
METHODS OF ESTIMATION

1. Introduction

Suppose we have an unknown parameter θ and have observed some
data X1, ..., Xn assumed to be i.i.d. with a distribution depending on
θ, and suppose we want to estimate some function g(θ). Often, simply
g(θ) = θ. If the distribution is entirely determined by θ it will be
written Pθ. Let T = T (X1, . . . , Xn) be a statistic that may be used
to estimate g(θ). There are several criteria or methods for choosing
estimators.

2. Mean-squared error

Here are two simple facts on minimizing mean-squared errors.

Proposition 1. (a) For any random variable X with E(X2) < +∞,
the unique constant x which minimizes E((X − c)2) is c = EX.
(b) For any real values X1, ..., Xn, the sum

∑n
j=1(Xj− t)2 is minimized

with respect to t for t = X.

Proof. (a) We have E((X − c)2) = E(X2) − 2cEX + c2, which goes
to +∞ when c → ±∞, so to find a minimum one can find where the
derivative with respect to c is 0, −2EX + 2c = 0, so c = EX.
(b) Similarly,

∑n
j=1(Xj − t)2 =

∑n
j=1X

2
j −2t

∑n
j=1 Xj +nt2 which goes

to +∞ when t → ±∞. The derivative gives 2nt − 2
∑n

j=1 Xj = 0 so

t = (
∑n

j=1 Xj)/n = X as stated. �

When there are Pθ depending only on θ, let Eθ be expectation when
θ is the true value of the parameter. The mean-squared error (MSE) of
T as an estimator of g(θ), at θ, is defined as Eθ((T (X)− g(θ))2). One
would like to make MSE’s as small as possible, but in general, there is
no way to choose T (X) to minimize Eθ((T (X) − g(θ))2) for all θ. To
see that, let c be any value such that g(θ0) = c for some θ0. Then the
trivial estimator T ≡ c minimizes the MSE for θ = θ0, while for other
values of θ, the estimator can have large MSE.
Define the bias b(θ) := bT (θ) of T as an estimator of g(θ) to be

bT (θ) := EθT −g(θ). For a given value of θ, a statistic T has a variance
defined by Varθ(T ) = Eθ((T − EθT )

2). We then have for any statistic
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T such that Eθ(T
2) < +∞ for all θ, and function g(θ), that the MSE

equals the variance plus the bias squared:

(1) Eθ((T − g(θ))2) = Varθ(T ) + bT (θ)
2,

because in Eθ([(T (X)− EθT ) + (EθT − g(θ))]2) we have
Eθ((T (X) − EθT )(EθT − g(θ)) = 0, as for fixed θ, the latter factor is
a constant.
Equation (1) is sometimes called the “bias-variance tradeoff”. In

minimizing the MSE one would like both the variance and the bias
to be small. In an older tradition, one first looked for estimators for
which the bias is 0, then tried to minimize their variance. That does
not always work well, however, as we’ll see.

2.1. Unbiased estimation. An estimator T of g(θ) is said to be un-
biased if for all θ, EθT = g(θ). In other words, the bias bT (θ) = 0 for
all θ. The sample mean X is an unbiased estimator of the true mean
µ for any distribution having a finite mean. For the variance we have,
recalling the sample variance defined as, for n ≥ 2,

s2X =
1

n− 1

n
∑

j=1

(Xj −X)2.

Proposition 2. For any n ≥ 2 and any X1, ..., Xn i.i.d. with E(X2
1 ) <

+∞ and so having a finite variance σ2, E(s2X) = σ2, so s2X is an
unbiased estimator of σ2.

Proof. Let µ = EX1 and let Yj := Xj − µ for j = 1, ..., n. Then
Yj are i.i.d. with the same variance σ2. We have Y = X − µ and
Yj − Y = Xj − X for each j. Thus s2Y = s2X , so we can assume that
µ = 0. We then have

n
∑

j=1

(Xj −X)2 =
n
∑

j=1

X2
j − 2

n
∑

j=1

XjX + nX
2
.

Since
∑n

j=1Xj = nX and E(X
2
) = σ2/n, the expectation of the dis-

played sum is nσ2 − n(σ2/n) = (n − 1)σ2. The statement follows.
�

3. Maximum likelihood estimation

Let f(x, θ) be a family of probability densities or mass functions
indexed by a parameter θ. Given X1, ..., Xn assumed to be i.i.d. f(x, θ),
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we can form the likelihood function

(2) f(X, θ) :=
n
∏

j=1

f(Xj, θ).

A maximum likelihood estimator of θ, depending on X, is a value of
θ that maximizes f(X, θ), called the maximum likelihood estimator
(MLE) if it is unique, and then a function T (X) of X.

3.1. The binomial case. An easy case of maximum likelihood esti-
mation is for the binomial parameter p with 0 ≤ p ≤ 1. Suppose
we observe X successes in n independent trials with probability p of
success on each. The likelihood function is

(

n
X

)

pX(1 − p)n−X . The bi-

nomial coefficient
(

n
X

)

doesn’t affect the maximization so let’s omit it.
If X = 0 we get (1 − p)n, maximized when p = 0. If X = n it is
pn, maximized when p = 1. For 0 < X < n, the likelihood function
approaches 0 when p → 0 or 1, so to find a maximum in 0 < p < 1,
setting the derivative with respect to p equal to 0 gives

0 = XpX−1(1− p)n−X − pX(n−X)(1− p)n−X−1

= X(1− p)− (n−X)p = X − np,

so p = p̂ = X/n, the usual and natural estimate of p, also when X = 0
or n. By the way p̂ is also an unbiased estimate of p.

3.2. The case of normal distributions.

Proposition 3. For X1, ..., Xn i.i.d. N(µ, σ2), with −∞ < µ < +∞
and 0 < σ < +∞, the MLE of µ is X, and if n ≥ 2 the MLE of σ2 is
1
n

∑n
j=1(Xj −X)2.

Proof. The likelihood function is

(3)
1

(σ
√
2π)n

exp

(

−
∑n

j=1(Xj − µ)2

2σ2

)

for 0 < σ < ∞ and −∞ < µ < ∞. For fixed σ > 0 and Xj , to
maximize with respect to µ is equivalent to minimizing

∑n
j=1(Xj −µ)2

which gives µ = X by Proposition 1(b).
To maximize a likelihood, which is positive, is equivalent to maximiz-

ing its log, called the log likelihood. With probability 1, since n ≥ 2,
the Xj are not all equal, so

∑n
j=1(Xj − X)2 > 0. In this case the

log likelihood, maximized with respect to µ, equals, up to a constant
(−n/2) log(2π) which doesn’t affect the maximization,

−n log(σ)−
n
∑

j=1

(Xj −X)2/(2σ2).
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As σ decreases down to 0, the first term goes to +∞, but the second
term goes to −∞ faster, so the log likelihood goes to −∞. As σ
increases up to +∞, the second term goes to 0 and the first to −∞.
So for a maximum, set d/(dσ) = 0 and get

−
n

σ
+

n
∑

j=1

(Xj −X)2/σ3.

Multiplying by σ3 and solving gives

σ2 =
1

n

n
∑

j=1

(Xj −X)2,

which is therefore the MLE of σ2 as stated. �

Proposition 3 is Example B in Rice, p. 269. MLEs of parameters of
other families such as Poisson and geometric are also easy to find, where
the parameter space for the geometric case is 0 < p ≤ 1, and for the
Poisson case it’s 0 ≤ λ < +∞. In these cases, all with one-dimensional
parameters, the MLE may be on the boundary of the parameter space.
When it’s in the interior it can be found by setting a derivative of the
likelihood function, or its log, equal to 0.

4. Method of moments estimation

If a family of distributions has just a one-dimensional parameter θ,
and EθX is a function g(θ), then the method of moments estimate of
θ is to choose it, if possible, such that X = g(θ). Applying this to a
binomial (n, p) distribution, one can consider Sn =

∑n
j=1Xj where Xj

are i.i.d. Bernoulli(p), i.e. X1 = 1 with probability p and 0 otherwise.
Then Sn is a binomial (n, p) variable. For a fixed n we called this
binomial random variable X. Then p̂ = X/n = Sn/n is the usual
estimate of p. It is seen above to be an unbiased estimate and the
maximum likelihood estimate. We now see that it is also the method
of moments estimate.
If θ is a 2-dimensional parameter, as for normal, gamma, and beta

distributions, and the mean is a function µ(θ), while the variance is a
function σ2(θ), the method of moments estimate of θ is a value, if it
exists and is unique, such that µ(θ) = X and σ2(θ) = 1

n

∑n
j=1(Xj−X)2.

The latter would be the variance of a discrete distribution, which is the
sum of point masses 1/n at each Xj, called the empirical distribution
Pn. That may be a reason for choosing the factor 1/n in the method
of moments.
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5. Estimation of the normal variance

Given X1, ..., Xn i.i.d., assumed to be N(µ, σ2) for some unknown
µ and σ, X as an estimator of µ is the MLE, is unbiased, and is the
method of moments estimator. For σ2, consider estimators cn

∑n
j=1(Xj−

X)2. Then cn = 1/(n− 1) gives an unbiased estimator of σ2, not only
for normals but for any distribution having finite variance. The MLE
is given by cn = 1/n by Proposition 3 and so is the method of moments
estimate.
The next fact is not at all important in itself. It illustrates further

that different factors cn may be multiplied by
∑n

j=1(Xj −X)2 to esti-

mate σ2 by different criteria: 1/(n−1) for unbiasedness, 1/n for normal
MLE or method of moments, and 1/(n+ 1) in the next fact. All these
cn satisfy ncn → 1 as n → ∞. Yet another choice of cn comes up in
the next section.

Proposition 4. To minimize Eθ((T (X) − σ2)2) for n ≥ 2, for esti-
mators of the form T (X) = cn

∑n
j=1(Xj −X)2, for any θ = (µ, σ), the

best value of cn is cn = 1/(n+ 1).

Proof. If Z is a N(0, 1) variable, to find E(Z4), one can use inte-
gration by parts. Let φ(z) be the standard normal density, φ(z) =
(2π)−1/2 exp(−z2/2). Then

E(Z4) =

∫

∞

−∞

z4φ(z)dz = −
∫

∞

−∞

z3dφ(z) = 0 + 3

∫

∞

−∞

z2φ(z)dz = 3.

It follows that Var(Z2) = Var(χ2(1)) = 3− 1 = 2, and so Var(χ2(d)) =
2d for any positive integer d.
IfX1, . . . , Xn are i.i.d.N(µ, σ2) for some unknown µ and σ2,

∑n
j=1(Xj−

X)2/σ2 has a χ2 distribution with n− 1 degrees of freedom, which has
mean n− 1 and variance 2(n− 1). So the MSE of our estimator is

σ4E
[

(

cnχ
2(n− 1)− 1

)2
]

= σ4
[

c2n
(

(n− 1)2 + 2n− 2
)

− 2cn(n− 1) + 1
]

= σ4
[

(n2 − 1)c2n − (2n− 2)cn + 1
]

.

The quantity in square brackets goes to +∞ as cn → ±∞, because n ≥
2, so it is minimized when its derivative is 0, 2cn(n

2−1)− (2n−2) = 0.
Factoring out 2n− 2 > 0 gives cn = 1/(n+ 1) as claimed. �

So by four different criteria, the selected values of cn are 1/(n − 1),
1/n, and 1/(n+ 1) (only two of the criteria agree).
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6. Inadmissibility and the variance

An estimator T (X) is called inadmissible as an estimator of g(θ), for
mean-squared error, if there is another estimator U(X) such that:
(i) Eθ[(U(X)− g(θ))2] ≤ Eθ[(T (X)− g(θ))2] for all θ, and
(ii) Eθ[(U(X)− g(θ))2] < Eθ[(T (X)− g(θ))2] for some θ.

If there is no such U then T is called admissible.
Surprisingly, the usual sample variance s2X turned out to be inad-

missible as an estimator of the true variance σ2 under very general
conditions, as Yatracos (2005) showed. Again consider estimators

cn

n
∑

j=1

(Xj −X)2

of σ2, where we know that cn = 1/(n − 1) gives an unbiased estima-
tor of σ2 whenever it is finite, whereas cn = 1/n gives the maximum
likelihood estimator for normal distributions and the statistic used in
method-of-moments estimation. Yatracos proved the following fact: let
X1, ..., Xn be i.i.d. with any distribution such that E(X4

1 ) < ∞, Xj are
not constant, and in a family such that for any c with 0 < c < ∞, the
distribution of cX1 is also in the family. Then the classical sample vari-
ance s2X with cn = 1/(n− 1) is inadmissible as an estimator of the true
variance. An estimator with smaller mean-squared error is obtained by
taking

(4) cn =
n+ 2

n(n+ 1)
.

Of course, the resulting estimator has a non-zero bias, but the bias
becomes very small as n becomes large and the reduction in variance is
enough to make the total MSE smaller. In detail, Yatracos’s theorem
is as follows:

Theorem 1 (Yatracos). There is a constant dn depending on n, namely

dn = (n+2)(n−1)
n(n+1)

, such that for any n ≥ 2 and for all X1, ..., Xn i.i.d.

with E(X4
1 ) < +∞ and variance σ2 with σ > 0, the mean-square error

of dns
2
X as an estimator of σ2 is less than that of s2X , that is,

E
(

(dns
2
X − σ2)2

)

< E(
(

s2X − σ2)2
)

.

A proof is given in www-math.mit.edu/∼rmd/466/yatracos.pdf.
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It is not claimed that the factor given by (4) is in any way optimal. In
fact for normal distributions we know by Proposition 4 that 1/(n+ 1)
is optimal. The Yatracos estimator may itself be inadmissible. All
that Yatracos’s theorem says is that his factor is always better, under
the given very general conditions, for purposes of estimating σ2 with
smaller mean-squared error, than the classical factor 1/(n− 1).
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