
18.466, March 11, 2013

BAYES ESTIMATION

This handout is adapted from one for 18.443 and a section from previous 18.466 notes
(2005 version, a revision of the 18.466 OCW 2003 notes).

1. Definition of priors and posteriors for a continuous θ

In this handout Θ will be a parameter space included in a Euclidean space R
k. For

example, for the family of normal distributions, Θ is the open half-plane {(µ, σ) : −∞ <
µ < ∞, 0 < σ < ∞} ⊂ R

2. On Θ, dθ will mean dθ1 · · · dθk.
Assume given a likelihood function f(X, θ) defined for θ ∈ Θ and X a vector in R

n.
In Bayesian statistics, one assumes before taking any observations that θ has a prior
probability density π(θ) with respect to dθ. Sometimes, as in some examples in Bickel
and Doksum, “improper” priors with infinite total measure such as Lebesgue measure
on the whole line are considered. This handout treats only prior probability meaures.

For an ordinary (proper) prior, π(θ) ≥ 0 and
∫

Θ
π(θ)dθ = 1. If θ = p with 0 ≤ p ≤ 1

is the success probability in a binomial distribution, a simple and natural choice for its
prior (in the absence of any particular information about p) is a U [0, 1] distribution with
π(p) = 1 for 0 ≤ p ≤ 1. The earliest works in Bayesian statistics, Bayes (1764) and
Laplace (1774), made this choice.

Let f(x, θ) be a likelihood function for one observation, which may be either a prob-
ability mass function if x is discrete or a density function if x is continuous. If we have
i.i.d. observations X = (X1, ..., Xn) we get a likelihood function f(X, θ) =

∏n
j=1 f(Xj, θ).

However f(X, θ) is obtained, the posterior density πX(θ) is gotten by multiplying the
likelihood function by the prior and then normalizing it,

(1) πX(θ) =
f(X, θ)π(θ)

∫

Θ
f(X,φ)π(φ)dφ

.

To show that (1) makes sense we can use the following (in it, to be measure-theoretically
accurate, it should be assumed that f is a jointly measurable function of X and θ):

Theorem 1. Let Θ ⊂ R
k be a parameter space, θ ∈ Θ, and X ∈ R

n an observed vector.
Suppose that for each θ ∈ Θ, f(X, θ) is a probability density with respect to X, so that
∫

f(X, θ)dX = 1 where dX = dx1dx2 · · · dxn. Let π(θ) ≥ 0 be a prior probability density
for θ. Let q(X, θ) = π(θ)f(X, θ) for all θ ∈ Θ and all X. Then
(a) q is a bivariate probability density with respect to dθ dX, for a joint probability
distribution Q of (X, θ),
(b) the marginal density of q with respect to θ is π,
(c) and for each θ ∈ Θ the conditional density of X given θ is q(X|θ) = f(X, θ).
(d) Letting

τ(X) =

∫

Θ

q(X, θ)dθ,

τ is a probability density and is the marginal density of Q with respect to X.
(e) With probability 1 with respect to Q, or with respect to its marginal density τ ,

(2) 0 < τ(X) < +∞.
1



2

(f) For all X such that (2) holds, a conditional density of θ given X exists and is given
by q(θ|X) = πX(θ) in (1) where the denominator in (1) is τ(X).
(g) We have for Q-almost all (x, θ),

(3) q(X, θ) = π(θ)f(X, θ) = τ(X)πX(θ).

Remark. The theorem adapts easily to the case where X is discrete, so f(·, θ) is a
probability mass function, with integrals

∫

·dX replaced by sums
∑

X .

Proof. For (a), since the integrand is nonnegative we can do an iterated integral in
either order. If we integrate first with respect to X we get π(θ) which has integral
1 with respect to θ. This also proves (b), and the rest of the statements are known
facts about marginal and conditional densities from probability theory. Since part (e)
is crucial in showing that πX is well-defined with probability 1, let’s prove it in detail,
assuming part (d). We have

Pr(τ(X) = 0) =

∫

τ(X)=0

τ(X) dX =

∫

0 dX = 0.

On the other hand let A = {X : τ(X) = +∞}. Then

Pr(A) =

∫

A

τ(X) dX =

∫

A

+∞ dX = Pr(A) · (+∞) = +∞

if Pr(A) > 0, but since Pr(A) ≤ 1, we get Pr(A) = 0, and (e) follows, i.e. (2) holds with
probability 1.

For part (g), in (3), the first equation holds by definition of q(X, θ), and the second
by the definitions and parts (d) and (e). ¤

2. Conjugate priors

A conjugate prior for a given parametric family of distributions with a likelihood
function is one such that the posterior distributions all belong to the same parametric
family. For example, if θ = λ is a Poisson parameter with 0 < λ < +∞ and the
prior π(θ) is a gamma density, then the posterior πX(θ) is also in the gamma family.
Specifically, if λ has prior density Gamma(a, c), where a > 0 and c > 0, so that π(λ) =
caλa−1 exp(−cλ)/Γ(a) and we observe X1, ..., Xn i.i.d. Poisson(λ) with Sn := X1 + · · ·+
Xn, then the likelihood function is proportional to e−nλλSn and so the posterior density
is Γ(a+Sn, c+n) (it is proportional to this as a function of λ, and a probability density
has a unique normalizing constant). As the expectation for Γ(a, c) is a/c, the expectation
for the posterior distribution is Sn+a

n+c
, which is asymptotic as n → ∞ to the maximum

likelihood estimate Sn/n.
Likewise, beta densities give conjugate priors for the binomial probability p.

2.1. Normal-inverse-gamma distributions; conjugate for normals. Let Y > 0 be
a random variable having a distribution function F and a density f = fY . Let V := 1/Y .
Then for any x > 0, Pr(V ≤ x) = Pr(1/Y ≤ x) = Pr(Y ≥ 1/x) = 1 − F (1/x), and so
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by the chain rule 1/Y has a density f1/Y (x) = −f(1/x) · (−1/x2) = x−2f(1/x). Thus if
Y has a Gamma(α, β) density f(y) = βαyα−1 exp(−βy)/Γ(α) then 1/Y has the density

βαy1−α exp(−β/y)/(y2Γ(α)) = βαy−1−α exp(−β/y)/Γ(α)

where α > 0, β > 0, and y > 0, which is called an inverse gamma(α, β) density.
Parameters of prior or posterior distributions are called hyperparameters. The fam-

ily of all normal distributions N(µ, σ2) on the real line has a conjugate prior for the
parameter θ = (µ, σ2) called the “normal-inverse-gamma distribution” and given by

(4)

√
ν

σ
√

2π
· βα

Γ(α)

(

1

σ2

)α+1

exp

(

−2β + ν(µ − λ)2

2σ2

)

with four hyperparameters α > 0, β > 0, ν > 0, and λ which can be any real number.
For (4), given the hyperparameters, the marginal density of σ2 is inverse gamma (α, β),
or equivalently 1/σ2 has Gamma(α, β), and the conditional density of µ given σ is
N(λ, σ2/ν). If σ is fixed, then the normal distributions give a conjugate prior family for
µ, which is much simpler, but it’s usually unrealistic to assume σ is known. Likewise
if µ is fixed, the gamma distributions for 1/σ2 give a conjugate prior family, but for µ
to be fixed is also usually unrealistic. For the joint conjugate prior density (4) of µ and
σ2, µ and σ2 are not independent: the density is not a product f(µ) times g(σ) for any
functions f and g. So the joint conjugate prior is a bit complicated.

3. Credible intervals

These are the Bayesian counterparts of confidence intervals. A 100(1 − α)% credible
interval for a real parameter θ is one that has posterior probability 1 − α of containing
θ. A two-sided 95% credible interval for θ, for example, would be the interval with
endpoints the 0.025 and 0.975 quantiles of the posterior distribution.

4. Bayes least-squares estimation

First here is a very simple fact.

Proposition 2. For any random variable Y with E(Y 2) < +∞, the unique constant c
that minimizes E((Y − c)2) is c = EY .

Proof. E((Y − c)2) = E(Y 2) − 2cEY + c2 is a quadratic polynomial in c which goes
to +∞ as c → ±∞, so it’s minimized where its derivative with respect to c equals 0,
namely at c = EY , Q.E.D.

Suppose we want to estimate a function g(θ). Then for an estimator V (X), the mean-
square error (MSE) for a given θ is Eθ[(V (X) − g(θ))2]. For a prior π, the risk is the
expectation of the MSE with respect to that prior, namely

(5) r(V, π) :=

∫

Θ

Eθ[(V (X) − g(θ))2]π(θ)dθ.

A Bayes estimator for g(θ) for the given prior is one that minimizes the risk, provided
its risk is finite.
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Theorem 3. For a given likelihood function f(X, θ) for θ ∈ Θ, where Θ ⊂ R
k for some

k ≥ 1, and prior density π, if there exists some estimator U(X) of the given g(θ) that has
finite risk for the given π, then there exists a Bayes estimator T , given by the expectation
of g(θ) with respect to the posterior distribution,

(6) T (X) =

∫

Θ

g(θ)πX(θ)dθ.

The Bayes estimator is essentially unique, in the sense that any Bayes estimator must
equal this T (X) with probability 1.

Proof. We would like to minimize (5). Let’s write out the Eθ. Recall that
∫

· · · dX is a
shorthand for

∫ ∞

−∞

∫ ∞

−∞

· · ·
∫ ∞

−∞

· · · dx1 dx2 · · · dxn,

where the integral(s) are replaced by sums in case X is discrete. The method of proof
is essentially the same. Then (5) becomes

(7)

∫

Θ

∫

[(V (X) − g(θ))2]f(X, θ) dX π(θ)dθ.

Since the integrand is nonnegative and the integrals are well-defined (possibly infinite)
we can interchange the two integrals, and (7) becomes

(8)

∫ ∫

Θ

[(V (X) − g(θ))2]f(X, θ)π(θ)dθ dX.

Then applying (3), the factor τ(X) doesn’t depend on θ so we can take it outside the
integral with respect to θ, and (8) becomes

(9)

∫ ∫

Θ

[(V (X) − g(θ))2]πX(θ)dθ τ(X) dX.

In the inner integral with respect to θ in (9), X is fixed and g(θ) is a random variable with
respect to the posterior density πX(θ). To minimize this inner integral we need to choose
V (X), which would be constant for fixed X. By Proposition 2, the correct constant is
given by V (X) = T (X) in (6). Since the risk is finite for some estimator by assumption,
the minimum risk must be finite, so T (X) in (6) indeed gives a Bayes estimator. The
essential uniqueness follows from the uniqueness in Proposition 2. Q.E.D.

In case of a Gamma(a, c) prior density for a Poisson parameter λ, where the posterior
density will also be in the gamma family, the expectation of λ for the posterior density
is easy to calculate, as we saw above. Similarly, we have an easy calculation for the
posterior expectation of a binomial parameter p using a Beta(a, b) prior.

Some texts give a different formulation of Theorem 3 in which they say that the
Bayes estimator is the conditional expectation of g(θ) given X, T (X) = E(g(θ)|X).
That is correct in case

∫

|g(θ)|π(θ)dθ < +∞, but integrals with respect to the posterior
distributions may be finite even if they are not with respect to the prior, as will be seen
in a problem. There is more about conditional expectations in the Notes at the end.
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5. Admissibility

Recall that a statistic T (X) is said to be inadmissible as an estimator of a function g(θ)
of a parameter θ if there exists another estimator V (X) such that Eθ((V (X)−g(θ))2) ≤
Eθ((T (X) − g(θ))2) for all θ and Eθ((V (X) − g(θ))2) < Eθ((T (X) − g(θ))2) for some θ.
Then T (X) is admissible if it is not inadmissible. Let’s call T (X) strongly inadmissible
if we add to the the definition that Eθ[(V (X) − g(θ))2] < Eθ[(T (X) − g(θ))2] for all θ
in a non-empty open set U , namely, a set such that: for some θ0 in U and r > 0, also
θ is in U for all θ such that |θ − θ0| < r. In one dimension this would just say that U
includes a non-degenerate interval.

If π is a prior density with π(θ) > 0 for almost all θ, i.e. if A is the set of θ for which
π(θ) > 0, then

∫

1A(θ)dθ = 0, and if T is a Bayes estimator for g(θ), namely the integral
of g(θ) times the posterior density πX(θ), then T cannot be strongly inadmissible, or
there would be an estimator with smaller overall risk (integrating mean-square error
times π(θ)), contradicting the Bayes property of T .

6. Unbiasedness

The Bayes property for squared-error loss turns out to be virtually incompatible with
unbiasedness. Let’s begin with two examples.

Example 1. For 0 ≤ θ ≤ 1 let δθ be the point mass at θ. Suppose θ is unknown in
advance and has prior density U [0, 1]. Suppose that the true θ = θ0 for some θ0. If we
have even one observation X1 from δθ, then Pr(X1 = θ0) = 1. So X1 is both an unbiased
estimator and a Bayes estimator of θ for the given prior (or any prior on [0, 1]). That
shows that this combination of properties of an estimator is possible, but it’s a rather
extreme and impractical case.

Example 2. Let p be the success probability in a binomial(n, p) distribution, and let
π(p) > 0 for 0 < p < 1 be a prior density for p. Then for any observation X, an
integer with 0 ≤ X ≤ n, the likelihood function is proportial to pX(1 − p)n−X , which is
a bounded function of p, and a posterior density πX(p) defined by (1) exists. Moreover,

since p is bounded, the integral T (X) =
∫ 1

0
pπX(p)dp is always finite, in fact satisfies

0 ≤ T (X) ≤ 1, and so has finite risk as an estimator of p with squared-error loss. So by
Theorem 3, T is a Bayes estimator for p for the given π. Now suppose the true p = 0.
Then we will have Pr(X = 0) = 1 and the likelihood function will be (1 − p)n. Then
πX(p) > 0 for 0 < p < 1 because π(p) > 0, and so Pr(T (X) > 0) = 1 and E0T (X) > 0,
so T is not an unbiased estimator of p.

Similarly, when the true p = 1, E1(T (X)) will be less than 1. For 0 < p0 < 1 there do
exist priors π of p such that for the Bayes estimators T (X) for π, Ep0

T (X) = p0. But
it is not possible to find π such that for the Bayes estimator T (X) for π, Ep(T (X)) = p
for all p with 0 < p < 1, as a special case of the following theorem.

Theorem 4. Let f(X, θ), θ ∈ Θ, be a parametric family of densities for X in n-
dimensional Euclidean space R

n, with respect to dX = dx1dx2 · · · dxn, where θ is in
any parameter space Θ included in a Euclidean space R

k. For any prior density π on
Θ and real-valued function g on Θ which is a random variable with respect to π, an
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unbiased estimator T of g is Bayes for π and squared-error loss if and only if it has risk
r(T, π) = 0, so that T (x) = g(θ) with Q-probability 1.

Remark. The theorem shows that an estimator can be both Bayes and unbiased only
when g(θ) can be estimated exactly without error, as in Example 1.

Proof. “If” is clear. To prove “only if,” by definition of Bayes estimator, T must have
finite risk. Let τ be the marginal density of Q for X given by Theorem 1(d). By (3),
q(X, θ) = πX(θ)τ(X) with probability 1. We have

r(T, π) =

∫ ∫

(T (X) − g(θ))2q(X, θ)dX dθ

=

∫ ∫

T (X)2 − 2T (X)g(θ) + g(θ)2 πX(θ)τ(X)dXdθ.(10)

As the integrand in (10) is nonnegative we can do the integral in either order. The
proof will work by finding two different expressions of the integral of the cross term
−2T (X)g(θ). For one of them, by the Bayes property and equation (6),

T (X) =

∫

g(θ)πX(θ)dθ.

Doing the integral in (10) in the order dθ dX and doing the integral with respect to θ
of the cross term, X is fixed and we get −2T (X)τ(X)T (X) = −2T (X)2τ(X). It then
follows that

(11) r(T, π) =

∫
[

T (X)2 − 2T (X)2 +

∫

g(θ)2 πX(θ)dθ

]

τ(X)dX.

Since r(T, π) < ∞, and for fixed X, −T (X)2 is also fixed, we have
∫

g(θ)2πX(θ)dθ < ∞
for τ -almost all X, and

(12) r(T, π) =

∫ ∫

[

g(θ)2 − T (X)2
]

q(X, θ)dθ dX.

On the other hand, doing the integral in (10) in the stated order, we know by unbi-
asedness that for fixed θ, EθT (X) =

∫

T (X)f(X, θ)dX = g(θ). By (3) f(X, θ)π(θ) ≡
πX(θ)τ(X). As θ is fixed in the inner integral dX, we can take π(θ) outside the integral.
We then have

∫

−2g(θ)T (X)f(X, θ)dX = −2g(θ)2

and so

r(T, π) =

∫
[
∫

T (X)2f(X, θ)dX − 2g(θ)2 + g(θ)2

]

π(θ)dθ.

Next, r(T, π) < ∞ implies
∫

T (X)2f(X, θ)dX < ∞ for π-almost all θ, and

r(T, π) =

∫

[

T (X)2 − g(θ)2
]

q(X, θ)dX dθ = −r(T, π)

from (12), so r(T, π) = 0, finishing the proof. ¤
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There are cases where a maximum likelihood estimate (MLE) is unbiased, as with
the sample mean X for the normal mean µ or the Poisson parameter λ. In such cases,
typically a Bayes estimator will be somewhere between the MLE and the mean of the
prior distribution, becoming asymptotic to the MLE as n → ∞.

7. Notes

7.1. Conditional expectations. In measure and probability theory, usually condi-
tional expectation is taken only of functions X which have a finite expectation. For
example, a martingale is defined as a sequence {Xn}n≥0 of random variables with finite
expectations EXn (where E|Xn| < +∞ for all n) together with an increasing sequence
of σ-algebras {Fn}n≥0 such that each Xj is measurable with respect to Fj and the con-
ditional expectation E(Xn+1|Fn) = Xn for all n, e.g. Dudley (2002, Chapter 10). But,
some statisticians sometimes write conditional expectations E(g|T ) given a statistic T
where g may not have a finite (unconditional) expectation, as we’ll see.

Theorems 3 and 4 are stated in Lehmann (1991), Corollary 4.1.1 p. 239 and Theorem
4.1.2 pp. 244–245, but for the former, Lehmann writes the Bayes estimator as T (x) =
E(g(θ)|x). Lehmann’s proof of the latter theorem uses the assumption that g(θ) ∈ L2(π),
in other words

∫

g(θ)2dπ(θ) < +∞. We will see that Bayes estimators may exist when
even

∫

|g(θ)|dπ(θ) may be infinite. Thus, other proofs have been given for Theorems 3
and 4 without any moment assumptions.

Lehmann apparently doesn’t give any earlier references for these facts, although at
least Theorem 3 for g ∈ L2 was presumably known well before 1983.

Bickel and Doksum, Second ed., (3.2.5) p. 162, assert that either all estimators of g(θ)
have infinite risk for squared-error loss, or if there is one with finite risk, then the Bayes
estimator of g(θ) is E(g(θ)|x).

One might say perhaps that some statisticians’ definition of E(g(θ)|x) is the expec-
tation of g(θ) with respect to the conditional distribution of θ given x, which exists and
is the posterior distribution.

Berger (1985, Section 4.4.2 p. 161) states that the Bayes estimator for squared-error
loss is the expectation for the posterior distribution, in the special case g(θ) ≡ θ, under
the assumption that each of three integrals for the posterior distribution is finite (as they
will be, almost surely, under the assumption of Theorem 3). Such a statement avoids
any ambiguity about conditional expectations.

7.2. Historical Notes (18th century origins). These notes are based on Stigler
(1986), pp. 359–362. The field of “Bayesian” statistics is named for Thomas Bayes, who
wrote a paper about the method in 1764. But the work by the leading mathematician
and scientist Laplace (1774) attracted more attention. Stigler (p. 361) wrote that Bayes’s
article “was ignored until after 1780 and played no important role in scientific debate
until the twentieth century.” Laplace used the U [0, 1] prior distribution for a binomial
parameter p and noted that the posterior distributions are beta distributions. Stigler
(p. 359) writes “we can be reasonably certain Laplace was unaware of Bayes’s earlier
work.”
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