
THE DELTA-METHOD, MULTINOMIAL

DISTRIBUTIONS, AND AN EXAMPLE: STANDARD

ERROR OF LOG ODDS RATIOS

1. Notations with O and o

If g > 0 then f = o(g) means that f/g → 0 either as x → +∞,
x → 0, or whatever condition is specified, while f = O(g) means that
f/g stays bounded, namely lim sup |f |/g < +∞ under a given limit
condition. The same notations also apply to sequences indexed by an
integer n → ∞, e.g. an = o(bn) is used for bn > 0 and means an/bn → 0.
There are corresponding notions “in probability:” if Un is a se-

quence of random variables and an a sequence of constants > 0 then
Un = Op(an) means that for every ε > 0 there is an M such that
Pr(|Un|/an > M) < ε for all n. Un → 0 in probability means that for
every ε > 0, Pr(|Un| > ε) → 0 as n → ∞. Un = op(an) means that
Un/an → 0 in probability.

2. The delta-method

The delta-method gives a way that asymptotic normality can be
preserved under nonlinear, but differentiable, transformations. The
method is well known; one version of it is given in J. Rice, Mathemat-

ical Statistics and Data Analysis, 3d. ed., 2007, §4.6, including second
derivatives. Here, first a simple form of it using only a first derivative,
for functions of one variable, will be given. A multidimensional version
is used in Section 3.7 of Mathematical Statistics, 18.466 course notes
by R. Dudley, on the MIT OCW website (2003). For multinomial dis-
tributions, applications will be given to chi-squared statistics and odds
ratios.

Theorem 1. Let Yn be a sequence of real-valued random variables such

that for some µ and σ,
√
n(Yn−µ) converges in distribution as n → ∞

to N(0, σ2). Let f be a function from R into R having a derivative f ′(µ)
at µ. Then

√
n[f(Yn) − f(µ)] converges in distribution as n → ∞ to

N(0, f ′(µ)2σ2).

Remarks. In statistics, where µ is an unknown parameter, one will
want f to be differentiable at all possible µ (and preferably, for f ′ to
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be continuous, although that is not needed in the proof). An example
of Yn satisfying the conditions is: let X1, ..., Xn, ... be i.i.d. random
variables with finite mean µ and variance σ2, and let Yn be the sample
mean Yn = (X1 + · · ·+Xn)/n.

Proof. We have Yn − µ = Op(1/
√
n) as n → ∞. Also, f(y) =

f(µ) + f ′(µ)(y − µ) + o(|y − µ|) as y → µ by definition of derivative.
Thus

f(Yn) = f(µ) + f ′(µ)(Yn − µ) + op(|Yn − µ|),
so √

n[f(Yn)− f(µ)] = f ′(µ)
√
n(Yn − µ) +

√
nop(1/

√
n).

The last term is op(1), so the conclusion follows. �

3. Multinomial distributions

First let n = 1. For any set (event) A let 1A be its indicator func-
tion, so that 1A(x) = 1 if x is in A and 0 otherwise. For a given
probability P , the covariance of two indicator functions is clearly given
by Cov(1A, 1B) = P (A ∩ B) − P (A)P (B). In two special cases, for
A = B we get Var(1A) = P (A)− P (A)2 = P (A)[1− P (A)], the known
variance of a Bernoulli variable. If A and B are disjoint, i.e. A ∩ B is
empty, then Cov(1A, 1B) = −P (A)P (B).
Suppose on n = 1 trial there are k distinct possible outcomesA1, ..., Ak

with probabilities P (Ai) = pi for i = 1, ..., k. Define a k-dimensional
random vector X = (x1, ..., xk) such that xj = 1 if Aj occurs and xj = 0
otherwise, in other words xj = 1Aj

. Now suppose X1, ..., Xn are n i.i.d.
(independent and identically distributed) k-dimensional random vec-
tors each having the same distribution as X. Let Sn =

∑n

i=1
Xi =

(n1, ..., nk). Then, clearly, n1, ..., nk have a multinomial distribution for
n trials with probabilities (p1, ..., pk).
When two independent real variables with finite variances are added,

their means and variances add. Similarly, when independent vector-
valued variables (U1, ..., Uk) and (V1, ..., Vk) are added, their mean vec-
tors are added and so are their covariance matrices, in other words for
any r, s = 1, ..., k,

Cov(Ur + Vr, Us + Vs) = Cov(Ur, Us) + Cov(Vr, Vs)

because the covariances of independent variables are 0. So, if we add
n i.i.d. vector random variables, specifically the X1, ..., Xn mentioned
previously, the mean vector and covariance matrix of their sum Sn are
just n times the corresponding quantities for X1.
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Let’s recall a few facts that were used in finding the asymptotic
χ2(k − 1) distribution of the X2 statistic of a simple multinomial hy-
pothesis H0: (n, p1, ..., pk) when H0 is true. The known mean vector of
the random (n1, ..., nk) is then E(n1, ..., nk) = n(p1, ..., pk) and the vari-
ance Var(nj) = npj(1−pj) for j = 1, ..., k, which we know since nj is bi-
nomial (n, pj). For r 6= s, we get the covariance Cov(nr, ns) = −nprps.
Let Yr = (nr − npr)/

√
npr for r = 1, ..., k. Then each Yr has mean

0 and variance 1 − pr. For r 6= s, Cov(Yr, Ys) = −√
prps. Thus the

covariance matrix of Y = (Y1, ..., Yk) is given by Crs = δrs −
√
prps

where δrs = 1 for r = s and 0 otherwise (Kronecker delta).

4. Confidence intervals for odds ratios

Here we have a multinomial distribution with k = 4 categories, writ-
ten in terms of a 2 × 2 table, with probabilities (p00, p01, p10, p11) and
observed numbers (n00, n01, n10, n11). Odds ratios can be defined for π
models, but assume here we have a full multinomial model. The odds
ratio is defined as ∆ = p00p11/(p01p10) and the usual estimate of it,
which is the maximum likelihood estimate under the full multinomial
model, is ∆̂ = n00n11/(n01n10). According to the independence hy-
pothesis H0: pij ≡ pi·p·j , we would have ∆ = 1. But supposing H0 is

rejected, then we’d like to get not only the estimate ∆̂ but a confidence
interval for ∆.
To reduce indices, let’s replace indices 00 by 1, 10 by 2, 01 by 3,

and 11 by 4, so that ∆ becomes p1p4/(p2p3) and ∆̂ = n1n4/(n2n3).
Let Zi = (ni − npi)/

√
n for i = 1, ..., 4, or Zi =

√
piYi in terms of

the Yi previously defined. We have Cov(Zr, Zs) = prδrs − prps for any
r, s = 1, ..., 4. As n becomes large, (Z1, ..., Z4) has approximately a
normal distribution with mean 0 and the same covariance. We have
ni = npi +

√
nZi for i = 1, ..., 4. Then

ni

n
= pi

(

1 +
Zi

pi
√
n

)

.

Taking logs of both sides, and using the fact that log(1 + x) ∼ x as
x → 0 (with an error of order x2, by a Taylor series with remainder) we
get that log(ni/n) = log(pi) +Zi/(pi

√
n) + εi where each εi = Op(1/n)

as n → ∞.
If in the definition of ∆̂ we replace each ni by ni/n then it is un-

changed. It follows that

log(∆̂) = log(∆) +
1√
n

(

Z1

p1
+

Z4

p4
− Z2

p2
− Z3

p3

)

+ ε
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with ε = Op(1/n). Thus, by the delta-method theorem, log(∆̂) is
asymptotically normal with mean log(∆). Note that the derivative of
the log function at 1 is 1, so the f ′(µ)2 factor equals 1. We have a sum
of four terms (in parentheses), plus ε of smaller order which becomes
negligible for large n (

√
nε = Op(1/

√
n)). For the four terms, first,

adding their variances gives
4
∑

r=1

1− pr
npr

=
1

n

(

−4 +
4
∑

r=1

1

pr

)

.

We also have to add covariance terms, each multiplied by 2. For each
r 6= s we have Cov(Zr, Zs) = −prps and so Cov(Zr/pr, Zs/ps) = −1. In
the six covariances of the four terms we have two coming from terms of
the same sign, (1,4) and (2,3), and the other four from terms of opposite
sign. So the covariances contribute 2(2 − 4)(−1/n) = +4/n to the
total variance, which cancels the preceding −4/n, and the asymptotic

variance of log(∆̂) is

1

n

(

4
∑

r=1

1

pr

)

.

Here pr are the unknown probabilities, and we estimate each term npr
by its MLE which is the observed nr. Then taking the square root,
we get that log(∆̂) is asymptotically normal with mean log(∆) and
standard deviation (standard error in this case) estimated by

√

√

√

√

4
∑

r=1

1

nr

.

Based on the normal distribution, this gives us confidence intervals for
log(∆) and then exponentiating, for ∆ itself.
If any nij is small, for example less than 5, the normal approxima-

tion is questionable and the standard error is large, so the estimate
is uncertain. If all four nij are large, as in some data to be given for
hospitalized Medicare patients, then the normal approximation should
be quite good.
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