
THE BAYES INFORMATION CRITERION (BIC)

1. Introduction

Suppose we have a set of models, usually not all of the same dimen-
sion, and want to decide which of them fits a data set best. For the
Wilks test, recall that we had an m-dimensional model H0 included in
a d-dimensional model H1, where m < d. The maximum of the like-
lihood over H1 would always be at least as large, and usually larger,
than over H0 because of the inclusion. But, if the maximum likelihood
over H0 was not too much smaller than over H1, then in the test, H0

is not rejected.

2. Model selection and information criteria

In “model selection,” there are m models M1, ...,Mm, where usually
m > 2. The models may be “nested,” with inclusionsM1 ⊂ M2 ⊂ · · · ⊂
Mm, or they may not be. Rather than testing multiple hypotheses
on the models two at a time, to see if we reject one or the other, it’s
convenient to have a criterion for selecting one of the models. Arbitrary
levels such as 0.05 may not be appropriate. But, as in the Wilks test,
we want to avoid, for example, simply choosing the model with largest
(maximum) likelihood, which in the nested case would mean always
choosing Mm. That could well be “overfitting.” It turns out to be
natural to consider maximum log likelihoods rather than likelihoods
themselves. Let MLi be the maximum likelihood over the ith model
and MLLi = ln(MLi) the maximum log likelihood over the ith model.
Let di be the dimension of the ith model Mi. Different “penalties”
have been proposed to be subtracted from MLLi to avoid overfitting.
Perhaps the first was the AIC or “Akaike information criterion”

AICi = MLLi − di

(Akaike, 1974). Later, G. Schwarz (1978) proposed a different penalty
giving the “Bayes information criterion,”

(1) BICi = MLLi −
1

2
di log n.

For either AIC or BIC, one would select the model with the largest
value of the criterion.

Date: 18.650, Dec. 4, 2015 .

1



THE BAYES INFORMATION CRITERION (BIC) 2

Schwarz (1978) proved that under some conditions, the BIC is con-
sistent, meaning that if one of the models M1, ...,Mm is correct, so
that there is a true θ0 in that model, then as n becomes large, with
probability approaching 1, BIC will select the best model, namely the
smallest model (model of lowest dimension) containing θ0. (Of course,
if the models are nested, then for θ0 in one model, it will also be in
all the larger models.) Poskitt (1987) and Haughton (1988) extended
and improved Schwarz’s work, showing that consistency held also un-
der less restrictive conditions. The AIC is not necessarily consistent in
this sense, as will be shown. Although that may make the BIC seem
preferable, it may be that none of the models M1, ...,Mm is actually
correct, and in such a case it is not so clear which criterion, if either,
is best to use.

3. Comparing information criteria with the Wilks test

Suppose we have just two models M1 and M2 with M1 ⊂ M2, and Mi

has dimension di with d1 < d2. To fit with the assumptions of the Wilks
test, suppose that there is a true θ = θ0 ∈ M2. Then M1 is the best
model if θ0 ∈ M1, otherwise M2 is. For any of three methods, the Wilks
test, AIC, and BIC, given a data set, we’d evaluate the maximum log
likelihoods MLLi for i = 1, 2. For the Wilks test, with test statistic W
defined as −2log(Λ) where Λ = ML1/ML2, so W = 2[MLL2−MLL1],
for n large enough, and some α > 0, we would reject M1 (and so select
M2) if W ≥ χ2

1−α(d2−d1), otherwise select M1. If θ0 /∈ M1, so M2 is the
best model, then ML1/ML2 will approach 0 exponentially as n → ∞,
and W ∼ cn for some c > 0, so we will make the correct choice with
probability → 1 as n → ∞. A general proof won’t be given here, but
it will be illustrated later in the special case of binomial probabilities.
If θ ∈ M1, the Wilks test will correctly select M1 with a probability

converging to 1− α.
The AIC will select M2 if W > 2(d2−d1), which if θ0 /∈ M1 will occur

and give the correct choice with probability converging to 1 as n → ∞.
However, if θ0 ∈ M1, W will converge in distribution to χ2(d2 − d1) as
n → ∞, so the probability of incorrectly rejecting it will again not go
to 0 as n becomes large (as in the Wilks test for fixed α > 0) because

Pr(W > 2k) → Pr(χ2(k) > 2k) > 0

for k = d2 − d1.
The BIC will select M2 if W > (d2 − d1) log n. If θ0 ∈ M1, the

probability of selecting M2 will go to 0 as n → ∞, as (dd − d1) log n
eventually becomes larger than χ2

1−α(d2 − d1) for any α > 0. This
illustrates the consistency of BIC, that it will select a lower dimensional
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model when it is best. If M2 is the best model, then BIC will select it
with probability → 1 as n → ∞, as n becomes larger than log n. So of
the three criteria, BIC is the only consistent one.

4. The binomial family

Let M2 be the binomial model where the success probability θ = p
satisfies 0 < p < 1, so d2 = 1. Let M1 be the submodel that p has a
specific value p1, so d1 = 0. Suppose the model holds with a true value
p0. Let’s see what happens when p0 6= p1. If X successes are observed
in n trials, with 0 < X < n, then the likelihood function is

f(X,n, p) :=

(
n

X

)
pX(1− p)n−X .

The MLE of p in M2 is p̂ = X/n, so ML2 = f(X,n, p̂). We have
ML1 = f(X,n, p1), so

ML1/ML2 = (p1/p̂)
X [(1− p1)/(1− p̂)]n−X

and W =
2[MLL2−MLL1] = 2(n−X)[log(1−p̂)−log(1−p1)]+2X[log(p̂)−log(p1)].

As n → ∞ we will have X ∼ np0, p̂ → p0, and n−X ∼ n(1− p0). For
p1 fixed and p varying, the function

g(p) = 2(1− p)[log(1− p)− log(1− p1)] + 2p[log(p)− log(p1)]

has derivative

g′(p) = 2[−1− log(1− p) + log(1− p1) + 1 + log(p)− log(p1)]

= 2[− log(1− p) + log(1− p1) + log(p)− log(p1)

and second derivative

g′′(p) = 2

[
1

1− p
+

1

p

]
> 0,

so g′ is increasing. We have g′(p) = 0 if and only if p = p1, so this is
a minimum of g. So g(p0) > g(p1) and W = 2[MLL2 − MLL1] will
indeed approach +∞ as cn for some c > 0, namely c = g(p0)− g(p1).
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5. Multiple regression

For an example, suppose we’ve observed some (Xj, Yj), j = 1, ..., n,
and want to consider models M1 ⊂ M2 ⊂ · · · ⊂ Mm where in Mi,

(2) Yj = Pθ(Xj) + εj := θ0 +
i∑

r=1

θrfr(Xj) + εj,

εj are i.i.d. N(0, σ2), and fr are some functions.

5.1. Polynomial regression. fr(x) = xr for each r and x. Let
fr(x) := xr. Then for a given i, Pθ is a polynomial of degree at most
i. For i = 1 we’d have ordinary simple y-on-x regression, for i = 2
quadratic regression, and so on. In the ith model we’ll have i + 1
parameters θr, with a parameter vector θ = (θ0, θ1, ..., θi), where

(3) P (x) = Pθ(x) ≡
i∑

r=0

θrx
r.

5.1.1. Interpolation and overfitting. Suppose all the Xj are distinct.
Then there exists a polynomial P of degree n−1 such that P (Xj) = Yj

for all j = 1, ..., n. To see this, for each i = 1, ..., n the polynomial
Pi(x) =

∏
j 6=i(x − Xj) is 0 at Xj if and only if j 6= i. There is a

constant ci such that ciPi(Xi) = yi. Then P :=
∑n

i=1
ciPi is of degree

n− 1 and satisfies P (Xj) = Yj for all j = 1, ..., n as stated.
For polynomials of degree n−1 restricted to {X1, ..., Xn}, the Pi are

linearly independent. They form a basis, as we have just seen. So the
polynomial P just constructed is unique.
In doing polynomial regression of degree i, it will be assumed that

n > i+ 1 to avoid being able to fit the values Yj exactly. It’s actually
desirable that n be substantially larger than i+1 so as not to “overfit”
the data. This is advisable for multiple regression more generally.

5.2. Residual sums of squares. Assuming that Xj are fixed design
points, the only random variables are the εj, and the likelihood function
will be, for Pθ as in (3) or more generally (2),

f(V, θ) = (2πσ2)−n/2

n∏

j=1

exp

(
−(Yj − Pθ(Xj))

2

2σ2

)

= (2πσ2)−n/2 exp

(
−

n∑

j=1

(Yj − Pθ(Xj))
2

2σ2

)
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here V = {(Xj, Yj)}nj=1
. To maximize the likelihood with respect to θ

for any fixed σ > 0 is equivalent to minimizing
∑n

j=1
(Yj − Pθ(Xj))

2

(least squares). Let RSSi, the “Residual sum of squares,” be the
sum so minimized (it’s the sum of squares of the regression residu-
als) for the ith model. Then to find the MLE of σ, we need to maxi-
mize σ−n exp(−RSSi/(2σ

2)). It’s equivalent to maximize the logarithm
−n log(σ) − RSSi/(2σ

2) with respect to σ. Because n > i + 1 by as-
sumption, RSSi > 0 with probability 1. The expression goes to −∞
as σ → +∞ or as σ ↓ 0, using RSSi > 0, as −n log(σ) goes to +∞
but relatively slowly. So to find an interior maximum, we take the
derivative with respect to σ > 0 and set it equal to 0, giving

0 = −n

σ
+

RSSi

σ3
, σ̂2 =

RSSi

n
.

Then we have MLi = (2πσ̂2)−n/2 exp(−n/2) and

MLLi = −n

2
log(RSSi) + Cn

where Cn is a term depending only on n, not i, and so irrelevant to the
comparison of models by either AIC or BIC.

6. Bayesian rationale of the BIC

When we have a set of models including two, neither of which is
included in the other, then the Wilks test would no longer apply. Both
the AIC and BIC can apply. For the BIC there is a Bayesian rationale.
It is asymptotically (as n → ∞) equivalent to choosing the model with
highest posterior probability of being the best model, under some not
too restrictive conditions. Namely, each model Mi has prior probability
πi > 0, where

∑m
i=1

πi = 1, and on each, there is a prior density gi such
that gi(θ) > 0 and gi is continuous at each θ ∈ Mi. The prior density
will be with respect to some measure dAi(θ), which will be simply
dθ1 · · · dθdi if Mi is an open subset of di-dimensional Euclidean space,
but more often can be viewed as a measure of “area” or “volume” in
the possibly curved di-dimensional set (manifold) Mi. We will have∫
Mi

gi(θ)dAi(θ) = 1. The choice of Ai is not too crucial, as for any
continuous function hi > 0 defined on Mi one can multiply gi by hi

while dividing dAi by it, preserving the ith prior probability for a
subset B ⊂ Mi,

πi(B) =

∫

B

gi(θ)dAi(θ).
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For each Mi there will also be a likelihood function fi(x, θ) defined
for θ ∈ Mi and each possible observation x. We then have for a vector
X = (X1, ..., Xn) of observations, as usual, fi(X, θ) =

∏n
j=1

fi(Xj , θ).
It will be seen that for large n, posterior densities become approxi-

mately normal, with mean at the maximum likelihood estimate and a
covariance matrix asymptotic to C/n for some matrix C. Let’s start
with:

Example. Let the binomial parameter p have a U [0, 1] prior density.
Suppose that the true, unknown value p0 of p satisfies 0 < p0 < 1. In
n independent trials, let there be X successes and so n − X failures.
The likelihood function is proportional to pX(1−p)n−X and so that the
posterior distribution of p is Beta(X +1, n−X +1). In the handoxut
“Order statistics, quantiles and sample quantiles,” Proposition 2, it
was shown that if Yk has a Beta(k + 1, k + 1) distribution, then the

distribution of
√
k(Yk− 1

2
) converges as k → ∞ to N(0, 1/8). Now let’s

see why we get asymptotic normality also for X 6= n − X if X and
n−X are both large, as they will be with high probability for n large
since 0 < p0 < 1. The Beta(X + 1, n−X + 1) density (or equivalently
the likelihood) is maximized at p = p̂ = X/n. Let q̂ = 1 − p̂. Letting
u = p− p̂, the likelihood function becomes, omitting an

(
n
X

)
factor not

depending on p,

(p̂+ u)np̂(q̂ − u)nq̂ = p̂np̂q̂nq̂
(
1 +

u

p̂

)np̂(
1− u

q̂

)nq̂

.

Let ML = p̂np̂q̂nq̂ be the maximum of the likelihood and MLL its
logarithm (to base e as usual). Then using the Taylor series of the
logarithm around 1, the log of the likelihood becomes

MLL + log

[(
1 +

u

p̂

)np̂(
1− u

q̂

)nq̂
]

= MLL + np̂

(
u

p̂
− u2

2p̂2
+ · · ·

)
+ nq̂

(
−u

q̂
− u2

2q̂2
+ · · ·

)

= MLL − nu2

2p̂
− nu2

2q̂
+O(nu3)

= MLL − n2u2

2

[
1

X
+

1

n−X

]
+O(nu3)

= MLL − u2

2

(
n3

X(n−X)

)
+O(nu3).

This implies that the posterior distribution is asymptotically
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N(p̂, X(n − X)/n3) = N(p̂, p̂q̂/n). Recall that the (non-Bayesian)
asymptotic distribution of the MLE p̂ is N(p0, p0(1 − p0)/n) which
is approximately the same, as p̂ → p0 and q̂ → 1− p0 as n → ∞.

Asymptotic normality of the posterior density in the general case of
a parameter θ = (θ1, ..., θd) of dimension d will just be sketched. The
log likelihood is

LL(X, θ) =
n∑

j=1

log f(Xj, θ).

This is maximized at the MLE θ̂ = (θ̂1, ..., θ̂d) of θ. Taking a d-

dimensional Taylor expansion of LL(X, θ) around θ̂, the constant term
is MLL, the maximum of the log likelihood. The first order terms are
0 because at a maximum of a smooth function, the gradient is 0. Thus
through second order, the Taylor expansion is

LL(X, θ) = MLL+
1

2

d∑

i,k=1

[
∂2

∂θi∂θk

n∑

j=1

log f(Xj, θ̂)

]
(θi − θ̂i)(θk − θ̂k).

If there is a true θ0 in a model being considered, then θ̂ for that model
will be converging to it as n becomes large. By the law of large
numbers, as n → ∞, 1

n

∑n
j=1

log f(Xj, θ0) will converge as n → ∞
to Eθ0 log f(X1, θ0), and likewise for the second partial derivatives of
log f(x, θ). For the matrix K(θ0) of expected second partial derivatives
at θ0, which must be symmetric and negative definite since we are at
(or near) a maximum, the positive definite matrix I(θ0) = −K(θ0) is
called the Fisher information matrix. To get from the log of the den-
sity of a normal distribution to its covariance matrix, we need to take
the inverse of a matrix (similarly as in one dimension, the exponent in
the density is −(x − µ)2/(2σ2) with the variance σ2 in the denomina-

tor), the posterior distribution will be asymptotically N(θ̂, I(θ̂)−1/n).
Suppose to simplify that the matrix I(θ0) is diagonalized in the given
coordinates (θ1, ..., θd) with jth diagonal entry 1/σ2

j for j = 1, ..., d,

so that I(θ0)
−1 will also be diagonal, with jth diagonal entry σ2

j , and

I(θ̂)−1 will be approximately the same.
In the case of multiple models Mi for BIC, the posterior densities

will not be normalized individually. Rather, the posterior probability
πi(X) that Mi is the best model, given X, will be

πi(X) = Ii/

m∑

k=1

Ik where Ii := πi

∫

Mi

gi(θ)fi(X, θ)dAi(θ)



THE BAYES INFORMATION CRITERION (BIC) 8

for each i = 1, ...,m. (The total posterior probability πX(Mi) would
be
∑{πj(X) : Mj ⊂ Mi}, which is not what we want.) Finding i to

maximize πi(X) is equivalent to finding it to maximize Ii. The integral

in Ii is concentrated around θ̂i, the MLE of θ in Mi, for large n, and is
asymptotic to

gi(θ̂i)MLi(2π)
di/2n−di/2

di∏

j=1

σj.

To maximize this with respect to i, the dominant factor(s) for large n
are given by MLin

−di/2. To maximize this with respect to i is equiva-
lent to maximizing its log, which is

MLLi −
di
2
log n,

equaling the BIC criterion (1). This is more or less how G. Schwarz
arrived at the BIC in his paper.

Notes. The Fisher information matrix and its inverse are well known
objects in mathematical statistics. For example, they occur in sections
3.7 and 3.8 of the OCW notes for 18.466, Mathematical Statistics, 2003.
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