
LINEAR MODELS; THE SIMPLE LINEAR

REGRESSION MODEL

1. Linear models

Suppose we have a set X, which may be the set of real numbers,
and some real-valued functions f0 ≡ 1 and f1, ..., fk which are linearly
independent, meaning that there are no constants c0, c1, .., ck, not all 0,
such that

∑k

i=0
cifi ≡ 0. Let x1, ..., xn be some points of X, with k < n.

We observe some random variables Y1, Y2, ..., Yn. The linear model for
(xj, Yj), j = 1, ..., n, based on f1, ..., fk is that for some ε1, ..., εn i.i.d.
N(0, σ2) for some unknown σ > 0, for some unknown real numbers
a1, ..., ak,

(1) Yj =
k∑

i=0

aifi(xj) + εj.

“Linear model” means that the model is linear with respect to the
coefficients a0, a1, ..., ak. If X is a vector space, such as the real line,
the functions fi need not be linear on it.
In R, one can fit the linear model (1) to data (xj, Yj) for j = 1, ..., n,

where xj are fixed non-random design points, by a command of the
form

(2) regrobj = lm(Y ∼ f1, ..., fk)

where “regrobj” can be replaced by any name, not already defined
in the R system, one chooses to give the regression “object”. Then
summary(regrobj) will output estimates âi of the coefficients a0 (“In-
tercept”) and ai (coefficient of fi) for i = 1, ..., k. Here âi are random
variables under the model, as they depend on the random εj. These
random variables will be written ârvi . On the other hand for given ob-
served Y1, ..., Yn, solving for the estimates âi gives constants that will
be called âobsi . The p-value of the estimate âi is the probability under
the model with ai = 0, of obtaining as large a value âi as the one
observed,

Pr(|ârvi | ≥ |âobsi |).

If the p-value of â is less then 0.05, one rejects the hypothesis that
ai = 0 and decides that ai 6= 0.
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In the multiple regression, R outputs p-values for the hypothesis that
ai = 0 for each i. R computes the p-values based on the assumption
that the errors εj are i.i.d. N(0, σ2), which leads to t distributions.

2. Simple and quadratic regression models

In the simple linear regression model, X is the real line, k = 1, and
f1(x) ≡ x. Thus a straight line y = a + bx or equivalently a0 + a1x is
fitted to data (xj, Yj), j = 1, ..., n, in fact performing y-on-x regression.
In the quadratic regression model we have the larger model with k = 2

and f2(x) = x2. If the simple linear regression model is valid, then so
is the quadratic regression model, with a2 = 0. If we find in quadratic
regression that the hypothesis a2 = 0 has a small p-value (say, less than
0.05) then we can reject the simple linear regression model. In R, the
special case of (2) for quadratic regression is written for example as

qobj = lm(Y∼ x+I(x2))

where I(·) is the identity function but R requires it to be written.

3. Residuals

Once one has fitted a linear model 1, then one has estimates âi of
the coefficients ai for i = 0, 1, ..., k. The residuals are the quantities
ε̂j = Yj −

∑k

i=0
âifi(xj). The “summary” gives a few of the residuals:

the smallest, the lower quartile, the median, the upper quartile, and the
largest (we haven’t defined quartiles or even median yet in the course).
By the command
residuals(regrobj)

one gets a list of the residuals ε̂1, ..., ε̂n. If the xi satisfy x1 < x2 < · · · <
xn as they normally should, then if the residuals appear “random” it
seems that the regression has worked well. If a pattern, such as a
convex (like x2) or concave (like −x2) one, is visible in the residuals,
then the regression does not fit the data well. If the residuals are for
a simple linear regression, it seems a quadratic regression might fit the
data better.


