
SOME NONPARAMETRIC TESTS

1. Introduction

In parametric statistics, we may consider particular parametric fam-
ilies, such as the normal distribution in testing for equality of variances
via F tests, or for equality of means via t tests or analysis of variance.
In regression, the assumption of i.i.d. N(0, σ2) errors is used in testing
whether regression coefficients are significantly different from 0.
The Wilks test applies to more general families of distributions in-

dexed by θ in a finite-dimensional parameter space Θ. Similarly, the
χ2 test of composite hypotheses applies to fairly general parametric
subfamilies of multinomial distributions.
In nonparametric statistics, there actually still are parameters in a

sense, such as the median m or other quantiles, but we don’t have dis-
tributions determined uniquely by such a parameter. Instead there are
more general restrictions on the distribution function F of the observa-
tions, such as that F is continuous. So the families of possible distribu-
tions are infinite-dimensional. Given n observations X1, ..., Xn, we can
always form their order statistics X(1) ≤ X(2) ≤ · · · ≤ X(n) and their
empirical distribution function Fn(x) :=

1
n

∑n

j=1 1Xj≤x. Some tests can
be based on these. This handout will consider two tests of whether two
samples both came from the same (unknown) distribution, the Mann–
Whitney–Wilcoxon rank-sum test and the Kolmogorov–Smirnov test.
Also we will have the Wilcoxon “signed rank” test of whether paired
variables (Xj, Yj) have the same distribution as (Yj, Xj).

2. Symmetry of random variables

Two real random variables X and Y are said to have the same dis-
tribution or to be equal in distribution, written X =d Y , if for some F ,
Pr(X ≤ x) = Pr(Y ≤ x) = F (x) for all x. If X =d Y , then for any
constant c, X + c =d Y + c. But one cannot necessarily add the same
random variable to both sides of an equality in distribution. Let X
and Y be i.i.d. N(0, 1). Then X =d Y , but X +X 6=d X + Y because
X +X = 2X is N(0, 4), but X + Y is N(0, 2).
A real random variable X is said to have a symmetric distribution

(around 0) or to be symmetric if X and −X have the same distribution.
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Then, given a real number m, (the distribution of) X is said to be
symmetric around m if X −m is symmetric around 0, i.e. X −m and
m−X have the same distribution. Equivalently, X and 2m−X have
the same distribution.

Examples. Any N(µ, σ2) is symmetric around µ. Any t(d) distribution
is symmetric around 0. A Beta(a, b) distribution is symmetric around
m if and only if both m = 1/2 and a = b. If X has a density f with
f(x) > 0 for all x > 0 and f(x) = 0 for all x ≤ 0, thenX is not symmet-
ric around any m. This applies, for example, to gamma distributions,
including χ2 and exponential distributions, and to F distributions.

Fact 1. Suppose a random variable X is symmetric around some m.
(a) Then m is a median of X.
(b) Actually m is the median of X, in the sense that if X has a non-
degenerate interval of medians, m must be the midpoint of that interval.
(c) If E|X| < +∞ then also EX = m.

Proof. (a) Let X be symmetric around m. Then from the definitions,

Pr(X ≥ m) = Pr(X −m ≥ 0) = Pr(m−X ≥ 0) = Pr(X ≤ m).

Then 2Pr(X ≤ m) = Pr(X ≤ m) + Pr(X ≥ m) = 1 + Pr(X = m) ≥ 1
and so Pr(X ≤ m) = Pr(X ≥ m) ≥ 1/2 and m is indeed a median of
X.
(b) Suppose for some c 6= 0, m + c is a median of X. Then c is a
median of X −m, so it is also a median of m−X. It follows that −c
is a median of X −m, so m − c is a median of X. So the interval of
medians of X is symmetric around m and m is the midpoint of it.
(c) E(X −m) = EX −m = E(m−X) = m−EX, so 2EX = 2m and
EX = m. �

Example. Consider the binomial(5, 1/2) distribution. Its distribution
function F satisfies F (x) = 1/2, 2 ≤ x < 3. So it has an interval [2, 3]
of medians. The distribution is symmetric around 5/2=2.5, the median
as the midpoint of the interval of medians, and also the mean.

3. The Mann–Whitney–Wilcoxon rank-sum test

This is a test of whether two samples come from the same distribu-
tion, against the alternative that members of one sample tend to be
larger than those of the other sample (a location or shift alternative).
No parametric form of the distributions is assumed. They can be quite
general, as long as the distribution functions are continuous. One might
want to use such a test, called a nonparametric test, if, for example,
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the data have outliers and so appear not to be normally distributed.
Rice considers this test in subsection 11.2.3 pp. 435–443.
The general assumption for the test is that real random variables

X1, . . . , Xm are i.i.d. with a distribution function F , and independent
of Y1, . . . , Yn which are i.i.d. with another distribution function G, with
both F and G continuous. The hypothesis to be tested is H0: F = G.
The test works as follows: let N = m+ n and combine the samples of
X’s and Y ’s into a total sample Z1, . . . , ZN . Arrange the Zk in order
(take their order statistics) to get Z(1) < Z(2) < · · · < Z(N). With
probability 1, no two of the order statistics are equal because F and
G are continuous. Let rank(V ) = k if V = Z(k) for V = Xi or Yj. Let
TX =

∑m

i=1rank(Xi). Then TX will be the test statistic. H0 will be
rejected if either TX is too small, indicating that the X’s tend to be
less than the Y ’s, or if TX is too large, indicating that the Y ’s tend to
be less than the X’s. To determine quantitatively what values are too
small or too large, we need to look into the distribution of TX under
H0.
If H0 holds then Z1, . . . , ZN are i.i.d. with distribution F = G. Let

E0 be expectation, and Var0 the variance, when the hypothesis H0 is
true. Let Ri be the rank of Xi. Then Ri has the discrete uniform
distribution on {1, 2, . . . , N}, Pr(Ri = k) = 1/N for k = 1, ..., N . This

distribution has mean E0Ri =
1
N

N(N+1)
2

= N+1
2

. A variable U with this
distribution has

(1) E(U2) =
1

N

N
∑

k=1

k2 =
1

N

N(N + 1)(2N + 1)

6
=

(N + 1)(2N + 1)

6
.

It follows that the variance Var0(Ri) of the distribution is
(2)
(N + 1)(2N + 1)

6
−(N + 1)2

4
=

4N2 + 6N + 2− 3N2 − 6N − 3

12
=

N2 − 1

12
.

Recalling that the continuous U [a, b] distribution has a variance
(b − a)2/12, the 12 in the denominator is to be expected. Moreover,
let X have the discrete uniform distribution on {1, ..., N}, as each Ri

does. Let V have a U [−1/2, 1/2] distribution and be independent of
X. Then X + V is easily seen to have a U [1/2, N + 1

2
] distribution, so

Var(X+V ) = N2/12, while by independence, Var(X+V ) = Var(X)+
Var(V ) = Var(X) + 1/12, so Var(X) = (N2 − 1)/12, giving another
proof of (2).
We know the mean and variance of each rank Ri for i = 1, . . . ,m.

To find the mean and variance of the sum TX =
∑m

i=1 Ri, the mean is
easy, namely E0TX = m(N + 1)/2. For the variance, we need to find
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the covariances of ranks Ri and Rj for i 6= j, all of which equal the
covariance of R1 and R2. These two ranks are not independent because
they cannot have the same value. First we find E0(R1R2). To make this
easier we can express it as E0(R1E0(R2|R1)). (Using the conditional
expectation breaks the calculation into two easier ones.) We have

E0(R2|R1) =
1

N − 1

[

N(N + 1)

2
−R1

]

because, given R1, R2 can have any of the N−1 values in {1, 2, . . . , N}
other than R1, each with probability 1/(N − 1). It follows by (1) that

E0(R1R2) = E0(R1E0(R2|R1)) =
1

N − 1

[

N(N + 1)

2
· N + 1

2
− 2N2 + 3N + 1

6

]

=
1

N − 1

[

3N3 + 6N2 + 3N − (4N2 + 6N + 2)

12

]

=
1

N − 1

[

3N3 + 2N2 − 3N − 2

12

]

=
(3N + 2)(N2 − 1)

12(N − 1)
=

(3N + 2)(N + 1)

12
.

Thus under H0 the covariance of R1 and R2 is

E0(R1R2)− (E0R1)
2 =

3N2 + 5N + 2

12
− N2 + 2N + 1

4

=
3N2 + 5N + 2− 3N2 − 6N − 3

12
= −N + 1

12
,

and so for 1 ≤ i < k ≤ m

(3) Cov0(Ri, Rk) = Cov0(R1, R2) = −N + 1

12
.

By the way from (2), the standard deviation of an individual rank is
asymptotic to N/

√
12 as N → +∞ and so the correlation of two differ-

ent ranks is asymptotic to −1/N . It makes sense that the covariance
and correlation should be negative, because if one rank is large, an-
other will tend to be smaller. It also makes sense that the correlation
should approach 0 for N large, as the influence of one rank on another
becomes smaller.
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By the formula for the variance of a sum of (dependent) variables,
(2), and (3),

Var0(TX) = mVar0(R1) +m(m− 1)Cov0(R1, R2)

= m

(

N2 − 1

12

)

−m(m− 1)

(

N + 1

12

)

=
mN2 −m−m2N +mN −m2 +m

12

=
mN(N −m) +m(N −m)

12

=
(N + 1)m(N −m)

12
=

(N + 1)mn

12
,

which agrees with the formula given in Rice, Third Ed., p. 438 Theorem
A.
Under H0, TX has a distribution symmetric around its mean m(N +

1)/2, because r 7→ N + 1− r is a one-to-one transformation of the set
{1, 2, ..., N} onto itself; if each rank Ri is replaced by N +1−Ri, then
TX is changed to m(N + 1) − TX . When m and n are both large, TX

becomes approximately normal with its given mean and variance. Rice
(p. 441) says that the normal approximation works well when m and
n are both larger than 10. He also gives tables for max(m,n) ≤ 20
(covering 3 pages). For m < 10 < 20 < n one can use R.
Rice considers the statistic TY =

∑n

j=1rank(Yj). Its mean and vari-
ance under H0 equal those of TX with m and n interchanged. This
does not change the variance. One can see that because TX + TY ≡
N(N +1)/2, the sum of all N ranks, so TY ≡ N(N +1)/2−TX , so TY

and TX have the same variance.
It is arbitrary which variables are called X’s and which are called

Y ’s. For Rice’s Table 8, he instead uses n1 = min(m,n), the size of
the “smaller sample,” and n2 = max(m,n). If m = n, an arbitrary
choice is made of which sample is called smaller, say it’s the X’s. Let
R be the sum of the ranks of the elements of the smaller sample. Let
R′ = n1(N + 1) − R and R∗ := min(R,R′). Then H0 is rejected in a
two-sided test at level α if R∗ is less or equal to the critical value given
for n1, n2, and α for the two-sided test. For a one-sided test against the
alternative that the elements of the smaller sample tend to be smaller
than the elements of the other sample, use R instead of R∗, with α
for a one-sided test. For a one-sided test against the alternative that
the elements of the smaller sample tend to be larger than those of the
other sample, use R′ instead of R.
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Under H0, if the Xi are the smaller sample, TX has a distribution
symmetric around n1(N + 1)/2, and so TX has the same distribution
as R′.

3.1. The Mann–Whitney form. The statistics TX or TY are as orig-
inally defined by F. Wilcoxon. “Mann–Whitney” refers to another test
statistic defined as follows. (Rice also treats both forms, but his Ta-
ble 8 is for the Wilcoxon rank-sum form.) Assume, as we have been,
that the Xi and Yj are independent and from continuous distributions,
so that there are no ties. Let MX :=

∑m

i=1

∑n

j=1 1Yj<Xi
, called the

Mann–Whitney statistic. Symmetrically let MY :=
∑m

i=1

∑n

j=1 1Xi<Yj
.

If there are no ties then MY ≡ mn−MX . We can write the rank-sum
(Wilcoxon) statistic TX =

∑m

i=1 rank(Xi) equivalently as
∑m

i=1rank(X(i)),
recalling that ranks are in the combined sample of X’s and Y ’s. For
each i we can write rank(X(i)) = i+

∑n

j=1 1Yj<Xi
, because i is the rank

of X(i) among the X’s only, which is increased by 1 in the combined
sample for each Yj < X(i). So

TX ≡ MX +
m(m+ 1)

2
.

Since P0(Yj < Xi) = 1/2 for each i and j, we have E0MX = mn
2
.

This also fits with E0TX = m(N + 1)/2. The smallest possible value
of MX is 0 and the largest is mn. Under H0, the distribution of MX

is symmetric around its mean mn/2, by the symmetry of TX around
m(N + 1)/2. Since TX and MX differ only by a constant, they have
the same variance under H0 but different means. Tests of H0 based on
MX or TX are equivalent; Rice uses TX and R uses MX .

3.2. The Mann–Whitney–Wilcoxon test in R. In R, let x =
c(X1, ..., Xm) be one sample and y = c(Y1, ..., Yn) the other. Then
wilcox.test(x,y) performs a two-sided rank-sum test of H0, giving a
p-value. The statistic “W” R computes is the Mann–Whitney statis-
tic MX . The p-value is the probability under H0 that min(W,mn −
W ) is less than or equal to its observed value. For given x and y,
wilcox.test(x,y) and wilcox.test(y,x) will give the statistics MX and
MY respectively, but the same p-value. If there are no ties, R com-
putes MX exactly but uses a normal approximation to the p-value if
max(m,n) ≥ 50. The option wilcox.test(x,y,exact=TRUE) will try
to compute exact p-values. Systems may run out of memory in trying
this, for m and n of the order of several hundred or of “a few thousand”
depending on the system. It seems one should use “exact = TRUE” if,
for example, m is a single-digit number and n ≥ 50.
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3.3. The exact distribution of TX . Under H0, with F continuous,
the ranks of the Xi in the combined sample are a random subset of m
members of {1, 2, ...,M = m+n}. In other words, each such subset has
probability 1/

(

N

m

)

of being chosen. Thus for each possible value k of

TX , Pr0(TX = k) is
(

N

m

)−1
times the number of subsets J ⊂ {1, ..., N}

with m elements such that
∑

j∈J j = k. This can be used when m is
small, e.g. m = 1 or 2, so that a normal approximation is not accurate,
yet n is too large for Rice’s table to apply.

3.4. Insensitivity to outliers. The Wilcoxon–Mann–Whitney test,
like other nonparametric methods, is not sensitive to outliers. If one
observation is the largest, it will have rank N , and if it is made larger by
an arbitrary amount, the rank and so the test statistic will not change.
Whereas, the two-sample t-test is sensitive to outliers, beside depending
on a normality assumption in which the two normal distributions have
the same variance although they may have different means.

4. The Kolmogorov–Smirnov test

Here, as in the rank-sum test, we are given X1, ..., Xm assumed i.i.d.
(F ) and independent of Y1, ..., Yn i.i.d. (G), and again want to test the
hypothesis H0 that F = G. The test statistic will have a well-defined
distribution not depending on F underH0 as long as F is continuous, so
we will assume that. Unlike the Mann–Whitney–Wilcoxon test which
aims to detect location (shift) alternatives, the Kolmogorov–Smirnov
test works against arbitrary alternatives F 6= G. The Kolmogorov–
Smirnov test will tend to be less powerful against location alternatives.
The test works as follows. Let Fm(x) :=

1
m

∑m

i=1 1Xi≤x and Gn(x) :=
1
n

∑n

j=1 1Yj≤x be the empirical distribution functions of the two samples.

The basic test statistic is Dm,n := supx |(Fm−Gn)(x)|. The hypothesis
H0 is rejected for large enough values of Dm,n, how large depending
on m and n. By the Glivenko–Cantelli theorem (proved in graduate
probability, e.g. 18.175; Dudley, 2002, Theorem 11.4.2 p. 400), with
probability 1, supx |(Fm − F )(x)| → 0 as m → ∞ and supx |(Gn −
G)(x)| → 0 as n → ∞. If the hypothesis H0 : F = G is true, then
Dm,n will approach 0 with probability 1 as m and n both go to infinity.
Whereas, if F (x) 6= G(x) for at least one value of x, then Dm,n will not
approach 0. Thus, the test can detect any departure from H0.
Tabulation of critical values of Dm,n, say for a few values of α such as

0.05, 0.01, and 0.001, is space-consuming because of the two variables
m, n. Interpolation and extrapolation from such tables is not feasible in
general, as adjoining values of m for a given n may give quite different



SOME NONPARAMETRIC TESTS 8

behavior of Dm,n. For example if m = n = 20, then Dm,n has 21
possible values 0.05j for j = 0, 1, ..., 20 (where j = 0 could only occur
in case of [many!] ties, which should not happen for continuous F )
whereas for m = 19 and n = 20, Dm,n has many more possible values,
although not all numbers j/380 for j = 1, ..., 380 are actually possible.
To get a limiting distribution as m and n both go to infinity, the

normalized test statistic is defined as

(4) KSm,n :=

√

mn

m+ n
Dm,n.

The limiting distribution is then given by:

Theorem 1 (Smirnov, 1939). If H0 holds and F = G is continuous,
then for any M > 0,

(5) lim
m,n→∞

Pr(KSm,n ≥ M) = 2
∞
∑

k=1

(−1)k−1 exp(−2k2M2)

= 2
(

e−2M2 − e−8M2

+ e−18M2 − · · ·
)

< 2e−2M2

.

The sum in Theorem 1 converges quite fast unless M is small, so a
few terms or even the first term can give a good approximation. The
convergence to the limit as m,n → ∞, however, is slow and irregular,
because of the effects of whether the least common multiple of m and
n is large or not in relation to m and n.

4.1. The Kolmogorov–Smirnov test in R. If in R, x = c(X1, ..., Xm)
and y = c(Y1, ..., Yn), then ks.test(x,y) performs the test and gives a
p-value, with a warning in case there are any ties among the values
of Xi and Yj. According to R documentation given on two websites I
found, R finds exact p-values if mn ≤ 104 and there are no ties. For
mn > 104 it uses the asymptotic distribution given on the right side
of (5) for M = KSmn. By calling ks.test(x,y,exact = TRUE) one can
request exact p-values for any m and n. In one example, I set x =
runif(101) and y = runif(102,0.14,1.14). Then since mn > 104, the de-
fault ks.test gives the asymptotic approximation to the p-value which
was 0.05152, whereas ks.test(x,y,exact=TRUE) gave 0.04605. So ac-
cording to the exact p-value, the hypothesis F = G should be rejected
at level α = 0.05, which the asymptotic approximation does not give.
For other x and y generated the same way, ks.test(x,y) gave a p-value
0.1193, so F = G would not be rejected at level α = 0.1 using the
asymptotic approximation, whereas ks.test(x,y,exact=TRUE) gave a
p-value 0.0981 < 0.1, so F = G should be rejected at α = 0.1. For
the same x and y, wilcox.test(x,y) gave a p-value 0.02065, so F = G
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would be rejected for the more usual α = 0.05. This illustrates that for
location (shift) alternatives, which this is (U [0, 1] vs. a shift of itself to
the right by 0.14), the Mann–Whitney–Wilcoxon test is more powerful
than the Kolmogorov–Smirnov test.
Setting the boundary at mn = 104 may be excessively cautious. On

the system I use, an exact p-value for m = 2000 and n = 2001 was
done without any noticeable waiting. But for m and n much larger,
computation and memory use might be excessive.

4.2. The one-sample Kolmogorov test and inequalities. Before
N. V. Smirnov (1939) proposed the two-sample test, Kolmogorov (1933)
gave a test for the simple hypothesis HF that observed X1, ..., Xn are
i.i.d. with a distribution function F , with the test statistic Dn :=
supx |(Fn−F )(x)|, where Fn is the empirical distribution function based
on X1, ..., Xn. Kolmogorov found that under HF , if F is continuous, for
Kn :=

√
n supx |(Fn − F )(x)|, and any M > 0, Pr(Kn > M) converges

as n → ∞ to the right side of (5). Dvoretzky, Kiefer and Wolfowitz
(1956) had shown that for some constant C < +∞,

(6) Pr(Kn > M) ≤ C exp(−2M2)

for all n and for all M > 0. Moreover, Massart (1990) proved that one
can take C = 2, which is the best possible constant. An expanded proof
is given in Dudley (2014, §1.5). Note that 2 exp(−2M2) is the leading
term on the right side of (5). A question then is, under H0 : F = G,
for what C if any can one replace Kn by KSm,n. Simple examples with
1 ≤ m ≤ n ≤ 3 show that

(7) Pm,n,M := Pr(KSm,n > M) ≤ C exp(−2M2)

does not hold for C = 2. If the bound (7) holds, say with C = 2, and
if for M = KSm,n, 2 exp(−2M2) ≤ α, then in a conservative test, we
can reject H0 : F = G at level α.

4.3. The relation of the one-sample and two-sample normal-

izations. We have
√

mn

m+ n
(Fm −Gn) =

√

mn

m+ n
((Fm − F )− (Gn − F ))

=

√

n

m+ n

√
m(Fm − F )−

√

m

m+ n

√
n(Gn − F ).

Under H0 : F = G, the two one-sample processes
√
m(Fm − F )

and
√
n(Gn − F ) are independent of each other, have expectation 0

at all x, and the suprema of their absolute values each have limiting
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distributions as on the right side of (5). For any fixed x, the limit
distribution of each is N(0, F (x)(1− F (x)). Since

(√

n

m+ n

)2

+

(√

m

m+ n

)2

≡ 1,

for a fixed x the limit distribution of
√

mn
m+n

(Fm −Gn)(x) is also

N(0, F (x)(1−F (x))). One can also show that covariances ofH(x1) and
H(x2) for −∞ < x1 < x2 < +∞ are the same forH =

√

mn
m+n

(Fm−Gn)

as for H =
√
m(Fm − F ) and for H =

√
n(Gn −G), not depending on

m or n. This suggests, without proving, why (5) should hold provided
that it holds in the one-sample case for Kn =

√
nDn.

5. The Wilcoxon signed-rank test

Suppose we’ve observed pairs (Xj, Yj) which are independent be-
tween pairs, not necessarily identically distributed. The hypothesis H0

to be tested is that for each j, the distribution of (Xj, Yj) is the same as
that of (Yj, Xj). Take the differences Dj := Xj − Yj. Then H0 implies
that for each j, Dj has a distribution symmetric around 0. Find |Dj|
for j = 1, ..., n and their order statistics, which will be called

0 ≤ |D|(1) ≤ |D|(2) ≤ · · · ≤ |D|(n).
Suppose that each Dj has a continuous distribution, so that there are
no ties,

0 < |D|(1) < |D|(2) < · · · < |D|(n).
Define ranks by Rj := k if |Dj| = |D|(k). Let W+ :=

∑n

j=1 Rj1Dj>0,

the sum of the ranks of |Dj| for those j with Dj > 0. Then W+ is
called the Wilcoxon signed-rank statistic. Under H0, 1Dj>0 = 1 or 0
with probability 1/2 each, independently of each other and the Rj, in
other words these are Bernoulli (1/2) variables. Since the ranks are the
integers 1, 2, ...., n in some order, by the independence, W+ is equal in
distribution to

∑n

j=1 jBj where Bj are i.i.d. Bernoulli (1/2) variables.
It follows that under H0,

E0W+ =
n

∑

j=1

j/2 = n(n+ 1)/4,

and its variance is

Var0(W+) =
n

∑

j=1

Var(jBj) =
n

∑

j=1

j2

4
=

n(n+ 1)(2n+ 1)

24
.

It’s easily seen that under H0 the distribution of W+ is symmetric
around its mean m = n(n+1)/4, because 1−Bj are also i.i.d. Bernoulli
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(1/2) and independent of the Rj, and
∑n

j=1 j(1− Bj) = n(n+ 1)/2−
∑n

j=1 jBj = 2m−
∑n

j=1 jBj.
For n large enough, the distribution ofW+ underH0 is approximately

normal with the given mean and variance. Rice, p. 449, says n ≥ 20 is
sufficient for the normal approximation.
The test statistic W+ is used in a two-sided way: H0 is rejected if

W+ is either too large or too small, relative to its distribution under
H0.

5.1. The signed-rank test in R. R does the signed rank test, setting
x = c(X1, ..., Xn) and y = c(Y1, ..., Yn) (which must of course be two
vectors of the same length) via wilcox.test(x,y,paired=TRUE). (The de-
fault wilcox.test(x,y) with paired = FALSE does the Mann–Whitney–
Wilcoxon test.) The normal approximation is used for n ≥ 50.

5.2. The exact distribution of W+ under H0. For each set J ⊂
{1, ..., n}, the probability under H0 that Bj = 1 if and only if j ∈ J is
1/2n. For any k = 0, 1, ..., n(n + 1)/2, the probability that W+ = k is
1/2n times the number of subsets J with

∑

j∈J j = k. For example if

n ≥ 4, so n(n+ 1)/2 ≥ 10, there are two sets J over which the sum is
W+ = 4, namely {4} and {1, 3}, so P0(W+ = 4) = 2/2n. There is one
set, the empty set, over which the sum is 0, so P0(W+ = 0) = 1/2n.
For n ≤ 25, Rice, Table 9 p. A24 gives a table (the last of the tables)

for the distribution of W+. He gives Wα = k such that P0(W+ ≤ k) is
“closest to” α/2 (which is not exactly what it is in all cases). One would

then reject H0, according to Rice, if W := min
(

W+,
n(n+1)

2
−W+

)

≤
Wα. The actual size of the test might then be larger than α. For an
example (mentioned in the header of the table), if n = 8, the table
gives W0.05 = 4, where P0(W+ ≤ 4) = 7/256

.
= 0.0273 which is larger

than but closer to 0.025 than is P0(W+ ≤ 3) = 5/256
.
= 0.01953. On

the other hand, if n = 6, the table gives W0.05 = 0, where P0(W+ ≤
1) = 1/32

.
= 0.03125 which is larger than but closer to 0.025 than is

P0(W+ = 0) = 1/64
.
= 0.015625. Evidently Rice felt that in the latter

case the p-value for W+ ≤ 1 is too much larger than α/2.
Actual sizes larger than a nominal value α can also occur when p-

values are computed only by some approximation. When, as here, they
are computed exactly, it seems to me unusual to declare an outcome
significant at level α when one knows it is not.

5.3. Applications of the signed rank test. In one kind of study,
there are pairs of individuals who have been selected to be alike in some
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respects such as age, gender, and health status with respect to a condi-
tion for which there is an experimental treatment. One individual from
each pair, chosen at random, would get the treatment, and a measure-
ment for the treated individual would be Yj for the jth pair. The other
individual in the pair would not get the treatment (if it’s a medication
they might get a placebo) and Xj would be a measurement on the
untreated member of the pair. In another similar kind of study, there
would be just n individuals, and Xj and Yj would be measurements
on the jth individual before and after getting the treatment. In either
case H0 would be equivalent to the hypothesis that the treatment made
no difference. In such studies one may be interested in one-sided alter-
natives: W+ significantly larger than n(n + 1)/4 would indicate that
the Xj tend to be larger than the Yj, and W+ significantly less than
n(n+ 1)/4 would indicate that the Xj tend to be smaller than the Yj,
which could indicate either unsafety or effectiveness of the treatment
depending on which the measurement shows.

6. Normal approximations corrected for continuity

Let X be an integer-valued random variable whose distribution is
approximately normal, such as a value of a rank-sum or signed rank
statistic under H0 for large enough m,n or n respectively, or a Poisson
distribution with large λ. Let X have mean µ and standard deviation
σ, so that (X−µ)/σ has approximately a N(0, 1) distribution. Let k be
an integer such that Pr(X = k) > 0. The simple normal approximation
to Pr(X ≤ k) would be Φ((k − µ)/σ). But since X is integer-valued,
Pr(X ≤ k) = Pr(X ≤ u) for k ≤ u < k + 1. What the correction for
continuity does is to take u as the midpoint of the given interval, i.e.,
u = k + 1

2
, and so to approximate Pr(X ≤ k) by

Pr(X ≤ k) ∼ Φ

(

k + 1
2
− µ

σ

)

.

Corrections for continuity are widely adopted, as it’s believed that they
usually improve the approximation, although they don’t in all cases. In
particular, R uses corrections for continuity for normal approximations
to p-values for wilcox.test, in both the unpaired, rank-sum, and paired,
signed-rank, cases, for m and/or n above some values. When R does
so, it tells you so in the output; “with continuity correction” also alerts
you that a normal approximation is being used.
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7. Ties

Although we’ve been assuming that all observations are distinct, ties
often occur in real data, e.g. in large data sets because of rounding.
Then “tied ranks” can be assigned as follows. Let the order statistics
be

X(1) ≤ · · · ≤ X(i−1) < X(i) = X(i+1) = · · · = X(j) < X(j+1) ≤ · · · ≤ X(n).

Then the observations Xk which gave X(i), X(i+1), ..., X(j) are all as-

signed the tied rank which is the average of i, i + 1, ..., j, namely i+j

2
.

When there are ties, the distributions of all the test statistics change.
R will give warning messages saying that exact p-values cannot be com-
puted in case of ties. If m and n are large and there are only a few
ties, the distributions should not be too seriously affected.
In the signed rank test, a tie Xj = Yj within a pair is problematic

because an arbitrarily small change in Xj or Yj affects whether Dj =
Xj − Yj > 0 or not. Similarly, in the Mann–Whitney–Wilcoxon rank-
sum test, a tie Xi = Yj is problematic because arbitrarily small changes
in either can switch the Mann–Whitney statistic term 1Yj<Xi

between
0 and 1. A tie Xi = Xk or Yi = Yk doesn’t affect such terms, but it will
cause R to use a normal approximation even for small m and n, where
it may be inaccurate. One can break such ties, adding small numbers,
as long as the terms 1Yj<Xi

are unchanged.

8. Two-sample Dvoretzky–Kiefer–Wolfowitz inequalities

This is an appendix, not part of the course material. Wei and Dudley
(2011, 2012) recently showed that for m = n, (7) with C = 2 fails for
n ≤ 457 but it holds for all n ≥ 458. For n ≥ 4, the smallest n for
which H0 can be rejected, (7) holds for C = 2.16863. They also showed
for m 6= n that (7) holds with C = 2 for n ≥ 4 and 1 ≤ m < n ≤
200. Here 2 exp(−2M2) is not necessarily a good approximation to
Pm,n,M : Wei and Dudley show that for 100 < m < n ≤ 200, the ratio
2 exp(−2M2)/Pm,n,M is always at least 1.05, and for certain values of
m it is at least 1.09. So the error in the approximation is at least 5
to 10%, as it also was in the example with m = 101 and n = 102
mentioned under “The Kolmogorov–Smirnov test in R.”

9. Historical Notes

Wilcoxon (1945) first defined the rank-sum test, but only for m =
n and without developing it very much. Mann and Whitney (1947)
defined a test using their form of statistic. They noted that it was
equivalent to Wilcoxon’s rank-sum statistic up to adding a constant.
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They evaluated the mean and variance of their statistic under the null
hypothesis H0 and actually proved asymptotic normality for m and n
both large, by way of even-order moments E0((MX−E0MX)

2k) around
the mean (by the symmetry, the odd-order moments are 0).
Kolmogorov in 1933 proposed the one-sample test of the hypothesis

HF that X1, ..., Xn are i.i.d. (F ). Kolmogorov, a leading Russian prob-
abilist, had earlier published works on probability in German. In 1933
there were few statistics journals in the world, and the editor of the
Italian actuarial journal, Cantelli, was receptive to papers from Russia.
Wilcoxon (1945) first defined the signed-rank test, in the second half

of the short paper where he defined the two-sample rank-sum test.
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