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1 Introduction

First, here is some notation for binomial probabilities. Let X be the number
of successes in n independent trials with probability p of success on each trial.
Let q ≡ 1− p. Then we know that EX = np, the variance of X is npq where
q = 1 − p, and so the basic variance when n = 1 (Bernoulli distribution) is
pq. For k = 0, 1, ..., n,

P (X = k) = b(k, n, p) :=

(

n

k

)

pkqn−k

where := means “equals by definition.” Let

B(k, n, p) := P (X ≤ k) =
k
∑

j=0

b(j, n, p),

E(k, n, p) := P (X ≥ k) =
n
∑

j=k

b(j, n, p).

Clearly B(n, n, p) ≡ E(0, n, p) ≡ 1. B(k, n, p) can be evaluated in R as
pbinom(k, n, p). Thus E(k, n, p) would be 1− pbinom(k − 1, n, p) for k ≥ 1.

As functions of three variables, the binomial probabilities B and E are
hard to tabulate. Rice, Table 1 in Appendix B, gives a table of B(k, n, p) for
n = 5, 10, 15, 20, and 25, and p = .01, .05, .1, .2, ..., .9, .95, and .99, giving B to
three decimal places. There is a table of E making up a whole book of over
500 pages, published in 1955, covering values of n up to 1000, but a relatively
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sparse selection, e.g. for n ≥ 500, n = 500, 550, 600, ..., 950, 1000. Values of
p are k/100 for k = 1, 2, ..., 99 and some other rational values. Clearly, it’s
better to compute binomial probabilities as needed rather than to use tables.

When can binomial probabilities be well approximated by others depend-
ing on fewer parameters? Here are some well known approximations that you
may recall from a probability course. If 0 < λ < ∞, a random variable Y is
said to have a Poisson distribution with parameter λ if P (Y = k) = e−λλk/k!
for all k = 0, 1, . . ..

1. If npq is large, then the binomial random variable X has approximately a

normal distribution with its mean np and variance npq.
2. If n is large but npq is not, then either p is small, in which case X has

approximately a Poisson distribution with parameter λ = np, or q is small,

in which case n−X is approximately Poisson with parameter λ = nq.

If neither p nor q is small and n is large, then npq is large and we have the
normal approximation. If n is not large, then neither a normal nor a Pois-
son approximation works well. For purposes of giving confidence intervals,
specifically approximate 95% or 99% intervals, one can tabulate endpoints
a(X) = a(X,n) and b(X) = b(X,n), as will be done for all n ≤ 19 and
0 ≤ X ≤ n in a table at the end of this handout.

Next here are some definitions. For a family of probability distributions
Pθ depending on a parameter θ, we may have a vector parameter such as
θ = (µ, σ) or (µ, σ2) for the family of normal distributions N(µ, σ2). Or, we
may have a scalar parameter such as p for the binomial distribution with
a given n. Suppose we want to find confidence intervals for a real-valued
function g(θ), where usually g(θ) = θ for a scalar parameter. For normal
distributions we’ve done that for the three functions g(θ) = µ, σ2, and σ.

In general, an interval estimator for g(θ) is a pair of real-valued statistics
a(X) and b(X) such that a(X) ≤ b(X) for all possible observations X. Let
Pθ denote probability when θ is the true value of the parameter.

1.1 Coverage probabilities

The coverage probability for a given interval estimator [a(·), b(·)] of a function
g(θ) of θ is defined for each possible θ as

κ(θ, a(·), b(·)) = Pθ[a(X) ≤ g(θ) ≤ b(X)]. (1)
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For the binomial probability θ = p, with g(p) ≡ p, the main case in this
handout, we’ll then have the coverage probability

κ(p, a(·), b(·)) = Prp[a(X) ≤ p ≤ b(X)], (2)

where Prp denotes probability when p is the true value of the binomial prob-
ability. In other words

κ(p) =
∑

k: a(k)≤p≤b(k)

Prp(X = k),

where Prp(X = k) = b(k, n, p) =
(

n
k

)

pk(1− p)n−k.

For 0 < α < 1/2 (specifically, in this handout α = 0.05 or 0.01), I will
say that an interval estimator [a(·), b(·)] is a precise 1 − α or 100(1 − α)%
confidence interval for θ if the coverage probability exactly equals 1 − α for
all θ. As we’ve seen, for normal distributions N(µ, σ2), and n ≥ 2 i.i.d.
observations, there are precise confidence intervals for the variance σ2 based
on χ2 distributions, and precise confidence intervals for the mean based on
t distributions. But for the binomial case there are no precise confidence
intervals. The binomial random variable X has just n + 1 possible values
0, 1, ..., n, so for any interval estimator, there are just n + 1 possible values
a(j) of the left endpoint and b(j) of the right endpoint for j = 0, 1, ..., n.
The coverage probability will take a jump upward as p crosses from below to
above each a(j) and downward as it crosses each b(j) (unless possibly some
a(i) and b(j) coincide). So the coverage probability in general is not constant
and is not even a continuous function of p.

I’ll say that an interval estimator [a(·), b(·)] is a secure 1−α or 100(1−α)%
confidence interval for θ if the coverage probability is always at least 1− α,

κ(θ, a(·), b(·)) ≥ 1− α (3)

for all possible θ.
Comparing with terminology often used in books and articles, the word

“exact” has often been used for what I here call “secure,” whereas “conser-
vative” has been used to mean at least secure, or with a qualifier such as
“overly conservative,” to indicate that the coverage probabilities are exces-
sively larger than 1− α.

On the other hand, the authors of beginning statistics texts mainly agree
on what a confidence interval is if it is precise (as defined above), but if such
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an interval does not exist, most seem to have in mind a relatively vague
notion of an interval estimator whose coverage probabilities are as close as
practicable to 1−α for as wide a range of θ as practicable. The texts’ authors
evidently want the endpoints a(·) and b(·) of the intervals to be relatively
easy to compute.

1.2 The plug-in interval

By far the most popular interval for the binomial p (in beginning textbooks,
not necessarily among mathematical statisticians) is the one defined as fol-
lows. Let p̂ := X/n and q̂ := 1 − p̂. The plug-in interval estimator for p is
defined by

[p̂− zu(α)
√

p̂q̂/n, p̂+ zu(α)
√

p̂q̂/n], (4)

where u(α) := 1−α
2
and zu is the u quantile of a standard normal distribution:

if Z has a N(0, 1) distribution then P (Z ≤ zu) = u. (We already encountered
1− α

2
quantiles for χ2 and t distributions in forming 2-sided 1−α confidence

intervals for σ2 and µ for normal distributions.) A quick way to see a fault
in the plug-in interval it is to see what happens when X = 0, when p̂ = 0,
so a(0) = 0 (which is fine) but also b(0) = 0, which is very bad, because as
p > 0 decreases down toward 0, the coverage probability κ(p) converges to
0. Symmetrically, if X = n then q̂ = 0 and a(n) = b(n) = 1 so κ(p) → 0 as
p ↑ 1.

1.3 Clopper–Pearson intervals

The Clopper–Pearson 100(1 − α)% interval estimator for p is the inter-
val [a(X), b(X)] ≡ [aCP (X), bCP (X)] where aCP (X) = aCP (X,n, α) and
bCP (X) = bCP (X,n, α) are such that if the true p were aCP (X), and 0 <
X ≤ n, then if V has a binomial(n, p) distribution, the probability that
V ≥ X would be α/2, in other words,

E(X,n, aCP (X)) = α/2. (5)

If X = 0 then aCP (0) := 0. Symmetrically, if the true p were bCP (X) and
0 ≤ X < n, and U has a binomial(n, p) distribution, the probability that
U ≤ X would be α/2, in other words,
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B(X,n, bCP (X)) = α/2, (6)

and if X = n then bCP (n) := 1.
The Clopper–Pearson confidence interval for p if 0 < X < n is defined in

a way very analogous to the way 2-sided precise confidence intervals are for
the normal µ and σ2. This makes the Clopper–Pearson intervals intuitive,
and they have been called “exact,” but they are not precise.

Theorem 1 The Clopper–Pearson intervals are secure (for 0 < α < 1), in
fact their coverage probabilities κ(p) > 1− α for all p. Moreover, for each n
and α, inf0≤p≤1 κ(p) > 1−α, i.e. for some δ = δ(n, α) > 0, κ(p) ≥ 1−α+ δ
for all p.

Proof. To see that the intervals are monotone, i.e. aCP (0) = 0 < aCP (1) <
· · · < aCP (n) < 1 and 0 < bCP (0) < bCP (1) < · · · < bCP (n) = 1, consider for
example that E(j, n, a(j)) = α/2 = E(j+1, n, a(j+1)), so to produce equal
probability, for a larger number of successes (X ≥ j+1, vs. X ≥ j), a(j+1)
must be larger than a(j). The situation for the b(j) is symmetrical.

For any p with 0 ≤ p ≤ 1, let J = J(p) be the smallest j such that
p ≤ b(j), and let K = K(p) be the largest k such that a(k) ≤ p. The
definition makes sense since aCP (0) = 0 and bCP (n) = 1. Then a(K) :=
aCP (K) ≤ p ≤ b(J) := bCP (J). By monotonicity, a(i) ≤ a(K) ≤ p for
i = 0, 1, ..., K and b(i) ≥ b(J) for J ≤ i ≤ n. Let X be binomial (n, p).
Then from the definitions, Prp(X > K) = 0 if K = n, otherwise it equals
E(K + 1, n, p) < E(K + 1, n, a(K + 1)) = α/2 since E(r, n, p) is increasing
in p and p < a(K + 1). Symmetrically, Prp(X < J) < α/2. It follows (using
α < 1) that J ≤ K so p ∈ [a(r), b(r)] for all r = J, ..., K by monotonicity. If
r > K then a(r) > p by definition of K(p), while if r < J then b(r) < p by
definition of K(p). Thus p ∈ [a(r), b(r)] if and only if J ≤ r ≤ K, and

κ(p) =
K
∑

r=J

Prp(X = r) = 1−E(K+1), n, p)−B(J−1, n, p) > 1−α/2−α/2 = 1−α,

where the first (second) α/2 is replaced by 0 if K = n or J = 0 respectively.
Also, E(k + 1, n, p) can only approach α/2, for the given values of J(p)
and K(p), for p ↑ a(K + 1), and B(J − 1, n, p) can only approach α/2 as
p ↓ b(J − 1). These things cannot happen simultaneously, so κ(p) cannot
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approach 1 − α and must be ≥ 1 − α + δ for some δ > 0. This finishes the
proof. �

The Clopper–Pearson intervals are overly conservative in that, for ex-
ample, for 0 ≤ p ≤ b(0), however b(0) is defined, if the left endpoints
a(j) = aCP (j), κ(p) ≥ 1 − (α/2). This is illustrated in Table 0 where
for n = 20 and α = 0.01, b(0) = bCP (0)

.
= 0.2327, and for p ≤ b(0),

which holds for p = a(j) for j ≤ 10, all coverage probabilities shown are
≥ 0.995 = 1− α/2.

One might easily be tempted, if one observes X = 0 and notes that the
resulting interval will be one-sided in the sense that a(0) = 0, to choose b(0)
such that if p = b(0), the probability of observing X = 0 would be α, rather
than α/2 as in definition (6). That can lose the secure property, however:
for example if n = 20 and α = 0.01, b(0)

.
= 0.2327 would be replaced by the

smaller b(0)
.
= 0.2057 < aCP (10), and we would get κ(b(0)+)

.
= 0.9868 and

κ(a(10)−)
.
= 0.9876, both less than 0.99 = 1 − α. Likewise, for the secure

property, if X = n, we need to keep a(n) as it is by (5) rather than replace
α/2 by α.

The coverage probability κ(p) can be close to 1−α if the interval between
b(J − 1) and a(K + 1), which contains p, is a short one, as seen in Table 0
for b(2) < p < a(14) where κ(p)

.
= 0.9904 and so the δ(20, 0.01) as defined in

Theorem 1 is about 0.0004.
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Table 0. Clopper–Pearson confidence intervals for n = 20, α = 0.01 and their

coverage probabilities: over-conservative at a(j), 1 ≤ j ≤ 10, just secure at

b(2)+, a(14)−.

At each endpoint p = a(j) = aCP (j) or b(j) = bCP (j), the coverage
probability has a left limit κ(p−) = limr↑p κ(r) (except for p = a(0) = 0)
and a right limit κ(p+) = limr↓p κ(r) (except at p = 1, not shown). Actually
κ(p+) = κ(p) if p = a(j) for some j and κ(p−) = κ(p) if p = b(j) for some j.

For p < b(0), we have J(p) as defined in the proof of Theorem 1 equal to
0, and thus the coverage probability as shown in that proof is B(K(p), n, p) >
1− α/2 = 0.995 in this case as seen in the table.

The table only covers endpoints p < 0.5, but the rest are determined by
a(n−j) = 1−b(j) for j = 0, 1, 2, 3 and b(n−k) = 1−a(k) for k = 0, 1, ..., 16,
and the coverage probabilities for 1/2 ≤ p ≤ 1 would be symmetric to those
shown for p ≤ 1/2.

On an interval between two consecutive endpoints, the coverage proba-
bility will be κ(p) = B(K,n, p) − B(J − 1, n, p) as in the proof of Theorem
1. Differentiating this with respect to p, we get telescoping sums, and the
derivative equals a positive function times a decreasing function of p, which
is positive when p is small and negative as p approaches 1. Thus κ(p) can-
not have an internal relative minimum on such an interval, and its smallest
values must be those on approaching an endpoint, which are shown in the
following table.

endpoint κ(p−) κ(p+)

a(0) 0.0000 — 1.0000
a(1) 0.00025 0.9950 1.0000
a(2) 0.0053 0.9950 0.9998
a(3) 0.0176 0.9950 0.9996
a(4) 0.0358 0.9950 0.9994
a(5) 0.0583 0.9950 0.9993
a(6) 0.0846 0.9950 0.9991
a(7) 0.1139 0.9950 0.9990
a(8) 0.1460 0.9950 0.9989
a(9) 0.1806 0.9950 0.9988
a(10) 0.2177 0.9950 0.9988
b(0) 0.2327 0.9979 0.9929
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a(11) 0.2572 0.9924 0.9962
a(12) 0.2991 0.9942 0.9979
b(1) 0.3171 0.9973 0.9927
a(13) 0.3434 0.9925 0.9962
b(2) 0.3871 0.9947 0.9904
a(14) 0.3904 0.9904 0.9942
a(15) 0.4402 0.9938 0.9976
b(3) 0.4495 0.9976 0.9935
a(16) 0.4934 0.9934 0.9974

For a(k) ≤ p < a(k+1) and p ≤ b(0), κ(p) = B(k, n, p) = 1−E(k+1, n, p)
where E(k+1, n, p) < E(k+1, n, a(k+1)) = α/2 by (5). Thus κ(p) > 1−α/2,
overshooting the desired 1− α as Table 0 illustrates.

1.4 Adjusted Clopper–Pearson intervals

One can adjust the endpoints by, whenever a′(k) := aCP (k, n, 2α) ≤ b(0),
which will occur for k ≤ k0 for some k0 = k0(α), replacing aCP (k) by the
larger a′(k). Symmetrically, for these k, bCP (n− k) is replaced by 1− a′(k).
Then the intervals remain secure, but now as p ↑ a(k) for 1 ≤ k ≤ k0,
κ(p) will approach 1 − α, so the intervals are no longer overly conservative.
For k = k1 = k0 + 1, for both α = 0.05 and 0.01, there will be a further
adjustment, in which aCP (k, α), which is less than b(0), will be replaced by
a number just slightly less than b(0) to avoid excess conservatism. These
adjustments are made in Table 2 at the end.

2 Approximations to binomial probabilities

and confidence intervals

As of now, the Clopper–Pearson interval endpoints can easily be computed
by computers but not necessarily by calculators. In the algorithm in the
Appendix, adjusted Clopper–Pearson intervals are used for n ≤ 19 and their
endpoints are tabulated for those n.

We already saw one approximate interval, the plug-in interval, based on a
normal approximation. Recall again that if npq is large, then a binomial(n, p)
variable X is approximately normal N(np, npq).
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2.1 Poisson probabilities and approximation

On the other hand if p → 0 and n → ∞ with np → λ and 0 ≤ λ < ∞, then
the binomial distribution converges to that of a Poisson(λ) variable Y , for
which here are notations: for k = 0, 1, ..., letting 00 := 1 in case λ = 0,

P (Y = k) = p(k, λ) := e−λλk/k!, P (k, λ) := P (Y ≤ k) =
k
∑

j=0

p(j, λ),

Q(k, λ) := P (Y ≥ k) =
∞
∑

j=k

p(j, λ).

In R, P (k, λ) can be evaluated as ppois(k, λ), where “pois” indicates the spe-
cific distribution and “p” indicates the (cumulative) probability distribution
function, analogously as for the binomial and other distributions. One could
also find Q(k, λ) in R as 1− ppois(k − 1, λ).

If p → 1 and n → ∞ with nq → λ then the distribution of n−X converges
to that of Y , Poisson(λ) (“reverse Poisson” approximation). If n is not
large, then neither the normal nor the Poisson approximation to the binomial
distribution is good. Similarly, as λ becomes large, the Poisson(λ) becomes
approximately N(λ, λ), but if λ is not large, the normal approximation to
the Poisson distribution is not good.

2.2 Three-regime binomial confidence intervals

In statistics, where p is not known butX is observed, then for valid confidence
intervals we need to proceed as follows. For n not large, specifically in this
handout for n ≤ 19, instead of any approximation, one can just list the
confidence interval endpoints in a table. I chose for this purpose adjusted
Clopper–Pearson intervals, given in Table 2 in the appendix. This choice is
not crucial itself, but secure intervals were chosen for the following reason.
For small n, individual values ofX have substantial probability. So, there will
be substantial jumps in coverage probabilities when one crosses an endpoint.
If one makes the coverage probabilities equal to 1 − α on average, then at
points just outside of individual intervals, they could be substantially less
than 1− α, which would be undesirable.

Similarly, if λ is not large, then individual values of Y have substantial
probability, and it seemed best to use endpoints that give secure coverage
probabilities ≥ 1 − α in the region where they are used. These will be the
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Poisson analogue of adjusted Clopper–Pearson endpoints and will be given
in Table 1 in the appendix.

If n is large enough (here, n ≥ 20) but the smaller of X and n − X is
no larger than k1 = k1(α), then it’s better to choose endpoints, specifically
a(k) if k ≤ k1 or k = n, and b(k) if k = 0 or k ≥ n − k1, based on a
Poisson approximation, rather than a normal approximation. The binomial
endpoints a(k) for k ≤ k1 will be the corresponding Poisson endpoints given
in Table 1, divided by n.

For other endpoints, we can use a normal approximation method, but
which method? There is a competitor to the plug-in intervals for binomial
confidence intervals based on a normal approximation.

2.3 Quadratic confidence intervals

One can get the quadratic or Wilson (1927) intervals as follows. The sym-
bol “≈” will mean approximately equal, or approximately having the dis-
tribution. Let 0 < p < 1 and q ≡ 1 − p, If X is binomial (n, p) and npq
is large enough, X ≈ N(np, npq), X − np ≈N(0, npq) and for p̂ = X/n,
p̂− p ≈N(0, pq/n). For z = zu(α) as in (4),

1− α ≈ Pr(|p̂− p| ≤ z
√

pq/n) = Pr
(

(p̂− p)2 ≤ z2p(1− p)/n
)

.

This is true for p in an interval having endpoints aQ < bQ which are the two
roots of the quadratic equation in p

(p̂− p)2 = z2p(1− p)/n. (7)

If 0 < p̂ < 1 then the quadratic f(p) = (p̂ − p)2 − z2p(1 − p)/n satisfies
f(0) > 0, f(p̂) < 0, and f(1) > 0, so by the intermediate value theorem, 0 <
aQ < p̂ < bQ < 1. If p̂ = 0 then aQ = 0 < bQ < 1, or if p̂ = 1 then 0 < aQ <
bQ = 1. One can see that the quadratic interval is approximating binomial
probabilities by normal ones for p at the endpoints of the interval, so that one
approximates probabilities in the definition of the Clopper–Pearson interval
(5), (6). Whereas, the plug-in interval crudely uses the normal approximation
to the binomial at the center p = p̂ where p̂q̂ may be quite different from pq
at one or both endpoints.
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2.4 Conditions for approximation of quadratic by plug-

in intervals

If not only n but np̂q̂ = X(n−X)/n is large enough, the plug-in and quadratic
intervals will be approximately the same, so one can use the simpler plug-in
interval. Here are some specific bounds.

Let z := zu(α) = 1.96 for α = 0.05 and 2.576 for α = 0.01. If the respective
endpoints of the two kinds of intervals are within some ε > 0 of each other,
then so must be their centers (a(j) + b(j))/2, which are p̂ = X/n for the
plug-in interval and for the quadratic interval, (2X + z2)/(2n + 2z2), the
midpoint of the two solutions of (7). The distance between the centers is
thus bounded by

D1 :=

∣

∣

∣

∣

∣

X

n
− 2X + z2

2n+ 2z2

∣

∣

∣

∣

∣

=
z2|2X − n|
n(2n+ 2z2)

<
z2

2n
. (8)

The distance from the center to either endpoint is z
√

p̂q̂/n for the plug-in

interval and z
√
z2 + 4Xq̂/(2n+2z2) for the quadratic interval, from solution

of (7). The absolute difference between these is

D2 = z

∣

∣

∣

∣

∣

(n+ z2)
√
4np̂q̂ − n

√
4np̂q̂ + z2

2n(n+ z2)

∣

∣

∣

∣

∣

.

For any A > 0 and B > 0,
√
A <

√
A+ B <

√
A + B/(2

√
A) by the mean

value theorem and since the derivative (d/dx)
√
x is decreasing. (The bound

is most useful for B << A.) It follows that we can write
√
4np̂q̂ + z2 as√

4np̂q̂ + θz2/(4
√
np̂q̂) where 0 < θ < 1, and then that

D2 ≤ z3n−3/2 max(
√

p̂q̂, 1/(8
√

p̂q̂)).

The maximum just written is ≤ 1/(4
√
p̂q̂), clearly for the second term, and

for the first term, because p(1− p) ≤ 1/4 for 0 ≤ p ≤ 1, attained at p = 1/2
only. It follows that D2 ≤ z3/(4n

√
np̂q̂). From this and (8), the distance

between corresponding endpoints of the quadratic and plug-in intervals is
bounded above by

D1 +D2 ≤ z2

2n

(

1 +
z

2
√
np̂q̂

)

. (9)
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For α = 0.05, taking z = 1.96, it will be assumed that

np̂q̂ = X(n−X)/n ≥ 9,

which implies thatX ≥ 9 and n−X ≥ 9, and so that a normal approximation
is applicable (for X ≤ 8 or X ≥ n − 8 the algorithm in the appendix uses
Poisson approximations). It follows then that given n, the differences between
endpoints are bounded above by D1+D2 ≤ f(z)/n where f(z) = (z2/2)(1+
(z/6)) ≤ 2.5483 using (9) and

√
np̂q̂ ≥ 3. We thus have D1 + D2 ≤ 10−m

for X(n −X)/n ≥ 9 and n ≥ 2.55 · 10m, to be applied for m = 2, 3, and 4.
One wants at least two decimal places of accuracy in the endpoints in nearly
any application (for example, political polls, which have other errors of that
order of magnitude or more), and no more than 4 places seem to make sense
here, where 4 places are given in the tables.

Similarly for α = 0.01, taking z = 2.576, we’ll assume that

np̂q̂ = X(n−X)/n ≥ 15,

which is equivalent to
√
np̂q̂ ≥

√
15 and implies that X ≥ 15 and n−X ≥ 15.

For min(X,n−X) ≤ 14, the algorithm uses a Poisson approximation. Given
n, the differences between endpoints are bounded above by D1+D2 ≤ g(z)/n
where g(z) = (z2/2)(1 + {z/(2

√
15)}) ≤ 4.4213 using (9) and

√
np̂q̂ ≥

√
15.

We thus have D1 +D2 ≤ 10−m for X(n−X)/n ≥ 15 and n ≥ 4.43 · 10m, to
be applied for m = 2, 3, and 4.

So, for example, sufficient conditions for the endpoints of the plug-in
and quadratic 99% confidence intervals to differ by at most 0.0001 are that
X(n−X)/n ≥ 15 and n ≥ 44, 300. If these conditions hold, there is no need
to find the quadratic interval, one can just use the plug-in interval.

2.5 Brown et al.’s comparisons; an example

The papers by Brown, Cai, and DasGupta (2001, 2002) show that the cover-
age probabilities for various approximate 95% confidence intervals vary and
may be quite different from 0.95. They show that the quadratic interval,
which they (2001) call the Wilson interval since apparently Wilson (1927)
first discovered it, is distinctly superior to the plug-in interval in its coverage
properties. The plug-in interval behaves poorly not only for p close to 0 or
1:
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Example. As Brown, Cai, and DasGupta (2001, p. 104, Example 2) point
out, for p = 0.5, presumably the nicest possible value of p, for which the
distribution is symmetric, and n = 40, the coverage probability of the 95%
plug-in interval is 0.919, in other words the probability of getting an interval
not containing 0.5 is larger than 0.08 as opposed to the desired 0.05. Let’s
look at this case in more detail. When X = 14, the right endpoint of the
plug-in 95% confidence interval is

0.35 + 1.96
√

0.35(0.65)/40 = 0.49781 < 0.5.

By symmetry since p = 0.5, if X = 26, the left endpoint of the plug-in
95% confidence interval is 1 − 0.49781 = 0.50219 > 0.5, so 0.5 is included
in the plug-in interval only for 15 ≤ X ≤ 25. The probability that X ≤ 14
is B(14, 40, 0.5) = 0.040345 and symmetrically the probability that X ≥
26 is E(26, 40, 0.5) = 0.040345, so the coverage probability κ(1/2) of the
plug-in interval in this case is 1 − 2(0.040345)

.
= 0.9193, confirming Brown

et al.’s statement. For the Clopper–Pearson confidence intervals, still for
n = 40, if X = 14 the right endpoint of the interval is 0.51684. For the
quadratic interval, it’s 0.5049. So these intervals both do contain 0.5, while
if X = 13 they don’t. We have B(13, 40, 0.5) = E(27, 40, 0.5) = 0.01924.
So the coverage probability of the Clopper–Pearson and quadratic intervals
when n = 40 and p = 0.5 are both 1 − 2(0.01924)

.
= 0.9615. This coverage

probability is closer to the target value of 0.95 by a factor of about 3 relative
to the plug-in interval. Also, it may be preferable to have coverage probability
a little larger than the target value than to have it smaller.

This is just one case, but it illustrates how the quadratic interval is es-
timating variance from a value of p at its endpoint, namely 0.5049, which
is close to 0.5, the true value. And this is not only by coincidence, but be-
cause 14 is the smallest value of X for which the Clopper–Pearson interval
contains 0.5, so we’d like the confidence interval to contain 0.5 but not by
a wide margin. Whereas, to estimate variance via plug-in, using p = 0.35,
gives too small a value, and the interval around 0.35 isn’t wide enough to
contain 0.5. Then the coverage probability is too small.

Brown et al. (2001, Fig. 4) show that for nominal α = 0.01 and n = 20, the
coverage probability of the plug-in interval is strictly less than 1− α = 0.99
for all p and oscillates wildly to much lower values as min(p, 1− p) becomes
small, e.g. < 0.15.

Another strange and undesirable property of the plug-in interval is that
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for any α < 0.3 and all n large enough, a(1) < 0 = a(0). Specifically, for the
95% plug-in interval with n ≥ 2 we will have a(1) < 0 and b(n− 1) > 1.

3 Desiderata for interval estimators of p

Some properties generally considered desirable for interval estimators [a(X), b(X)]
of the binomial p (e.g. Blyth and Still, 1983; Brown et al. 2001, 2002), are as
follows:

1. Equivariance. For any X = 0, 1, ..., n, a(n −X) = 1 − b(X), b(n −X) =
1− a(X).

All intervals mentioned in this handout are equivariant.

2. Monotonicity. a(X) and b(X) should be nondecreasing (preferably strictly
increasing) functions of X and nonincreasing (preferably strictly decreasing
for X > 0) functions of n.

We saw that the 95% (or higher) plug-in interval is not monotone when
n ≥ 2. The other intervals mentioned are all monotone.

3. Union. We have
⋃n

j=0[a(j), b(j)] = [0, 1].
If the union doesn’t include all of [0, 1] there is some p for which κ(p) = 0,

which seems clearly bad, but this doesn’t seem to occur for any commonly
used intervals. On the other hand for n ≥ 2 the 95% plug-in intervals extend
below 0 and beyond 1 and so violate the union assumption in a different way.

The remaining desiderata are less precise and can conflict with one an-
other. It’s desirable that the coverage probabilities should be close to the
nominal 1− α. Let’s separate this into two parts:

4. Minimum Coverage. The minimum coverage probability should not be
too much less than 1− α.

I conjecture that the intervals to be given in the algorithm in the Ap-
pendix have κ(p) ≥ 1 − 1.6α for α = 0.05 or 0.01 and all n and p. I have
not been able to prove this. I checked it by computer for n up to 600 and
selected larger n.

5. Average coverage. The average coverage probability, namely
∫ 1
0 κ(p, a(·), b(·))dp,

should be close to 1− α for n large enough.

6. Shortness. Consistently with good coverage, the intervals should be as
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short as possible.

7. Ease of use and computation. Intervals proposed to be taught and given
in textbooks should not be too complicated or difficult to compute.

Quadratic equations are easy to solve by computer especially when, as
for quadratic interval endpoints, the roots are guaranteed to be real.

An even more easily computed interval is that of Agresti and Coull (1998).
When α = 0.05, it’s (in one version, otherwise approximately) the modifi-
cation of the plug-in interval in which n is replaced by ñ = n + 4 and p̂ by
(X + 2)/ñ, i.e. as if two more successes and two more failures are added to
those actually observed. From the comparisons by Brown et al. (2001), the
Agresti–Coull interval appears to have minimum coverage probabilities not
much less than the nominal ones and tends to be secure for small min(p, q).
Its average coverage probability exceeds the nominal one, with a slowly de-
creasing difference (bias). The Agresti–Coull intervals tend to be longer than
those of some competing intervals whose average coverage probabilities are
closer to the nominal.

4 Poisson interval estimators

We can apply a Poisson approximation to the binomial distribution when n
is large (in the algorithm to be given, n ≥ 20) and p is either small or close
to 1. Since we observe X and don’t know p, we need to use a criterion based
on X. For α = 0.05, a Poisson approximation will be used when X ≤ 8, or
a “reverse Poisson” approximation when n−X ≤ 8.

First let’s see how we can get confidence intervals (interval estimators) for
the Poisson parameter λ itself. Let Y have a Poisson(λ) distribution where
λ is unknown. We can estimate λ simply by Y (since EY = λ). Suppose for
some α > 0, specifically α = 0.05 or 0.01, we want to get a 1− α confidence
interval for λ. The definition of Clopper–Pearson interval extends naturally
to the Poisson case. Given Y , let the upper endpoint bCPP (Y, α) = b such that
P (Y, b) = α/2, using the notation for Poisson probabilities from Subsection
0.2.1. If Y = 0, let aCPP (Y ) = 0. If Y > 0, let aCPP (Y, α) = a such that
Q(Y, a) = α/2.

We can also get analogues of quadratic intervals for λ based on the normal
approximation for λ large enough. Namely, as λ is both the mean and the
variance of the Poisson(λ) distribution, we take the quadratic equation (Y −
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λ)2 = λz2u(α) or g(λ) = (λ − Y )2 − λz2u(α) = 0. Just as in the binomial case,

if 0 < Y < ∞, we have g(0) = Y 2 > 0, g(λ) → +∞ as λ → +∞, and
g(Y ) < 0, so there are two real roots of g,

0 < aQ,P (Y ) < Y < bQ,P (Y ).

When Y = 0 we also get two roots, now aQ,P (0) = 0 and bQ,P (0) = z2u(α).
As in the binomial case illustrated in Table 0, the Clopper–Pearson in-

tervals will be excessively conservative in case aCPP (X,α) < b(0), and so
they will be adjusted, using aCPP (X, 2α) instead as long as these numbers
are still less than b(0). Taking b(0) = bQ,P (0, α), this occurs for α = 0.05
when 0 ≤ Y ≤ k0 := 7. In the special case when Y = k1 = 8, to preserve
monotonicity of the endpoints and keep good coverage probabilities, a(k1) is
taken to be just slightly less than b(0). For α = 0.01, making the analogous
adjustment, we will have k0 = 13 and k1 = 14. The resulting endpoints are
shown in Table 1 in the Appendix (algorithm).
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5 Appendix: Algorithm and Tables

The proposed algorithm for finding 100(1−α)% confidence intervals [a(X), b(X)]
for the binomial p when X successes are observed in n trials and α = 0.05
or 0.01 is as follows.
1. If n ≥ 20, go to step 2. If n ≤ 19, use the (adjusted, cf. Subsec. 0.1.4,
Clopper–Pearson) intervals given in Table 2.
2. If n ≥ 20, then use the hybrid endpoints aH(X), bH(X) defined as follows:
if min(X,N − X) ≤ k1(α) = 8 for α = 0.05 and 14 for α = 0.01, then
go to step 3. If min(X,n − X) > k1(α) then use the quadratic endpoints
aQ(X), bQ(X), specifically, letting z := zu(α), and recalling p̂ = X/n and
q̂ = 1− p̂, given by

p =
2X + z2 ± z

√
z2 + 4Xq̂

2(n+ z2)
, (10)

where ± is − for aQ(X) and + for bQ(X). For α = 0.05, using the close
approximation z

.
= 1.95996, z2

.
= 3.8414, and for α = 0.01, z

.
= 2.5758 and

so z2
.
= 6.6347.

3. If min(X,n −X) ≤ k1(α), recalling k1(0.05) = 8 and k1(0.01) = 14, and
still for n ≥ 20: if 0 ≤ X ≤ k1(α) let aH(X) = aH,P (X)/n where the hybrid
Poisson endpoints aH,P are given in Table 1. Likewise if X ≥ n − k1(α) let
bH(X) = 1− aH,P (n−X)/n. In particular bH(n) = 1.

Let bH(0) = z2u(α)/n, recalling the approximations to z = zu(α) and z2

given above, Symmetrically let aH(n) = 1− z2u(α)/n.
Define aH(X) = aQ(X) as given by (10) in all other cases, namely if

k1(α) < X < n, and bH(X) = bQ(X) for 0 < X < n− k1(α).

Table 1. Poisson hybrid left endpoints

k aH,P (k, 0.01) aH,P (k, 0.05)

0 0.0000 0.0000
1 0.0101 0.0513
2 0.1486 0.3554
3 0.4360 0.8177
4 0.8232 1.3663
5 1.2791 1.9701
6 1.7853 2.6130
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7 2.3302 3.2853
8 2.9061 3.8413
9 3.5075
10 4.1302
11 4.7712
12 5.4282
13 6.0991
14 6.6346

19



Table 2, n ≤ 19. Use a(k) ≡ 1 −
b(n− k), b(k) ≡ 1− a(n− k) for k >
n/2.

α 0.05 0.01
n k a(k) b(k) a(k) b(k)
1 0 .0000 .9500 .0000 .9900
2 0 .0000 .8419 .000 .9293

1 .0253 .9747 .005 .9950
3 0 .000 .7076 .0000 .8290

1 .017 .8646 .0033 .9411
4 0 .0000 .6024 .0000 .7341

1 .0127 .7514 .0025 .8591
2 .0976 .9024 .0420 .9580

5 0 .0000 .5218 .0000 .6534
1 .0102 .6574 .0020 .7779
2 .0764 .8107 .0327 .8944

6 0 .0000 .4593 .0000 .5865
1 .0085 .6412 .0017 .7057
2 .0628 .7772 .0268 .8269
3 .1532 .8468 .0847 .9153

7 0 .0000 .4096 .0000 .5309
1 .0073 .5787 .0014 .6434
2 .0534 .7096 .0227 .7637
3 .1288 .8159 .0708 .8577

8 0 .0000 .3694 .0000 .4843
1 .0064 .5265 .0013 .6315
2 .0464 .6509 .0197 .7422
3 .1111 .7551 .0608 .8303
4 .1929 .8071 .1210 .8790

9 0 .0000 .3363 .0000 .4450
1 .0057 .4825 .0011 .5850
2 .0410 .6001 .0174 .6926
3 .0977 .7007 .0533 .7809
4 .1688 .7880 .1053 .8539

10 0 .0000 .3085 .0000 .4113
1 .0051 .4450 .0010 .5443
2 .0368 .5561 .0155 .6482
3 .0873 .6525 .0475 .7351
4 .1500 .7376 .0932 .8091
5 .2224 .7776 .1504 .8496

11 0 .0000 .2849 .0000 .3822
1 .0047 .4128 .0009 .5086
2 .0333 .5178 .0141 .6085
3 .0788 .6097 .0428 .6933
4 .1351 .6921 .0837 .7668
5 .1996 .7662 .1344 .8307

12 0 .0000 .2646 .0000 .3569
1 .0043 .3848 .0008 .4770
2 .0305 .4841 .0128 .5729
3 .0719 .5719 .0390 .6552
4 .1229 .6511 .0759 .7275
5 .1810 .7233 .1215 .7915
6 .2453 .7547 .1746 .8254

13 0 .0000 .2471 .0000 .3347
1 .0039 .3603 .0008 .4490
2 .0281 .4545 .0118 .5410
3 .0660 .5381 .0358 .6206
4 .1127 .6143 .0695 .6913
5 .1657 .6842 .1108 .7546
6 .2240 .7487 .1588 .8113

14 0 .0000 .2316 .0000 .3151
1 .0037 .3387 .0007 .4240
2 .0260 .4281 .0110 .5123
3 .0611 .5080 .0331 .5892
4 .1040 .5810 .0640 .6579
5 .1527 .6486 .1019 .7201
6 .2061 .7114 .1457 .7766
7 .2304 .7696 .1947 .8053

15 0 .0000 .2180 .0000 .2976
1 .0034 .3195 .0007 .4016
2 .0242 .4046 .0102 .4863
3 .0568 .4809 .0307 .5605
4 .0967 .5510 .0594 .6273
5 .1417 .6162 .0944 .6882

6 .1909 .6771 .1346 .7439
7 .2127 .7341 .1795 .7949

16 0 .0000 .2059 .0000 .2819
1 .0032 .3023 .0006 .3814
2 .0227 .3835 .0095 .4628
3 .0531 .4565 .0287 .5344
4 .0903 .5238 .0554 .5991
5 .1321 .5866 .0878 .6585
6 .1778 .6457 .1251 .7132
7 .1975 .7012 .1665 .7638
8 .2465 .7535 .2117 .7883

17 0 .0000 .1951 .0000 .2678
1 .0030 .2869 .0006 .3630
2 .0213 .3644 .0090 .4413
3 .0499 .4343 .0269 .5104
4 .0846 .4990 .0519 .5732
5 .1238 .5596 .0822 .6310
6 .1664 .6167 .1168 .6846
7 .1844 .6708 .1552 .7344
8 .2298 .7219 .1971 .7807

18 0 .0000 .1853 .0000 .2550
1 .0028 .2729 .0006 .3463
2 .0201 .3471 .0085 .4217
3 .0470 .4142 .0254 .4884
4 .0797 .4764 .0488 .5492
5 .1164 .5348 .0772 .6055
6 .1563 .5901 .1096 .6579
7 .1730 .6425 .1454 .7068
8 .2153 .6924 .1844 .7526
9 .2602 .7398 .2263 .7737

19 0 .0000 .1765 .0000 .2434
1 .0027 .2603 .0005 .3311
2 .0190 .3314 .0080 .4037
3 .0445 .3958 .0240 .4682
4 .0753 .4557 .0461 .5271
5 .1099 .5120 .0728 .5818
6 .1475 .5655 .1032 .6329
7 .1629 .6164 .1368 .6809
8 .2025 .6650 .1733 .7260
9 .2445 .7114 .2124 .7684
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