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THE EM ALGORITHM

The EM algorithm in general was made popular by a paper of Demp-
ster, Laird and Rubin (1977). Special cases of it had been known ear-
lier.

1. The problem

Suppose we have a parametric family given by f(x, θ) where x is in
a sample space χ and θ in a parameter space Θ. One has not observed
x, but rather a function y(x), taking values in another sample space
Y , where y(·) is many-to-one: for each possible value η of y(x) the set
y−1(η) := {x ∈ χ : y(x) = η} can contain more than one element,
and in the continuous case, typically will have dimension ≥ 1. Often,
χ may be a set of vectors (X1, ..., Xn). For each θ, for which x has
a likelihood function (probability density or mass function) f(x, θ),
y = y(x) will have its own likelihood function g(y, θ). The problem is
to find a maximum likelihood estimate (MLE) of θ given Y = y(x),
in cases where it may be difficult to do that directly, typically more
difficult than if we had observed x itself.

2. The algorithm

Given θ and Y , define a conditional expectation of the log likelihood
function log f(x, θ′) by

(1) Q(θ′|θ) = E(log f(x, θ′)|Y, θ).

In a recursive procedure, start with some guess θ0 for the unknown MLE

θ̂ of θ. For k = 0, 1, 2, ...,, the “E-step” is to evaluate Q(θ′|θk) as a func-
tion of θ′. Then the “M-step” is to find θk+1 as θk+1 = arg maxθ Q(θ|θk).
It is proposed that as k becomes large, under some conditions, θk will

converge to θ̂, and indeed it does in a lot of cases.

Example. This example is given on the second page of Dempster,
Laird and Rubin (1977). Let X = (x1, x2, x3, x4, x5) be multinomial
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). The full likelihood, if we could observe it, equals

factors not depending on θ times

θx2+x5(1 − θ)x3+x4 .

For maximimization with respect to θ we may as well assume that
f(x, θ) equals this function. The likelihood is of binomial form, and
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the MLE of θ given X would be x2+x5

x2+x3+x4+x5

, easily. But suppose we
only observe

Y = (y1, y2, y3, y4) = (x1 + x2, x3, x4, x5),

specifically with values (125, 18, 20, 34), so that n = 197. Suppose we
start with some θ0 and after k steps we have θk. For the E-step we
need log f(x, θ′) which equals

(x2 + x5) log θ′ + (x3 + x4) log(1− θ′) = (x2 + 34) log θ′ + 38 log(1− θ′).

Then

Q(θ′|θk) = E(log f(x, θ′)|Y, θk) = 38 log(1−θ′)+(log θ′)[34+E(x2|Y, θk)].

From a binomial expectation,

E(x2|Y, θk) = y1

(
θk/4

(1/2) + (θk/4)

)
= y1

(
θk
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)
,

and therefore

Q(θ′|θk) = 38 log(1 − θ′) + (log θ′)

[
34 +

125θk

2 + θk

]

= 38 log(1 − θ′) + (log θ′) ·

[
68 + 159θk

2 + θk

]
.

That completes the E-step. For the M-step, θk+1 is the value of θ′

maximizing the last expression, which again is equivalent to maximizing
a likelihood of binomial form, and gives

θk+1 =
68 + 159θk

144 + 197θk

.

This is a continuous function of θk. If θk converges to some θ∞ as
k → ∞, we will have

θ∞ =
68 + 159θ∞
144 + 197θ∞

.

This gives a quadratic equation in θ∞ having two roots, one being
negative, the other being 0.6268215, so this is the MLE of θ given Y
by the EM method, as 0 ≤ θ ≤ 1 by assumption.

One can also find the MLE given Y directly. The likelihood function
in terms of Y = (y1, y2, y3, y4), which is multinomial
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equals factors not depending on θ times

(2 + θ)y1(1 − θ)y2+y3θy4 ,
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and looking for critical points of the log likelihood gives the same qua-
dratic equation. It is not claimed that in this case the EM algorithm is
easier, rather the example illustrates how the EM method works, and
we do see that it gives the right answer, giving us at least hope that
the EM algorithm can work even in cases where we have no so such
direct way of finding an MLE given Y . But in general, of course, one
has to anticipate doing iterations θ0 → θ1 → θ2 → · · · and not being
able to short-circuit them as in the example.

3. Properties of the EM procedure

Dempster, Laird, and Rubin showed that the values of the log likeli-
hood L(θk) are non-decreasing in k. However, for the proof by Demp-
ster, Laird and Rubin (1977) of convergence of the sequence {θk} to
at least a local maximum of L(θ) given Y under some conditions, the
conditions given were not sufficient. In fact G. D. Murray (1977), in
the discussion published following the Dempster et al. paper, pointed
out that θk could converge to a saddle point of L(·). C. F. J. Wu, (1983,
Theorem 3) gave sufficient conditions under which L(θk) converge to
L(θ∗) for some local maximum θ∗ of L. (Wu, as far as I see, did not
state that θk converged to such a θ∗, which might in general not be
unique.) Wu’s assumptions regarding continuity, differentiability etc.
of L(·) are given in his (5), (6), (7), (10), and (11).

4. Methods

If the expectation in (1) cannot be done in closed form, one may
approximate it via Markov chain Monte Carlo. Similarly, if the M-step
doesn’t have a closed form solution, one could approach it by simulated
annealing.

As the main problem itself is a maximization, if g(Y, θ) can be com-
puted reasonably for a fixed Y as a function of θ, then one could try
simulated annealing directly instead of the EM algorithm. In some
studies mentioned and given by Ingrassia (1992), solution of the entire
problem via simulated annealing was slower, but sometimes preferable,
to a solution via the EM algorithm.
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