
THE χ2 TEST OF SIMPLE AND COMPOSITE

HYPOTHESES

1. Multinomial distributions

Suppose we have a multinomial (n, π1, ..., πk) distribution, where πj

is the probability of the jth of k possible outcomes on each of n inde-
pendent trials. Thus πj ≥ 0 and

∑k

j=1 πj = 1. Let Xj be the number
of times that the jth outcome occurs in n independent trials. Then for
any integers nj ≥ 0 such that n1 + · · ·+ nk = n, we have

P (Xj = nj , j = 1, ..., k) =

(
n

n1, ..., nk

)
πn1

1 πn2

2 · · · πnk

k .

Recall that multinomial coefficients are defined by
(

n

n1,...,nk

)
= n!

n1!n2!···nk!

if nj ≥ 0 are integers with
∑k

j=1 nj = n, or 0 if
∑k

j=1 nj 6= n. In
statistics, the values π1, ..., πk are unknown. If we make no further
hypothesis about them, we have the “full multinomial model” which
has dimension d = k − 1 due to the one constraint

∑k

j=1 πj = 1.

A random variable X is binomial(n, p) if and only if (X,n − X) is
multinomial (n, p, 1− p). On the other hand if (X1, ..., Xk) is multino-
mial (n, p1, ..., pk) then for each j, Xj is binomial (n, pj).

2. Simple multinomial hypotheses

Suppose we have a simple hypothesis H0 specifying the πj, namely
πj = pj for j = 1, ..., k. For example, in rolling a die, there are k =
6 possible outcomes (faces of a cube) numbered from 1 to 6, and a
simple hypothesis would be that the dice are “fair,” namely that πj =
1/6 for j = 1, ..., 6. In Weldon’s dice data, in 315672 individual dice
throws, the outcome “5 or 6” occurred 106602 times. For a fair die
the probability of “5 or 6” is 1/3, but from Weldon’s data the point
estimate of π5 + π6 is about 0.3377 and the 99% confidence interval
(which can be found in this case by the plug-in method) excludes 1/3.
In fact for fair dice, the probability of “5 or 6” occurring 106602 or
more times is E(106602, 315672, 1/3)

.
= 1.02 · 10−7. (On real dice, the

faces are marked by hollowed-out pips, so the higher-numbered 5 and
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6 faces are a little lighter than the others, and the opposite 1 and 2
faces a little heavier, unless some compensation is made.)
Or, for a human birth, consider the two possible outcomes female or

male. A simple hypothesis was that each had probability 1/2, but for
a large enough n, it has been estimated that the natural probability
of a female birth is about 0.488. (The fraction may vary with time or
between populations, according to Web sources.) Both these examples
reduced to binomial probabilities.

2.1. The χ2 test of a simple multinomial hypothesis. How can
one test a simple hypothesis about multinomial probabilities for general
k? The chi-squared test is as follows.
If values X1, X2, ..., Xk are observed, and a simple hypothesis H0

specifies values πj = pj with pj > 0 for all j = 1, ..., k, then the X2

statistic for testing H0 is

X2 =
k∑

j=1

(Xj − npj)
2

npj
.

A shorthand notation for X2 is
∑ (O−E)2

E
where O = “observed” and

E = “expected.”

Theorem. If the hypothesis H0 is true, then as n → ∞, the distribu-
tion of X2 converges to that of χ2(k − 1), i.e. χ2 with k − 1 degrees of
freedom.

Rule for application: A widely accepted rule is that the approximation
of X2 by a χ2(k − 1) distribution is good enough if all the expected
numbers npj are at least 5.

Remarks. For each j, the (marginal) distribution of Xj is binomial
(n, πj), where πj = pj under H0. Thus EXj = npj and E((Xj −
npj)

2) = npj(1 − pj). In order for Xj to be approximately normal,
we need npj(1− pj) to be large enough and so npj to be large enough.
Another way to see that npj should not be small is that if it is, since Xj

has integer values, there will be relatively wide gaps between adjacent
possible values of (Xj−npj)

2/(npj), making the distribution of X2 too
discrete, and so not close to the continuous distribution of χ2.
The quantities Xj − npj are not linearly independent, since∑k

j=1Xj − npj = n− n = 0. We have E0(X
2) =

∑k

j=1 1− pj = k − 1,

which equals the expectation of a χ2(k − 1) random variable.

Proof. Under H0, the random vector (X1, ..., Xk) has a multinomial
(n, p1, ..., pk) distribution. Let’s find the covariance of Xi and Xj for
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i 6= j. If we can do that for i = 1 and j = 2 we can extend the result
to any i and j.
Let q1 := 1 − p1. Given X1, the conditional distribution of X2 is

binomial (n−X1, p2/q1). Thus E(X2|X1) = (n−X1)p2/q1 and

E(X1X2) = E(X1E(X2|X1)) = n2p1p2/q1 − p2q
−1
1 EX2

1 .

Since EX2
1 = Var(X1) + (EX1)

2 = np1q1 + n2p21 we get

E(X1X2) =
n2p1p2 − n2p21p2

q1
− np1p2 = (n2 − n)p1p2,

which is symmetric in p1 and p2 as it should be. It follows that
Cov(X1, X2) = −np1p2. It’s natural that this covariance should be neg-
ative since for larger X1, X2 will tend to be smaller. For 1 ≤ i < j ≤ n
we have likewise Cov(Xi, Xj) = −npipj.
Let Yj := (Xj−npj)/

√
npj for j = 1, ..., k. Then X2 = Y 2

1 + · · ·+Y 2
k .

For each j we have EYj = 0 and EY 2
j = qj := 1− pj. We also have for

i 6= j

EYiYj = Cov(Yi, Yj) = Cov(Xi, Xj)/(n
√
pipj) = −√

pipj.

Recall that δij = 1 for i = j and 0 for i 6= j. As a matrix, Iij = δij
gives the k × k identity matrix. We have

Cij := EYiYj = Cov(Yi, Yj) = δij −
√
pipj

for all i, j = 1, ..., k. Let up be the column vector (
√
p1, ...,

√
pk)

′. This
vector has length 1. We can then write C = I − upu

′

p as a matrix.
Let’s make a change of basis in which up becomes one of the basis
vectors, say the first, e1, and e2, ..., ek are any other vectors of unit
length perpendicular to each other and to e1. In this basis C becomes
D = I − e1e

′

1 which is a diagonal matrix, in other words Dij = 0 for
i 6= j. Also D11 = 0, and Djj = 1 for j = 2, ..., k.
Let the vector Y = (Y1, ..., Yk) in the new coordinates become Z =

(Z1, ..., Zk), where EZj = 0 for all j and the Zj have covariance matrix
D.
As n → ∞, by the multidimensional central limit theorem (proved

in 18.175, e.g. in Professor Panchenko’s OCW version of the course,
Spring 2007), (Z1, Z2, ..., Zk) asymptotically have a multivariate normal
distribution with mean 0 and covariance matrix D, in other words
Z1 ≡ 0 and Z2, ..., Zk are asymptotically i.i.d. N(0, 1). Thus X2 =
|Y |2 = |Z|2 = Z2

2 + · · ·+Z2
k has asymptotically a χ2(k−1) distribution

as n → ∞, Q.E.D.
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3. Chi-squared tests of composite hypotheses

In doing a chi-squared test of a composite hypothesis H0: πj = pj(θ)
indexed by an m-dimensional parameter θ, two kinds of adjustment

may be made. If we estimate θ by some θ̂ and find the chi-squared
statistic

X̂2 =
k∑

j=1

(Xj − npj(θ̂))
2

npj(θ̂)
,

the usual rule is that if H0 holds, for n large enough, this should have
approximately a χ2 distribution with k−1−m degrees of freedom. For

that to be valid, we need that all expected numbers npj(θ̂) ≥ 5, and

that θ̂ is a suitable function of the statistics X1, ..., Xk. Two suitable

estimators for this are the minimum chi-squared estimate, where θ̂ is

chosen to minimize X̂2, or the maximum likelihood estimate θ̂MLE

based on the given data X1, ..., Xk.
As the dimension d of the full multinomial model is k−1, the χ2(d−

m) distribution is the same as the asymptotic distribution for large n
of the Wilks statistic for testing an m-dimensional hypothesis included
in an assumed d-dimensional model. We will see in another handout
that this is not just a coincidence.
In a file called “χ2 tests for composite hypotheses – asymptotic dis-

tributions,” posted on the course website as compos-chisqpfs.pdf, The-
orem 1 proves under some assumptions, so that pj(θ) depend in a suit-

ably smooth way on θ, that the distribution of X̂2 = X̂2
MLE using θ̂MLE

does converge to that of χ2(k−1−m) as n → ∞. Theorem 11 of that file

proves that moreover, for any θ̂min (depending on n) that minimize(s)

X̂2 for the given (X1, ..., Xn), giving X̂2
min, the difference between the

two statistics X̂2
MLE − X̂2

min converges to 0 in probability as n → ∞,

meaning that for any ε > 0, the probability that |X̂2
MLE − X̂2

min| > ε

converges to 0 as n → ∞. It follows that the distribution of X̂2
min also

converges to that of χ2(k−1−m). Although θ̂min is usually not easy to

compute, we know that for an arbitrary estimate θ̂ of θ, the X̂2 based

on θ̂ is at least as large as X̂2
min, and we will use that.

Another adjustment that’s made is that if the expected numbers

npj(θ̂) in some categories are less than 5, we can combine categories
until all the expectations are larger than 5. When the categories are
subintervals (or half-lines) of the line or of the nonnegative integers,
only adjacent intervals should be combined, so that the categories re-
main intervals.
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4. Grouped vs. ungrouped data

Suppose we combine categories, which certainly will happen if we
start with infinitely many possible outcomes, as in a Poisson or geo-
metric distribution where the outcome can be any nonnegative integer.
Then when we come to do the test, the Xj will no longer be the original
observations V1, . . . , Vn, which may be called the ungrouped data, but
they’ll be what are called grouped data.
Another way data can be grouped is that V1, ..., Vn might be real

numbers, for example, and we want to test by χ2 whether they have
a normal N(µ, σ2) distribution, so we have an m = 2 dimensional pa-
rameter. One can decompose the real line into k intervals (the leftmost
and rightmost being half-lines) and do a χ2 test. Here the numbers Xi

of observations in each interval are already grouped data. (This way
of testing normality is outdated now that we have the Shapiro–Wilk
test.)
It tends to be very convenient to estimate the parameters based on

ungrouped data, for all the cases mentioned (normal, Poisson, geomet-
ric) and hard to estimate them using grouped data. Unfortunately
though, using estimates based on ungrouped data, but doing a chi-
squared test on grouped data, violates the conditions for the X2 statis-
tic to have a χ2 distribution with k − 1 − m degrees of freedom, as
many textbooks have claimed it does, although Rice, third ed., p. 359,
correctly points out the issue. He also says “it seems rather artificial
and wasteful of information to group continuous data.” The problem
is that the ungrouped data have more information in them than the
grouped data do, and consequently, if the hypothesis H0 is true, an
estimate θ̃ based on the ungrouped data tends to be closer to the true

value θ0 of the parameter than the estimate θ̂ based on the grouped
data would be, and consequently farther from the observations, in the
sense measured by the X2 statistic.
Let θ̃ be an estimate of θ based on ungrouped data and let

X̃2 =
k∑

j=1

(Xj − npj(θ̃))
2

npj(θ̃)
.

Chernoff and Lehmann (1954, Theorem 1) prove, under some regularity

conditions, the following. Let θ̃ be the maximum likelihood estimator
of θ based on the ungrouped data, and suppose the given composite
hypothesis H0 that {πj}kj=1 = {pj(θ0)}kj=1 for some θ0 is true. Then as
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n → ∞, the distribution of X̃2 converges to that of

ξ2(θ0) =
k−m−1∑

j=1

Z2
j +

k−1∑

j=k−m

λj(θ0)Z
2
j

where Z1, ..., Zk−1 are i.i.d N(0, 1) and 0 ≤ λj(θ0) ≤ 1 for j = k −m,
k − m + 1, ..., k − 1. The values of λj all satisfy 0 < λj < 1 in an
example given by Chernoff and Lehmann, p. 586. In general we have

χ2(k −m− 1) =
k−m−1∑

j=1

Z2
j ≤ ξ2(θ0) ≤

k−1∑

j=1

Z2
j = χ2(k − 1),

and so for the 1− α quantiles,

(1) χ2
1−α(k −m− 1) ≤ ξ21−α(θ0) ≤ χ2

1−α(k − 1).

It is hard to get any information about the quantiles ξ21−α(θ0) better
than (1) because of the dependence on the unknown θ0. From (1) we
can conclude:
If X̃2 > χ2

1−α(k − 1), it follows that X̃2 > ξ21−α(θ0), so H0 should be
rejected.
On the other hand if X̃2 < χ2

1−α(k − m − 1), it follows that X̃2 <
ξ21−α(θ0), so we can decide not to reject H0. Another way to see this

is that by definition of minimum chi-squared estimate θ̂ based on the
grouped data, we know that X̂2

min ≤ X̃2, and under H0, X̂
2 has as

n → ∞ a χ2(k− 1−m) distribution, so using X̂2
min we wouldn’t reject

H0. This is true if θ ∈ H0 is estimated by any method, not only by
maximum likelihood based on ungrouped data.

If X̃2 is in an intermediate range

χ2
1−α(k −m− 1) < X̃2 < χ2

1−α(k − 1)

then one is uncertain whether H0 should be rejected, in other words
whether the p-value of the test is less than α or not. Then one might
do more computation, to evaluate the MLE or minimum chi-squared

estimate θ̂ of the parameter θ based on the grouped data Xj. It seems
that these estimates may be difficult to compute by methods based on
derivatives such as Newton’s method or gradient descent. One may
then use a search method with randomization, such as simulated an-
nealing, but we won’t go into that in this course.
If the computation is done, and all categories still have expected

numbers npj(θ̂) at least 5, then X̂2 will have approximately a χ2(k −
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1−m) distribution and one can do the test. If one is unlucky, some cat-
egory may now have an expected number less than 5. Then I suppose
one should stop and say we cannot reject H0.
Another possibility is to gather more data and redo the test.

Historical Notes. Karl Pearson in 1900 first proposed the χ2 test of a
simple hypothesis for a multinomial with k categories and stated that
the limiting distribution of X2 as n → ∞ is χ2(k − 1). According
to Lancaster (1966), Bienaymé in 1838 had “very nearly anticipated
K. Pearson’s work on the normal approximation to the multinomial.
Bienaymé (1852) used the gamma variable to obtain the distribution of
a sum of squares in the least squares theory” i.e., apparently, to show
that a χ2(d) distribution is Γ(d/2, 1/2).
Egon Pearson, of the Neyman–Pearson Lemma, was the son of Karl

Pearson who invented the χ2 test of fit.
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Étranger Acad. Sci., Paris, 5, 513–558; repr. ibid. 1868 615-663.
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