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INFORMATION INEQUALITIES

When we consider a parametric family P ={Pθ}θ∈Θ of laws, we will
always assume that Pθ 6= Pφ for θ 6= φ.

If T = T (X1, . . . , Xn) is a statistic and X1, . . . , Xn are i.i.d. (Pθ)
then (as before) we let

EθT :=

∫

· · ·

∫

T (x1, . . . , xn)dPθ(x1) · · · dPθ(xn),

or if T is a function on the basic sample space (n = 1) then EθT =
∫ T (x)dPθ(x). Correspondingly, variances and covariances of real-val-
ued statistics T and U are defined by

varθT := Eθ(T
2) − (EθT )2, Covθ(T, U) := Eθ(TU) − (EθT )(EθU)

when the integrals converge, with varθT := +∞ if Eθ(T
2) = +∞. For

squared-error loss L(θ, T ) = (T − g(θ))2, if T is an unbiased estimator
of g(θ), then the mean squared-error loss equals varθT . On the other
hand, trivial constant estimators will have variance 0 without being
good estimators except for special parameter values. Inequalities of
the type in this section were first found for unbiased estimators, but
there will be a form (Theorem 10) which applies to estimators that
may have a bias.

We are looking for lower bounds for variances of unbiased estimators
T of functions g(θ). Suppose first that T is an unbiased estimator of
θ. Then for any constants a and b, a + bT is an unbiased estimator of
h(θ) = a + bθ, with Varθ(a + bT ) = b2 Varθ T . This variance doesn’t
depend on a and is proportional to b2 where b is the derivative of h
(everywhere, in this simple case). Or more generally, if T is an unbiased
estimator of g(θ) then a+ bT is an unbiased estimator of a+ bg(θ) and
Varθ(a+bT ) = b2 Varθ T . Thus it seems natural that (lower) bounds for
the variances of unbiased estimators should be proportional to g′(θ)2,
as they will be.

Also, recall that for n i.i.d. observations, the sample mean X as
an estimator for an unknown mean µ is unbiased and has a variance
equal to σ2/n where σ2 is the variance of one observation. So we can
anticipate that lower bounds for the variance of an unbiased estimator
of g(θ) based on n i.i.d. observations should be of the form u(θ)g′(θ)2/n
for some function u(θ). This will also turn out to be true (Theorem 7),
so we have to find suitable functions u(θ), which are most often written
as 1/I(θ) where I(·) is the so-called Fisher information, to be defined.
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A family P of probability measures will be called equivalent if any
two laws P and Q in the family are equivalent, in other words for any
measurable set B, P (B) = 0 if and only if Q(B) = 0. Then {Pθ}θ∈Θ

will be equivalent if for some σ-finite measure v, Pθ is equivalent to v
for all θ ∈ Θ. Conversely, if P is equivalent, we can take any member
of P as v. Let the density (Radon-Nikodym derivative) be f(θ, x) :=
(dPθ/dv)(x). Then f(θ, x) > 0 for v-almost all x and for Pφ-almost all x
for each φ ∈ Θ. The likelihood ratio Rφ,θ := RPφ/Pθ

= f(φ, x)/f(θ, x)
will be defined, with 0 < Rφ,θ < ∞ for almost all x in the same sense;
0/0 will be defined as 0 in this case. Here is a first lower bound on
variances of unbiased estimators. Note that in it, there is no restriction
on the parameter space Θ, which could be an arbitrary set.

Theorem 1. Suppose T is an unbiased estimator of a real function
g(θ) for an equivalent family {Pθ, θ ∈ Θ}. Then

Varθ T ≥ sup{(g(φ) − g(θ))2/ Varθ Rφ,θ : φ ∈ Θ, φ 6= θ}.

Note. The conclusion of the theorem holds trivially if Varθ T = +∞ or
if Varθ Rφ,θ ≡ +∞ for all φ 6= θ. So the theorem has content if and
only if both Eθ(T

2) < ∞ and Varθ Rφ,θ < ∞ for at least one value of
φ 6= θ. For φ 6= θ, since Pθ 6= Pφ, Rφ,θ is non-constant with respect to
Pθ, so its variance is non-zero.

Proof. Since T is unbiased, ∫ T (x)f(φ, x)dv(x) = g(φ) for all φ, and
∫

T (x)
f(φ, x) − f(θ, x)

f(θ, x)
f(θ, x)dv(x) = g(φ) − g(θ),

Covθ(T,Rφ,θ) =

∫

(T (x) − g(θ))

(

f(φ, x)

f(θ, x)
− 1

)

dPθ(x)

= g(φ) − 2g(θ) + g(θ) = g(φ) − g(θ).

Then by the Cauchy–Bunyakovsky–Schwarz inequality (e.g. Dudley
[2002, 5.1.4]),

Varθ T ≥ (g(φ) − g(θ))2/ Varθ Rφ,θ,

where Varθ Rφ,θ > 0 for θ 6= φ; then take the supremum over φ 6= θ. ¤

In the rest of this section, Θ is an open interval in R. Often, the
function g(θ) to be estimated is just θ. Then g has the derivative
g′ ≡ 1, so that all the further facts in this section in terms of g′(θ)
simplify.

Theorem 2. Assume that T is an unbiased estimator of g(θ) for an
equivalent family {Pθ, θ ∈ Θ}, Θ is an open interval in R, g has a
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derivative at θ and as φ → θ, for some J(θ), (Varθ Rφ,θ)/(φ − θ)2 →
J(θ). Then if g′(θ) 6= 0 or J(θ) > 0,

Varθ T ≥ g′(θ)2/J(θ).

Proof. In Theorem 1, divide numerator and denominator by (φ − θ)2

and let φ → θ. If J(θ) = 0, Varθ T must be +∞, so the conclusion
follows. ¤

Note that for any φ 6= θ, Varθ Rφ,θ/(φ− θ)2 = Eθ(((Rφ,θ − 1)/(φ−
θ))2) and Rθ,θ ≡ 1. Suppose that in J(θ), the limit as φ → θ can be
interchanged with the integral Eθ, and the integrands converge. Their
limit is then the square of a partial derivative, (∂Rφ,θ/∂φ)|φ=θ)

2, which
can also be written as

(

∂f(θ, x)/∂θ

f(θ, x)

)2

=

(

∂ log f(θ, x)

∂θ

)2

.

The quantity ∂ log f(θ, x)/∂θ is known as the score function. If the
derivatives in the last display exist for almost all x, then the quantity

I(θ) := Eθ((∂ log f(θ, x)/∂θ)2) =

∫

(∂f(θ, x)/∂θ)2/f(θ, x) dv(x)

is called the information of the family {Pθ} at θ. It is by no means the
same as the “information” studied in information theory. I(θ) is often
called the Fisher information. Fisher made good use of it, but it was
originally due to Edgeworth, see the Notes.

A famous inequality, Varθ T ≥ g′(θ)2/I(θ), then follows from the in-
terchange of limits. One set of sufficient conditions for the interchange
will imply that the identities

1 ≡

∫

f(θ, x)dv(x) and g(θ) ≡

∫

T (x)f(θ, x)dv(x)

can be differentiated with respect to θ under the integral sign, as fol-
lows:

Theorem 3 (Information inequality). Let T be an unbiased estima-
tor of a function g(·) on an open interval Θ for an equivalent family
{Pθ, θ ∈ Θ}. For a given value of θ, assume that ∂f(θ, x)/∂θ exists
for almost all x, I(θ) > 0 and that

(1)

∫

(|T (x)| + 1)

∣

∣

∣

∣

∂f(θ, x)

∂θ

∣

∣

∣

∣

dv(x) < ∞,

(2) 0 =

∫

∂f(θ, x)

∂θ
dv(x),
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and

(3) g′(θ) =

∫

T (x)
∂f(θ, x)

∂θ
dv(x).

Then

(4) Varθ T ≥ g′(θ)2/I(θ).

Note. The information inequality has been called the Cramér-Rao
inequality, but Fréchet found it earlier and Darmois also played a part
(see the Notes). Existence and finiteness of the Lebesgue integrals in
both (2) and (3) is equivalent to (1), since the integrands are measur-
able functions of x.

Proof. Multiplying (2) by g(θ) and subtracting from (3) gives

g′(θ) = Eθ((T (x) − g(θ))∂ log f(θ, x)/∂θ).

If Varθ T = +∞ or I(θ) = +∞, the inequality holds trivially since
g′(θ) is finite. If Varθ T and I(θ) are both finite, then the Cauchy–
Bunyakovsky–Schwarz inequality can be applied as in the proof of The-
orem 1 to get g′(θ)2 ≤ I(θ) Varθ T . ¤

When n i.i.d. observations are taken, the Fisher information, if it
exists, is multiplied by n, as follows.

Proposition 4. Let P = {Pθ}θ∈Θ be an equivalent family where Θ is
an open interval in R. Suppose that the Fisher information I1(θ) :=
I(θ) exists and is finite and that (2) holds for each θ ∈ Θ. Then for
the family Pn := {Pθ

n : θ ∈ Θ}, the Fisher information In(θ) exists
and equals nI1(θ) for each θ.

Proof. Let v be a σ-finite dominating measure for P , e.g. a member of
P , and f(θ, x) := (dPθ/dv)(x). Then Pn is dominated by vn, with
likelihood functions f (n)(θ, (X1, ..., Xn)) = Πn

j=1f(θ,Xj), so

log f (n)(θ, (X1, ..., Xn)) =
n

∑

j=1

log f(θ,Xj).

By the assumptions, ∂ log f(θ,Xj)/∂θ, j = 1, ..., n, are i.i.d. variables
for Pθ

n with mean 0 and finite variance I1(θ), so the conclusion follows.
¤

The information inequality is usually stated under assumptions such
as those of Theorem 3. Exchanging differentiation with an integral as
in (2) and (3) may seem a plausible and reasonable kind of hypothesis.
But an example will be given below (Proposition 11) showing that
assumption (3) may not hold even when (1) does, and where each



5

derivative and integral in (3) is well-defined and finite. So let’s see how
(1) can be strengthened enough to imply (2) and (3), by way of the
notion of uniform integrability (Dudley [2002, Section 10.3]). A set
F of integrable functions on a probability space (X,S, µ) is uniformly
integrable iff

lim
M→∞

sup{E|f |1{|f |>M} : f ∈ F} = 0.

This will hold if (but not only if) there is an integrable function g with
|f | ≤ g for all f ∈ F .

Theorem 5. Assume that for a given θ, ∂f(θ, x)/∂θ exists for almost
all x and there is a δ > 0 such that the functions

(|T (x)| + 1)(f(φ, x) − f(θ, x))/(φ − θ) for 0 < |φ − θ| < δ

are uniformly integrable for v, or equivalently the functions

(|T (x)| + 1)(Rφ,θ − 1)/(φ − θ) for 0 < |φ − θ| < δ

are uniformly integrable with respect to Pθ. Then (1), (2) and (3) all
hold.

Proof. The conditions follow from convergence of integrals of point-
wise convergent, uniformly integrable functions (Dudley [2002, Theo-
rem 10.3.6]). ¤

Theorems 3 and 5 have been stated for one unbiased estimator T , but
the information inequality has usually been stated as applying to all
unbiased estimators, with hypotheses (1) and (3) assumed for all such
estimators of g(θ). There can in general be many different unbiased
estimators of g(θ). So it may not really be clear what it means, in
terms of the family of laws Pθ, that (1) and (3) hold for all unbiased
estimators of g. An alternate sufficient condition will be stated just in
terms of g and the family {Pθ, θ ∈ Θ}:

Theorem 6. The information inequality holds for a given θ for every
unbiased estimator T of g(·), if: Θ is an open interval in R, {Pθ}θ∈Θ

is an equivalent family, g has a non-zero derivative at θ, ∂f(θ, x)/∂θ
exists for almost all x, and there is a δ > 0 such that the set of functions
((Rφ,θ − 1)/(φ− θ))2 for 0 < |φ− θ| < δ is uniformly integrable for Pθ.

Proof. Applying Theorem 2, we have

J(θ) = lim
φ→θ

(Varθ Rφ,θ)/(φ − θ)2 = lim
φ→θ

Eθ([(Rφ,θ − 1)/(φ − θ)]2)

= Eθ((∂f(θ, x)/∂θ)2/f(θ, x)2) = I(θ),



6

again by convergence of integrals of pointwise convergent, uniformly
integrable functions (Dudley [2002, Theorem 10.3.6]) and the assump-
tions. ¤

The information inequality extends to n i.i.d. observations under
uniform integrability assumptions:

Theorem 7. Suppose that x = (x1, . . . , xn) where xi are i.i.d. with dis-
tribution having density f1(θ, x1) with respect to v, so that dPθ

n/dvn =
f(θ, x) = Π1≤j≤nf1(θ, xj). Also assume the hypotheses on f and
Rφ,θ in Theorem 6 hold for f1 and f1(φ, ·)/f1(θ, ·) respectively. If
T = T (x1, . . . , xn) is an unbiased estimator of g(θ) and g′(θ) 6= 0
exists, then

Varθ T ≥ g′(θ)2/(nI1(θ)).

Proof. The uniform integrability condition in Theorem 6 extends to
more than one variable as follows. First, for n = 2,

(5) Rφ,θ(X1)Rφ,θ(X2)−1 = Rφ,θ(X1)(Rφ,θ(X2)−1)+(Rφ,θ(X1)−1).

To show that a class of functions of the form (F + G)2 is uniformly
integrable for F in a class F and G in a class G, noting that (F +G)2 ≤
2F 2+2G2, it is enough to show that the sets of functions F 2 and G2 are
uniformly integrable. Dividing each term on the right of (5) by φ−θ and
squaring, the latter term is uniformly integrable for 0 < |φ− θ| < δ by
assumption. For the former term, using independence of X1 and X2, it
will be enough to show that the Rφ,θ(X1)

2 are uniformly integrable, or
equivalently that (Rφ,θ(X1)− 1)2 are. This is clear on multiplying and
dividing by (φ − θ)2, which is less than δ2. The uniform integrability
in Theorem 6 then extends to n > 2 by induction, so the information
inequality holds and the form of I(θ) is given by Proposition 4. ¤

Note. If the hypotheses of Theorems 3 and 5 hold for unbiased estima-
tors T (x), which can be viewed as T (X1), then they do not necessarily
follow for unbiased estimators T (X1, . . . , Xn). In fact, often the set
of functions g(θ) that have unbiased estimators depends on n, e.g. for
binomial distributions. So to apply these theorems to n > 1 we would
need to check their hypotheses for x = (x1, . . . , xn) rather than only
for n = 1.

Example 8. (1) Let f1(θ, x) be the normal N(θ, 1) density and
g(θ) = θ. Then by Theorem 7, Varθ T ≥ 1/n for any unbiased
estimator T (X1, . . . , Xn) of θ. This variance is attained by T :=
X, for any θ, so X is a “uniformly minimum-variance unbiased
estimator.”
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(2) Let v be counting measure on the nonnegative integers and
let Pθ be the Poisson law with parameter θ, Pθ(j) = e−θθj/j!,
j = 0, 1, . . . . Let g(θ) ≡ θ. Then I1 = Eθ((jθ

−1 − 1)2) = 1/θ
and Theorem 7 gives Varθ T ≥ θ/n for any unbiased estimator
T . Again, this minimum variance is attained by the unbiased
estimator X for all θ.

(3) The information inequality lower bound cannot always be at-
tained. For normal measures N(µ, σ2) with µ ∈ R and σ > 0,
s2 :=

∑n
i=1(Xi − X)2/(n − 1) is an unbiased estimator of σ2

with variance 2σ4/(n − 1) while I1(σ
2) = 1/(2σ4), so the lower

bound given by Theorem 7 is 2σ4/n. According to the follow-
ing Proposition 9, 2σ4/(n− 1) is the smallest variance actually
attainable.

If we drop the restriction that an estimator T (X) of the variance
σ2 be unbiased, but consider estimators T (X) = an

∑n
j=1(Xj − X)2,

we know that for normal distributions, an = 1
n+1

gives smallest mean-

square error, and that the factor an = 1
n−1

gives an estimator inad-

missible for general distributions with E(X4
1 ) < ∞ (Yatracos’s theo-

rem), where an = (n + 2)/(n(n + 1)) always gives smaller risk. But,
if we do restrict to unbiased estimators, then for normal distributions,
an = 1/(n− 1) gives smallest risk. This is not surprising, as for exam-
ple, for n ≥ 3, T (X) = 1

n−2

∑n−1
j=1 (Xj −X)2 is unbiased but inferior (it

doesn’t use Xn).
A fuller proof of the following was given in the OCW 2003 notes,

Section 2.5, depending on the notion of Lehmann–Scheffé statistic or
σ-algebra (Section 2.3).

Proposition 9. Let X1, . . . , Xn be i.i.d. with law N(µ, σ2) and n ≥ 2.
Then s2 := (n−1)−1

∑n
j=1(Xj −X)2 has, among unbiased estimators

of σ2, smallest risk for squared-error loss, for all (µ, σ2). The risk of
s2 is 2σ4/(n − 1).

Proof. (Sketch) We know that s2 is an unbiased estimator of σ2. Let
S be the smallest σ-algebra for which T1 and T2 are measurable in
this case. Then S is sufficient. It is actually minimal sufficient. Since
s2 = (n− 1)−1(T1 − T 2

2 /n), s2 is S-measurable. Then it follows that s2

has minimum risk for squared-error loss (which is convex).
To find the variance of s2, first note that if X has distribution

N(0, σ2), then EX4 = 3σ4, by integration by parts or the moment
generating function. Also, Es2 = σ2 and we can assume m = 0. Make
an orthogonal change of coordinates from (X1, . . . , Xn) to (Y1, . . . , Yn)
where the Y1 axis is in the direction of (1, 1, . . . , 1), so that Y1 = n1/2X.
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Then the Yj are i.i.d. N(0, σ2) and s2 = (n − 1)−1
∑n

j=2 Y 2
j . So

E((s2)2) = (n−1)−2σ4[3(n−1)+(n−1)(n−2)] = (n+1)σ4/(n−1),

and Var(s2) = 2σ4/(n − 1). ¤

The requirement that an estimator is unbiased can be restrictive, and
as we have seen, can force a bad choice of estimator. The inequalities
proved earlier in this section can be adapted to give bounds for mean-
square errors for more general estimators as follows.

Let T be a statistic used as an estimator of a function g(θ). Let
b(θ) := EθT − g(θ) for all θ. Then b(θ) is called the bias at θ and is
0 for all θ if and only if T is an unbiased estimator of g. If T is not
necessarily unbiased, the mean-square error of T as an estimator of g
is
(6)
Eθ

[

(T − g(θ))2
]

= Eθ

[

(T − EθT + EθT − g(θ))2
]

= Varθ T + b(θ)2.

Classically, up through the 1940’s or perhaps 1950’s, the usual approach
to minimizing the mean-square error was to look for unbiased estima-
tors T and then minimize their variance. In more recent decades, it
was realized that a small bias b(θ) is not necessarily harmful, because
when squared it becomes very small, and it may give us freedom to
reduce the variance and total mean-square error. So, there is a “bias-
variance tradeoff,” now a frequently used phrase, where the focus is
more directly on minimizing mean-square error, by estimators T that
may be biased. Theorem 4 of the “Bayes estimates” handout shows
that Bayes estimators, which minimize average mean-square error with
respect to a prior, are virtually never unbiased.

In general, as long as Eθ|T | < ∞ for all θ, T will always be an
unbiased estimator of (g + b)(θ), and so by equation (6) we have:

Theorem 10. If sufficient conditions for the information inequality
hold for g + b in place of g, then for all θ,

Eθ

[

(T − g(θ))2
]

≥
(g + b)′(θ)2

I(θ)
+ b(θ)2.

The hypotheses of Theorem 2 can be weakened as follows. Let

J−(θ) := lim inf
y→θ

(Varθ Ry,θ)/(y − θ)2

and
S(θ) := lim sup

y→θ
|g(y) − g(θ)|/|y − θ|.



9

Then if either J− or S is a limit as well as a lim inf or lim sup
respectively, and at least one is not zero, it will follow that Varθ T ≥
S2(θ)/J−(θ). So, if g′(θ) 6= 0 exists, then Varθ T ≥ g′(θ)2/J−(θ).

The information I(θ) equals J−(θ) if in the definition of J−(θ), the
lim inf is a limit J(θ) and the limit can be interchanged with the
integral sign, as it can be under conditions treated above.

If ∂f(θ, x)/∂θ exists for v-almost all x, then I(θ) is defined (possibly
+∞) and I(θ) ≤ J−(θ) by Fatou’s Lemma (Dudley [2002, 4.3.3]) Here
Varθ T ≥ g′(θ)2/I(θ) may not hold without further hypotheses:

Proposition 11. There exist densities f(θ, x) with respect to Lebesgue
measure on R defined for −1 < θ < 1 such that f(·, ·) is jointly C∞

(infinitely differentiable) in both its variables, with f(θ, x) > 0 and
∂f(θ, x)/∂θ|θ=0 = 0 for all x, I(0) = 0, and J(0) = +∞. Also, x
is an unbiased estimator of θ, Eθx ≡ θ, and Var0 x = 1. Thus the
information inequality Var0 x ≥ 1/I(0) fails.

Proof. Let f be a nonnegative C∞ function which is even (f(x) ≡
f(−x)) and has compact support and

∫ ∞

−∞
f(x)dx = 1, such as, for the

suitable normalizing constant c,

f(x) =

{

c · exp (−(1 − x)−2 − (1 + x)−2) , for −1 < x < 1

0, otherwise.

Then
∫ ∞

−∞
xf(x)dx = 0. Let h be the standard normal N(0, 1) density.

Let

f(θ, x) =

{

(1 − θ2)h(x) + θ2f(x − θ−1), for 0 < |θ| < 1

h(x), for θ = 0.

Then f(θ, x) > 0 for all real x and |θ| < 1. Since h and f both
have mean 0, the mean

∫ ∞

−∞
xf(θ, x)dx is 0 for θ = 0 and θ2θ−1 = θ

otherwise, so x is an unbiased estimator of θ. For x in any bounded
interval, f(θ, x) = (1−θ2)h(x) for θ in a neighborhood of 0, specifically,
for |x| ≤ M and |θ| < 1/(M + 1). Since f(θ, x) is clearly C∞ in x and
θ for θ outside a neighborhood of 0, it is in fact jointly C∞ for all x
and for −1 < θ < 1, with ∂f(θ, x)/∂θ|θ=0 = 0 for all x. So I(0) = 0.
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For y 6= 0,

Var0 Ry,0 =

∫ ∞

−∞

f(y, x)2f(0, x)−1dx − 1

= −2y2 + y4 + 2y2(1 − y2) + y4

∫ ∞

−∞

f(x − y−1)2h−1(x)dx

= y4

[

−1 +

∫ ∞

−∞

f(x − y−1)2 exp(x2/2)(2π)1/2dx

]

.

The latter integral goes to +∞ as y → 0, as exp(y−2/2) or faster, so
J(0) = +∞ > I(0) = 0. The rest follows. ¤

So, existence of integrals involving ∂f(θ, x)/∂θ does not guarantee
that limits can be interchanged with integrals, and the uniform inte-
grability conditions in Theorems 5 and 6 can’t simply be removed. In
the example in the last proof, letting τ 2 be the variance of the law with
density f ,

Varθ x = Eθ(x
2)−θ2 = (1−θ2) ·1+θ2(θ−2+τ 2)−θ2 = 2−(2−τ 2)θ2

for θ 6= 0 and 1 for θ = 0. So the variance of x is discontinuous at
θ = 0.

Suppose we have another parameterization of a family {Pθ}θ∈Θ where
Qψ = Pθ(ψ) and that we want to estimate g(θ) = g(θ(ψ)). Then we
have

Theorem 12. If ψ 7→ θ(ψ) is differentiable with a non-zero derivative
then the information inequality lower bound for Var T is the same for
the parameterization by ψ as for the parameterization by θ.

Proof. In the change from parameter θ to parameter ψ in the informa-
tion inequality, by the chain rule, both numerator and denominator are
multiplied by θ′(ψ)2 > 0, not changing the bound. ¤

The information inequality is most useful in cases where there exists
some unbiased estimator T whose variance attains the lower bound
given in Theorem 3 for all θ. It turns out that under some regularity
conditions (stronger than those needed for the information inequality
itself), the bound is attained only for densities in exponential families.
Recall that a function is called C1 if it is everywhere differentiable with
a continuous derivative.

Theorem 13. Assume the hypotheses of Theorem 3 for all θ in an
open interval Θ and that 0 < Varθ T < ∞ for all θ and ∂ log f(θ, x)/∂θ
is continuous in θ for almost all x. Then the information inequality
becomes an equation for all θ if and only if there exist C1 functions c(·)
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and d(·) of θ and a measurable function h of x such that for all θ and
almost all x,

f(θ, x) = c(θ)h(x) exp(d(θ)T (x)).

Proof. By the assumptions, I(θ) Varθ T > 0 and g is everywhere dif-
ferentiable on the open interval Θ, so it is continuous. The proof of
Theorem 3 gives g′(θ)2 ≤ (Varθ T )I(θ) via the Cauchy–Bunyakovsky–
Schwarz inequality, which must become an equation since the infor-
mation inequality does. So, for each θ, the functions T − g(θ) and
∂ log f/∂θ must be proportional (e.g. in the proof of Dudley [2002,
5.3.3], b2 − 4ac = 0 implies ‖f + tg‖2 = 0 for some t). So for each θ,
there is an a(θ) such that ∂ log f(θ, x)/∂θ = a(θ)(T (x) − g(θ)) for
almost all x. Since Varθ T > 0 there is a set of x of positive mea-
sure on which T (x) 6= g(θ), so a(θ) is uniquely determined. For the
same reason, there must exist some number c such that T (x) > c
and T (x′) < c for x and x′ in sets A,B of positive measure respec-
tively, where also for y = x or x′, ∂ log f(θ, y)/∂θ is continuous in
θ. Thus ∂ log f(θ, x)/∂θ − ∂ log f(θ, x′)/∂θ is continuous in θ for any
such x, x′. For any given θ, the difference equals a(θ)[T (x) − T (x′)]
for almost all x ∈ A and x′ ∈ B. Taking any convergent sequence
θj → θ0 of values of θ, we have the equality for almost all x ∈ A and
x′ ∈ B for all θj, j ≥ 0. Thus a(θk) → a(θ0). A real-valued func-
tion of a real variable, continuous along any sequence, is continuous,
so a(·) is continuous. We can then take an indefinite integral to get
log f(θ, x) = d(θ)T (x) + u(x) − j(θ) for some measurable function
u(x) and C1 functions d(θ) and j(θ). Taking the exponential of both
sides finishes the proof in one direction. Conversely, when functions
are proportional, the Cauchy–Bunyakovsky–Schwarz inequality always
becomes an equation. ¤

NOTES

Theorem 1 is due to Hammersley (1950). Chapman and Robbins
(1951) rediscovered it. The notion of information I(θ) originated with
Edgeworth (1908,1909). Fisher (1922 and later papers) developed it,
see Savage (1976).

The information inequality (3), Varθ T ≥ g′(θ)2/I(θ), was first found
by Fréchet (1943) and extended by Darmois (1945). It was rediscovered
by C. R. Rao (1945) and Cramér (1945, pp. 475-476; 1946) and had
been widely known as the “Cramér-Rao” inequality. In view of the
contributions of Fréchet and Darmois, L. J. Savage (1954) proposed the
name “information inequality.” Rao (1945, eq. (3.2)) did not actually
state regularity conditions adequate to justify his interchange of limits.
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Cramér did, but in a special case where not only g(θ) ≡ θ but T (x) ≡
x.

Joshi (1976) gives an example of a location family, so that f(θ, x) ≡
f(x−θ), and an estimator for which the information inequality becomes
an equation for all θ, −∞ < θ < ∞, but which does not have the ex-
ponential form given in Theorem 13. The given f(·) is not continuous,
having some jumps, so for no x is f(·, x) everywhere differentiable with
respect to θ, and the hypothesis of Theorem 13 fails although for each
x, the density is smooth with respect to θ except for a few jumps. See
Joshi (1976) for details.

These notes are largely based on those in Lehmann (1983, p. 145).


