while also changing their signs, one would like, for
0 < p < 1,

(6) ξp({−Xi}ni=1) = −ξ1−p({Xi}ni=1).

This symmetry property does not hold for ξp equal to the least pth
quantile F←n (p).

Proposition 1. The symmetry (6) holds for the midpoint empirical
quantiles.

Proof. If we take Yj = −Xj for j = 1, ..., n then the order statistics
are clearly Y(j) ≡ −X(n+1−j). For 0 < p < 1, if np is not an integer,
we can check that ⌈np⌉ + ⌈n(1 − p)⌉ = n + 1 because the sum of two
integers on the left must be an integer, larger than n and less than
n + 2 because if x is not an integer then 0 < ⌈x⌉ − x < 1. Thus the
pth quantile of the Yi is

Y(⌈np⌉) = −X(n+1−⌈np⌉) = −X(⌈n(1−p)⌉) = −ξ1−p

for the Xi as desired. If np = j, an integer, with 1 ≤ j ≤ n − 1, then
n(1−p) = n−j is also an integer in the same range. The pth midpoint
empirical quantile of the Yi is

Y(j) + Y(j+1)

2
= −X(n+1−j) +X(n−j)

2
= −X(n(1−p)+1) +X(n(1−p))

2
= −ξ1−p
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for the Xi. So the symmetry (6) does hold for the midpoint empirical
quantiles for all p with 0 < p < 1. �

4. Robust estimates of location and scale

We know that ifX1, ..., Xn are i.i.d. with a distribution having a finite
mean µ and variance σ2, and X is their sample mean, then

√
n(X−µ)

has a distribution converging as n → ∞ to N(0, σ2), by the central
limit theorem. But, suppose Xj do not have a finite mean. Then
the sample may contain outliers, observations far from most of the
others. These can have a large influence on X. Even if there is a
finite mean, if the variance is infinite, the distribution of X is not so
well controlled. The sample variance is also very sensitive to outliers.
The median provides a measure of location, as the mean does, but the
sample median is very little sensitive to outliers. To get a measure of
scale, analogous to the standard deviation σ, but which is well defined
and can be estimated even when the variance is infinite, one can use
the interquartile range (IQR), the difference between the 3/4 and 1/4
quantiles. The sample IQR may be divided by 1.35, which is the IQR
for a N(0, 1) distribution, so as to give an estimate of σ for normal
distributions (Rice, §10.5 pp. 401-402).

5. The large-sample distribution of sample medians

Under some conditions, sample medians also become asymptotically
normal for large n. It’s convenient to consider n = 2k+1 odd where k
is a positive integer. Then for n i.i.d. random variables X1, ..., Xn with
order statistics X(1) ≤ X(2) ≤ · · · ≤ X(n), the sample median is X(k+1).
In the special case where Xj have U [0, 1] distribution, we know by

(4) that the sample median X(k+1) has a beta(k+1, k+1) distribution,
namely it has a density fk(x) = xk(1 − x)k/Bk for 0 ≤ x ≤ 1 and 0
elsewhere, where Bk is the beta function

Bk = B(k + 1, k + 1) = Γ(k + 1)2/Γ(2k + 2) = k!2/(2k + 1)!

and Γ is the gamma function. Also, given the sample median for U [0, 1]
variables we can get sample medians for any other distribution F by
Corollary 1 as the sample median X(k+1) = F←(U(k+1)). For a continu-
ous distribution function F that is well-behaved, meaning it is strictly
increasing when 0 < F (x) < 1, we have F← = F−1 on 0 < p < 1. So we
can find the asymptotic distribution (asymptotic meaning as n → ∞)
of the sample median via the delta-method (treated in the handout
deltamethod-.....pdf) and the following fact:
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Proposition 2. Let Yk have a beta(k + 1, k + 1) distribution. Then√
k
(

Yk − 1
2

)

converges in distribution to N(0, 1/8) as k → ∞.

Proof. Vk = Yk − 1
2
has density for |v| ≤ 1/2

(

1

2
+ v

)k (
1

2
− v

)k

/Bk =

(

1

4
− v2

)k

/Bk,

so Wk :=
√
kVk has the density for |w| ≤

√
k/2

k−1/24−kB−1k

(

1− 4w2

k

)k

∼ k−1/24−kB−1k exp(−4w2)

as k → ∞. This is now factored into a constant Ck depending only on
k times exp(−4w2), and because we had a probability density, and the
form of the density with respect to w is that of a N(0, 1/8) density,
Ck must converge to the correct normalizing constant for it, namely
2/
√
π. So, the convergence in distribution follows as stated. �

To apply the delta-method, recall the following fact from beginning
calculus on the derivative of an inverse function.

Fact 1. Let F be defined, strictly increasing, and continuous on an
open interval U containing a point x0 and have a derivative F ′(x0) > 0.
Let y0 = F (x0). Then F has an inverse function F−1 defined on the
interval V = {F (x) : x ∈ U}, so that F−1(F (x)) = x for all x ∈ U ,
and F−1 has a derivative at y0 given by (F−1)′(y0) = 1/F ′(x0).

Fact 1 can seem obvious in the usual (Leibniz) notation:

dx

dy
= 1/

(

dy

dx

)

,

where the derivative on the right is evaluated at some x = x0 and the
one on the left at y0 = F (x0).
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6. Appendix: textbook definitions of sample quantiles

I found precise definitions of sample pth quantiles for p 6= 1/2 in six
beginning statistics textbooks. One (Rice) gave two definitions. The
seven definitions were all different. I will list them.
Next to the sample median, perhaps the most often mentioned sam-

ple quantiles are the quartiles, where p = 1/4 (lower quartile) and
p = 3/4 (upper quartile).
Other quantiles sometimes mentioned are percentiles, often used

about scores for an individual on a standardized exam. The pth quan-
tile is the same as the 100pth percentile.
We’d expect ξp to be something like X(np), but np is often not an

integer. To formulate the definitions, here is some more notation. Let
⌊x⌋, the integer part of x, be the largest integer ≤ x. Let {x}, the
fractional part of x, be x− ⌊x⌋. Let r(x) be x rounded to the nearest
integer, rounded up if {x} = 1/2. Order statistics X(j) are defined only
for j = 1, 2, ..., n (not for j = 0 or n+ 1).
Here are the definitions in alphabetical order by first author of the

textbook. By the way: James Berger (1) is a leading (Bayesian) statis-
tician.
The pth quantile of a sample of n numbers with order statistics

X(1) ≤ ... ≤ X(n) is:

1. X(r(np)) if p < 1/2, X(n+1−r(n(1−p))) if p > 1/2, the sample median if
p = 1/2 (Casella and Berger, Statistical Inference, 1990). (The latest
edition seems to be the second, from 2002. I have not seen it.) This is
undefined if p < 1/(2n) or p > 1− 1/(2n) (such extreme quantiles are
not very important; if one is interested in extremes one can consider
just X(1) and X(n)).

2. X(⌊(n+1)p⌋) + {(n + 1)p}
(

X(⌈(n+1)p⌉) −X(⌊(n+1)p⌋)

)

: R. Hogg and E.
Tanis, Probability and Statistical Inference, Sixth Ed., 2001. This is
undefined if p < 1/(n + 1) or p > n/(n + 1) (again, those are extreme
values of p). This gives a piecewise linear, continuous, nondecreasing
function of p, defined for 1/(n + 1) ≤ p ≤ n/(n + 1), equal to X(j)

for p = j/(n + 1), j = 1, ..., n. Recall that these numbers j/(n + 1)
appeared in (5) as EUj:n. (In the Seventh Ed., 2006, the definitions
seem to be the same but I could not be sure in a short time.)

3. X(⌈np⌉) if np is not an integer, or if it is, (X(np) +X(np+1))/2: R. A.
Johnson, Miller and Freund’s Probability and Statistics for Engineers,
5th ed., 1994. Only this definition, of those to be mentioned, defines
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quantiles as midpoint empirical quantiles, as in the present course. An-
other seemingly related book, Irwin Miller and Marylees Miller, John
E. Freund’s Mathematical Statistics, 6th Ed., 1999, like several other
texts I looked at, has no words beginning with “q” in its subject index.

4. X(r((n+1)p)), given only for quartiles, p = 1/4 or 3/4; jth percentile,
defined as X(r((n+1)j/100)), presumably for j = 1, ..., 99 (would be un-
defined if (n + 1)j/100 < 1/2, specifically if j = 1, n ≤ 48, or if
(n + 1)j/100 ≥ n + (1/2), specifically if n ≤ 49, j = 99): Mendenhall
and Sincich, Statistics for Engineering and the Sciences, 5th ed., 2007,
p. 39. If 48 or fewer individuals are ranked, it indeed arguably makes
no sense to say that the highest-ranked individual was in the top 1%
or the lowest-ranked in the bottom 1%.

5, 6. Rice (Third Ed., p. 387) defines ξp only for special values of p = pj
with ξpj = X(j). One choice is pj = j/(n + 1) for j = 1, ..., n, and the

other is pj = (j − 1
2
)/n. Both choices satisfy 0 < p1 < · · · < pn < 1

with the points equally spaced, in other words pj−pj−1 doesn’t depend
on j. The first definition with pj = j/(n+1) agrees with definition (2).
for those values of pj. Conversely, definition (2) is the piecewise linear
interpolation of the Rice values. (Here j/(n + 1) can equal 1/2, for a
median, only if n is odd, and can equal 1/4 or 3/4 for quartiles only
if n + 1 is divisible by 4; (2j − 1)/(2n) can equal 1/2 only for n odd,
and can equal 1/4 only if n is even but not divisible by 4; definition
(2) gives any p with 1/(n + 1) ≤ p ≤ n/(n + 1) and so in particular
1/2, 1/4, and 3/4 as long as n ≥ 3.)

7. R. E. Walpole and R. H. Meyers, Probability and Statistics for
Engineers and Scientists, Fifth Ed., 1993, p. 210, gives a definition of
the same type as Rice does but with pj = (j − 3

8
)/(n + 1

4
). (This can

never equal 1/4 or 3/4 to define quartiles.) There is an 8th Edition
from 2007, which I have not seen.

Different definitions of sample quantiles may have been made with
different purposes in mind. There is a consensus only about the sample
median.


