LINEAR MODELS; THE SIMPLE LINEAR
REGRESSION MODEL

1. LINEAR MODELS

Suppose we have a set X, which may be the set of real numbers,
and some real-valued functions fy = 1 and fi, ..., fx which are linearly
independent, meaning that there are no constants ¢y, cy, .., cx, not all 0,
such that Zf:o ¢ifi = 0. Let x4, ..., 2, be some points of X, with k < n.
We observe some random variables Y1, Y5, ..., Y,,. The linear model for
(;,Y;), 7 =1,...,n, based on fi,..., f is that for some ¢4, ..., &, i.1.d.
N(0,0%) for some unknown o > 0, for some unknown real numbers
ai, ..., g,

k
(1) Y; :Zaifi(mj>+5j'
=0

“Linear model” means that the model is linear with respect to the
coefficients ag, ay, ...,ar. If X is a vector space, such as the real line,
the functions f; need not be linear on it.

In R, one can fit the linear model (1) to data (z;,Y;) for j = 1,...,n,
where z; are fixed non-random design points, by a command of the
form

(2) regrobj = Im(Y ~ f1,..., fi)
where “regrobj” can be replaced by any name, not already defined
in the R system, one chooses to give the regression “object”. Then
summary (regrobj) will output estimates a; of the coefficients ay (“In-
tercept”) and a; (coefficient of f;) for i = 1,..., k. Here a; are random
variables under the model, as they depend on the random e;. These
random variables will be written @}". On the other hand for given ob-
served Y7, ..., Y,, solving for the estimates a; gives constants that will
be called a?®®. The p-value of the estimate a; is the probability under
the model with a; = 0, of obtaining as large a value a; as the one
observed,

Pr(ja| > [a).
If the p-value of @ is less then 0.05, one rejects the hypothesis that
a; = 0 and decides that a; # 0.
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In the multiple regression, R outputs p-values for the hypothesis that
a; = 0 for each 7. R computes the p-values based on the assumption
that the errors ¢; are i.i.d. N(0,0?), which leads to t distributions.

2. SIMPLE AND QUADRATIC REGRESSION MODELS

In the simple linear regression model, X is the real line, K = 1, and
fi(z) = x. Thus a straight line y = a + bx or equivalently ag + a;z is
fitted to data (z;,Y;), s = 1, ..., n, in fact performing y-on-x regression.

In the quadratic regression model we have the larger model with k = 2
and fy(r) = 2. If the simple linear regression model is valid, then so
is the quadratic regression model, with as = 0. If we find in quadratic
regression that the hypothesis a; = 0 has a small p-value (say, less than
0.05) then we can reject the simple linear regression model. In R, the
special case of (2) for quadratic regression is written for example as

qobj = Im(Y~ x+I(x?))
where I(-) is the identity function but R requires it to be written.

3. RESIDUALS

Once one has fitted a linear model 1, then one has estimates a; of
the coefficients a; for i = 0,1,...., k. The residuals are the quantities
¢, =Y; =S @:fi(z;). The “summary” gives a few of the residuals:
the smallest, the lower quartile, the median, the upper quartile, and the
largest (we haven’t defined quartiles or even median yet in the course).
By the command

residuals(regrobj)
one gets a list of the residuals €1, ..., &,,. If the x; satisfy z; < 29 < --- <
Z, as they normally should, then if the residuals appear “random” it
seems that the regression has worked well. If a pattern, such as a
convex (like z%) or concave (like —z?) one, is visible in the residuals,
then the regression does not fit the data well. If the residuals are for
a simple linear regression, it seems a quadratic regression might fit the
data better.



