
SOME FURTHER NOTES ON BAYESIAN STATISTICS

1. The U [0, 1] prior for a binomial probability p

This prior dates back to Laplace (1774) or earlier to Bayes (1764),
which I have not seen. Suppose we assume this prior and in n in-
dependent trials with probability p of success on each, we observe X
successes. Then the likelihood function is

(

n

X

)

pX(1 − p)n−X . In form-

ing the posterior distribution, the factor
(

n

X

)

not depending on p will
cancel. It’s clear that as a function of p, the posterior is proportional
to a Beta(X +1, n−X +1) density and so must equal such a density,
by unique normalization of probability densities.
The Bayes estimate of p for squared-error loss is the integral of p

times the posterior density. As the expectation for a Beta(a, b) density
is a/(a+ b), in this case we get the Bayes estimate

(1) p̂B = T (X) =

∫

1

0

pπX(p)dp =
X + 1

n+ 2
.

If for the true p = p0, 0 < p0 ≤ 1, then as n → ∞, since X/n → p0,
also X → +∞, and p̂B in (1) will be asymptotic to p̂ = X/n, the usual
maximum likelihood estimate of p. If the true p0 = 0, then X ≡ 0,
X/n ≡ 0, and p̂B = 1/(n + 2) → 0. On the other hand for n = 0,
X = 0 and p̂B = 1/2, the expectation for the prior U [0, 1] distribution.

2. Comparisons with unbiased estimation

We’ve already seen some examples earlier in the course showing that
unbiased estimation leads to some undesirable or non-optimal esti-
mates. One was Yatracos’s proof that the usual sample variance s2X , an
unbiased estimator of the true variance σ2 when it is finite, is strongly
inadmissible for mean-square error, for i.i.d. variables Xj having a fi-
nite fourth moment E(X2

j ), being not as good as an estimator in which
the factor 1/(n − 1) is replaced by a slightly smaller factor. Another
case was estimating the function g(p) = p2 of a binomial parameter p
for n = 2, which has a unique unbiased estimator T with T (1) = 0;
that was paradoxical since if p2 = 0 then p = 0 and the probability of
1 success would be 0.
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Recently, in Theorem 4 of our handout “Some topics in Bayesian
statistics,” we saw that an estimator T (X) of a function g(θ) which
is Bayes for mean-squared error can be unbiased only if T (X) = g(θ)
with probability 1, which is hardly ever possible. So, if being Bayes and
being unbiased are virtually incompatible, which property, if either, is
to be preferred? This gives statisticians preferring a Bayesian viewpoint
a reason to look for examples where unbiased estimation works badly.
The textbook by DeGroot and Schervish (2002,2012) takes predom-

inantly a Bayesian viewpoint. (It has been adopted here at MIT for
18.443, predecessor of 18.650, in the fall many times in the past.) The
book gives an interesting example (which I saw in the 2002 edition) of
unbiased estimation of the parameter p in a subgeometric distribution,
which works equally well for a geometric distribution. Recall that for
0 < p ≤ 1 and q = 1 − p, in a sequence of independent trials with
probability p of success on each, the number X of trials needed to get
the first success has Pr(X = k) = qk−1p for k = 1, 2, ..., a geometric
distribution, and Y ≡ X − 1, the number of failures before the first
success, has the distribution Pr(Y = j) = qjp for j = 0, 1, ..., called
in this course a subgeometric distribution. Let T (X) be an unbiased
estimator of p. Then

∑

∞

k=1
T (k)qk−1p = p for 0 < p ≤ 1 which implies

∑

∞

k=1
T (k)qk−1 = 1. Since a power series in the variable q has uniquely

determined coefficients, we must have T (1) = 1 and T (k) = 0 for k ≥ 2.
Likewise, an unbiased estimator V (Y ) of p must have V (0) = 1 and
V (j) = 0 for j ≥ 1. These estimates are unreasonable. A reasonable
estimator of p is 1/X = 1/(Y + 1), which in a problem we found to
be the MLE from two viewpoints (geometric and binomial) and the
method-of-moments estimator.
Another example DeGroot and Schervish give is, for the Poisson

parameter λ, estimating g(λ) = e−2λ. Let T be an unbiased estimator
of g. Then

∞
∑

k=0

T (k)e−λλ
k

k!
= e−2λ

for 0 < λ < ∞, which implies by Taylor series
∞
∑

k=0

T (k)
λk

k!
= e−λ =

∞
∑

k=0

(−λ)k

k!

which gives T (k) = (−1)k for all k = 0, 1, ... by unique coefficients
of power series, an absurd estimator. A similar case was the problem
of unbiased estimation of e−λ given an observation X of a Poisson(λ)
variable conditional on X ≥ 1, which by a slightly longer calculation
gives T (k) = (−1)k−1 for k ≥ 1. This case is perhaps more motivated,



SOME FURTHER NOTES ON BAYESIAN STATISTICS 3

in that if one is not seeing certain observations (with value 0) one could
be interested in the probability of not seeing one.
If the function being estimated is positive, as e−2λ and e−λ are, then

for any prior, a Bayes estimator T of it could not take negative values
such as −1, because replacing T by max(T, 0) would reduce the mean-
square error.
Overall then, it seems that unbiased estimation is looking not very

good.

3. Maximum likelihood estimation

We’ve found maximum likelihood estimates (MLEs) to be useful in
several situations. For example, in χ2 tests of composite hypotheses,
MLEs based on ungrouped data are often easy to compute. Sometimes,
as with contingency tables, MLEs based on grouped data are also easy
to compute. Whenever they can be computed, even with difficulty,
they give a well-defined number of degrees of freedom for χ2.
When comparing models of different dimensions, one cannot simply

maximize the likelihood. For example, suppose we have two models
H0 ⊂ H1 of respective dimensions d0 < d1. The likelihood maximized
over H1 is nearly always going to be larger than the maximum over
H0. But in the Wilks test, H0 is not rejected if twice the difference in
maximum log likelihoods, W = 2(MLL1 − MLL0), is not too large,
where under H0 for n large enough it has approximately a χ2 distribu-
tion with d1−d0 degrees of freedom. Thus, we use maximum likelihood
within each model, but use something more when comparing models.
When we have more than two models, of different dimensions, and

want to choose a best model, then the Bayes Information Criterion
(BIC) gives a method, described in the corresponding handout. The
leading terms in the logarithms of the posterior probabilities of the
models give BICi = MLLi −

1

2
di log n (equation (1) of the BIC hand-

out). Here again we maximize the likelihood within each model, but
in this case we subtract a penalty for dimension di, a larger penalty
the higher the dimension is. The leading terms don’t depend on the
specifics of the prior distributions as long as they satisfy some mild con-
ditions such as strictly positive prior densities and prior probabilities
for each model.
For comparing models two at a time, with one included in the other,

it can be interesting to see if the BIC preference between the models
agrees with the result of the Wilks test, as will be done in a problem
in PS10.
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Royale des Sciences, par divers Savans & lûs dans ses Assemblées, 6,
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