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Gamma and beta probabilities

The gamma function is defined for any a > 0 by
['(a) = / 2" te  dz. (1)
0

The integral is finite if (and only if) a > 0, because [} % 'dz = 1/a < oo,
and 2% ! < e%/2 for x large enough.

Integration by parts shows that I'(a + 1) = al'(a) for any a > 0. We have
I'(1) = 1. It follows by induction that I'(k + 1) = k! for any nonnegative
integer k.

For any a > 0 the function defined by

Yo(x) = 2 'e " /T(a) (2)

for x > 0, and 0 for x < 0, is a probability density. The corresponding
distribution is called a gamma distribution with parameter a.

If the random variable X has a gamma distribution with parameter a then
EX = asince EX =T'(a+1)/T(a). Likewise EX? =T'(a+2)/T(a) = (a+1)a
so Var(X) = a and ox = a'/2.

Recall that for any random variable X with density f and any ¢ > 0, cX
has a density ¢! f(z/c). Applying that to ¢ = 1/X for any A > 0, if X has
density 7, then X/ has the density v, defined by

Yar(z) = )\am“_le_)‘x/l“(a)

for 0 < x < 400 and 0 otherwise. A random variable Y with this density
will be said to have a gamma(a, \) distribution. It is easily seen and known
to have EY = a/\ and Var(Y) = a/)\2.

The Beta function is defined for any a > 0 and b > 0 by

1
Bla,b) = / 2971 — 2)'Vda. (3)

0
Clearly, 0 < B(a,b)< oo for any a > 0 and b > 0. Letting y := 1 — x shows

that B(b,a) = B(a,b). Let Bup(x) :== 2271(1 — 2)*"1/B(a,b) for 0 < z < 1
and 0 for ¢ <0 or x > 1. Then f3,; is a probability density. The probability



distribution with this density is called a beta distribution with parameters
a,b, or beta(a,b). Its distribution function is then defined as

L(a,b) == /0 Bup()dt, 0<a<1. (4)

The following fact relates gamma distributions with different parameters
with each other and relates gamma and beta functions.

Theorem 1 For any a > 0 and b > 0,

(a) B(a,b) = B(b,a) = [(a)T(b)/T(a +b).

(b) If X and Y are independent random variables having gamma(a, \) and
(b, \) distributions respectively, for the same A > 0, then U := X +Y has
a gamma(a + b, \) distribution.

Proof. First consider (b) and suppose A = 1. U has a density u given by a
convolution of those of X and Y, namely, for any = > 0,

u@) = [ (e = y)ul)dy

N /ox(fv —y)* ey teTvdy /(D (a)T (b))

= [N =)y (@),

The substitution y = tx, 0 <t <1 gives
= e 2" B(b,a)/(T(a)T(b)).

Since u must be a probability density, it must be the gamma(a+b, 1) density
as desired, and the normalizing constants must agree, so (a) follows. To get
(b) for a general A > 0, just consider X/ and Y/A\. O

Iterating Theorem 1, it follows that if X; are independent identically dis-
tributed variables, each having the standard exponential distribution with
density e for z > 0 and 0 for z < 0, so that the X; have gamma distribu-
tions with parameter 1, then for each n =1,2,..., 5, = X; +---+ X, has a
n density. If each X; has a v, density then S,, has a vy, density.

It is now easy to find the means and variances of beta distributions. If X
has a beta distribution with parameters a, b, in other words has distribution
function (4), then EX = B(a+ 1,b)/B(a,b). Similarly EX? =

2



B(a+2,b)/B(a,b) = ala+1)/[(a + b)(a+ b+ 1)]. Thus

ab
(a+b)?(a+b+1)

EX =a/(a+0b), Var(X) = (5)

Note that 1 — X has a beta distribution with parameters b, a. Thus E(1 —
X) = b/(a+b) which equals 1 — a/(a + b) as it should. Also, 1 — X has
the same variance as X, and so the expression for Var(X) is preserved by
interchanging a and b as it should be.

Let 0 < A < oo and let Y be a Poisson random variable with parameter
A. Then some notations are, for any integer k > 0,

k
P(k,\) = Pr(Y <k) = e N/jl,
j=0

Q(k,\) = Pr(Y > k) = e_’\i)\j/j!.
j=k

There are identities relating the Poisson and gamma distributions:

Theorem 2 For any positive integer k, if X has a v, density, we have for
any > 0,

Q(k,z) = P(X < x) (6)
and
P(k—1,2) = P(X > ). (7)
For 0 < X < oo, if Y has a g\ density and 0 <t < oo, then
P(Y <) = Q(k, M) (®)
and
P(Y >t)=P(k—1,\). 9)

Proof. To prove equation (7), differentiate with respect to = and note that
the derivative of P(k — 1,x) is

—x —x —x —x x o x o
—eT e —we + e —---—(k_l)!——(k_l)!——ﬁyk(x),

a telescoping sum. Both sides of (7) equal 1 when z = 0, so (7) follows.
Equation (6) follows by taking complements.
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Then letting Y = X/, Y has the given density, (9) follows from (7), and
(8) follows by taking complements or from (6). O

A similar identity relates beta and binomial probabilities. Let 0 < p < 1,
g =1—p, let X be a binomial (n,p) random variable and

k
B(k,n,p) = Pr(X <k) = Z 3, n,p),

E(k,n,p) = Pr(X > k) = Z Jsn, D).

Theorem 3 I[f0 <p <1, and 0 < k < n are integers, then
E(k,n,p) = L(k,n—Fk+1), if k>1;
B(k,n,p) = Li_p(n—k,k+1), if k<n.

Proof. The first equality again follows from differentiating a finite sum with
respect to p which gives a telescoping sum. The second then follows from

B(k,n,p) = E(n—k,n,1—p).
|

A x?(d) distribution, or x? distribution with d degrees of freedom, is
defined as the distribution of Z2 + --- + Z% where 7y, Zs, ..., Z4 are i.i.d.
N(0,1). The following known fact will be proved:

Theorem 4 For any positive integer d, x*(d) has a y(d/2,1/2) distribution.
Proof. First let d = 1. Let Z have N(0, 1) distribution. Then for any ¢ > 0,
PH(Z? < 1) = Pr(|Z] < Vi) = B(VE) — B(~VE)

where ® is the standard normal distribution function. Thus by the chain
rule the density of x%(1) = Z2 is

20(Vt) - (1/(2tY?) = (2mt) 1/ 2e1/2

which is the v(1/2,1/2) density, since I'(1/2) = /7 (if one did not know that,
it would follow by unique normalization of probability densities), proving the
statement for d = 1. The statement for a general positive integer d then
follows by Theorem 1(b) for A = 1/2 and induction on d. O



