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Maximum likelihood estimation: actual or supposed

1. MLEs in exponential families

Let f(x, θ) for x ∈ X and θ ∈ Θ be a likelihood function, that is, for
present purposes, either X is a Euclidean space R

d and for each θ ∈ Θ
f(·, θ) is a probability density function on X, or X is a countable set,
and f(·, θ) is a probability mass function, or as Bickel and Doksum
call it, a frequency function. Let Pθ be the probability distribution
(measure) on X of which f(·, θ) is the density or mass function. For
the case of densities, let’s assume that for each θ ∈ Θ, for each open set
U of x on which f(·, θ) equals almost everywhere a bounded continuous
function, it equals that function everywhere on U .

For each x ∈ X, a maximum likelihood estimate (MLE) of θ is any

θ̂ = θ̂(x) such that f(θ̂, x) = sup{f(φ, x) : φ ∈ Θ} > 0. In other

words, θ̂(x) is a point at which f(·, x) attains its maximum and the
maximum is strictly positive. In general, the supremum may not be
attained, or it may be attained at more than one point. If it is attained

at a unique point θ̂, then θ̂ is called the maximum likelihood estimate

of θ. A measurable function θ̂(·) defined on a measurable subset B of

X is called a maximum likelihood estimator if for all x ∈ B, θ̂(x) is
a maximum likelihood estimate of θ, and almost all x not in B, the
supremum of f(·, x) is not attained at any point or is 0.

Define W := {x ∈ X : supθ f(θ, x) = 0}. Very often, the set W will
simply be empty. If it’s non-empty and an x ∈ W is observed, then
there is no maximum likelihood estimate of θ. Moreover, for any prior
π on Θ, a posterior distribution πx can’t be defined. That indicates
that the assumed model {Pθ}θ∈Θ is “misspecified,” i.e. wrong, because
according to the model, an observation in W shouldn’t have occurred
except with probability 0, no matter what θ is. Note that the set
W is determined in advance of taking any observations. By contrast,
for any continuous distribution on R say, each individual value has 0
probability, but we know only with hindsight (retrospectively) what
the value is.

As is not surprising, a sufficient statistic is sufficient for finding
MLEs:

Proposition 1. For a family {Pθ}θ∈Θ of the form described, suppose
T (x) is a sufficient statistic for the family. Except for x in a set B with
Pθ(B) = 0 for all θ, what values θ (none, one, or more) are MLEs of
θ depend only on T (x).
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Proof. This is a corollary of the factorization theorem for sufficient
statistics. ¤

Remark. One would like to say that the set A of x for which an MLE

exists and is unique is a measurable set and that on A, the MLE θ̂ is (at
least) a measurable function of x. Such statements are not generally
true for Borel σ-algebras but may be true for larger σ-algebras such as
that of analytic (also called Suslin) sets, e.g. Dudley (2002, Chapter 13).
In practice, MLEs are usually found for likelihoods having derivatives,
setting derivatives or gradients equal to 0 and checking side conditions.
For example, for exponential families, MLEs, if they are in the interior
of the natural parameter space, will be described in Theorem 3.

Example 2. (i) For each θ > 0 let Pθ be the uniform distribu-
tion on [0, θ], with f(θ, x) := 1[0,θ](x)/θ for all x. Then if
X1, . . . , Xn are observed, i.i.d. (Pθ), the MLE of θ is X(n) :=
max(X1, . . . , Xn). Note however that if the density had been
defined as 1[0,θ)(x), the supremum for given X1, . . . , Xn would
not be attained at any θ. The MLE of θ is the smallest possible
value of θ given the data, so it is not a very reasonable esti-
mate in some ways. Given θ, the probability that X(n) > θ − δ
approaches 0 as δ ↓ 0.

(ii) For Pθ = N(θ, 1)n on R
n, with usual densities, the sample mean

X is the MLE of θ. For N(µ, σ2)n, n ≥ 2, the MLE of (µ, σ2)
is (X,

∑n
j=1(Xj −X)2/n). Here recall that the usual, unbiased

estimator of σ2 has n − 1 in place of n, so that the MLE is
biased, although the bias is small, of order 1/n2 as n → ∞.
The MLE of σ2 fails to exist (or equals 0, if 0 were allowed as
a value of σ2) exactly on the event that all Xj are equal for
j ≤ n, which happens for n = 1, but only with probability 0
for n ≥ 2. On this event, f((X, σ2), x) → +∞ as σ ↓ 0.

(iii) In the previous two examples, for the usual choices of densities,
the set W is empty, but here it will not be. Let X = [0, +∞)
with usual Borel σ-algebra. Let Ψ = (1, +∞) and for 1 < ψ <
∞ let Qψ be the gamma distribution with density f(ψ, x) =
xψ−1e−x/Γ(ψ) for 0 ≤ x < ∞. Then W = {0}. If x = 0 is
observed there is no MLE nor posterior distribution for ψ for
any prior on Ψ.

In general, let Θ be an open subset of R
k and suppose f(θ, x) has

first partial derivatives with respect to θj for j = 1, . . . , k, forming the
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gradient vector

▽θf(θ, x) := {∂f(θ, x)/∂θj}
k
j=1.

If the supremum is attained at a point in Θ, then the gradient there
will be 0, in other words the likelihood equations hold,

(1) ∂f(θ, x)/∂θj = 0 for j = 1, . . . , k.

If the supremum is not attained on Θ, then it will be approached at a
sequence of points θ(m) approaching the boundary of Θ, or which may
become unbounded if Θ is unbounded.

The equations (1) are sometimes called “maximum likelihood equa-
tions” in statistics books and papers, but that is unfortunate terminol-
ogy because in general a solution of (1) could be (a) only a local, not
a global maximum of the likelihood, (b) a local or global minimum of
the likelihood, or (c) a saddle point, as in an example to be given in
the next section.

For exponential families, it will be shown that an MLE in the inte-
rior of Θ, if it exists, is unique and can be found from the likelihood
equations, as follows:

Theorem 3. Let {Pθ}θ∈Θ be an exponential family of order k, where
Θ is the natural parameter space in a minimal representation. Let U
be the interior of Θ and j(θ) := − log C(θ). Then for any n and

observations X1, . . . , Xn i.i.d. (Pθ), there is at most one MLE θ̂ in U .
The likelihood equations have the form

(2) ∂j/∂θi =
n∑

j=1

Ti(Xj)/n for i = 1, . . . , k,

and have at most one solution in U , which if it exists is the MLE. Con-
versely, any MLE in U must be a solution of the likelihood equations.
If an MLE exists in U for v-almost all x, it is a sufficient statistic for
θ.

Proof. Maximizing the likelihood is equivalent to maximizing its loga-
rithm (the log likelihood), which is

log f(θ, x) = −nj(θ) +
n∑

j=1

k∑

i=1

θiTi(Xj),

and the gradient of the likelihood is 0 if and only if the gradient of the
log likelihood is 0, which evidently gives the equations (2). Then K =
ej is a smooth function of θ on U by Theorem 6 of the “Exponential
Families” handout. hence so is j, and the other summand in the log



4

likelihood is linear in θ, so the log likelihood is a smooth (C∞) function
of θ. So at a maximum in U , the gradient must be 0, in other words
(2) holds.

Recall that a real-valued function f on a convex set C is called strictly
convex if for any x 6= y in C and 0 < λ < 1,

f(λx + (1 − λ)y) < λf(x) + (1 − λ)f(y).

A real-valued function f on a convex set in R
k is called concave if

−f is convex and strictly concave if −f is strictly convex. It is easily
seen that a strictly concave function on a convex open set has at most
one local maximum, which then must be a strict absolute maximum.
Adding a linear function preserves (strict) convexity or concavity. Now,
j is strictly convex on U by Corollary 7 of “Exponential Families.” So,
if ▽ log f(θ, x) = 0 at a point θ ∈ U , then θ is a strict global maximum
of f(·, x) as desired.

If for almost all x, (2) has a solution θ = θ(x) in U , which must be
unique, then by (2), the vector {

∑n
j=1 Ti(Xj)}

k
i=1, which is a sufficient

k-dimensional statistic as noted in Theorem 1 of Exponential Families,
is a function of θ(x) which thus must also be sufficient. ¤

Next is an example to show that if a maximum likelihood estimate
exists almost surely but may be on the boundary of the parameter
space, it may not be sufficient.

Proposition 4. There exists an exponential family of order k = 1 such
that for n = 1, a maximum likelihood estimate exists almost surely, is
on the boundary of the natural parameter space with positive probability,
and is not sufficient.

Proof. Let the sample space X be [1,∞). Take the exponential family
of order 1 having densities C(θ)eθx/x3 (with respect to Lebesgue mea-
sure on [1,∞)), where C(θ) as usual is the normalizing constant. Then
the natural parameter space Θ is (−∞, 0], with interior U = (−∞, 0).
We have K(θ) =

∫
∞

1
eθxx−3dx.

For j(θ) = log K(θ), we have by Corollary 7 of “Exponential Fami-
lies” that j′′(θ) > 0 for −∞ < θ < 0, so j′(θ) is increasing on U . We
have

(3) j′(θ) =
K ′(θ)

K(θ)
=

∫
∞

1
eθxx−2dx∫

∞

1
eθxx−3dx

.

As θ ↑ 0, it follows by dominated convergence in the numerator and
denominator that

j′(θ) ↑

∫
∞

1

x−2dx/

∫
∞

1

x−3dx = 1/(1/2) = 2.
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For θ → −∞, multiply the numerator and denominator of the latter
fraction in (3) by |θ|e−θ. The law with density |θ|eθ(x−1)1[1,∞)(x) is that
of X + 1 where X is exponential with parameter |θ| and EX = 1/|θ|.
As θ ↓ −∞, this distribution converges to a point mass at 1, and both
functions x−2 and x−3 are bounded and continuous on [1,∞). Thus
j′(θ) ↓ 1 as θ ↓ −∞. So j′ is increasing from U = (−∞, 0) onto (1, 2).
Hence for 1 < x < 2, but not for x ≥ 2, the likelihood equation (2) for
n = k = 1 has a solution θ ∈ U .

For x ≥ 2, it will be shown that f(θ, x) = eθx/(x3K(θ)) is maxi-
mized for −∞ < θ ≤ 0 at θ = 0. As usual, maximizing the likelihood
is equivalent to maximizing its logarithm. We have for θ < 0 that
∂ log f(θ, x)/∂θ = x − j′(θ) > 0 since x ≥ 2 > j′(θ) as shown above.
Now f(θ, x) is continuous in θ at 0 from the left by dominated conver-
gence, so for x ≥ 2 it is indeed maximized at θ = 0. Thus for x ≥ 2
the MLE is θ̂ = 0.

But, the identity function x is a minimal sufficient statistic by fac-
torization. So the maximum likelihood estimator is not sufficient in
this case although it is defined almost surely. The half-line [2,∞) has
positive probability for each θ. Thus the proposition is proved. ¤

2. Likelihood equations and errors-in-

variables regression; Solari’s example

Here is a case, noted by Solari (1969), where the likelihood equations
(1) have solutions, none of which are maximum likelihood estimates.
It indicates that the method of estimation via “estimating equations,”
mentioned by Bickel and Doksum, should be used with caution.

Let (Xi, Yi), i = 1, . . . , n, be observed points in the plane. Sup-
pose we want to do a form of “errors in variables” regression, in other
words to fit the data by a straight line, assuming normal errors in both
variables, so that Xi = ai + Ui and Yi = bai + Vi where U1, . . . , Un

and V1, . . . , Vn are all jointly independent, with Ui having distribution
N(0, σ2) and Vi distribution N(0, τ 2) for i = 1, . . . , n. Here the un-
known parameters are a1, . . . , an, b, σ2 and τ 2. Let c := σ2 and
h := τ 2. Then the joint density is

(ch)−n/2(2π)−n exp

(
−

n∑

i=1

(xi − ai)
2/(2c) + (yi − bai)

2/(2h)

)
.

Let
∑

:=
∑n

i=1. Taking logarithms, the likelihood equations are
equivalent to the vanishing of the gradient (with respect to all n + 3
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parameters) of

−(n/2) log(ch) −
∑

[(Xi − ai)
2/(2c) + (Yi − bai)

2/(2h)].

Taking derivatives with respect to c and h gives

(4) c =
∑

(Xi − ai)
2/n, h =

∑
(Yi − bai)

2/n.

For each i = 1, . . . , n, ∂/∂ai gives

(5) 0 = c−1(Xi − ai) + h−1b(Yi − bai),

and ∂/∂b gives

(6)
∑

ai(Yi − bai) = 0.

Next, (5) implies

(7)
∑

(Xi − ai)
2/c2 = b2

∑
(Yi − bai)

2/h2.

From (4) it then follows that 1/c = b2/h and b 6= 0. This and (5)
imply that b(Xi − ai) = −(Yi − bai), so

(8) ai = (Xi + b−1Yi)/2 for i = 1, . . . , n.

Then from (4) again,

(9) c =
∑

(Xi − b−1Yi)
2/(4n) and h =

∑
(Yi − bXi)

2/(4n).

Using (8) in (6) gives
∑

(Yi − bXi)(Xi + b−1Yi) = 0 =
∑

Y 2
i − b2X2

i .

If
∑

Y 2
i > 0 =

∑
X2

i there is no solution for b. Also if
∑

Y 2
i = 0 <∑

X2
i we would get b = 0, a contradiction, so there is no solution

in this case. If
∑

X2
i =

∑
Y 2

i = 0 then (6) gives ai = 0 for all i
since b 6= 0, but then (4) gives c = 0, a contradiction, so there is no
solution. We are left with the general case

∑
Y 2

i > 0 <
∑

X2
i . Then

b2 =
∑

Y 2
i /

∑
X2

i , so

(10) b = ±
(∑

Y 2
i /

∑
X2

i

)1/2

.

Substituting each of these two possible values of b in (8) and (9) then
determines values of all the other parameters, giving two points, dis-
tinct since

∑
Y 2

i > 0, where the likelihood equations hold, in other
words critical points of the likelihood function, and there are no other
critical points.

However, the joint density goes to +∞ for ai = Xi, fixed b and h, and
c ↓ 0. Thus the above two points cannot give an absolute maximum
of the likelihood. On the other hand, as c ↓ 0 for any fixed ai 6= Xi,
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the likelihood approaches 0. So the likelihood behaves pathologically
in the neighborhood of points where ai = Xi for all i and c = 0, its
logarithm having what is called an essential singularity. Other such
singularities occur where Yi − bai → 0 and h ↓ 0.

The family of densities in the example can be viewed as exponential,
but in a special sense, where x = ((X1, Y1), ..., (Xn, Yn)) is considered
as just one observation. If we take the natural parameters for the
family parameterized by b, a1, . . . , an, σ

2, τ 2, we get not the full natural
parameter space, but a curved submanifold in it. For example, let
n = 2. If θi are the coefficients of Xi and θi+2 those of Yi for i = 1, 2,
we have θ1θ4 ≡ θ2θ3. Also, for the natural parameters, some θj have
σ2 in the denominator, so that as σ ↓ 0, these θj go to ±∞, where
singular behavior is not so surprising.

Theorem 3 only guarantees uniqueness (not existence) of maximum
likelihood estimates when they exist in the interior of the natural pa-
rameter space, and doesn’t give us information about uniqueness, let
alone existence, on curved submanifolds as here. In some examples
given in problems, on the full natural parameter space, MLEs may
not exist with positive probability. In the present case they exist with
probability 0.

It seems that the model considered so far in this section is not a
good one, in that the number of parameters (n + 3) is too large and
increases with n. It allows values of Xi to be fitted excessively well
(“overfitted”) by setting ai = Xi. Alternatively, Yi could be overfitted.

Having noted that maximum likelihood estimation doesn’t work in
the model given above, let’s consider some other formulations.

Let Qη, η ∈ Y be a family of probability laws on a sample space
X where Y is a parameter space. The function η 7→ Qη is called
identifiable if it’s one-to-one, i.e. Qη 6= Qξ for η 6= ξ in Y . If η is
a vector, η = (η1, . . . , ηk), a component parameter ηj will be called
identifiable if laws Qη with different values of ηj are always distinct.
Thus, η 7→ Qη is identifiable if and only if each component η1, . . . , ηk is
identifiable. Suppose θ 7→ Pθ for θ ∈ Θ is identifiable and Qη ≡ Pθ(η)

for some function θ(·) on Y . Then η 7→ Qη is identifiable if and only if
θ(·) is one-to-one.

Example 5. Let dQη(ψ) = aecos(ψ−η)dψ for 0 ≤ ψ < 2π where a
is the suitable constant, a subfamily of the von Mises–Fisher family.
Then η 7→ Qη is not identifiable for η ∈ Y = R, but it is for Y = [0, 2π)
or Y = [−π, π).

Now consider another form of errors-in-variables regression, where
for i = 1, . . . , n, Xi = xi + Ui, Yi = a + bxi + Vi, U1, . . . , Un are i.i.d.
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N(0, σ2) and independent of V1, . . . , Vn i.i.d. N(0, τ 2), all independent
of x1, . . . , xn i.i.d. N(µ, ζ2) where a, b, µ ∈ R and σ2 > 0, τ 2 > 0 and
ζ2 > 0. This differs from the formulation in the Solari example in
that the xi, now random variables, were parameters ai in the example.
In the present model, only the variables (Xi, Yi) for i = 1, . . . , n are
observed and we want to estimate the parameters. Clearly the (Xi, Yi)
are i.i.d. and have a bivariate normal distribution. The means are
EXi = µ and EYi = ν := a + bµ. The parameters µ and ν are always
identifiable. It is easily checked that C11 := Var(Xi) = ζ2 + σ2,
C22 := Var(Yi) = b2ζ2 + τ 2, and C12 = C21 := Cov(Xi, Yi) = bζ2. A
bivariate normal distribution is given by 5 real parameters, in this case
C11, C12, C22, µ, ν. A continuous function (with polynomial components
in this case) from an open set in R

6 onto an open set in R
5 can’t be one-

to-one by a theorem in topology on invariance of dimension (references
are given to Appendix B of the 18.466 OCW 2003 notes), so the 6
parameters a, b, µ, ζ2, σ2, τ 2 are not all identifiable.

If we change the problem so that λ := τ 2/σ2 > 0 is assumed
known, then all the 5 remaining parameters are identifiable (unless
λC11 = C22), as follows. The equation for C22 now becomes C22 =
b2ζ2 + σ2λ. After some algebra, we get an equation quadratic in b,

(11) b2C12 + (λC11 − C22)b − λC12 = 0.

Since λ > 0, the equation always has real solutions. If C12 = 0 the
equation becomes linear and either b = 0 is the only solution or if
λC11 − C22 = 0, b can have any value and in this special case is not
identifiable. If C12 6= 0 there are two distinct real roots for b, of opposite
signs. Since b must be of the same sign as C12 to satisfy the original
equations, there is a unique solution for b, and one can solve for all the
parameters, so they are identifiable in this case.

Now, let’s consider how the parameters can be estimated, in case λ
is known.

Suppose given a normal distribution N(µ,C) on R
k where now µ =

(µ1, . . . , µk), C := {Cij}
k
i,j=1 and X1, . . . , Xn ∈ R

k are n i.i.d. obser-

vations with Xr := {Xri}
k
i=1. It’s easily seen that the MLE of µ is

X := {X i}
k
i=1 where X i := 1

n

∑n
r=1 Xri for i = 1, . . . , k.

The classical unbiased estimator of the variance, called the sample
variance, is defined for n ≥ 2 as

s2 := s2
n :=

1

n − 1

n∑

j=1

(Xj − X)2.
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The MLE of the variance for a normal distribution is not s2 but s′2 :=
(n − 1)s2/n, which will be called the empirical variance here because
it’s the variance for the empirical probability measure Pn. Likewise,
for a multivariate distribution, we can define sample covariances (with
a factor 1/(n − 1) in front) and empirical covariances (with a factor
1/n). The latter again turn out to be MLEs for normal distributions:

Theorem 6. The MLE of the covariance matrix C of a normal distri-
bution on R

k is the empirical covariance matrix, for i, j = 1, . . . , k,

Ĉij :=
1

n

n∑

r=1

(Xri − X i)(Xrj − Xj).

Proof. For k = 1, this says that the MLE of the variance σ2 for a normal
distribution is 1

n

∑n
r=1(Xr − X)2. (As noted above, this is (n − 1)/n

times the usual, unbiased estimator s2 of the variance.) This is easily
checked, substituting in the MLE X of the mean, then finding that the
likelihood equation for σ has a unique solution which is easily seen to
give a maximum.

Now in k dimensions, consider any linear function f from R
k into R

such as a coordinate, f(Xr) = Xri. Let f := 1
n

∑n
r=1 f(Xr). Then

by the one-dimensional facts, f is the MLE of the mean of f and the
MLE of Var(f) is the empirical variance 1

n

∑n
r=1(f(Xr) − f)2.

For any function g on a parameter space, if a unique MLE θ̂ of the

parameter θ exists, then the MLE of g(θ) is, by definition, g(θ̂). For
example, if g is a one-to-one function, then η = g(θ) just gives an
alternate parameterization of the family as µη = µg(θ) = Pθ. We see

that the MLE of Cjj is Ĉjj for j = 1, . . . , k. Moreover, the MLE of
Var(X1i + X1j) is also the corresponding empirical variance for any
i, j = 1, . . . , k. Subtracting the empirical variances of X1i and X1j

and dividing by 2, we get the empirical covariance of X1i and X1j,

namely Ĉij. Since the MLE of a sum or difference of functions of
the parameters is the sum or difference of the MLEs, we get that the
empirical covariance Ĉij is indeed the MLE of Cij. ¤

Returning to the bivariate case and continuing with errors-in-vari-
ables regression for a fixed λ, by a change of scale we can assume λ = 1,
in other words σ2 = τ 2. Since X and Y are the MLEs of the means,
we see that Y = ν̂ = a + bµ̂ = a + bX, the MLE regression line will
pass through (X,Y ), as it also does for the classical regression lines of
y on x or x on y.
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