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Stirling’s formula

The factorial function n! is important in evaluating binomial, hypergeometric, and
other probabilities. If n is not too large, n! can be computed directly, by calculators
or computers. For larger n, using there are difficulties with overflow, as for example
70! > 10100, 254! > 10500, which overflows on one calculator I have, which computes 253!.
Also, direct multiplication of many factors becomes inefficient. There is a relation with the
gamma function, n! ≡ Γ(n+1), where Γ(α) =

∫ +∞

0
xα−1e−xdx. The statistical computing

system R (in the version we have as of this date) can find 170! = Γ(171)
.
= 7.2574 · 10306

but it balks at Γ(172), so it breaks down for smaller n than the calculator does. Of course,
some computer systems can find n! for very large n. Mathematica gave 1000! exactly,
showing all the many digits, which is not necessarily convenient.

Stirling’s formula provides an approximation to n! which is relatively easy to compute
and is sufficient for most purposes. Using it, one can evaluate log n! to better and better
accuracy as n becomes large, provided that one can evaluate log n as accurately as needed.
Then to compute b(k, n, p) :=

(

n
k

)

pkqn−k, for example, where 0 < p = 1 − q < 1, one can
find log b(k, n, p) = log n!− log k!− log (n− k)! + k log p + (n− k) log q . The probability
b(k, n, p) cannot overflow, and in interesting cases it will also not underflow (1/b(k, n, p)
will not overflow).

Two sequences of numbers, an and bn, are said to be asymptotic, written an ∼ bn,
if limn→∞ an/bn = 1. This does not imply that limn→∞(an − bn) = 0: for example,
n2 + n ∼ n2 but (n2 + n) − n2 tends to ∞ with n. But an/bn → 1 is equivalent to
log (an) − log (bn) = log (an/bn) → 0.

Theorem 1. Stirling’s formula.n! ∼ nn

en

√
2πn = n(n+1/2) e−n

√
2π . Thus,

log (n!) −
[(

n +
1

2

)

log n − n +
1

2
log (2π)

]

→ 0 as n → ∞.

Proof. The sign “:=” will mean “equals by definition.” Let

dn := log (n!) −
(

n +
1

2

)

log n + n .

Then we need to prove dn converges to a constant, [log (2π)]/2. First,

dn − dn+1 = − log (n + 1) −
(

n +
1

2

)

log n +

(

n +
3

2

)

log (n + 1) − 1

=

(

n +
1

2

)

log

(

n + 1

n

)

− 1 .

We have the Taylor series

log (1 + t) = t − t2

2
+

t3

3
− · · ·
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for |t| < 1. For t > 0 the terms alternate in sign. A transformation will help to get terms
of the same sign. The trick is to notice that

n + 1

n
=

1 + 1
2n+1

1 − 1
2n+1

.

Then

log

(

1 + t

1 − t

)

= log (1 + t) − log (1 − t) = 2

(

t +
t3

3
+

t5

5
+ · · ·

)

,

where now all terms are of the same sign. Thus

dn − dn+1 =
2n + 1

2
log

(

1 + 1
2n+1

1 − 1
2n+1

)

− 1

=
1

3(2n + 1)2
+

1

5(2n + 1)4
+

1

7(2n + 1)6
+ · · · > 0 .(1)

So dn decreases as n decreases. Comparing the last series to a geometric one with ratio
(2n + 1)−2 gives

0 < dn − dn+1 <
(2n + 1)−2

3[1 − (2n + 1)−2]
=

1

3[(2n + 1)2 − 1]

=
1

12n(n + 1)
=

1

12n
− 1

12(n + 1)
, so dn − 1

12n
< dn+1 −

1

12(n + 1)
.

So we see that dn − 1/(12n) increases as n does. As n → ∞, dn decreases to some C with
−∞ ≤ C < +∞ and dn − 1/(12n) increases up to some D with −∞ < D ≤ +∞. Since
1/(12n) converges to 0, we must have −∞ < C = D < +∞, and dn converges to a finite
limit C. By definition of dn we then have

n!/(nn+1/2)e−n → eC or n! ∼ eCnn+1/2e−n .

The last step in the proof is to show that eC = (2π)1/2. This will involve another
famous fact:

Theorem 2. Wallis’ product.
π

2
=

2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· · · · · 2m

2m − 1
· 2m

2m + 1
· · · , or

π

2
= lim

m→∞

24m(m!)4

(2m)!(2m + 1)!
.

Remarks. To see the relationship between the two statements, first note that 2 · 4 · 6 · 8 ·
· · · · 2m = (2 · 1)(2 · 2)(2 · 3) · · · (2 · m) = 2mm!, then that 1 · 3 · 5 · 7 · · · · · (2m + 1) =
(2m + 1)!/(2 · 4 · 6 · · · · · 2m), etc. Note that the product converges to π/2 rather slowly;
it would not give a good way to compute π.
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Proof. Integrating by parts gives, for n ≥ 2,

∫

sinn xdx = −
∫

sinn−1 xd(cosx)

= − cos x sinn−1 x + (n − 1)

∫

sinn−2 x cos2 xdx

= − cos x sinn−1 x + (n − 1)

∫

(sinn−2 x − sinn x)dx , so

n

∫

sinn xdx = − cos x sinn−1 x + (n − 1)

∫

sinn−2 xdx , and

∫

sinn xdx = −cos x sinn−1 x

n
+

n − 1

n

∫

sinn−2 xdx . Thus

(2)

∫ π/2

0

sinn xdx =
n − 1

n

∫ π/2

0

sinn−2 xdx .

Then for m = 1, 2, . . . , iterating (2) gives

∫ π/2

0

sin2m xdx =
2m − 1

2m
· 2m − 3

2m − 2
· · · · · 1

2
· π

2
since

∫ π/2

0

1dx =
π

2
.

∫ π/2

0

sin2m+1 xdx =
2m

2m + 1
· 2m − 2

2m − 1
· · · · · 2

3
· 1 since

∫ π/2

0

sin xdx = 1 .

Let Am :=
∫ π/2

0
sin2m xdx/

∫ π/2

0
sin2m+1 xdx. Then

π

2
= Am · 2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· · · · · 2m

2m − 1
· 2m

2m + 1
· · · for all m = 1, 2, . . . .

Now we will prove limm→∞ Am = 1. For 0 ≤ x ≤ π/2,

0 ≤ sin2m+1 x ≤ sin2m x ≤ sin2m−1 x, so

0 <

∫ π/2

0

sin2m+1 xdx <

∫ π/2

0

sin2m xdx <

∫ π/2

0

sin2m−1 xdx .

Now by (2) above,

∫ π/2

0

sin2m+1 xdx/

∫ π/2

0

sin2m−1 xdx =
2m

2m + 1
→ 1 as m → ∞

and
∫ π/2

0
sin2m xdx, being between numerator and denominator, also has the ratio Am

converging to 1, proving Wallis’ product.
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Now to finish proving Stirling’s formula, let B := eC . As n → ∞, n!en/nn+1/2 →
B, (2n)!e2n/(2n)2n+1/2 → B, and (n!)2e2n/n2n+1 → B2. Dividing gives
(n!)222n+1/2/[(2n)!n1/2] → B. Now, Wallis’ product gives (n!)222n/[(2n)!(2n + 1)1/2] →
(π/2)1/2. Since (2n + 1)−1/2 ∼ (2n)−1/2, we get b/21/2 = 21/2(π/2)1/2, B = (2π)1/2,
proving Stirling’s formula. �

The proof provides further information on how good an approximation Stirling’s for-
mula gives to n!. Since dn > C > dn − 1/(12n), where C = [log (2π)]/2, so C < dn <
C + 1/(12n), we have the bounds

(3) (2π)1/2nn+1/2e−n < n! < (2π)1/2nn+1/2e−n+[1/(12n)] .

Even closer bounds are available. From (1),

dn − dn+1 −
∞
∑

j=1

1

3j(2n + 1)2j
>

(

1

5
− 1

9

)

1

(2n + 1)4
, so

dn − dn+1 >
3−1(2n + 1)−2

1 − 3−1(2n + 1)−2
+

4

45
(2n + 1)−4

=
1

3(2n + 1)2 − 1
+

16

180(2n + 1)4
=

1

12n2 + 12n + 2
+

16

180(4n2 + 4n + 1)2

=
1

12n(n + 1)

[

1 +
1

6n(n + 1)

]

−1

+
1

180n2(n + 1)2

[

1 +
1

4n(n + 1)

]

−2

>
1

12n(n + 1)

[

1 − 1

6n(n + 1)

]

+
1

180n2(n + 1)2

[

1 − 1

2n(n + 1)

]

>
1

12n(n + 1)
− 3n(n + 1) + 1

360n3(n + 1)3
(since

1

180
− 1

72
= − 3

360
)

=
1

12

(

1

n
− 1

n + 1

)

− 1

360

(

1

n3
− 1

(n + 1)3

)

. So,

dn − 1

12n
+

1

360n3
> dn+1 −

1

12(n + 1)
+

1

360(n + 1)3
,

and the sequence dn − 1/(12n) + 1/(360n3) decreases as n → ∞ down to its limit, which
is also C, so dn − 1/(12n) + 1/(360n3) > C. Writing exp(x) := ex, we have the following
improvement on the left side of (3): for all n = 1, 2, . . . ,

(4)
√

2πnn+1/2 exp

(

−n +
1

12n
− 1

360n3

)

< n! <
√

2πnn+1/2 exp

(

−n +
1

12n

)

.

As n → ∞, the ratio of the upper to lower bound converges to 1 rather fast since
1/(360n3) → 0 rather fast.
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There are further improvements, although they won’t be proved here: Whittaker and
Watson, Modern Analysis, p. 252, gives an asymptotic expansion

dn − C ∼ 1

12n
− 1

360n3
+

1

1260n5
− 1

1680n7
+

1

1188n9
− · · · .

The series does not converge for any n, but if the sum of the first k terms is used as an
approximation to the left side dn − C, the error in the approximation has the same sign
as, and smaller absolute value than, the next ((k + 1)st) term. This was proved above for
k = 0 by (3) and for k = 1 by (4).

Now Stirling’s formula with error bounds can be used to give upper and lower bounds
for (n)k := n(n − 1) · · · (n − k + 1) = n!/(n − k)! for integers 0 ≤ k ≤ n. Specifically, (4)
implies

(n)k <
nn+1/2 exp

(

−n + 1
12n

+ 1
360(n−k)3

)

(n − k)n−k+1/2 exp
(

−(n − k) + 1
12(n−k)

) and

(n)k >
nn+1/2 exp

(

−n + 1
12n − 1

360(n−k)3

)

(n − k)n−k+1/2 exp
(

−(n − k) + 1
12(n−k)

) .

Let j(n, k) :=
nn+1/2

(n − k)n−k+1/2
exp

(

−k − 1

12n(n − k)

)

. The above inequalities on (n)k

show that it is approached by j(n, k) within a factor of exp[1/(360(n − k)3)], which is
very close to 1 if n − k is large. For n − k large, exp[−k/(12n(n − k))] also approaches 1,
although not as fast.

Let p(n, k) := (n)k/nk, the probability that k numbers, chosen at random from
1, . . . , n with replacement, are all different. Then, to the accuracy of the above approxi-
mation for (n)k, p(n, k) is approximated by

e−k

(

n

n − k

)n−k+1/2

exp

(

− k

12n(n − k)

)

.

For a simpler and rougher approximation, omit the “exp . . . ” factor.
Now, suppose that for a given n and α, with 0 < α < 1, we want to find the smallest

k such that p(n, k) < α. For example, if n = 365 and α = 1/2, the question is how
many people are needed to give an even chance that at least two of them have the same
birthday (neglecting leap years and assuming that births are evenly distributed throughout
the year).

To find the desired k, one can compute p(n, k) and use trial and error. To speed up
the process one can use a simpler approximation where we can solve for k to get a good
first approximation to k. Then most likely only a few values of k near the first one need to
be tried. Here is how one can get such a simple approximation. For 0 ≤ k < n, the Taylor
series of log (1 − x) gives

log

(

1 − k

n

)

= −k

n
− k2

2n2
− k3

3n3
− · · · .
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If k/n is small, later terms in the series can be neglected, and log p(n, k) is approximated
by

(5) log p(n, k) ∼ −k −
(

n − k +
1

2

)

∼ − k2

2n
− k3

6n2
+

k

2n
+ · · · ,

where the next largest terms would be of the order of k4/n3 and k2/n2 (and k/[12n(n−k)]
is still smaller). Note that if we approximated log (1 − k/n) bu just the first term −k/n,
we would not even get the first term in (5) correct (the 2 in the denominator would be
missing). Using the first term −k2/(2n) in (5) as our first approximation, solving for k
gives k2/(2n) ∼ − log α, or

(6) k ∼ [2n log (1 − α)]1/2 .

For such a k, the next two terms in the approximation are smaller by factors of the order
of 1/n1/2, so they can be reasonably be neglected if n is large. This gives a

Method. To find the least k such that p(n, k) < α, for given n and α, first try k as the
next larger integer than the number from (6). Compute p(n, k). If p(n, k) < α, check that
p(n, k − 1) ≥ α. If not, consider k − 2, etc. until a solution is found. If p(n, k) > α, find
whether p(n, k + 1) < α. If so, the solution is k + 1. If not, try k + 2, . . . , until a solution
is found.

Example 1. The birthday problem. Here n = 365 and α = 1/2. First try k as the
next integer larger than (2n log 2)1/2, that is k = 23. Then we find p(365, 23) < 1/2, so
we next compute p(365, 22) and find it is larger than 1/2, so k = 23 is the solution: in a
group of 23 or more people, there is a better than even chance that at least two have the
same birthday.

Example 2. A computer pseudo-random number generator starts with a number s
called a “seed” and uses a function f to generate numbers s1 = s, s2 = f(s1), s3 =
f(s2), . . . , sj+1 = f(sj), l . . . . Suppose that the numbers sj will be integers from a to
n for some n, and f is a randomly chosen function from the set {1, 2, . . . , n} into itself,
where each of the nn such functions is equally likely. For how large r will there be an
even chance that sr = sm for some m < r? Once this happens, then sr+1 = sm+1, etc.
and the si will go round and round a closed cycle. So the event that sr = sm for some
m < r is the event that the sj for j ≤ r are not all different. The above method applies
with α = 1/2. If n = 106, for example, (6) gives r = 1178 and it can be checked that
p(n, 1178) < 1/2 < p(n, 1177). So in this case there is an even chance that the generator
will fall into a closed cycle after only 1178 of the 1,000,000 available numbers. By the way,
the average length of the closed cycle is just half of the first number r such that sr = sm

for some m < r.
So there is a paradox: a truly random function f makes a bad pseudo-random number

generator. Better generators are made by using number-theoretic methods to assure that
there are no short closed cycles.

Bibliographic Notes. James Stirling published his formula in Methodus Differentialis

(1730). Abraham De Moivre, another mathematician and friend of Stirling’s, discovered
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the formula except for finding the value of the constant factor (2π)1/2. The proof of the
formula and up through (3) above is due to Herbert Robbins, Amer. Math. Monthly 62

(1955) pp. 26–29. The refinement of the proof to give (4) is due to T. S. Nanjundiah, ibid.

66 (1959) pp. 701–703. As mentioned, further terms in the asymptotic expansion (next
display after (4)) can be found from E. T. Whittaker and G. N. Watson, Modern Analysis

(Cambridge Univ. Press, 4th ed., 1927, repr. 1962) pp. 252-253. John Wallis published
his product (without a real proof) around 1650 (see his Opera Omnis, re-published in
1972). The above proof came from R. Courant, Differential and Integral Calculus I, 2d.
ed., translated by E. J. McShane (Interscience, N. Y. , 1937).

Stirling’s formula – examples

Let S(n) = (n/e)n(2πn)1/2. Then n! ∼ S(n) as n → ∞, meaning n!/S(n) → 1, and
n!/[S(n)e1/(12n)] → 1 faster. But n!−S(n) does not converge to 0; in fact it increases very
fast, but not as fast as n! or S(n).
n n! S(n) n! − S(n) n!/S(n) n!/[S(n)e1/(12n)]

5 1.2000 · 102 1.1802 · 102 1.9808 1.0168 .999978024
10 3.6288 · 106 3.5987 · 107 3.0104 · 104 1.0084 .999997299
20 2.4329 · 1018 2.4228 · 1018 1.0115 · 1016 1.0042 .999999649
40 8.1592 · 1047 8.1422 · 1047 1.6980 · 1045 1.0021 .999999948
60 8.3210 · 1081 8.3094 · 1081 1.1549 · 1079 1.0014 .999999988

Note that the ratios in the next to last column decrease toward 1. They are approx-
imately 1 + 1/(12n). The ratios in the last column increase toward 1, faster. They are
approximately 1 − 1/(360n3). So as n becomes large, in terms of ratio (not difference), n!
is fairly well approximated by S(n), much better approximated by S(n)e1/(12n), and still
much better approximated by S(n) exp[1/(12n)− 1/(360n3)].

For large n, one needs to take account of rounding error. In log(nn+0.5) = (n +
0.5) logn, a rounding error in log n is multiplied by n. If n is 10k, for example, this means
a loss of k decimal places of accuracy.
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