
PROPAGATION OF SINGULARITIES FOR THE WAVE
EQUATION ON EDGE MANIFOLDS
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Abstract. We investigate the geometric propagation and diffraction
of singularities of solutions to the wave equation on manifolds with edge
singularities. This class of manifolds includes, and is modelled on, the
product of a smooth manifold and a cone over a compact fiber. Our main
results are a general ‘diffractive’ theorem showing that the spreading of
singularities at the edge only occurs along the fibers and a more refined
‘geometric’ theorem showing that for appropriately regular (nonfocus-
ing) solutions, the main singularities can only propagate along geomet-
rically determined rays. Thus, for the fundamental solution with initial
pole sufficiently close to the edge, we are able to show that the regularity
of the diffracted front is greater than that of the incident wave.
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1. Introduction

1.1. Main Results. In this paper, we investigate the geometric propaga-
tion and diffraction of singularities of solutions to the wave equation on
manifolds with edge singularities. The main results are extension of those
in [19] for the particular case of conic metrics, namely a general ‘diffractive’
theorem limiting the possible spreading of singularities at the boundary and
a more refined ‘geometric’ theorem showing that for appropriately regular
(nonfocusing) solutions the main singularities can only propagate along ge-
ometrically determined rays.

Let X be an n-dimensional manifold with boundary, where the boundary,
∂X, is endowed with a fibration

Z → ∂X
π0→ Y,

where Y,Z are without boundary. Let b and f respectively denote the
dimensions of Y and Z (the ‘base’ and the ‘fiber’). By an edge metric g on X
we shall mean a metric, g, on the interior of X which is a smooth 2-cotensor
up to the boundary but which degenerates there in a way compatible with
the fibration. To state this condition precisely, consider the Lie algebra V(X)
of smooth vector fields on X which are tangent to the boundary, hence have
well-defined restrictions to the boundary which are required to be tangent
to the fibers of π0. Let x be a boundary defining function for X, then we
require that g be degenerate in the sense that

(1.1) g(V, V ) ∈ x2C∞(X) ∀ V ∈ V(X).

This of course only fixes an ‘upper bound’ on g near the boundary and
we require the corresponding lower bound and also a special form of the
leading part of the metric near the boundary. The lower bound is just the
requirement that for any boundary point,

(1.2) V ∈ V(X) and x−2g(V, V )(p) = 0

=⇒ V =
∑
i

fiVi, Vi ∈ V(X), fi ∈ C∞(X), fi(p) = 0;

that is the vanishing of g(V, V ) to higher order than 2 at a boundary point
means that V vanishes at that point as an element of V(X). To capture
the required special form near ∂X, consider within V(X) the subalgebra of
vector fields which vanish at the boundary in the ordinary sense, we denote
this Lie subalgebra

(1.3) V0(X) ⊂ V(X).
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In addition to (1.1) we require that there be a product decomposition of a
neighborhood of the boundary

(1.4) [0, ε)× ∂X p−→
∼

U ⊃ ∂X

and a smooth metric g0 (in the usual sense of extension across the boundary)
on [0, ε)× Y such that

(1.5)
(g − π̃0

∗g0)(V,W ) ∈ x2C∞(X), ∀ V, W ∈ V(X) and

(g − π̃0
∗g0)(V,W ) ∈ x3C∞(X), ∀ V ∈ V0(X), W ∈ V(X);

here π̃0 : U −→ [0, ε)× Y is the product extension of π0 using (1.4).
We note that the metric g0 on [0, ε) × Y in (1.5) can always be brought

to the product form

(1.6) g0 = dx2 + h(x)

near x = 0 for some boundary defining function x, with h ∈ C∞([0, ε′) ×
Y ; Sym2 T ∗([0, ε)× Y )), ε′ > 0, i.e. h(x) an x-dependent metric on Y. Thus
the global restriction (1.5) means that in local coordinates x, y, z near each
boundary point,

(1.7) g = dx2 + h(x, y, dy) + xh′(x, y, z, dx, dy) + x2k(x, y, z, dx, dy, dz)

where the h′ ∈ C∞(U ; Sym2 T ∗([0, ε) × Y ) and k ∈ C∞(U ; Sym2 T ∗X) and
the restriction of k to each fiber of the boundary is positive-definite. This
latter condition is equivalent to (1.2).

A manifold with boundary equipped with such an edge metric will also
be called an edge manifold or a manifold with edge structure. We draw the
reader’s particular attention to the two extreme cases: if Z is a point, then
an edge metric on X is a simply a metric in the usual sense, smooth up
to the boundary, while if Y is a point, X is a conic manifold (cf. [19]). A
simple example of a more general edge metric is obtained by performing a
real blowup on a submanifold B of a smooth, boundaryless manifold A. The
blowup operation simply introduces polar ‘coordinates’ near B, i.e. replaces
B by its spherical normal bundle, thus yielding a manifold X with boundary.
The pullback of a smooth metric on A to X is then an edge metric; here
we have Y = B and F = Scodim(B)−1. A non-example that is nonetheless
quite helpful in visualizing many of the constructions used in this paper
is a manifold with a codimension-two corner, equipped with an incomplete
metric: if we blow up the corner, we obtain a manifold of the type considered
in this paper, but where F is now a manifold with boundary, given by a closed
interval representing an angular variable at the corner. More generally, any
manifold with corners with an incomplete metric can be considered to have
an iterated edge-structure: passing to polar coordinates near a corner yields
an edge manifold with fiber given by another manifold with corners, more
precisely the intersection of a sphere with an orthant. The authors intend
to consider this situation in a subsequent paper. Note that in every case the
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boundary of X is given geometrically by Y, as the fibers become metrically
small as we approach the boundary.

Since we work principally with the wave equation, set M = R×X. Thus,
the boundary of M has a fibration with fiber Z and base R × Y ; it is an
edge manifold with a metric of Lorentzian signature. We consider solutions
u to the wave equation

(1.8) �u = (D2
t −∆g)u = 0 on M

with respect to this Lorentzian metric. In the simplest case, in which X
decomposes as the product R+×Y ×Z and the metric is a warped product,

� = D2
t −

(
D2
x +

c

x
Dx +∆Y +

1
x2
∆Z

)
.

In general the form of the operator is a little more complicated than this,
but with similar leading part at the boundary.

We shall consider below only solutions of (1.8) lying in some ‘finite en-
ergy space.’ Thus, if Dα is the domain of ∆α/2, where ∆ is the Friedrichs
extension from the space Ċ∞(X), of smooth functions vanishing to infinite
order at the boundary, we require that a solution be admissible in the sense
that it lies in C(R;Dα) for some α ∈ R.

In terms of adapted coordinates x, y, z near a boundary point, an element
of V(X) is locally an arbitrary smooth combination of the basis vector fields

(1.9) x∂x, x∂yj , ∂zk

and hence V(X) is equal to the space of all sections of a vector bundle (de-
termined by π0), which we call the edge tangent bundle and denote eTX.
This bundle is canonically isomorphic to the usual tangent bundle over the
interior (and non-canonically isomorphic to it globally) with a well-defined
bundle map eTX −→ TX which has rank f over the boundary. Corre-
spondingly, on M, the symbol of the wave operator extends to be of the
form x−2p with p a smooth function on the dual bundle to eTX, called the
edge cotangent bundle and denoted eT ∗M. The vector fields in (1.9), and
x∂t, define linear functions τ, ξ, η and ζ on this bundle, in terms of which
the canonical one-form on the cotangent bundle lifts under the dual map
eT ∗M −→ T ∗M to the smooth section

τ
dt

x
+ ξ

dx

x
+ η · dy

x
+ ζ · dz of eT ∗M.

We will let eS∗M denote the unit cosphere bundle of eT ∗M.
The characteristic variety of �, i.e. the zero set of the symbol, will be

interpreted as a subset Σ ⊂ eT ∗M \ 0; over the boundary it is given by the
vanishing of b. Note that one effect of working on this ‘compressed’ cotangent
bundle is that Σ is smooth and is given in each fiber by the vanishing of a
non-degenerate Lorentzian quadratic form.

The variables ξ and ζ dual to x and z respectively play a different role
to the duals of the base variables (t, y). We will thus define a new bundle,
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denoted π(eS∗(M)), whose sections are required to have ξ = ζ = 0 at
∂M. (For an explanation of the notation, see §7). Over ∂M, we may then
decompose this bundle into elliptic, glancing, and hyperbolic sets much as
in the usual case of manifolds with boundary:

π(eS∗M) = E ∪ G ∪ H
where G is the light cone, and E its exterior, i.e. G ∪ H is the projection of
the characteristic set to π(eS∗M).

For each normalized point

p = (t, y, z, τ = ±1, η) ∈ H, |η| < 1,

it is shown below that there are two line segments of ‘normal’ null bichar-
acteristics in Σ, each ending at one of the two points above p given by the
solutions ξ of ξ2 + |η|2 = 1. These will be denoted

F•,p,

where • is permitted to be I or O, for ‘incoming’ or ‘outgoing,’ as sgn ξ =
± sgn τ (+ for I and − for O). In the special case that the fibration and
metric are of true product form

dx2 + h(y, dy) + x2k(z, dz),

these bicharacteristics are simply

FI,p = {t ≤ t, x = (t− t)
∣∣ξ∣∣, y = y(t), z = z, τ = τ , ξ = ξ, η = η(t), ζ = 0}

and

FO,p = {t ≥ t, x = (t− t)
∣∣ξ∣∣, y = y(t), z = z, τ = τ , ξ = ξ, η = η(t), ζ = 0};

where (y(t), η(t)) evolves along a geodesic in Y which passes through (y, η)
at time t = t, and where τ2 = ξ

2 + |η|2 = 1, and we have chosen the sign of
ξ to agree/disagree with the sign of τ in the incoming/outgoing cases.

As it is Z-invariant over the boundary, we may write H as the pull-back
to ∂M via π0 of a corresponding set Ḣ. We may therefore consider all the
bicharacteristic meeting the boundary in in a single fiber, with the same
‘slow variables’ (t, y) and set

Ḟ•,q =
⋃

p∈π−1
0 (q)

F•,p, q ∈ Ḣ.

These pencils of bicharacteristics touching the boundary at a given loca-
tion in the ‘slow’ spacetime variables (t, y), with given momenta in those
variables, form smooth coisotropic (involutive) manifolds in the cotangent
bundle near the boundary. The two main theorems of this paper show how
microlocal singularities incoming along a bicharacteristic FI,p are connected
to those along bicharacteristics FO,p′ for various values of p, p′.

Our first main result is global in the fiber, and corresponds to the fact
that the propagation of singularities is microlocalized in the slow variables
(t, y) and their duals while in general being global in the fiber. Let Ḟ◦•,q
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denote the part of Ḟ•,q over the interior M◦ of M and in an appropriately
small neighborhood of the boundary.

Theorem 1.1. For an admissible solution, u, to the wave equation and any
q ∈ Ḣ,

Ḟ◦I,q ∩WFk(u) = ∅ =⇒ Ḟ◦O,q ∩WFk(u) = ∅.

Thus singularities interact with the boundary by specular reflection, pre-
serving momentum in the slow variables. The lack of localization in the
fibers is reflected by the fact that only the sets Ḟ•,q rather than F•,p enter
into the statement. Refinements of this result giving appropriate regularity
at the boundary, not just in the interior, are discussed below.

We also prove a result regarding the behavior at glancing rays which
touch the boundary at G. In this case, singularities can propagate only along
continuations of rays as generalized broken bicharacteristics much as in [18].
These curves are defined in §7 and in the non-glancing case are just unions of
incoming and outgoing bicharacteristics associated to the same point in H,
while in the glancing case the definition is subtler. This allows Theorem 1.1
to be extended to the following concise statement.

Theorem 1.2. Singularities for admissible solutions propagate only along
generalized broken bicharacteristics.

We also obtain a result which is microlocal in the fiber variable as well
as in the slow variables but that necessarily has additional ‘nonfocusing’
hypotheses, directly generalizing that of [19], whose detailed explanation we
postpone to §12. This condition, which is stated relative to a Sobolev space
Hs, amounts to the requirement (away from, but near, the boundary) that
the solution lie in the image of Hs under the action of a sum of products of
first-order pseudodifferential operators with symbols vanishing along ḞI,q.
Now consider two points p, p′ in Ḣ and lying above q, so in the same fiber
Zy. They are said to be geometrically related if they are the endpoints of a
geodesic segment of length π in Zy.

Theorem 1.3. For an admissible solution u satisfying the nonfocusing con-
dition relative to Hs for Ḟ◦I,q, q ∈ Ḣ, and for p ∈ H projecting to q,

F◦I,p′ ∩WFs(u) = ∅ ∀ p′ geometrically related to p =⇒
F◦O,p ∩WFr(u) = ∅ ∀ r < s.

So, if we define ‘geometric generalized bicharacteristics’ as unions of bi-
characteristic segments, entering and leaving ∂M only at geometrically re-
lated points, then solutions satisfying an appropriate nonfocusing condition
have the property that the strongest singularities propagate only along geo-
metric generalized bicharacteristics. This may be visualized as follows: Con-
sider an example in which only one singularity arrives at ∂X, propagating
along FI,p′ Theorem 1.3 shows that this singularity is diffracted into singu-
larities which may emerge along the whole surface ḞO,π0(p′); these outgoing
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singularities are weaker than the incident singularity at all but the special
family of geometrically related bicharacteristics. The geometric general-
ized bicharacteristics, along which stronger singularities can propagate, are
precisely those which can be obtained locally as limits of families of bichar-
acteristics missing the edge entirely. In the special case in which X is simply
a smooth manifold A blown up at a submanifold B, the geometric general-
ized bicharacteristics are just the lifts of bichacteristics in the usual sense.
Condensation of singularities arguments and the uniqueness in Hörmander’s
propagation theorem show that, at least locally, full-strength singularities
do indeed propagate along the geometric generalized bicharacteristics for
some solutions.

The nonfocusing condition does hold for the forward fundamental solution
with pole o sufficiently near the boundary

uo(t) =
sin t
√
∆√

∆
δo.

We have uo(t) ∈ Hs
loc(M) for all s < −n/2 + 1, while the nonfocusing

condition holds relative to Hs′ for all s′ < −n/2 + 1 + f/2. If p ∈ H is
sufficiently close to o and FI,p ∩WFUo(t) 6= ∅, so the incoming singularity
strikes the boundary at p, then for each p′ projecting to the same point in
Ḣ as p, but not geometrically related to it,

FO,p′ ∩WFr(u) = ∅ ∀ r < −n/2 + 1 + f/2.

Thus, the diffracted wave is almost f/2 derivatives smoother than the pri-
mary singularities of the fundamental solution, so we obtain the following
description of the structure of uo (X◦ will, as usual, denote the interior of
X):

Corollary 1.4. For all o ∈ X◦ let Lo denote the flowout of SN∗({o}) along
bicharacteristics lying over X◦. If o is sufficiently close to ∂X, then for short
time, the fundamental solution uo is a Lagrangian distribution along Lo lying
in Hs for all s < −n/2 + 1 together with a diffracted wave, singular only at
FO, that lies in Hr for all r < −n/2 + 1 + f/2, away from its intersection
with Lo.

The geometric generalized bicharacteristics in this case are just those at
the intersection of the diffracted wave and Lo.

1.2. Previous results. It has been known since the work of the first author
[14] and Taylor [24] that C∞-wavefront set of a solution to the wave equation
on a manifold with concave boundary and Dirichlet boundary conditions
does not propagate into the classical shadow region, that is, that wavefront
set arriving tangent to the boundary does not ‘stick to’ the boundary, but
rather continues past it.1 By contrast, diffractive effects have long been
known to occur for propagation of singularities on more singular spaces.

1In the analytic category the contrary is the case — see [5], [21, 20, 22].
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The first rigorous example is due to Sommerfeld, [23], who analyzed the
diffraction into the shadow region behind a straight edge in two dimensions.
Many more such examples were studied by Friedlander [4], and a general
analysis of the fundamental solution to the wave equation on product cones
was carried out by Cheeger and Taylor [2, 3]. Borovikov [1] has analyzed
the structure of the fundamental solution on polyhedra. All of these works
rely in an essential way on the technique of separation of variables, using
the product structure of the cone. There is a quite general, but heuristic,
geometric theory of diffraction due to Keller [10]. This has been confirmed
in a few special cases.

Non-product situations and more singular manifolds have been less ex-
plored. Gérard and Lebeau in [6] explicitly analyzed the problem of an
analytic conormal wave incident on an analytic corner in R2, obtaining a
1/2-derivative improvement of the diffracted wavefront over the incident
one, which is the analog of Theorem 1.3 above. Also in the analytic setting,
Lebeau [11, 12] obtained a diffractive theorem analogous to Theorem 1.1
for a broad class of manifolds, including manifolds with corners; the sec-
ond author [25] has recently obtained such a theorem in the C∞ setting on
manifolds with corners. As already noted, the first and third authors [19]
have previously studied (non-product) conic manifolds in the C∞ setting and
obtained both Theorem 1.1 and Theorem 1.3 in that setting.

1.3. Proofs and plan of the paper. The proofs of Theorems 1.1 and 1.3
use two distinct but related pseudodifferential calculi. We have stated the
results in terms of regularity measured by the edge calculus, which is best
suited for studying the fine propagation of regularity into and out of the
boundary along different bicharacteristics. For arguments that are global in
the fiber, however, the b-calculus proves to be a better tool, and the proof of
Theorem 1.1 is really a theorem about propagation of b-regularity, following
the argument in the corners setting in [25]. Essential use is made of the
fact that the product xξ, with ξ the the dual variable to ∂x, is increasing
along the bicharacteristic flow, and the test operators used are fiber constant
so as not to incur the large error terms which would otherwise arise from
commutation with ∆.

By contrast, as in [19], the extension of the proof of Hörmander’s propa-
gation theorem for operators with real principal symbols to the edge calculus
necessarily runs into the obstruction presented by manifolds of radial points,
at which the Hamilton flow vanishes. The subprincipal terms then come into
play, and propagation results are subject to the auxiliary hypothesis of divis-
ibility. In particular, propagation results into and out of the boundary along
bicharacteristics in the edge cotangent bundle up to a given Sobolev order
are restricted by the largest power of x by which u is divisible, relative to the
corresponding scale of edge Sobolev spaces. The divisibility given by energy
conservation turns out to yield no useful information, as it yields a regu-
larity for propagated singularities that is less than the regularity following



PROPAGATION ON EDGE MANIFOLDS 9

directly from energy conservation. To prove Theorem 1.3 we initially settle
for less information. As already noted, ḞI,q is a coisotropic submanifold of
the cotangent bundle and as such ‘coisotropic regularity’ with respect to it
may be defined in terms of iterated regularity under the application of pseu-
dodifferential operators with symbols vanishing along ḞI,•. Thus, we begin
by showing that coisotropic regularity in this sense, of any order, propagates
through the boundary, with a fixed loss of derivatives. By interpolation with
the results of Theorem 1.1 it follows that coisotropic regularity propagates
through the boundary with epsilon derivative loss. Finally, imposing the
nonfocusing condition allows Theorem 1.3 to be proved by a pairing argu-
ment, since this condition is a microlocal characterization of the dual to the
space of distributions with coisotropic regularity.

2. Edge manifolds

Let X be an edge manifold, as defined in §1.1. In this section, we analyze
the geodesic flow of X in the edge cotangent bundle, and use this flow to
describe a normal form for edge metrics.

As remarked above, by using the product decomposition near the bound-
ary given by the distance along the normal geodesics in the base manifold
[0, ε) × Y, we may write an edge metric in the form (1.7). The following
result allows us to improve the form of the metric a bit further, so that dx
arises only in the dx2 term:

Proposition 2.1. On an edge manifold, there exist choices for x and for
the product decomposition U ≡ [0, ε)× Y such that

g = dx2 + h(x, y, dy) + xh′(x, y, z, dy) + x2k(x, y, z, dy, dz)

To prove Proposition 2.1 (and other results to come) it is natural to study
the Hamilton flow associated to g in the edge cotangent bundle of X. Let

α = ξ
dx

x
+ η · dy

x
+ ζ · dz

denote the canonical one-form, lifted to eT ∗X. The dual basis of vector fields
of eTX is x∂x, x∂y, ∂z and in terms of this basis the metric takes the form

g = x2

 1 O(x) O(x)
O(x) H +O(x) O(x)
O(x) O(x) K


where H and K (which are nondegenerate) are defined respectively as the
dy⊗dy and dz⊗dz parts of h and k at x = 0. Here and henceforth we employ
the convention that an O(xk) term denotes xk times a function in C∞(X).

Thus,

(2.1) g−1 = x−2

1 +O(x) O(x) O(x)
O(x) H−1 +O(x) O(x)
O(x) O(x) K−1 +O(x)


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In fact, it is convenient to work on M = X × Rt, which has an induced
boundary fibration, with base Y × Rt. Correspondingly, elements of eT ∗M
are written as

ξ
dx

x
+ τ

dt

x
+ η · dy

x
+ ζ · dz,

so (x, t, y, z, ξ, τ, η, ζ) are local coordinates on M . The canonical symplectic
form on eT ∗M◦ is d(τdt/x+α), and the Hamilton vector field of the symbol
of the wave operator �, p = (τ/x)2 − g−1, is then −2x−2H, with

(2.2) H = −τx∂t + (τξ +O(x)) ∂τ +
(
xξ +O(x2)

)
∂x

+
(
ξ2 + ζiζjK

ij +O(x)
)
∂ξ +

(
ζiK

ij +O(x)
)
∂zj

+
(
−1

2
ζiζj

∂Kij

∂zk
+O(x)

)
∂ζk +

(
xηjH

ij +O(x2)
)
∂yi + (ξηi +O(x)) ∂ηi .

(We employ the superscript ◦ to denote the interior of a manifold.)
Note that while it has not been emphasized in the expression above, this

vector field is homogeneous of degree 1 in the fiber variables. We will be
interested in the restriction of this flow to Σ, the characteristic variety of �,
where (τ/x)2 = g−1.

Lemma 2.2. Inside Σ, H is radial, i.e. is tangent to the orbits of the fiber
dilations on eT ∗M \ 0, if and only if x = 0 and ζ = 0.

Proof. To be radial H must be a multiple of ξ∂ξ + τ∂τ + η · ∂η + ζ · ∂ζ . In
particular, in the expression above, the ∂t component must vanish, which
inside Σ implies x = 0. The vanishing of the ∂z component further implies
ζ = 0, and conversely H is indeed radial at x = 0, ζ = 0. �

As usual, it is convenient to work with the cosphere bundle, eS∗M, viewed
as the boundary ‘at infinity’ of the radial compactification of eT ∗M. Intro-
ducing the new variable

σ = |τ |−1,

it follows that Hσ = −ξσ +O(x). Setting

ξ̂ = ξσ, η̂ = ησ, ζ̂ = ζσ

we note that σξ̂, η̂, ζ̂ are coordinates on the fiber compactification of eT ∗M∩
Σ, with σ a defining function for eS∗M as the boundary at infinity. Then
Lemma 2.2 becomes

Inside eS∗M ∩ Σ, σH vanishes exactly at x = 0, ζ̂ = 0.

Let the linearization of σH at q ∈ Σ∩ eS∗M (where x = 0, ζ̂ = 0) be Aq.

Lemma 2.3. For q ∈ Ḣ, i.e. such that ξ̂(q) 6= 0, the eigenvalues of Aq
are −ξ̂, 0 and ξ̂, with dx being an eigenvector of eigenvalue ξ̂, and dσ being
an eigenvector of eigenvalue −ξ̂. Moreover, modulo the span of dx, the −ξ̂-
eigenspace is spanned by dσ and the dζ̂j , and the 0-eigenspace is spanned by
dt, dyj, dη̂j, dξ̂, and dzj + ξ̂−1

∑
iK

ij(q) dζ̂i.
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Remark 2.4. This shows in particular that the span of the dζ̂j (plus a suitable
multiple of dx) is invariantly given as the stable/unstable eigenspace of Aq
inside T ∗q

eS∗M according to ξ̂ > 0 or ξ̂ < 0. We denote this subspace of
T ∗q

eS∗M by T ∗,−q (eS∗M).

Proof of Lemma 2.3. A straightforward calculation using (2.2) yields, in the
coordinates (x, y, t, z, ξ̂, η̂, σ, ζ̂),

σH = ξ̂(x∂x − σ∂σ − ζ̂∂ζ̂) +Kij ζ̂i∂zj +Kij ζ̂iζ̂j∂ξ̂ −
1
2
∂Kij

∂zk
ζ̂iζ̂j∂ζ̂k + xH ′,

with H ′ tangent to the boundary. Thus,

σH = ξ̂(x∂x − σ∂σ − ζ̂∂ζ̂) +Kij ζ̂i∂zj + xH ′ +H ′′,

where H ′ is tangent to the boundary, and H ′′ vanishes quadratically at q (as
a smooth vector field). In particular, the linearization Aq is independent of
the H ′′ term, and is only affected by xH ′ as an operator with (at most) one-
dimensional range, lying in sp{dx}. Moreover, xH ′x vanishes quadratically
at ∂M , so dx is an eigenvector of Aq, and by the one-dimensional range
observation, modulo sp{dx}, the other eigenspaces can be read off from the
form of σH, proving the lemma. �

Therefore, under the flow of σH we have

(2.3)
ζ̂ ′ = −ξ̂ζ̂ +O(ζ̂2) +O(x),

x′ = ξ̂x+O(x2).

The Stable/Unstable Manifold Theorem can then be applied to the flow
under H and shows that for each (y0, z0) ∈ ∂X, ξ0, η0, with ξ0 6= 0, there
exists a unique bicharacteristic with the point x = ζ̂ = 0, (y, z) = (y0, z0),
ξ̂ = ξ0, η̂ = η0 in its closure and that a neighborhood of the boundary is
foliated by such trajectories. Choosing ξ0 = 1, η̂ = 0 gives a foliation by
normal trajectories arriving perpendicular to ∂X. Let x̃ be the distance to
the boundary along the corresponding normal geodesics; it is a boundary
defining function. Gauss’s Lemma implies that in terms of the induced
product decomposition the metric takes the form

g = dx̃2 + h(x̃, ỹ, dỹ) + x̃h′(x̃, ỹ, z̃, dỹ, dz̃) + x̃2k(x̃, ỹ, z̃, dỹ, dz̃).

This concludes the proof of Proposition 2.1.
This argument in fact gives a little more than Proposition 2.1, as we

may take ξ0 6= 1. In fact, for any q = (t, y, z, τ̄ , ξ̄, η̄) ∈ H there exist two
bicharacteristics having this point as its limit in the boundary,2 which we
denote

FI/O,q,

2The notation H, Ḣ will be further elucidated in §7.
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with the choice of I/O determined by sgn ξ/τ. For p = (t, y, τ̄ , ξ̄, η̄) ∈ Ḣ, we
let

π−1
0 (p) = {(t, y, z, τ̄ , ξ̄, η̄) : z ∈ Zy}

and
ḞI/O,p =

⋃
q∈π−1

0 (p)

FI/O,p,

and we collect all these bicharacteristics into

FI/O =
⋃
p

FI/O,p, F = FI ∪ FO.

For later use, we note that when the metric has been reduced to the
normal form guaranteed by Proposition 2.1, the rescaled Hamilton vector
field on eT ∗(M) reduces to

(2.4) H = −τx∂t + τξ∂τ + ξx∂x + (ξ2 + |ζ|2K̄)∂ξ + (ζiK̄ij +O(x))∂zj

+ (−1
2
ζiζj

∂K̄ij

∂zk
+O(x))∂ζk + (xηjH ij +O(x2))∂yi + (ξηi +O(x))∂ηi ;

here we have let K̄ij denote the whole of the K−1 +O(x) term in the bottom
right block of g−1 as expressed in (2.1).

3. Calculi

In order to simplify the descriptions below, we assume that M is com-
pact. If M is non-compact, we must insist on all operators having prop-
erly supported Schwartz kernels. For such operators all statements but the
L2-boundedness remain valid; when we restrict ourselves to operators with
compactly supported Schwartz kernels, we have L2-boundedness as well.

We use two algebras of pseudodifferential operators. Each arises from
a Lie algebra V of smooth vector fields on M tangent to ∂M , which is a
C∞(M)-module, and they have rather similar properties:

• For b-ps.d.o’s, we take V = Vb(M), consisting of all C∞ vector fields
on M that are tangent to ∂M .
• For edge ps.d.o’s, ∂M has a fibration φ : ∂M → Y, and we take
V = Ve(M), consisting of all C∞ vector fields on M that are tangent
to the fibers of φ (hence in particular to ∂M).

In terms of coordinates x, y, z adapted to a local trivialization of the fibration
on an edge manifold, with x a boundary defining function and z a coordinate
in the fiber, it is easy to verify that Vb(M) is spanned over C∞(M) by x∂x,
∂yj , ∂zk

while Ve(M) is spanned over C∞(M) by x∂x, x∂yj , ∂zk
.

In both cases, V is the space of all smooth sections of a vector bundle
VTM → M . Thus, in the two cases, these bundles are denoted by bTM
and eTM respectively; this notation extends in an obvious manner to all V-
objects we define below. The dual vector bundle is denoted by VT ∗M , and
the corresponding cosphere bundle, i.e. (VT ∗M \0)/R+ is denoted by VS∗M .
As the space of all smooth vector fields on M includes V, there is a canonical
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bundle map VTM → TM , and a corresponding dual map, T ∗M → VT ∗M .
These are isomorphisms over the interior of M . Also, being a C∞ section of
VTM , every V ∈ V defines a linear functional on each fiber of VT ∗M . This
is the principal symbol map:

Vσ1 : V → C∞ fiber-linear functions on VT ∗M.

We let DiffkV(M) be the space of differential operators generated by V
over C∞(M), so elements of DiffkV(M) are finite sums of terms of the form
aV1 . . . Vl, l ≤ k, Vj ∈ V, a ∈ C∞(M). Thus, DiffV(M) =

⋃
k DiffkV(M) is

a filtered algebra over C∞(M). Defining Vσ0(a) = π∗a for a ∈ C∞(M), π
being the bundle projection VT ∗M →M , Vσ extends to a map

Vσm : DiffmV (M) −→{
C∞ fiber-homogeneous polynomials of degree m on VT ∗M

}
,

that is a filtered ring-homomorphism in the sense that

Vσm+l(AB) = Vσm(A)Vσl(B) for A ∈ DiffmV (M), B ∈ Diff lV(M).

We also fix a non-degenerate b-density ν on M , hence ν is of the form
x−1ν0, ν0 a non-degenerate C∞ density on M , i.e. a nowhere-vanishing sec-
tion of the density bundle ΩM := |

∧n|(M). The density gives an inner
product on Ċ∞(M). When below we refer to adjoints, we mean this relative
to ν, but the statements listed below not only do not depend on ν of the
stated form, but would even hold for any non-degenerate density x−lν0, ν0

as above, l arbitrary, as the statements listed below imply that conjugation
by xl preserves the calculi.

For each of these spaces V there is an algebra of pseudodifferential opera-
tors, denoted by ΨV(M) which is a bifiltered C∞(M) *-algebra of operators
acting on Ċ∞(M), ΨV(M) =

⋃
m,l Ψ

m,l
V (M), satisfying

(I) DiffmV (M) ⊂ Ψm,0
V (M) (with the latter also denoted by Ψm

V (M)),
(II) if x is a boundary defining function of M then xl ∈ Ψ0,l

V (M), and
xlΨm

V (M) = Ψm,l
V (M),

(III) the principal symbol map, already defined above for DiffV(M), ex-
tends to a bifiltered *-algebra homomorphism

Vσm,l : Ψm,l
V (M)→ xlSmhom(VT ∗M \ 0),

(IV) the principal symbol sequence is exact

0→ Ψm−1,l
V (M) ↪→ Ψm,l

V (M)→ xlSmhom(VT ∗M \ 0)→ 0,

(V) for A ∈ Ψm,l
V (M), B ∈ Ψm′,l′

V (M), [A,B] ∈ Ψm+m′−1,l+l′

V (M) satisfies

Vσm+m′−1,l+l′([A,B]) =
1
i
{Vσm,l(A), Vσm′,l′(B)},
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with the Poisson bracket defined a priori as a homogeneous function
on T ∗M◦\0, but extends to xl+l

′
times a smooth function on VT ∗M \

0,
(VI) every A ∈ Ψ0,0

V (M) extends from Ċ∞(M) by continuity to define a
continuous linear map on L2(M), and for each A ∈ Ψ0,0

V (M) there
exists A′ ∈ Ψ−1,0

V (M) such that for all u ∈ L2(M),

‖Au‖L2 ≤ (2 sup |a|)‖u‖L2 + ‖A′u‖L2 ,

where a = Vσ0,0(A).

In addition, there is an operator wave front set (or microsupport) WF′V
such that for A ∈ ΨV(M), WF′V(A) ⊂ VS∗M is closed, and satisfies

(A) WF′V(AB) ⊂WF′V(A) ∩WF′V(B),
(B) WF′V(A+B) ⊂WF′V(A) ∪WF′V(B),
(C) WF′V(a) = π−1 supp a for a ∈ C∞(M), where π is the bundle projec-

tion,
(D) for any K ⊂ VS∗M closed and U ⊂ VS∗M open with K ⊂ U , there

exists A ∈ Ψ0,0
V (M) with WF′V(A) ⊂ U and Vσ0,0(A) = 1 on K (so

ΨV(M) is microlocal on VS∗M),
(E) if A ∈ Ψm,l

V (M), Vσm,l(A)(q) 6= 0, q ∈ VS∗M , then there exists a
microlocal parametrix G ∈ Ψ−m,−lV (M) such that

q /∈WF′V(GA− Id), q /∈WF′V(AG− Id),

(F) if A ∈ Ψm,l
V (M) and WF′V(A) = ∅ then A ∈ Ψ−∞,lV =

⋂
m′ Ψ

m′,l
V

– thus, WF′V captures A modulo operators of order −∞ in the
smoothing sense, just as Vσm,l captures A modulo operators of order
(m− 1, l).

Note that if b ∈ xlSmhom(VT ∗M\0) then for any U ⊂ VS∗M open satisfying
U ⊃ supp b there exists B ∈ Ψm,l

V (M) with WF′V(B) ⊂ U and Vσm,l(B) = b.
Indeed, with K = supp b, let A ∈ Ψ0,0

V (M) be as in (D) above, so WF′V(A) ⊂
U and Vσ0,0(A) = 1 on K. By the exactness of the symbol sequence, there is
B0 ∈ Ψm,l

V (M) and Vσm,l(B) = b. Then B = AB0 satisfies all requirements.
Beyond these rather generic properties, shared by the b- and edge-calculi,

we will use one further, more specialized property of the b-calculus: if V ∈
Vb(M) is such that V |∂M = xDx (restriction in the sense of Vb(M), i.e. as
sections of bTM), then for A ∈ Ψm

b (M), [A, V ] ∈ xΨm
b (M), i.e. there is a

gain of x over the a priori statements. (Note that x∂x, the ‘radial vector
field’, is a well-defined section of bTM at ∂M .)

The above property in fact follows from the analysis of the normal op-
erator associated to V. More generally, for a differential operator in the
b-calculus, we obtain a model, or normal operator by freezing coefficients of
b-vector fields at the boundary: in coordinates (x,w) ∈ R+ × Rk with x a
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boundary defining function, if

P =
∑

ai,α(x,w)(xDx)iDα
w

then
N(P ) =

∑
ai,α(0, w)(xDx)iDα

w

is now an operator on R+× ∂M. Likewise, if Q is an edge operator given by

Q =
∑

bi,α,β(x, y, z)(xDx)i(xDy)αDβ
z

on a manifold with fibered boundary then

N(Q) =
∑

bi,α,β(0, y, z)(xDx)i(xDy)αDβ
z

is an operator on Rb+1
+ × F, where F is the fiber and b the dimension of

the base of the boundary fibration. These normal operators are in fact
homomorphisms from the respective algebras, and they extend to act on the
algebras Ψm

V (M). Their principal utility is the following:

A ∈ xΨm
V (M)⇐⇒ N(A) = 0.

We will make very little use of the normal operators; for more detailed
discussion, see [13].

We will also require a conormal variant of the b-calculus described above,
where polyhomogeneous symbols (Smhom) are replaced by those satisfying
Kohn-Nirenberg type symbol estimates (Sm). We denote this calculus Ψb∞.
It satisfies all the properties above, except that the symbol map now takes
values in Sm(bT ∗M)/Sm−1(bT ∗M). This calculus will be important in mak-
ing approximation arguments in our b-calculus-based positive commutator
estimates.

A unified treatment of the two calculi discussed in this section can be
found in Mazzeo [13]. This was the original treatment of the edge calculus,
while the b-calculus originates with the work of the first author [15].

4. Coisotropic regularity

Theorem 4.1. Away from glancing rays, the set F is a coisotropic sub-
manifold of the symplectic manifold eT ∗M, i.e. contains its symplectic or-
thocomplement.

Proof. We split F into its components FI and FO; by symmetry, it suffices
to work on FI .

It suffices to exhibit a set of functions αi vanishing on FI whose differen-
tials yield a basis of sections of N∗FI such that the Poisson bracket of any
two also vanishes on FI .

To begin, we let Hp0 denote the Hamilton vector field of p0 = eσ2,−2(�)
(and more generally, Hq the Hamilton vector field of any symbol q); let
ϕ = x2/|τ | so ϕHp0 ∈ Vb(eT ∗(M)\0), and is homogeneous of degree zero.
The vector field ϕHp0 is not itself a Hamilton vector field: we have

(4.1) ϕHp0 = Hϕp0 − p0Hϕ.



16 RICHARD MELROSE, ANDRÁS VASY, AND JARED WUNSCH

This last vector field has the virtue of vanishing on FI , however.
Now FI is a conic submanifold of eT ∗M, hence has a set of defining

functions that are homogeneous of degree 0. Letting ζ̂i = ζi/|τ | we note
that it follows from (2.3) that we may take defining functions for FI to be
homogeneous functions of degree zero of the form

αi = ζ̂i +O(x), i = 1, . . . , f,

with dαi(q) an eigenvector of the linearization Aq of ϕHp0 of eigenvalue −ξ̂,
plus one extra to keep us in the characteristic set: α0 = x2p0/|τ | = ϕp0. We
immediately note that for i ≥ 1, we have

(4.2) {α0, αi} = ϕHp0αi + p0Hϕαi = p0Hϕ(αi),

which is a smooth multiple of p0, so that Poisson brackets with α0 never
present difficulties. It remains to show that {αi, αj} is in the span of the
αi’s for i = 1, . . . , f.

The Jacobi identity yields
(4.3)
Hϕp0{xαi, xαj} = {Hϕp0(xαi), xαj} − {Hϕp0(xαj), xαi}, i, j = 1, . . . , f.

Using (4.1) and the tangency of ϕHp0 to FI and to x = 0 we find that
Hϕp0(xαi) is a smooth function vanishing at both x = 0 and on FI , hence
we have

Hϕp0(xαi) =
∑

b′ikxαk

where b′ik ∈ C∞. We can in fact say a little more: since ϕHp0 is a smooth
vector field tangent both to x = 0 and to FI , and as dαi(q), resp. dx are
eigenvectors of the linearization of ϕHp0 at ∂FI with eigenvalue −ξ̂, resp. ξ̂,
we have

ϕHp0x = ξ̂x+ x2b+
∑

cjxαj , ϕHp0αi = −ξ̂αi + x
∑

rijαj + ri,

with b, ci, rij , rj all smooth, ri vanishing quadratically at FI . Thus,

ϕHp0(xαi) =
∑

bik(x2αk) + r′i

for smooth functions bik and r′i and with r′i quadratically vanishing on FI .
Observe now that p0Hϕ(xαi) = (ϕp0)xci with ci smooth, and {(ϕp0)xci, xαj}

vanishes at p0 = 0 (cf. (4.2)). As a result, by (4.1) and (4.3), we see that

ϕHp0{xαi, xαj} =
∑

xcijkl{xαk, xαl}+ r

where r is a smooth term vanishing on FI .
Now we restrict to FI . By construction of FI , the vector field ϕHp0 van-

ishes identically at FI ∩ ∂M, hence it is divisible by a factor of x when
restricted to FI , with the quotient being a vector field on FI transverse to
∂FI . Thus if we let s be a parameter along the flow generated by ϕHp0 , with
s = 0 at ∂FI , we have with c′ijkl smooth,

d

ds
{xαi, xαj}|FI

=
∑

c′ijkl{xαk, xαl}|FI
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Now xαk and xαl Poisson commute at ∂M, so we conclude that {xαi, xαj} =
0 on FI .

This implies that in fact {αi, αj} = 0 on FI , as {xαi, xαj} − x2{αi, αj}
also vanishes there. �

We now fix an arbitrary open set U ⊂ eT ∗M disjoint from rays meeting
x = ξ = 0. We omit the set U from the notation below, by abuse of notation.

Definition 4.2.
(a) Let Ψe(U) be the subset of Ψe(M) consisting of operators A with

WFe
′A ⊂ U .

(b) Let M denote the module of pseudodifferential operators in Ψ1
e(M)

given by
M = {A ∈ Ψ1

e(U) : σ(A)|Ḟ = 0}.
(c) Let A be the algebra generated by M, with Ak = A ∩ Ψk

e (M). Let
H be a Hilbert space on which Ψ0

e(M) acts, and let K ⊂ eT ∗(M) be
a conic set.

(d) We say that u has coisotropic regularity of order k relative to H in
K if there exists A ∈ Ψ0

e(M), elliptic on K, such that AkAu ⊂ H.
(e) We say that u satisfies the nonfocusing condition of degree k relative

to H on K if there exists A ∈ Ψ0
e(M), elliptic on K, such that

Au ⊂ AkH. We say that u satisfies the nonfocusing condition relative
to H on K if it satisfies the condition to some degree.

Remark 4.3. The conditions of coisotropic regularity and nonfocusing are
dual to one another, at least in a microlocal sense: if u satisfies (d) and v
satisfies (e) then the L2 pairing of Au and Av makes sense.

Lemma 4.4. The module M is a test module in a sense analogous to [7,
Definition 6.1]. That is, M is closed under commutators and is finitely
generated in the sense that there exist finitely many Ai ∈ Ψ1

e(M), i =
0, 1, . . . , N , A0 = Id, such that

M = {A ∈ Ψ1
e(U) : ∃Qi ∈ Ψ0

e(U), A =
N∑
j=0

QiAi}

Moreover, we may take AN to have symbol |τ | aN = x2|τ |−1p, p = σ(�),
and Ai, i = 1, . . . , N − 1 to have symbol |τ | ai with dai(q) ∈ T ∗,−q (eS∗M) for
q ∈ ∂Ḟ , where we used the notation of Remark 2.4.

Proof. For A,B ∈ M, [A,B] ∈ Ψ1
e(M), WFe

′([A,B]) ⊂ U and σ([A,B]) =
1
i {σ(A), σ(B)}, so σ([A,B])|Ḟ = 0 as Ḟ is coisotropic. Thus, M is closed
under commutators.

Let ai, i = 1, . . . , N , be smooth homogeneous degree 0 functions on
eT ∗M \ 0 such that ai vanish on Ḟ and dai(q), i = 1, . . . , N , spans N∗q Ḟ for
each q ∈ Ḟ . In particular, we may take aN = x2|τ |−1p0 = ϕp0 and choose ai,
i = 1, . . . , N − 1 as in the statement of the lemma. Let Ai be any elements
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of Ψ1
e(M) with σ(Ai) = |τ | ai. In view of this spanning property, every

homogeneous degree 1 function a ∈ C∞(eT ∗M \ 0) with supp a ⊂ U and
a|Ḟ = 0 can be written as

∑N
i=1 qi |τ | ai with supp qi ⊂ U , qi smooth homo-

geneous degree 0, so if Qi ∈ Ψ0
e(M) are chosen to satisfy WFe

′(Qi) ⊂ U and
σ(Qi) = qi, then Q0 = A−

∑N
i=1QiAi satisfies WFe

′(Q) ⊂ U , Q0 ∈ Ψ0
e(M),

proving the lemma. �

We recall from [7]:

Lemma 4.5. (See [7, Lemma 6.3].) If Ai, 0 ≤ i ≤ N, are generators for
M in the sense of Lemma 4.4 with A0 = Id, then

(4.4) Ak =

∑
|α|≤k

Qα

N∏
i=1

Aαi
i , Qα ∈ Ψ0

e(U)


where α runs over multiindices α : {1, . . . , N} → N0 and |α| = α1 +· · ·+αN .

Remark 4.6. The notation here is that the empty product is A0 = Id, and
the product is ordered by ascending indices Ai. The lemma is an immediate
consequence of M being both a Lie algebra and a module; the point being
that products may be freely rearranged, modulo terms in Ak−1.

Now, AN being a multiple of �, modulo Ψ0
e(M), regularity under sum-

mands Qα
N∏
i=1

Aαi
i with αN 6= 0 and |α| = k is automatic for solutions of

�u = 0, once regularity with respect to Ak−1 is known. The key additional
information we need is:

Lemma 4.7. For l = 1, . . . , N − 1,

(4.5) x2i[Al,�] =
N∑
j=0

CljAj , Clj ∈ Ψ1
e(M), σ(Clj)|∂Ḟ = 0 for j 6= 0.

Remark 4.8. In fact, it would suffice to have σ(Clj)|∂Ḟ diagonal with

Reσ(Cll)|∂Ḟ ≥ 0,

as in [7, Equation (6.14)] or an even weaker lower (or upper) triangular
statement, see [7, Section 6].

Proof. Let |τ | al = σ(Al), considered as a homogeneous degree 1 function
on eT ∗M . Note that aN = σ(AN ) = x2|τ |−1p0, so σ(�) = x−2|τ |2aN . As
x2i[Al,�] ∈ Ψ2

e(M) and A0 = Id, it suffices to prove that for suitable clj ,
homogeneous degree 1 with clj |Ḟ = 0,

(4.6) σ(x2i[Al,�]) =
N∑
j=1

clj |τ | aj .

But σ(x2i[Al,�]) = −x2Hp0(|τ | al) = −Hp0(|τ | al) is homogeneous of degree
2, vanishing at Ḟ , so (4.6) follows, though not necessarily with clj |Ḟ = 0.
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By Lemma 2.3 and the part of the statement of Lemma 4.4 regarding
dal(q), dal is an eigenvector of the linearization of σHp0 with eigenvalue −ξ̂,
and dσ is also an eigenvector with eigenvalue −ξ̂. Correspondingly, using
the homogeneity and working on eT ∗M , σHp0(σ−1al) = (σHp0σ

−1)al +
σ−1(σHp0)(al) vanishes at ∂Ḟ , so we may indeed take clj |∂Ḟ = 0. �

The final piece of information we needed to analyze propagation of reg-
ularity with respect to M is to recall from Lemma 2.3 that x, resp. σ are
eigenvalues of the linearization of σHp of eigenvalue ξ̂, resp. −ξ̂, and corre-
spondingly for Wm,l ∈ Ψm,l

e (M) with symbol wm,l = |τ |mxl = σ−mxl,
(4.7)
i[Wm,l,�] = Wm−1,l−1C0, where C0 ∈ Ψ0,0

e (M), σ(C0)|∂Ḟ = −(m+ l)ξ̂.

5. Domains

An essential ingredient in our use of the edge calculus will be the identi-
fication of domains of powers of the Laplacian with weighted edge Sobolev
spaces.

Definition 5.1. Let D denote the Friedrichs form domain of ∆, i.e. the closure
of Ċ∞(X) with respect to the norm (‖du‖2L2

g
+ ‖u‖2L2

g
)1/2. Let Ds denote the

corresponding domain of ∆s/2 (hence D = D1), and D′ = D−1.

Recall that L2
g(X) = x−(f+1)/2L2

b(X), and that we use the b weight in
our definition of edge Sobolev spaces.

We remark that multiplication by elements of C∞Y (X) (the subspace of
C∞(X) consisting of fiber constant functions at ∂X) preserves D, as for

φ ∈ C∞Y (X), V ∈ x−1Ve(X),

we have
V φu = φV u+ [V, φ]u,

and
[V, φ] ∈ C∞(X)

is bounded on L2
g. Thus, D can be characterized locally away from ∂X,

plus locally in Y near ∂X (i.e. near ∂X the domain does not have a local
characterization, but it is local in the base Y , so the non-locality is in the
fiber Z).

The basic lemma is the following.

Lemma 5.2. We have, for v ∈ Ċ∞(X), f > 1,

(5.1)
∥∥x−1v

∥∥2 +
∥∥x−1Dzv

∥∥2 + ‖Dxv‖2 + ‖Dyv‖2 ≤ C‖v‖2D.

Remark 5.3. This is the only result we need for the diffractive theorem,
which uses the b-calculus. If f = 1, we use more carefully crafted ps.d.o’s
to make sure that the control of ‖v‖, rather than ‖x−1v‖, suffices—indeed,
‖x−1v‖ is not controlled by ‖v‖D if f = 1. A fortiori, in the extreme case
f = 0, we do not control

∥∥x−1v
∥∥ by the domain norm.
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That a reverse inequality to (5.1) holds too is immediate from the defini-
tion of D and the form of the metric.

Proof. As ‖v‖2D = ‖dv‖2L2
g

+ ‖v‖2L2
g
, the form of the metric g implies∥∥x−1Dzv

∥∥2 + ‖Dxv‖2 + ‖Dyv‖2 ≤ C‖v‖2D.

So it remains to show that
∥∥x−1v

∥∥2 ≤ C‖v‖2D for v supported near ∂X,
which in turn will follow from

∥∥x−1v
∥∥2 ≤ C(‖Dxv‖2 + ‖v‖2). Treating y, z

as parameters, this in turn is an immediate consequence of the standard
analogous one-dimensional result (with respect to the measure xf dx). �

As an immediate consequence, we deduce the following:

Proposition 5.4. Suppose that either s ∈ [0, 1), or s = 1 and f > 1. Then
Ds = x−(f+1)/2+sHs

e (X).

Proof. For s = 1, f > 1, this follows immediately from Lemma 5.2 and the
definition of the Friedrichs quadratic form domain D as the closure of Ċ∞(X)
with respect to ‖·‖D. Indeed, the lemma gives ‖u‖x−(f+1)/2+1H1

e (X) ≤ C‖u‖D
for u ∈ Ċ∞(X); the analogous reverse inequality is immediate, so the density
of Ċ∞(X) in both spaces proves the proposition for s = 1. As Dθ, θ ∈ [0, 1],
resp. xθ−(f+1)/2Hθ

e (X), are the complex interpolation spaces for (L2,D),
resp. (L2, x1−(f+1)/2H1

e (X)), the proposition follows for s ∈ [0, 1], f > 1.
A different way of identifying D, which indeed works for arbitrary f, is to

note that working in a local coordinate chart O′ in Y over which the fibration
of ∂X is trivial, and extending the fibration to a neighborhood of ∂X, one
has an open set O in X which one can identify with [0, ε)x×O′×Z. As D is
a C∞Y (X) module, we only need to characterize the elements of D supported
in compact subsets of O which have a product decomposition. But directly
from the definition of D, such functions are exactly the correspondingly
supported elements of

H1(Y ;L2([0, ε)x × Z;xf dx dz)) ∩ L2(Y ;D([0, ε)× Z)),

where D stands for the Friedrichs form domain of any conic Laplacian on
[0, ε)×Z. These domains D are well-known, and are described in [19, Equa-
tion (3.11)]. In particular, for f > 1, D([0, ε)×Z) = x1−(f+1)/2H1

b([0, ε)×Z),
providing an alternative method of characterization of the domain D for
f > 1.

Now, x1−(f+1)/2H1
e (X) ⊂ D always (with a continuous inclusion) as both

are completions of Ċ∞(X), with the first norm being stronger than the
second. Complex interpolation with L2 (of which both are a subspace) gives
the inclusion xθ−(f+1)/2Hθ

e (X) ⊂ Dθ for θ ∈ [0, 1].
To see the reverse inclusion, we proceed as follows. In order to simplify

the notation, we localize to a product neighborhood O of ∂X, but do not
denote this explicitly. Since complex interpolation of the spaces L2 = D0

and D = D1 yields Dθ for 0 ≤ θ ≤ 1, with an analogous statement for
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D([0, ε) × Z), while complex interpolation of L2 and H1 yields Hθ for 0 ≤
θ ≤ 1, we deduce that

Dθ ⊂ Hθ(Y ;L2([0, ε)x × Z)) ∩ L2(Y ;Dθ([0, ε)× Z)),

meaning elements of Dθ multiplied by a cutoff supported in O identically
1 near ∂X are in the right hand side. For θ ∈ [0, 1), Dθ([0, ε) × Z) =
xθ−(f+1)/2Hθ

b([0, ε)× Z), even if f = 1, so we deduce that for θ ∈ [0, 1),

Dθ ⊂ Hθ(Y ;L2([0, ε)x × Z)) ∩ L2(Y ;xθ−(f+1)/2Hθ
b([0, ε)× Z)).

The right side is exactly xθ−(f+1)/2Hθ
e (O). In fact, this follows from

H1(Y ;L2([0, ε)x × Z)), L2(Y ;x1−(f+1)/2H1
b([0, ε)× Z))

and x1−(f+1)/2H1
e (O)

being the form domains of commuting self-adjoint operators A1, A2, resp.
A = A1 + A2, with Aj ≥ Id, as this implies the non-trivial (and relevant)
direction, i.e. that

Hθ(Y ;L2([0, ε)x×Z))∩L2(Y ;xθ−(f+1)/2Hθ
b([0, ε)×Z)) ⊂ xθ−(f+1)/2Hθ

e (O)

by using A(θ−z)/2 to produce the holomorphic family used in the definition of
complex interpolation. For instance, one may take A1 = ∆Y for some metric
on Y , and A2 = ∆[0,ε)×Z + cx−2 for a conic metric and c > 0 sufficiently
large.

Thus, the proposition follows for s ∈ [0, 1) and f arbitrary (as well as
s = 1, f > 1). �

We write D̃, etc. for the analogous spaces on M :

Definition 5.5. ‖u‖2D̃ = ‖Dtu‖2L2(M)+‖dXu‖2L2(M)+‖u‖2L2(M). We also write

D̃([a, b]) for the space with the same norm on [a, b]×X.

We will require the following result about the interaction of the test mod-
ule M from Definition 4.2 with the norm on D̃ :

Lemma 5.6. Let A ∈ M. Let A∗D̃ denote the adjoint of A respect to the
norm on D̃. Then

A∗D̃ = A∗ +B +R

with B ∈ Ψ0,0
e (M) and R a smoothing operator mapping D̃(M)→ C∞(M).

Proof. Let �̃ = D2
t +∆+1. If u, v ∈ Ċ∞(M) have compact support, we have

〈Au, v〉D̃ =
〈
�̃Au, v

〉
= 〈u,A∗v〉D̃ +

〈
[�̃, A]u, v

〉
.

Using the usual elliptic parametrix construction, we may write

[�̃, A] = B∗�̃ +R′
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where B∗ ∈ Ψ0,0
e (M) and R′ ∈ Ψ−∞,−2

e (M). By the Riesz Lemma, 〈R′u, v〉 =
〈Ru, v〉D̃ for some smoothing operator R, so we obtain the desired form of
the adjoint. �

The domain D localizes with respect to fiber-constant functions. Thus,
we make the definition:

Definition 5.7. For u ∈ C−∞(X), we say that u ∈ Dloc if φu ∈ D for all fiber
constant φ ∈ C∞c (X). Similarly, for u ∈ C−∞(X), we say that u ∈ D′loc if
φu ∈ D′ for all fiber constant φ ∈ C∞c (X).

We define the localized domains on M analogously.

Note that if u ∈ D then certainly u ∈ Dloc.

6. Wavefront sets (f > 1)

Throughout this section, we assume f > 1. For the f = 1 case, see Sec-
tion 10.3

By convention all ps.d.o’s in this section have Schwartz kernels supported
in a fixed compact set K̃×K̃, and we define associated local norms by fixing
a function φ̃ ∈ C∞c (M) equal to 1 on neighborhood of K̃; we let

‖u‖•,loc =
∥∥∥φ̃u∥∥∥

•

for various choices of Sobolev space.

Lemma 6.1. If V ∈ x−1Ve(M) and A ∈ Ψm
b∞(M) then

[A, V ] ∈ x−1Ψm
b∞(M).

(Recall that the calculus with conormal estimates, Ψ∗b∞(M), is described
at the end of §3.)

Proof. The result follows from the fact that V ∈ x−1 Diff1
b(M). �

Lemma 6.2. Any A ∈ Ψ0
b∞(M) with compact support defines a continuous

linear map A : D̃ → D̃ with a norm bounded by a seminorm of A in Ψ0
b∞(M).

Moreover, for any K ⊂M compact, any A ∈ Ψ0
b∞(M) with proper support

defines a continuous map from the subspace of D̃ consisting of distributions
supported in K to D̃c.

Proof. The norm on D̃ is (‖dMu‖2 + ‖u‖2)1/2, and C∞c (M◦) is dense on
D̃, so it suffices to show that for u ∈ C∞c (M◦), ‖Au‖L2 ≤ C‖u‖L2 , and
‖V Au‖L2 ≤ C(‖dMu‖ + ‖u‖) for V ∈ x−1Ve(M). As Ψ0

b∞(M) is bounded
on L2, the first claim is clear. Moreover,

‖V Au‖L2 ≤ ‖AV u‖L2 + ‖[V,A]u‖L2 ≤ C‖V u‖L2 + C‖x−1u‖L2

3As always, for the case of a manifold with boundary, i.e. f = 0, we refer the reader to
[17, 18].
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where we used the previous lemma for the second term, and also that
Ψ0

b∞(M) is bounded on L2. Finally, as f > 1, ‖x−1u‖L2 ≤ C(‖Dxu‖L2 +
‖u‖L2), finishing the proof. �

We note that this lemma is in fact false without the assumption f > 1.
We are now able to follow the treatment of [25] almost verbatim, using

the preceding Lemma in place of [25, Lemma 3.2].

Definition 6.3. For m ≥ 0, we define Hm
D̃,b,c(M) as the subspace of D̃ con-

sisting of u ∈ D̃ with suppu compact and Au ∈ D̃ for some (hence any, see
[25]) A ∈ Ψm

b (M) (with compact support) which is elliptic over suppu, i.e.
A such that such that σb,m(A)(q) 6= 0 for any q ∈ bT ∗suppuM \ 0.

We let Hm
D̃,b,loc

(M) be the subspace of D̃loc consisting of u ∈ D̃loc such
that for any φ ∈ C∞c (M), φu ∈ Hm

D̃,b,c(M).

Thus, Hm
D̃,b,loc

(M) consists of distributions conormal to finite order rel-

ative to D̃. We also define the spaces with a negative order of conormal
regularity relative to D̃:

Definition 6.4. Let m < 0, and A ∈ Ψ−mb (M) be elliptic on bS∗M with
proper support. We let Hm

D̃,b,c(M) be the space of all u ∈ C−∞(M) of the

form u = u1 +Au2 with u1, u2 ∈ D̃c. We let

‖u‖Hm
D̃,b,c

(M) = inf{‖u1‖D̃ + ‖u2‖D̃ : u = u1 +Au2}.

We also let Hm
D̃,b,loc

(M) be the space of all u ∈ C−∞(M) such that φu ∈
Hm
D̃,b,c(M) for all φ ∈ C∞c (M).

The spaces Hm
D̃,b,c and Hm

D̃,b,loc
do not depend on the choice of A; see [25].

With this definition, A ∈ Ψk
b∞(M) defines a map

A : Hm
D̃,b,c(M)→ Hm−k

D̃,b,c (M);

if the supports are kept in a fixed compact set, this is a continuous linear
map between Banach spaces. We now proceed to microlocalize these spaces.

Definition 6.5. Let u ∈ Hs
D̃,b,loc

for some s and let m ≥ 0. We say that

q ∈ bT ∗M \ 0 is not in WFm
b,D̃(u) if there exists A ∈ Ψm

b (M) such that

σb,m(A)(q) 6= 0 and Au ∈ D̃.
For m =∞, we say that q ∈ bT ∗M \ 0 is not in WFm

b,D̃(u) if there exists

A ∈ Ψ0
b(M) such that σb,0(A)(q) 6= 0 and LAu ∈ D̃ for all L ∈ Diffb(M),

i.e. if Au ∈ H∞D̃,b,loc
(M).

We also use the notation WFb,D̃(u) = WF∞
b,D̃(u).
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Remark 6.6. Note that WFb,D̃(u) is only defined for u ∈
⋃
sH

s
D̃,b,loc

(M).

It is reasonable thus to call
⋃
sH

s
D̃,b,loc

(M) the space of D̃-admissible dis-
tributions, and to refer to solutions of �u = 0 with u ∈

⋃
sH

s
D̃,b,loc

(M) as
admissible solutions—even, in a more general setting, if � is the ‘Laplacian’
of a general pseudo-Riemannian metric.

We recall the definition of the operator wave front set of a family of
ps.d.o’s.

Definition 6.7. Suppose that B is a bounded subset of Ψk
b∞(M), and q ∈

bS∗M . We say that q /∈ WF′b(B) if there is some A ∈ Ψb(M) which is
elliptic at q such that {AB : B ∈ B} is a bounded subset of Ψ−∞b (M).

Note that the wave front set of a family B is only defined for bounded fam-
ilies. It can be described directly in terms of quantization of (full) symbols,
much like the operator wave front set of a single operator. All standard prop-
erties of the operator wave front set also hold for a family; e.g. if E ∈ Ψb(M)
with WF′b(E) ∩WF′b(B) = ∅ then {BE : B ∈ B} is bounded in Ψ−∞b (M).

The key lemma here concerns families B with wave front set disjoint from
a wave front set WFk

b,D̃(u) of a distribution u; it is the quantitative version
of the microlocality of Ψb∞(M):

WFm−k
b,D̃ (Bu) ⊂WF′b(B) ∩WFm

b,D̃(u), B ∈ Ψk
b∞(M),

see [25, Lemma 3.9].

Lemma 6.8. Suppose that K ⊂ bS∗M is compact, and U a neighborhood
of K in bS∗M . Let Q ∈ Ψk

b(M) be elliptic on K with WF′b(Q) ⊂ U . Let
B be a bounded subset of Ψk

b∞(M) with WF′b(B) ⊂ K. Then for any s ∈ R
there is a constant C > 0 such that

‖Bu‖D̃ ≤ C(‖u‖Hs
D̃,b,loc

+ ‖Qu‖D̃).

for B ∈ B, u ∈ Hs
D̃,b,loc with WFk

b,D̃(u) ∩ U = ∅,

For the proof, see [25, Lemma 3.13 and Lemma 3.18].

Remark 6.9. Instead of working with D̃, one can also work with D̃′, as
Ψ0

b∞(M) acts on it by duality. All the above results have their analogues
with WFb,D̃ replaced by WFb,D̃′ .

We will also employ a wave front set on a quotient space of bS∗M. In §7 we
will define a space b

.
S∗M with a proper, surjective map p : bS∗M → b

.
S∗M ;

b
.
S∗M will be equipped with the quotient topology. In this case, by abusing

the notation slightly, we use the following terminology:

Definition 6.10. WFb,D̃(u) and WFb,D̃′(u), considered as subsets of b
.
S∗M ,

are the images under the quotient map p of WFb,D̃(u) and WFb,D̃′(u), con-
sidered as subsets of bS∗M .
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Thus, for q ∈ b
.
S∗M , q /∈WFb,D̃(u) if and only if p−1(q)∩WFb,D̃(u) = ∅,

i.e. u is well-behaved at all pre-images of q.

7. Edge/b relationship

Let N denote an edge manifold with fibration

Z → ∂N
π0→W.

Canonical coordinates on eT ∗N induced by coordinates (x,w, z) (with w
pull-backs of coordinates on W ) on N are (x,w, z, ξ, µ, ζ) corresponding to
writing covectors in eT ∗N as

ξ
dx

x
+ µ · dw

x
+ ζ · dz.

Analogously, canonical coordinates on bT ∗N are (x,w, z, ξ, µ, ζ) correspond-
ing to writing covectors in bT ∗N as

(7.1) ξ
dx

x
+ µ · dw + ζ · dz.

Let π denote the bundle map eT ∗N → bT ∗N given in canonical coordi-
nates by

π(x,w, z, ξ, µ, ζ) = (x,w, z, xξ, µ, xζ).
This map can be obtained more invariantly by identifying eT ∗N with the
bundle x eT ∗N := xeT ∗N, i.e. the bundle whose sections can be written
as x times an edge one-form; the identification is via multiplication by x,
naturally. The map π is then the inclusion map of this bundle into bT ∗M.
We define the compressed cotangent bundle by setting

b
.

T ∗N = π(eT ∗N)/Z,

π̇ : eT ∗N → b
.

T ∗N

the projection, where, here and henceforth, we take the quotient by Z to act
only over the boundary (where it is defined) and the topology to be given
by the quotient topology. We remark that b

.
T ∗∂NN can be identified with

T ∗W.
In our geometric setting, we have N = M := R×X, W = R×Y, and the

w variables above are replaced by w = (t, y), and correspondingly µ = (τ, η),
hence µ = (τ , η) and the canonical one-form on the b-cotangent bundle is

(7.2) ξ
dx

x
+ τdt+ η · dy + ζ · dz

Below it is much more convenient to work with the cosphere bundles
rather than the cotangent bundles. These are defined as

bS∗M = (bT ∗M \ 0)/R+, b
.

S∗M = bS∗M/Z, eS∗M = (eT ∗M \ 0)/R+,

where 0 denotes the zero sections of the respective bundles and R+ acts
by scalar multiplication in the fibers. The maps π and π̇ commute with
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the R+-action on the cotangent bundles, but they do map some non-zero
covectors to the zero section of bT ∗M (at x = 0), so they do not descend
to maps eS∗M → b

.
S∗M . (We remark that eS∗M and x eS∗M are naturally

identified, which is one of the reasons for working with cosphere bundles.)
Nonetheless, we introduce the notation

π(eS∗M) = (π(eT ∗M) \ 0)/R+ ⊂ bS∗M,

π̇(eS∗M) = (π̇(eT ∗M) \ 0)/R+ ⊂ b
.

S∗M

for convenience.
However, letting p = σe(x2�) ∈ C∞(eT ∗M \ 0), we have

p|x=0 = τ2 −
(
ξ2 + |η|2h + |ζ|2k

)
.

Since
π(0, t, y, z, ξ, τ, η, ζ) = (0, w, z, 0, τ, η, 0),

on the characteristic set p−1({0}) ⊂ eT ∗M of �, where τ 6= 0, non-zero
covectors are mapped to non-zero covectors by π, hence also by π̇. (In other
words, ∂M is non-characteristic.) Thus π, π̇ also define maps, denoted with
the same letter:

π : Σ→ bS∗M, π̇ : Σ→ b
.

S∗M, Σ = p−1({0})/R+.

We set
Σ̇ = π̇(Σ);

this is the compressed characteristic set.
In order to obtain coordinates on a subset of the cosphere bundle from the

canonical coordinates on a cotangent bundle we need to fix a homogeneous
degree 1 function that does not vanish on the cone corresponding to this
subset. In our case, on Σ, |τ | can be taken as a canonical choice. We thus
let

ξ̂ =
ξ

|τ |
, η̂ =

η

|τ |
, ζ̂ =

ζ

|τ |
(so τ̂ ≡ 1), and likewise, in the ‘b-coordinates’ of (7.1),

ξ̂ =
ξ

|τ |
, η̂ =

η

|τ |
, ζ̂ =

ζ

|τ |
.

In these coordinates, at x = 0, Σ is given by ξ̂2 + |η̂|2h + |ζ̂|2k = 1, while at
x = 0, Σ̇ is given by ξ̂ = 0, ζ̂ = 0, |η̂|2h ≤ 1 (with the subscripts h, k as usual
denoting lengths with respect to the indicated metrics).

Lemma 7.1. Every neighborhood of a point q0 = (t0, y0, τ = 1, η̂
0
) ∈ Σ̇ in

Σ̇ contains an open set of the form

{q : |x(q)|2 + |y(q)− y0|2 + |t(q)− t0|2 + |η̂(q)− η̂
0
|2 < δ}.
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Proof. Let ρ : bS∗M → b
.
S∗M be the quotient map. A neighborhood U of

q0 in Σ̇ is, by definition, of the form U ′ ∩ Σ̇ where U ′ ⊂ b
.
S∗M is open. But,

as U ′ being open, Z is compact, and q0 ∈ U ′, U ′ contains an open set of the
form

{q ∈ b
.

S∗M : |x(q)|2 + |y(q)− y0|2 + |t(q)− t0|2

+ |ξ̂(q)|2 + |η̂(q)− η̂
0
|2 + |ζ̂(q)|2 < δ′}

(7.3)

for some δ′ > 0. But Σ̇ = π(Σ), so on Σ̇, ξ̂(q) = x(q′)ξ̂(q′) with q′ ∈ Σ,
q = π̇(q′), so |ξ̂(q)| ≤ x(q)|ξ̂(q′)| ≤ x(q), hence on a set in Σ̇ with x(q)2 < δ′′,
we have in fact |ξ̂(q)|2 < δ′′, and similarly, |ζ̂(q)|2 < Cδ′′. Thus, the set

{q ∈ Σ̇ : |x(q)|2 + |y(q)− y0|2 + |t(q)− t0|2 + |η̂(q)− η̂
0
|2 < (C + 2)−1δ′}

is indeed contained in (7.3), proving the lemma. �

Lemma 7.2. Σ̇ is a metrizable space.

Proof. This follows from b
.
S∗M being metrizable, which can be shown eas-

ily directly. We provide an alternative argument From Lemma 7.1 it is
immediate that Σ̇ is regular, i.e. if q0 ∈ Σ̇, F ⊂ Σ̇ closed, q0 /∈ F , then
there are disjoint neighborhoods of U of q0 and U ′ of F : indeed, we can
use sub- and superlevel sets of the continuous function fq0(q) = |x(q)|2 +
|y(q) − y0|2 + |t(q) − t0|2 + |η̂(q) − η̂

0
|2. If now K is compact, F is closed,

for each q0 ∈ K there is a function χq0 ∈ C∞c (R), identically 1 near 0 such
that supp(χq0 ◦ fq0) ∩ F = ∅. Let Vq0 = {q : χq0 ◦ fq0 > 1/2}, then
{Vq0 : q0 ∈ K} is an open cover of K. Let {Vq1 , . . . , Vqk} be a finite sub-
cover. Then F (q) =

∑k
j=1(χqj ◦ fqj )(q) satisfies F > 1/2 on K, F = 0 on F ,

so again sub- and superlevel sets of F can be used as disjoint neighborhoods
of F and K. If K is closed but not compact, the sum can still be made
locally finite, proving that Σ̇ is normal. This proves the lemma. �

We may define the following three subsets of π(eS∗∂MM) (‘elliptic,’ ‘glanc-
ing’ and ‘hyperbolic’):

E = π(eS∗∂MM) \ π(Σ),

G = {q ∈ π(eS∗∂MM) : Card(π−1(q) ∩ Σ) = 1},
H = {q ∈ π(eS∗∂MM) : Card(π−1(q) ∩ Σ) ≥ 2}.

In coordinates, we have

π(0, t, y, z, ξ, τ̂ , η̂, ζ) = (0, t, y, z, 0, τ̂ , η̂, 0),

hence the three sets are defined by {τ̂2 <
∣∣η̂∣∣2}, {τ̂2 =

∣∣η̂∣∣2}, {τ̂2 >
∣∣η̂∣∣2}

respectively inside π(eS∗∂MM), which is given by x = 0, ζ̂ = 0, ξ̂ = 0.



28 RICHARD MELROSE, ANDRÁS VASY, AND JARED WUNSCH

We may also define the corresponding sets in b
.
S∗∂MM (hence quotiented

by Z and denoted with a dot):

Ė = E/Z,

Ġ = G/Z,

Ḣ = H/Z.

Remark 7.3. The hyperbolic and glancing sets can be visualized as (co-)
vectors at the boundary that are respectively transverse to the geometric
boundary Y and tangent to it. A major difference from the situation of
manifolds with boundary is that given a point in ∂X and tangential momenta
τ̂ , η̂ with τ̂2 >

∣∣η̂∣∣2 we have specified not just a single point in the hyperbolic
set but a whole manifold of them parametrized by Z. If X = [R3; γ] is given
by the blowup of a smooth curve γ, then we may visualize these points as
the tangents to the cone of rays emanating from a single point in γ making
a fixed angle to γ (hence striking the blown-up space at all possible points
in a fixed fiber). It is thus the whole cone that is being considered at once
when we specify a point in the quotient space Ḣ.

Remark 7.4. In the related (but distinct) case of manifolds with corners with
smooth nondegenerate metrics, one defines the hyperbolic, glancing, and
elliptic sets with respect to the most singular boundary stratum (smallest
corner) at a given point—cf. [12, 25]. Upon blowup of this stratum, we
recover the immediate analogs of the definitions above. For certain more
refined results, it is necessary to keep track of the relationships of rays with
the different boundary hypersurfaces; for instance, a ray might be hyperbolic
with respect to one hypersurface and glancing with respect to another.

Bicharacteristics are usually defined as curves in the cotangent bundle. It
is in fact more natural to define them in the cosphere bundle. However, the
Hamilton vector field of a homogeneous degree m function is homogenous
of degree m− 1, so the curves in the cosphere bundle are only defined up to
reparametrization unless m = 1. To fix a parameterization, we renormalize
σe(�) to make it homogeneous of degree 1, by considering

p̂ = x|τ |−1σe(�) ∈ x−1C∞(eT ∗M \ 0).

Note that p̂ is actually independent of the choice of x; x−1τ = σe(Dt),
which is constant along bicharacteristics in T ∗M◦, so the bicharacteristics
do not ‘slow down’ as they approach ∂M , unlike the integral curves of x2Hp.
In particular, their projection to X are constant speed geodesics. Then
Hp̂ is homogeneous of degree 0, hence defines a vector field on eS∗M◦M .
Equivalently, on Σ, we can renormalize Hσe(�):

Hp̂ = |τ |−1xHσe(�) = − 2
|τ |x

H, H = −2−1x2Hσe(�),
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H as in (2.2). Explicitly,

− 1
2
Hp̂ =

− τ̂ ∂t + ξ̂ ∂x + x−1
(
|ζ̂|2 +O(x2)ζ̂2 +O(x2)η̂ζ̂ +O(x)η̂2

)
∂ξ̂

+
(
x−1ζ̂iK̄

ij +O(1)η̂
)
∂zj +

(
−1

2
x−1ζ̂iζ̂j

∂K̄ij

∂zk
+O(1)η̂ζ̂ +O(x)η̂2

)
∂ζ̂k

+
(
η̂jH

ij +O(x2)η̂ +O(x)ζ̂
)
∂yi +

(
O(1)η̂2 +O(x)η̂ζ̂ +O(1)ζ̂2

)
∂η̂i
.

(7.4)

While Hp̂ is not a C∞ vector field (it is xHp̂ that is C∞) on eS∗M , it acts on
C∞ functions independent of z, ξ̂, ζ̂ at x = 0, hence on pull-backs of functions
from b

.
S∗M .

Note that by definition

Σ̇ ∩ b
.

T ∗∂MM = Ġ ∪ Ḣ.

Definition 7.5. Let I be an interval. We say that a continuous map γ : I → Σ̇
is a generalized broken bicharacteristic if for all f ∈ C(b

.
S∗M) real valued

with π̇∗f ∈ C∞(eS∗M),

lim inf
s→s0

(f ◦ γ)(s)− (f ◦ γ)(s0)
s− s0

≥ inf{Hp̂(π̇∗f)(q) : q ∈ π̇−1(γ(s0)) ∩ Σ}
holds.

Remark 7.6. This definition may appear slightly complicated, especially as
compared to the more explicit statement of the next lemma, which could be
used as an alternative definition. However, it is the natural definition, for
certainly any putative notion of generalized broken bicharacteristic should
have the stated property. While it may be possible to strengthen the def-
inition so as to rule out certain tangential rays in some cases (as happens
in the smooth boundary setting), this would be a delicate matter. In N -
body scattering one can also define generalized broken bicharacteristics as
in Definition 7.5, but these do not have a simple characterization analogous
to that given below.

Since eS∗M 3 q 7→ Hp̂(π̇∗f)(q) is continuous for f as in the definition,
and as π̇−1(γ(s0)) ∩ Σ is compact, the infimum on the right hand side is
finite. Applying the same estimate to −f , we deduce that f ◦ γ is locally
Lipschitz.

Lemma 7.7. Suppose γ is a generalized broken bicharacteristic.

(1) If γ(s0) ∈ Ġ then for all f ∈ C(b
.
S∗M) real valued with π̇∗f ∈

C∞(eS∗M), f ◦ γ is differentiable at s0 with

(f ◦ γ)′(s0) = Hp(π̇∗f)(q),
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where q is the unique point in π̇−1(γ(s0)) ∩ Σ.
(2) If γ(s0) ∈ Ḣ then there exists ε > 0 such that |s − s0| < ε, s 6= s0

implies x(γ(s)) 6= 0, i.e. γ(s) does not lie over the boundary.

Proof. Part (1) follows from the definition by applying it to both f and −f ,
and noting that the set over which the inf is taken has a single element, so
in fact lims→s0(s− s0)−1 ((f ◦ γ)(s)− (f ◦ γ)(s0)) exists.

For part (2), consider f = ξ̂ ∈ C(b
.
S∗M), so π̇∗f ∈ C∞(eS∗M), and indeed

π̇∗f = xξ̂. For q ∈ Σ with x(q) = 0, (7.4) gives

Hp̂π̇
∗f(q) = ξ̂2(q) + |ζ̂|2k(q) = τ̂2(q)− |η̂|2h(q) > 0,

so π̇∗f is strictly increasing, and consequently non-zero in a punctured neigh-
borhood of s0, so the same holds for f . But on Σ̇, at x = 0, f = 0, so we
deduce that x 6= 0 in a punctured neighborhood of s0 as claimed. �

As an immediate corollary, we deduce that near points in Ḣ, generalized
broken bicharacteristics consist of two bicharacteristic segments of x2Hp in
eS∗M (projected to b

.
S∗M), one incoming and one outgoing.

The following are useful general facts about generalized broken bicharac-
teristics.

Corollary 7.8. (cf. Lebeau, [12, Corollaire 2]) Suppose that K is a compact
subset of Σ̇. Then there is a constant C > 0 such that for all generalized
broken bicharacteristics γ : I → K, and for all functions f on a neighborhood
of K in Σ̇ with π̇∗f ∈ C∞(eS∗M), one has the uniform Lipschitz estimate

|f ◦ γ(s1)− f ◦ γ(s2)| ≤ C‖π̇∗f‖C2 |s1 − s2|, s1, s2 ∈ I.
In particular, (locally) the functions x, y, t, τ and η are Lipschitz on gen-
eralized broken bicharacteristics.

We also need to analyze the uniform behavior of generalized broken
bicharacteristics. Here we quote Lebeau’s results.

Proposition 7.9. (cf. Lebeau, [12, Proposition 5]) Suppose that K is a
compact subset of Σ̇, γn : [a, b] → K is a sequence of generalized broken
bicharacteristics which converge uniformly to γ. Then γ is a generalized
broken bicharacteristic.

Proposition 7.10. (cf. Lebeau, [12, Proposition 6]) Suppose that K is a
compact subset of Σ̇, [a, b] ⊂ R and

(7.5) R = {generalized broken bicharacteristics γ : [a, b]→ K}.
If R is not empty then it is compact in the topology of uniform convergence.

Proof. R is equicontinuous, as in Lebeau’s proof, so the proposition follows
from the theorem of Ascoli-Arzelà and Proposition 7.9. �

Corollary 7.11. (Lebeau, [12, Corollaire 7]) If γ : (a, b) → Σ̇ is a general-
ized broken bicharacteristic then γ extends to [a, b].
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We now make the connection with the F , Ḟ notation introduced above.
Given q ∈ H, we recall from §2 that there exist unique maximally extended
incoming/outgoing bicharacteristics γI/O, where sgn ξ = ± sgn τ, such that
q = ∂(γ•); as above, we denote these curves

F•,q.

Likewise, for p ∈ Ḣ we let

Ḟ•,p =
⋃

q∈π−1
0 p

F•,q.

We will abuse notation slightly to write

(7.6) ḢI/O = ∂ḞI/O
for the endpoints of incoming/outgoing hyperbfolic bicharacteristics at the
boundary.

As opposed to generalized broken bicharacteristics, we may define a dif-
ferent flow relation, at least away from glancing rays, as follows:

Definition 7.12. Let q, q′ ∈ H, with π0(q) = π0(q′). We say that

FI,q, FO,q′

are related under the forward geometric flow (and vice-versa under the back-
ward flow) if there exists a geodesic of length π in Zy(q) connecting z(q) and
z(q′). If a ∈ FI,q with q ∈ H, we let the forward flowout of a be the union of
the forward geodesic segment through a and all the FO,q′ that are related to
FI,q under the forward geometric flow (and vice-versa for backward flow).
(If the forward flow through a stays in M◦, we simply let its forward flowout
be the ordinary flowout under geodesic flow.)

We note that the flow relation generated by generalized broken bichar-
acteristics differs from that of Definition 7.12 as follows: a ray in FI,q can
be continued as a generalized broken bicharacteristic by any FO,q′ with
π0(q′) = π0(q); there is no requirement on the relative locations of q, q′ in
the fiber.

8. Ellipticity

First note that products of elements of x−1 Diff1
e(M) and Ψm

b (M) can be
written with the products taken in either order:

Lemma 8.1. For any Q ∈ x−1 Diff1
e(M) and A ∈ Ψm

b (X) there exist A′ ∈
Ψm

b (X), Q′ ∈ x−1 Diff1
e(M) such that

(8.1) QA = AQ+A′Q′.

Proof. Since x−1 Diff1
e(M) ⊂ x−1 Diff1

b(M), [Q,A] ∈ x−1Ψm
b (M), so (8.1)

holds with A′ = [Q,A]x ∈ Ψm
b (M) and Q′ = x−1 ∈ x−1 Diff1

e(M). �
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In fact the span of products on the left in (8.1), and hence on the right,
may be characterized as the subspace of x−1Ψm+1

b (M) fixed by the vanishing
of the principal symbol at x = 0, σ = 0, ζ = 0. Similarly one may consider
higher order products.

Definition 8.2. Let

(8.2) x−k Diffke Ψm
b (M) ⊂ x−kΨk+m

b (M)

be the span of the products QA with Q ∈ x−k Diffke (M) and A ∈ Ψm
b (M).

Induction based on Lemma 8.1 gives

Corollary 8.3. The space x−k Diffke Ψm
b (M) is also the span of the products

AQ with Q ∈ x−k Diffke (M) and A ∈ Ψm
b (M) and hence⋃

k,m

x−k Diffke Ψm
b (M)

forms a bigraded ring which is closed under adjoints with respect to any
b-density.

Next consider the Hamilton vector field of the principal symbol of an
element of Ψm

b (M).

Lemma 8.4. If A ∈ Ψm
b (M) then the Hamilton vector field Ha of a =

σb,m(A), defined initially on T ∗M◦, extends to an element of Vb(bT ∗M)
and in canonical local coordinates (x,w, z, ξ, µ, ζ) on bT ∗M, induced by local
coordinates (x,w, z) on M,

Ha = (∂ξa)x∂x + (∂µa)∂w + (∂ζa)∂z − (x∂xa)∂ξ − (∂wa)∂µ − (∂za)∂ζ .

Proof. Let (x,w, z, σ, µ, ζ) be the canonical coordinates on T ∗M induced by
local coordinates (x,w, z) on M. In M◦, T ∗M◦M and bT ∗M◦M are naturally
identified via the map

πb : T ∗M → bT ∗M, πb(x, y, z, σ, µ, ζ) = (x,w, z, xσ, µ, ζ).

Moreover,

Hπ∗ba
= ∂σπ

∗
ba∂x + ∂µπ

∗
ba∂w + ∂ζπ

∗
ba∂z − ∂xπ∗ba∂σ − ∂wπ∗ba∂µ − ∂zπ∗ba∂ζ .

Since ∂σπ∗ba = xπ∗b∂ξa and ∂xπ
∗
ba = π∗b(∂x + x−1ξ∂ξ)a,

Hπ∗ba
π∗bc = π∗b(∂ξa(x∂x + ξ∂ξ)c+ ∂µa∂wc+ ∂ζa∂zc

− (x∂xa+ ξ∂ξa)∂ξc− ∂wa∂µc− ∂za∂ζc), if c ∈ C∞(bT ∗M).

The terms in which both a and c are differentiated with respect to ξ cancel,
proving the lemma. �

The test operator used below has the special property that its symbol is
fiber constant at the compressed cotangent bundle:
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Definition 8.5. A symbol a ∈ C∞(bT ∗M) of order m is said to be basic if
it is constant on the fibers above b

.
T ∗(M), i.e. in terms of local coordinates

∂z(a) = 0 at {x = ξ = ζ = 0}. An operator having such a principal symbol
is also said to be basic.

Lemma 8.6. If A ∈ Ψm
b (M) there exist B ∈ Ψm

b (M), C ∈ Ψm−1
b (M),

depending continuously on A, such that

[Dx, A] = B + CDx

with σ(B) = −i∂x(σ(A)), σ(C) = −i∂ξ(σ(A)). If in addition A is a basic
operator,

(8.3) [x−1Dzi , A] = Bi + CiDx +
∑
j

Eijx
−1Dzj + x−1Fi

with Bi ∈ Ψm
b (M), Ci, Eij , Fi ∈ Ψm−1

b (M) depending continuously on A
and

(8.4) −i∂zi(σ(A))− iζ
j
∂ξ(σ(A) = xσ(Bi) + ξσ(Ci) +

∑
j

ζ
j
σ(Eij).

Proof. Writing

[Dx, A] = [x−1(xDx), A] = x−1[xDx, A] + [x−1, A]xDx,

we recall from the end of §3 that [xDx, A] is one power of x more regular
than the commutator of two generic b-operators, i.e. [xDx, A] ∈ xΨm

b (M), so
settingB = x−1[xDx, A] ∈ Ψm

b (M) Lemma 8.4 shows σm(B) = −ix−1Hξa =
−i∂xa with a = σ(A). Moreover, C = [x−1, A]x ∈ Ψm−1

b (M) has σm−1(C) =
−iHx−1a = −i∂ξa.

On the other hand, x−1Dzj ∈ x−1Ψ1
b(M), so [x−1Dzj , A] ∈ x−1Ψm

b (M),
and σ([x−1Dzj , A]) = −i(x−1ζ

j
∂ξa+x−1∂zja). By assumption, ∂zja vanishes

at x = 0, ζ = 0, ξ = 0, so we can write ∂zja = xbj + ξcj +
∑

k ζkejk with
bj homogeneous of degree m, cj , ejk homogeneous of degree m− 1. Now let
Bj ∈ Ψm

b (M) with σ(Bj) = −ibj , Cj , Ejk ∈ Ψm−1
b (M) with σ(Cj) = −icj ,

σ(Ejk) = −i(ejk + δjk∂ξa). Then R = [x−1Dzj , A]−Bj −CjDx−
∑
EjkDzk

satisfies R ∈ x−1Ψm
b (M) and σ(R) = 0, so R ∈ x−1Ψm−1

b (M), i.e. R = x−1F

with F ∈ Ψm−1
b (M), finishing the proof of (8.3). �

Remark 8.7. Since M is non-compact and the results here are microlocal,
we shall fix a compact set K̃ ⊂ M and assume that all pseudodifferential
operators under consideration have their Schwartz kernels supported in K̃×
K̃. Choose φ ∈ C∞c (M) which is identically equal to 1 in a neighborhood of
K̃ and fiber constant. Below we use the notation ‖.‖D̃loc

for ‖φu‖D̃ to avoid
having to specify Ũ . We also write ‖φv‖D̃′ as ‖v‖D̃′loc

.

Next comes the crucial estimate.
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Lemma 8.8. Suppose that K ⊂ U ⊂ bS∗X with K compact and U open
and that A = {Ar ∈ Ψs−1

b (X) : r ∈ (0, 1]} a basic family with WF′b(A) ⊂
K which is bounded in Ψs

b∞(X). Then there exist G ∈ Ψs−1/2
b (X), G̃ ∈

Ψs+1/2
b (X) with WF′b(G), WF′b(G̃) ⊂ U and C0 > 0 such that∣∣∣∣∫

M

(
|dXAru|2 − |DtAru|2

)∣∣∣∣
≤ C0(‖u‖2D̃loc

+ ‖Gu‖2D̃ + ‖�u‖2D̃′loc + ‖G̃�u‖2D̃′),

∀ r ∈ (0, 1], u ∈ H1
0,loc(X)

with WFs−1/2

b,D̃ (u) ∩ U = ∅, WFs+1/2

b,D̃′ (�u) ∩ U = ∅

where the meaning of ‖u‖2D̃loc
and ‖�u‖2D̃′loc

is stated above in Remark 8.7.

It follows that if �u = 0∣∣∣∣∫
M

(
|dXAru|2 − |DtAru|2

)∣∣∣∣ ≤ C0(‖u‖2D̃loc
+ ‖Gu‖2D̃).

The main point of this lemma is that G is 1/2 order lower than the family
A. In the limit, r → 0, this gives control of the Dirichlet form evaluated on
A0u, A0 ∈ Ψs

b∞(M), in terms of lower order information. The role of Ar for
r > 0 is to regularize such an argument, i.e. to ensure that the terms in a
formal computation, in which one uses A0 directly, actually make sense.

Proof. The assumption on the wavefront set of u implies that Aru ∈ D̃ for
r ∈ (0, 1], so, writing 〈·, ·〉 for the pairing in L2(M),

‖dXAru‖2L2(M) − ‖DtAru‖2L2(M) = −〈�Aru,Aru〉.

Here the right hand side is the pairing of D̃′ with D̃. Writing �Ar = Ar� +
[�, Ar], the right hand side can be estimated by

(8.5) |〈Ar�u,Aru〉|+ |〈[�, Ar]u,Aru〉|.
The lemma is therefore proved once it is shown that the first term of (8.5)
is bounded by

(8.6) C ′0(‖u‖2D̃loc
+ ‖Gu‖2D̃ + ‖�u‖2D̃′loc

+ ‖G̃�u‖2D̃′),

and the second term is bounded by C ′′0 (‖u‖2D̃loc
+ ‖Gu‖2D̃).

The first estimate is straightforward. Let Λ−1/2 ∈ Ψ−1/2
b (M) be elliptic

with Λ1/2 ∈ Ψ1/2
b (M) a parametrix (hence also elliptic), so

E = Λ−1/2Λ1/2 − Id, E′ = Λ1/2Λ−1/2 − Id ∈ Ψ−∞b (M).

Then
〈Ar�u,Aru〉 = 〈(Λ−1/2Λ1/2 − E)Ar�u,Aru〉

= 〈Λ1/2Ar�u,Λ
∗
−1/2Aru〉 − 〈Ar�u,E

∗Aru〉.
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Since Λ1/2Ar is uniformly bounded in Ψs+1/2
b∞ (M), and Λ∗−1/2Ar is uniformly

bounded in Ψs−1/2
b∞ (M), 〈Λ1/2Ar�u,Λ∗−1/2Aru〉 is uniformly bounded, with

a bound like (8.6) using Cauchy-Schwarz and Lemma 6.8. Indeed, using
Lemma 6.8, choosing any G ∈ Ψs−1/2

b (M) which is elliptic on K, there is a
constant C1 > 0 such that

‖Λ∗−1/2Aru‖
2
D̃ ≤ C1(‖u‖2D̃loc

+ ‖Gu‖2D̃).

Similarly, by Lemma 6.8 (or more precisely, its version with WFb,D̃′) choos-

ing any G̃ ∈ Ψs+1/2
b (M) which is elliptic on K, there is a constant C ′1 > 0

such that ‖Λ1/2Ar�u‖2D̃′ ≤ C ′1(‖�u‖2D̃′loc

+ ‖G̃�u‖2D̃′). Combining these

gives, with C ′0 = C1 + C ′1,

|〈Λ1/2Ar�u,Λ
∗
−1/2Aru〉| ≤ ‖Λ1/2Ar�u‖ ‖Λ∗−1/2Aru‖

≤ ‖Λ1/2Ar�u‖2 + ‖Λ∗−1/2Aru‖
2

≤ C ′0(‖u‖2D̃loc
+ ‖Gu‖2D̃ + ‖�u‖2D̃′loc

+ ‖G̃�u‖2D̃′),

as desired.
A similar argument using the assumption that Ar is uniformly bounded

in Ψs
b∞(M), and the uniform boundedness of E∗Ar in Ψs−1/2

b∞ (M) (in fact it
is bounded in Ψ−∞b∞ (M), ) shows that 〈Ar�u,E∗Aru〉 is uniformly bounded.

Now we turn to the second term in (8.5). Let Qi ∈ x−1 Diff1
e(M) be a

local basis of x−1 Diff1
e(M) as a C∞(M)-module. Using Lemma 8.6,

[�, Ar] =
∑
i,j

QiQjB
′
ij,r +

∑
QjB

′
j,r +B′r,

B′r ∈ Ψs
b(M), B′j,r ∈ Ψs−1

b (M), B′ij,r ∈ Ψs−2
b (M), uniformly bounded in

Ψs+1
b∞ (M), resp. Ψs

b∞(M), resp. Ψs−1
b∞ (M). With Λ−1/2 ∈ Ψ−1/2

b (M) as
above, using Lemma 8.1, we can write further

Λ1/2[�, Ar] =
∑
i,j

QiQjBij,r +
∑

QjBj,r +Br,

with Br, etc, as their primed analogues, but of order 1/2 greater: Br ∈
Ψs+1/2

b (M), Bj,r ∈ Ψs−1/2
b (M), Bij,r ∈ Ψs−3/2

b (M), uniformly bounded in
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Ψs+3/2
b∞ (M), resp. Ψs+1/2

b∞ (M), resp. Ψs−1/2
b∞ (M). Thus,

〈[�, Ar]u,Aru〉 =
∑
ij

〈QiQjBij,ru,Λ∗−1/2Aru〉 −
∑
ij

〈QiQjEBij,ru,Aru〉

+
∑
j

〈QjBj,ru,Λ∗−1/2Aru〉 −
∑
j

〈QjEBj,ru,Aru〉

+ 〈Bru,Λ∗−1/2Aru〉 − 〈EBru,Aru〉

=
∑
ij

〈QjBij,ru,Q∗iΛ∗−1/2Aru〉 −
∑
ij

〈QjEBij,ru,Q∗iAru〉

+
∑
j

〈Bj,ru,Q∗jΛ∗−1/2Aru〉 −
∑
j

〈EBj,ru,Q∗jAru〉

+ 〈Bru,Λ∗−1/2Aru〉 − 〈EBru,Aru〉,

(8.7)

where Q∗i ∈ x−1 Diff1
e(M) is the formal adjoint of Qi with respect to dg, and

where in the last step we used

Bij,ru,Λ∗−1/2Aru, EBij,ru, Aru ∈ D̃.
We estimate the term

|〈QjBij,ru,Q∗iΛ∗−1/2Aru〉|

by Cauchy-Schwarz: both factors are uniformly bounded for r ∈ (0, 1]
since Λ∗−1/2Ar, Bij,r are uniformly bounded in Ψs−1/2

b∞ (M) with a uniform

wave front bound disjoint from WFs−1/2

b,D̃ (u). Indeed, as noted above, by

Lemma 6.8, choosing any G ∈ Ψs−1/2
b (M) which is elliptic on K, there is a

constant C1 > 0 such that this term is bounded by C1(‖u‖2D̃loc
+ ‖Gu‖2D̃).

Similar estimates apply to the other terms on the right hand side of (8.7)
(with the slight technical point that for the penultimate term one uses
the pairing between D̃−1 and D̃), showing that 〈[�, Ar]u,Aru〉 is uniformly
bounded for r ∈ (0, 1], indeed is bounded by C0(‖u‖2D̃loc

+ ‖Gu‖2D̃), proving
the lemma. �

Next we refine Lemma 8.8 by including a second parameter and arranging
that G̃ have order s as opposed to s+ 1/2.

Lemma 8.9. Under the same hypotheses as Lemma 8.8 there exist G ∈
Ψs−1/2

b (X) and G̃ ∈ Ψs
b(X) with WF′b(G), WF′b(G̃) ⊂ U and C0 > 0

such that for ε > 0, r ∈ (0, 1] and u ∈ D̃loc with WFs−1/2

b,D̃ (u) ∩ U = ∅,
WFs

b,D̃′(�u) ∩ U = ∅

|
∫
M

(
|dXAru|2 − |DtAru|2

)
| ≤ ε‖dMAru‖2L2(M) + C0(‖u‖2D̃loc

+ ‖Gu‖2D̃

+ ε−1‖�u‖2D̃′loc + ε−1‖G̃�u‖2D̃′).
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Proof. It is only necessary to treat the term |〈Ar�u,Aru〉| slightly differ-
ently, using Cauchy-Schwarz:

|〈Ar�u,Aru〉| ≤ ‖Ar�u‖D̃′‖Aru‖D̃ ≤ ε‖Aru‖
2
D̃ + ε−1‖Ar�u‖2D̃′ .

Now the lemma follows by using Lemma 6.8. Definition 6.5, namely choosing
any G̃ ∈ Ψs

b(M) which is elliptic on K, there is a constant C ′1 > 0 such that
‖Ar�u‖2D̃′ ≤ C ′1(‖�u‖2D̃′loc

+ ‖G̃�u‖2D̃′); the end of the proof follows that of
Lemma 8.8. �

Proposition 8.10. (Microlocal elliptic regularity.) If u ∈ D̃loc then

WFm
b,D̃(u) ⊂WFm

b,D̃′(�u) ∪ π̇(eS∗M), and WFm
b,D̃(u) ∩ Ė ⊂WFm

b,D̃′(�u).

Proof. We first prove a slightly weaker result in which WFm
b,D̃′(�u) is re-

placed by WFm+1/2

b,D̃′ (�u)—we rely on Lemma 8.8. We then prove the original
statement using Lemma 8.9.

Suppose that either q ∈ b
.
S∗M \ π̇(eS∗M) or q ∈ Ė . We may assume

iteratively that q /∈WFs−1/2

b,D̃ (u); we need to prove then that q /∈WFs
b,D̃(u)

(note that the inductive hypothesis holds for s = 1/2 since u ∈ D̃loc). Let
A ∈ Ψs

b(M) be basic and such that WF′b(A) ∩WFs−1/2

b,D̃ (u) = ∅, WF′b(A) ∩

WFs+1/2

b,D̃′ (�u) = ∅, with WF′b(A) in a small neighborhood U of q so that for
a suitable C > 0 or ε > 0, in U

(1) 1 < C(ξ̂
2

+ |ζ̂|2) if q ∈ b
.
S∗M \ π̇(eS∗M), or

(2) |ξ̂|+ |ζ̂| < ε(1 + |η̂|2)1/2, and η̂ > 1 + ε, if q ∈ Ė .

Let Λr ∈ Ψ−2
b (M) for r > 0, such that L = {Λr : r ∈ (0, 1]} is a bounded

family in Ψ0
b(M), and Λr → Id as r → 0 in Ψε̃

b(M), ε̃ > 0; we let the symbol
of Λr be (1+r(τ2 + |η|2 + |ζ|2 + |ξ|2))−1. Let Ar = ΛrA. Let a be the symbol
of A, hence for r > 0,

σ(Ar) = (1 + r(τ2 + |η|2 + |ζ|2 + |ξ|2))−1a.

We now have Ar ∈ Ψs−2
b (M) for r > 0, and Ar is uniformly bounded in

Ψs
b∞(M), Ar → A in Ψs+ε̃

b∞(M).
By Lemma 8.8,

‖dXAru‖2 − ‖DtAru‖2

is uniformly bounded for r ∈ (0, 1]. Write the dual metric as

g−1 = ∂2
x+2

∑
i

Bi∂x∂yi + 2
∑
i

Ci∂x (x−1∂zi) +
∑
i,j

Bij∂yi∂yj

+
∑
i,j

Cij(x−1∂zi)(x
−1∂zj ) + 2

∑
i,j

Eij∂yi (x−1∂zj ).
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Then∫
M
|dXAru|2 dg =

∫
M
|DxAru|2 dg +

∫
M

∑
BiDxAruDyiAru dg

+
∫
M

∑
CiDxArux−1DziAru dg +

∫
M

∑
BijDyiAruDyjAru dg

+
∫
M

∑
Cijx

−1DziArux
−1DzjAru dg+

∫
M

∑
EijDyiArux

−1DzjAru dg.

As Bij(x, y, z) = Bij(0, y, z)+xB′ij(x, y, z) (in fact, B(0, y, z) is independent
of z), we see that if Ar is supported in x < δ,

(8.8) |
∫
M
xB′ijDyiAruDyjAru dg| ≤ Cδ

∑
i′,j′

‖Dyi′Aru‖ ‖Dyj′Aru‖,

with analogous estimates for Cij(x, y, z) − Cij(0, y, z) and for Bi(x, y, z),
Ci(x, y, z) and Eij(x, y, z). Moreover, as the matrix Bij(0, y, z) is positive
definite, for some c > 0,

c

∫
M

∑
j

|x−1DzjAru|2 dg ≤
1
2

∫
M

∑
ij

Bij(0, y, z)x−1DziArux
−1DzjAru dg;

we also make c < 1/2. Thus, there exists C̃ > 0 and δ0 > 0 such that if
δ < δ0 and A is supported in x < δ then

c

∫
M

(|DxAru|2 +
∑
j

|x−1DzjAru|2) dg

+
∫
M

((1− C̃δ)
∑
j

|DyjAru|2h − |DtAru|2) dg

≤
∫
M

(|dXAru|2 − |DtAru|2) dg,

(8.9)

where we used the notation∑
j

|DyjAru|2h =
∑
ij

Bij(0, y, z)DyiAruDyjAru,

i.e. h is the dual metric g restricted to the span of the dyj , j = 1, . . . , l.
Now we distinguish the cases q ∈ Ė and q ∈ b

.
S∗M \ π̇(eS∗M). If q ∈ Ė , A

is supported near Ė , we choose δ ∈ (0, (2C̃)−1) so that (1− C̃δ)η̂2 > 1+δ on
a neighborhood of WF′b(A), which is possible in view of (2) at the beginning
of the proof. Then the second integral on the left hand side of (8.9) can be
written as ‖BAru‖2, with the symbol of B given by ((1 − C̃δ)|η|2 − τ2)1/2

(which is ≥ δτ), modulo a term∫
M
FAruAru, F ∈ Ψ1

b(M).
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But this expression is uniformly bounded as r → 0 by the argument above.
We thus deduce that

c

‖DxAru‖2 +
∑
j

∥∥x−1DzjAru
∥∥2

+ ‖BAru‖2

is uniformly bounded as r → 0.
If q ∈ b

.
S∗M \ π̇(eS∗M), and A is supported in x < δ,∫

M
δ−2|DzjAru|2 ≤

∫
M
|x−1DzjAru|2,

∫
M
δ−2|xDxAru|2 ≤

∫
M
|DxAru|2.

On the other hand, near q ∈ b
.
S∗M \ π̇(eS∗M), for δ > 0 sufficiently small,

I =
∫
M

 c

2δ2
(|xDxAru|2 +

∑
j

|DzjAru|2)− |DtAru|2


= ‖BAru‖2 +
∫
M
FAruAru,

(8.10)

with the symbol of B given by ((c/2δ2)(ξ2 +
∑
ζ2
j
)− τ2)1/2 (which does not

vanish on U for δ > 0 small), while F ∈ Ψ1
b(X), so the second term on the

right hand side is uniformly bounded as r → 0. Now the LHS of (8.9) is
bounded below by

I +
c

2

‖DxAru‖2 +
∑
j

∥∥x−1DzjAru
∥∥2

 .

We thus deduce in this case that

c

2

‖DxAru‖2 +
∑
j

∥∥x−1DzjAru
∥∥2

+ ‖BAru‖2

is uniformly bounded as r → 0.
We thus conclude that DxAru, x−1DzjAru,BAru are uniformly bounded

L2(M). Correspondingly there are sequences DxArku, x−1DzjArku, BArku,
weakly convergent in L2(M), and such that rk → 0, as k → ∞. Since
they converge to DxAu, x−1DzjAu, BAu, respectively, in C−∞(M), we
deduce that the weak limits are DxAu, x−1DzjAu, BAu, which therefore
lie in L2(M). Consequently, dAu ∈ L2(M) proving the proposition with
WFm

b,D̃′(�u) replaced by WFm+1/2

b,D̃′ (�u).
To obtain the full result observe from Lemma 8.9 that for any ε > 0∫

M

(
|dXAru|2 − |DtAru|2 − ε|dMAru|2

)
=
∫
M

(
(1− ε)|dXAru|2 − (1 + ε)|DtAru|2

)
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is uniformly bounded above for r ∈ (0, 1]. By repeating the argument for
sufficiently small ε > 0, the right hand side gives an upper bound for

c

2

∫
X

(|DxAru|2 +
∑
j

|x−1DzjAru|2) + ‖BAru‖2,

which is thus uniformly bounded as r → 0 and the result follows. �

Theorem 8.11. (Elliptic regularity) Suppose �u = 0. Then WFb,D̃(u) ⊂
Σ̇.

Proof. Over M◦, this is ordinary elliptic regularity. Over ∂M, we note that
it follows from the first part of Proposition 8.10 that the wavefront set is
contained in π̇(eS∗M). On the other hand, π̇(eS∗M)\Σ̇ = Ė , so the result
then follows from the second part of the proposition. �

9. Law of reflection

In this section we show that singularities interacting with the boundary
may be microlocalized to give a propagation theorem in the slow variables,
i.e. constraining the values of t, y and their dual variables at which singu-
larities come off the boundary. The argument is global in the fast variables
in the fiber (and in a certain sense the dual to the normal variable is also
‘fast’). Recall that we may freely regard WFb,D̃(u) as a subset of bS∗M or

of b
.
S∗M (see Definition 6.10).

As is already clear from [19], subprincipal terms matter in the commu-
tator argument, so our arguments are somewhat delicate. To carry out
commutator computations we trivialize the fibration locally near a point of
Y, and hence extend the trivialization to a neighborhood in M of the fiber
above y. Thus an open set O in M is identified with [0, ε)x ×O′ ×Z, where
O′ 3 y is open in Y and we take O′ to be a coordinate patch. Then bT ∗OM

is identified with bT ∗([0, ε) × O′) × T ∗Z, and this product decomposition
allows us to pull back functions from bT ∗([0, ε)×O′) to bT ∗OM.

In particular this gives a connection for the fibration near the chosen fiber.
Any b-vector field V on [0, ε) × O′ lifts to O via the product identification
and then for any vector field W tangent to the fibers, the commutator [V,W ]
is also tangent to the fibers. Indeed, if W is the lift of a vector field from
Z, the conclusion is clear, and in general W is a finite linear combination of
such vector fields with coefficients on M. If W is only tangent to the fibers
over the boundary then the same is true of [V,W ]. Also, if f is the pull-back
of a function on [0, ε) × O′, its commutator with W vanishes. Using this
local trivialization of the fibration we also choose an explicit quantization
map for b-pseudodifferential operators.

Definition 9.1. Fix a partition of unity φi on Z supported in coordinate
charts, cut-offs χi identically equal to 1 on a neighborhood of suppφi and
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still supported in coordinate charts and a function ρ ∈ C∞c ((−1/2, 1/2))
identically 1 near 0. Then for a ∈ Sm(bT ∗O) set

(9.1) Optrv(a) =
∑
i

χiAiχi, where

Ai = (2π)−n
∫
ei(ξ·

x−x′
x′ +η·(y−y′)+ζ·(z−z′))

ρ(
x− x′

x′
)a(x, y, ξ, η, ζ)φi(z) dξ dζ dην.

This is an explicit semi-global quantization, with ν a choice of right den-
sity, for the algebra of (compactly supported) b-pseudodifferential operators,
as can be seen directly by lifting the kernels to the b-stretched product on
which the cut-off ρ(x/x′−1) is smooth. In particular it is surjective, modulo
terms of order −∞, for operators essentially supported near the given fiber
over the boundary.

To construct a ‘test operator’ we choose a symbol ã on bT ∗([0, ε) × O′),
lift it to bT ∗O (still denoting it by ã) and multiply it by a cut-off that is
identically 1 near Σ̇. Thus set

(9.2) a = ãψ(ξ̂
2

+ |ζ̂|2)

with ψ ∈ C∞c (R) supported in [−2c1, 2c1] and identically equal to 1 on
[−c1, c1]. Thus, dψ(ξ̂

2
+ |ζ̂|2) is supported in ξ̂

2
+ |ζ̂|2 ∈ [c1, 2c1] and hence

outside Σ̇. This may be thought of as a factor microlocalizing near the
characteristic set but effectively commuting with �. Note that a is indeed a
symbol on bT ∗O.

Lemma 9.2. With ã ∈ Sm(bT ∗([0, ε) × O′)) given by (9.2), A = Optrv(a)
and W a vector field lifted from Z using the local trivialization of the fibra-
tion,

(9.3) [W,A] = B ∈ Ψm
b (M)

has wave front set disjoint from Σ̇ and depends continuously on a.

Proof. Changing A by an operator of order −∞ operator does not affect the
conclusion, so in particular the commutator terms involving the cut-offs χi
in the definition of Optrv(a) may be ignored.

Working modulo Ψ−∞b (M), so localizing near the diagonal as necessary,
the Schwartz kernel of A can be computed using product coordinate charts
Õ × Õ. In these, where we allow coordinate changes in z, A takes the form

(2π)−n
∫
ei(ξ·

x−x′
x′ +η·(y−y′)+ζ·(z−z′))

ρ(
x− x′

x′
)ã(x, y, ξ, η)ψ̃(x, y, z, ξ, η, ζ) dξ dζ dη,
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where d(ψ̃) is supported away from Σ̇. The commutator [A,W ] thus arises
from the derivative of ψ̃ along W, hence is microsupported away from Σ̇. �

The adjoint of Optrv(a) with respect to dg is not quite of the form Optrv(b)
because we have not used Weyl quantization in (9.1), however it is of this
form modulo terms of order −∞ since Optrv is a full quantization of the
b-calculus. If ν = νBνZ is a product type edge density relative to the
trivialization, with B = [0, ε) × O′, and a is given by (9.2) then, modulo
terms with WF′b disjoint from Σ̇ (arising from the cut-off ψ) the adjoint
Optrv(a)† of A with respect to ν reduces to the adjoint with respect to νB.
Since the quantization is of product type, the full symbol of the adjoint is of
the same form (9.2). Thus A may be arranged to be self-adjoint with respect
to ν. Then dg = Jν, for some smooth nonvanishing J, and the adjoint A∗ of
A with respect to dg is A∗ = J−1A†J, i.e. if A† = A then A∗ = J−1AJ.

Lemma 9.3. If A = A† with symbol given by (9.2) and W is a vector field
lifted from Z using the trivialization of the fibration, then E ∈ Ψ2m

b (M), and
F ∈ Ψ2m−1

b (M) may be chosen to depend continuously on A so that

(9.4) [W,A∗A] = F + E, σ(F ) = a{a,W (log J)}, WF′b(E) ∩ Σ̇ = ∅,

where W (log J) ∈ C∞(M) is lifted to bT ∗M by the bundle projection.

Proof. Working modulo operators which have wavefront set disjoint from Σ̇,
[A,W ] ≡ 0 so

[W,A∗A] ≡ [W,J−1]AJA+ J−1A[W,J ]A

≡ −J−2[W,J ]AJA+ J−1A[W,J ]A ≡ J−1[A, [W,J ]J−1]JA.

Then F and E may be defined by inserting appropriate cut-offs. �

Using the chosen local trivialization of the fibration, set

(9.5) Q0 = x−1, Q1 = Dx and Qj = x−1Wj , j ≥ 2

where the Wj are the lifts of vector fields from Z spanning V(Z) over C∞(Z).

Lemma 9.4. The Qi span the C∞(M)-module x`−1 Diff1
e(M)/x` Diff1

b(M)
over x`C∞(M); in fact for every `,

(9.6) P1 ∈ x`−1 Diff1
e(M) =⇒ ∃ Bi ∈ x`C∞(M) and C ∈ x`Vb(M)

such that P1 =
∑

BiQi + C.

Similarly, each element P ∈ x`−2 Diff2
e(M) may be decomposed as

P =
∑

Q∗iBijQj +
∑

CiQi + L,

with Bij ∈ x`C∞(M), Ci ∈ x`Vb(M) and L ∈ x` Diff2
b(M).
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Proof. If (9.6) holds locally over a covering of M by coordinate charts then
summing, on the left, over a partition of unity subordinate to this cover gives
the semi-global result. Thus, it suffices to work in coordinates compatible
with the chosen trivialization. The vector fields xDx, xDyi and Wj span
Ve(U) so if P1 ∈ x`−1 Diff1

e(M) then over U, xP1 = a(xDx) +
∑
bjWj +∑

ci(xDyi) + c with a, c, bj , ci ∈ x`−1C∞(U). This is the local form of (9.6):

P1 = cQ0 + aQ1 +
∑

bjQj +
∑

(cix)Dyi .

For the second claim, write P =
∑
P ∗i P

′
i with Pi ∈ x−1 Diff1

e(M), P ′i ∈
x`−1 Diff1

e(M), and apply the first part to Pi and P ′i . �

Lemma 9.5. With the Qi as in (9.5) there exist Mi, Ni ∈ xDiff1
b(M),

κij ∈ C∞(M) and H ∈ Diff2
b(M) such that

(9.7) −� =
∑

Q∗iκijQj +
∑

Q∗iMi +
∑

NiQi +H

with σ(H)|x=0 = h− τ2,

h being the metric on the base Y.

Proof. If the requirements are weakened to Mi, Ni ∈ Diff1
b(M) and the con-

clusion regarding σ(H)|x=0 is dropped then (9.7) follows from Lemma 9.4
applied to � ∈ x−2 Diff2

e(M). Moreover, every element of x−1 Diff2
e(M) has

the form (9.7) with Mi, Ni as stated, and with σ(H)|x=0 = 0. So the con-
clusions of the lemma regarding Mi, Ni and σ(H)|x=0 only depend on the
normal operator of � in x−2 Diff2

e(M).
Now, the normal operator is determined by the restriction of x−2g to

eT ∗∂XX, which, by (1.6), is x−2(dx2 + h(0, y, dy)) + k(0, y, z, 0, 0, dz). The
dual of x−2g, as a symmetric edge 2-tensor, i.e. as a symmetric section of
eT ∗X ⊗ eT ∗X, is x2(∂2

x + H(0, y, ∂y)) + K(0, y, z, 0, 0, ∂z) modulo sections
vanishing at ∂X, with H, resp. K, the duals of h and k. The standard
expression for the Laplacian yields

∆ =D∗xDx +
∑
i,j

D∗yi
H ij(y)Dyj +

∑
i,j

D∗zi
x−2Kij(y, z)Dzj + P,

P ∈ x−1 Diff2
e(M). As det g = x2fa, a ∈ C∞(X), a > 0,

D∗yi
−Dyi = (det g)−1/2Dyi(det g)1/2 −Dyi ∈ C∞(X),

and the lemma follows. �

The Qi in (9.5) are homogeneous of degree −1 with respect to dilations in
the x factor in the trivialization. This leads to the term 4a(∂ξa)κij in σ(Lij)
in the following commutator calculation; ultimately this is the dominant
term.
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Lemma 9.6. With the notation of Lemma 9.5, if A = A† = Optrv(a) ∈
Ψm

b (M) then

(9.8)

i[A∗A,�] =
∑

Q∗iLijQj +
∑

Q∗iL
′
i +
∑

L′′iQi + L0 + E

with Lij ∈ Ψ2m−1
b (M), L′i, L

′′
i ∈ Ψ2m

b (M), L0 ∈ Ψ2m+1
b (M),

E ∈ x−2 Diff2
e Ψ2m−1

b (M) having WF′b(E) ∩ Σ̇ = ∅,
σ(Lij) = 4a(∂ξa)κij + aVija, σ(L′i) = aV ′i a,

σ(L′′i ) = aV ′′i a and σ(L0) = aV0a

where the Vij , V ′i , V
′′
i and V0 are in the span, over homogeneous functions

on bT ∗M (independent of a), of vector fields on bT ∗([0, ε) × Y ) that are
tangent to {ξ = c} at x = 0 for each c, and

V0|x=0 = 2Hh−τ2 .

We remark that while the factors in x−k Diffke Ψm
b (M) may be arbitrarily

rearranged, according to Lemma 8.1 and Corollary 8.3, the principal sym-
bols of the factors in the rearranged version may involve derivatives of the
principal symbol of the original operators. This is due to the appearance of
Q0 = x−1 terms which are lower order than the Qj in the standard sense,
but not in the sense of the grading of x−k Diffke Ψm

b (M). This is of no con-
sequence if the terms being rearranged are a priori bounded. However, for
positive commutator estimates such as those below, the principal symbols
needs to be controlled, and the basic problem we face is that the differential
of a non-zero function is never bounded by a multiple of the function near
the boundary of its support, so in microlocalizing it is necessary to exclude
such undesirable derivatives, hence the careful structuring of (9.8).

Proof. Using the decomposition of � in Lemma 9.5

(9.9) − i[A∗A,�] = i
∑

[A∗A,Q∗i ]κijQj + i
∑

Q∗iκij [A
∗A,Qj ]

+ i
∑

[A∗A,Q∗i ]Mi + i
∑

Ni[A∗A,Qi]

+ i
∑

Q∗i [A
∗A, κij ]Qj + i

∑
Q∗i [A

∗A,Mi]+ i
∑

[A∗A,Ni]Qi+ i[A∗A,H].

The last four terms involve commutators of the form i[A∗A,R], with R ∈
Diff lb(M) and Lemma 8.4 shows that such terms are in Ψ2m+l−1

b (M), with
principal symbol of the form aV a with V a homogeneous vector field on
bT ∗M, tangent to ξ = c at x = 0. These terms make obvious contributions
as required by (9.8), so it only remains to consider the terms involving
commutators with the Qi and Q∗i .

Consider first Q1 = Dx. Lemma 8.6 applies and shows that i[A∗A,Dx]
is of the form B + CDx with B ∈ Ψ2m

b (M), and C ∈ Ψ2m−1
b (M) where

σ(B) = −∂xa2 and σ(C) = −∂ξa2. The term involving B can then be
absorbed in the L′i, L

′′
i or L0 terms, while C enters into Lij (or L′i, L

′′
i ,
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depending on which factor of Qi we were considering). Notice though that
if C enters into L′i, i.e. if we were considering i[A∗A,Q∗i ]M

′
i , the vanishing

of the principal symbol of M ′i at x = 0 shows that the principal symbol of
L′i is indeed given by aV a with V a vector field tangent to ξ = c at x = 0,
namely x∂ξ.

Next consider the terms [A∗A,Qi] with Qi = x−1Wi for i 6= 0, to which
Lemma 9.3 applies for all Wi. Since F in Lemma 9.3 is in Ψ2m−1

b (M), for
all Wi but Q0 (for which this commutator vanishes), we may regard x−1F
as a term of the form F ′Q0, F ′ ∈ Ψ2m−1

b (M), thus giving terms as in the
statement of the lemma.

So it remains to consider i[A∗A, x−1]. This lies in Ψ2m−1
b (M), and by

Lemma 8.4, it has principal symbol −2x−1 a∂ξa. This completes the proof.
�

In Oδ = O ∩ {x < δ}, with |ζ̂| arising from the metric on the fibers

p0 = σb(�) = τ2 −

(
ξ2

x2
+ (1 +O(x))

∣∣η∣∣2
h

+O(1)ηζ + (
1
x2

+O(1))
∣∣ζ∣∣2

k

)
.

and for δ > 0 sufficiently small, ξ̂
2

+ |ζ̂|2 < c1/2 in Σ̇∩U0, U0 = bT ∗Oδ. The
Hamilton vector field of p0 in bT ∗(M) is then

(9.10)

Hp0 = τ∂t −
ξ

x
∂x −

2(ξ2 +
∣∣ζ∣∣2)

x2
∂ξ −Hy,η −

1
x2
Hz,ζ

+ (O(xη) +O(ζ))∂y + (O(xη2) +O(ηζ) +O(ζ2/x2))∂η

+ (O(η) +O(ζ))∂z + (O(ηζ) +O(ζ2))∂ζ

+ (O(xη2) +O(xηζ) +O(ζ2/x))∂ξ.

where Hy,η and Hz,ζ denote respectively the Hamilton vector fields of h in
(y, η) (with x as a parameter) and of k in (z, ζ) (with (x, y) as parameters).
So

(9.11) − ξ̂ = −
ξ

|τ |
satisfies

Hp0(−ξ̂) =
1
|τ |

(
ξ2

x2
+

∣∣ζ∣∣2
x2

+O(xη2) +O(xηζ) +O(ζ2/x)

)
.

The function −ξ̂ is therefore a ‘propagating variable’ decreasing under the
flow. The commutator argument used below makes essential use of this
decrease.

Now we are ready to state and prove the diffractive propagation theorem
in the hyperbolic region; the proof is similar to that of the corresponding
result in [25].
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Theorem 9.7. Let u be an admissible solution of �u = 0 and suppose
U ⊂ Σ̇ is a neighborhood of q0 = (t0, τ0, y0, η0

) ∈ Ḣ then

(9.12) U ∩ {−ξ̂ < 0} ∩WFu = ∅ =⇒ q0 /∈WFb,D̃ u.

Since WFu and WFb,D̃ u are the same away from x = 0, and WFb,D̃ is
a closed set, this result suffices to get propagation of wavefront set into
and back out of the edge boundary along rays striking it transversely (i.e.
arriving at points in Ḣ.)

Proof. Fix a small coordinate neighborhood U0 of q0. By Lemma 7.1 and
the hypotheses, there exists δ > 0 such that
(9.13)
{q : |x(q)|2+|y(q)−y0|2+|t(q)−t0|2+|η̂(q)−η̂

0
|2 < δ}∩{−ξ̂ < 0}∩WFu = ∅

where η̂ =
η

|τ | . Set

(9.14)
ω = x2 + (y − y0)2 + (η̂ − η̂

0
)2 + (t− t0)2 and

φ = −ξ̂ +
1
β2δ

ω

with the idea that at the edge, the propagation which we cannot control is
in the ‘fast variables’ (ξ, ζ) but we may localize in the remaining (‘slow’)
variables by cutting off in ω and using a multiple of −ξ̂ to construct a
positive commutator. Note that

(9.15) |τ |−1Hp0ω = O
(√

ω(ξ̂
2
/x2 + ζ̂

2
/x2 + 1)

)
.

Next we select some cut-off functions. First choose χ0 ∈ C∞(R) with
support in [0,∞) and χ0(s) = exp(−1/s) for s > 0. Thus, χ′0(s) = s−2χ0(s).
Take χ1 ∈ C∞(R) to have support in [0,∞), to be equal to 1 on [1,∞) and
to have χ′1 ≥ 0 with χ′1 ∈ C∞c ((0, 1)). Finally, let χ2 ∈ C∞c (R) be supported
in [−2c1, 2c1] and be identically equal to 1 on [−c1, c1]. Here we will take c1

to be such that

(9.16) ξ̂
2

+ |ζ̂|2 < c1/2 in Σ̇ ∩ U0

where |ζ̂| is the metric length of fiber covectors with respect to some fiber

metric. Thus, χ2(ξ̂
2

+ |ζ̂|2) is a cut-off such that dχ2(ξ̂
2

+ |ζ̂|2) is supported

in ξ̂
2

+ |ζ̂|2 ∈ [c1, 2c1] hence outside Σ̇. Such a factor microlocalizes near the
characteristic set but effectively commutes with �. We shall further insist
that all cut-offs and their derivatives have (up to sign) smooth square roots.

Now consider the test symbol

(9.17) a = χ0(1− φ/δ)χ1(−ξ̂/δ + 1)χ2(ξ̂
2

+ |ζ̂|2).
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We proceed to show that
(9.18)

for given β > 0, if δ > 0 is sufficiently small then a ∈ C∞(bT ∗M \ 0)
is a basic symbol with support in any preassigned

conic neighborhood of q0 ∈ b
.

S∗M.

To see this, observe that from the choices made for the cut-offs, φ ≤ δ
and ξ̂ ≤ δ on the supports. Since ω ≥ 0 in (9.14), −ξ̂ ≤ δ so

(9.19) |ξ̂| ≤ δ =⇒ ω ≤ β2δ(φ+ ξ̂) ≤ β2δ(δ + ξ̂) ≤ 2δ2β2.

In view of (9.14) and (9.13), this shows that for any β > 0, a ∈ C∞(bT ∗M \
0) is supported in a given conic neighborhood of q0, provided δ > 0 is
sufficiently small. Since the only dependence on the fiber in (9.17) comes
through the metric, as |ζ̂|2, and χ2 is constant near 0, a is constant on the

fibers near ξ̂
2

+ |ζ̂|2 = 0, which is to say it is basic; this proves (9.18).
Now, we may take A = Optrv(a0) using Definition 9.1 with a0 from

(9.17). To extract some positivity from the commutator of A∗A with �
using Lemma 9.6 we need to show that the term 4a∂ξaκij in the symbol
of σ(Lij) dominates the others. To do this it is enough to show that for a
homogeneous vector field V, tangent to ξ = 0, V a can be estimated by ∂ξa,
if β, δ > 0 are chosen appropriately.

We shall rewrite the identity (9.8) for this particular choice of A, using
(9.7). Choose a basic operator B̃ ∈ Ψ1/2

b (M) with

(9.20) b̃ = σb,1/2(B̃) = |τ |1/2δ−1/2(χ0χ
′
0)1/2χ1χ2 ∈ C∞(bT ∗M \ 0)

where the regularity uses the properties of the cut-offs, in particular that
they and their derivatives are squares. Thus b̃2 occurs as a factor in any first
derivative of a in which the derivatives strike the χ0 term. (Note that other
derivatives are acceptable either because they are supported away from Σ̇ or
because they are supported in the region where we have assume regularity.)
Also, choose C ∈ Ψ0

b(M) with symbol

(9.21) σb,0(C) = |τ |−1(2τ2 − 2|η|2y)1/2ψ

where ψ ∈ S0(bT ∗M) is identically 1 on U considered as a subset of bT ∗M.
Then, recalling that the Qi are given in (9.5) we proceed to show that
(9.22)

i[A∗A,�] =
∑

Q∗iLijQj +
∑

Q∗iL
′
i +
∑

L′′iQi + L0 + E

= R′� + B̃∗(C∗C +R0 +
∑
i

QiRi +
∑
ij

QiRijQj)B̃ +R′′ + E′ + E′′
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where all factors have wavefront set near q0,

(9.23)

R0 ∈ Ψ0
b(M), Ri ∈ Ψ−1

b (M), Rij ∈ Ψ−2
b (M),

R′ ∈ Ψ−1
b (M), R′′ ∈ x−2 Diff2

e Ψ−2
b (M),

E′, E′′ ∈ x−2 Diff2
e Ψ−1

b (M),

have symbols

(9.24)

r0 = σb,0(R0), ri = σb,−1(Ri), rij ∈ σb,−2(Rij)

satisfying supp(rj) ⊂ {ω ≤ 9δ2β2}, |r0| ≤ C2(1 +
1
β2δ

)ω1/2,

|τri| ≤ C2(1 +
1
β2δ

)ω1/2, |τ2rij | ≤ C2(1 +
1
β2δ

)ω1/2,

|r0| ≤ 3C2(δβ + β−1), |τri| ≤ 3C2(δβ + β−1),

|τ2rij | ≤ 3C2(δβ + β−1)

and

(9.25) WF′b(E′) ⊂ ξ̂−1
((0,∞)) ∩ U, WF′b(E′′) ∩ Σ̇ = ∅.

The first equality in (9.22) is just (9.8). The operators L′i have symbols
as described in (9.8) and in particular these are smooth multiples of b̃2 plus
noncharacteristic terms and terms supported in ξ̂

−1
((0,∞)) so we may write

L′i = B̃∗RiB̃+R′i+E
′+E′′ where R′i ∈ Ψ−2

b (M) and the E′, E′′ terms satisfy
(9.25); henceforth, the meaning of the terms E′ and E′′ (and corresponding
symbols e′, e′′) will change from line to line, but all will satisfy (9.25). Thus

(9.26)
∑
i

Q∗iL
′
i = B̃∗

∑
i

Q∗iRiB̃
∗ +

∑
i

[Q∗i , B̃
∗]RiB̃ +

∑
i

Q∗iR
′
i.

Since B̃ is basic, the commutator term may be absorbed into E′′. The final
term may be absorbed into R′′ in (9.22). The L′′iQi terms are similar, with
a final commutation of Qi to the left. Similarly, L0 gives rise to a term
involving R0 with additional contributions to R′′ and E′′.

Now consider the first term in which the Lij appear. The definitions
above give

(9.27) 4a∂ξa = − 4
|τ |2

b̃2 + rij + e′ + e′′

=⇒ Lij = B∗(T ∗κijT +Rij)B + L′ij + E′ + E′′, L′ij ∈ Ψ−2
b (M)
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where T ∈ Ψ−1
b (M) is elliptic. The sum involving the Lij in (9.22) can

therefore be written, using (9.7)∑
i

Q∗iLijQj = R̃′�

+B∗(−H−
∑
i

Q∗iMi−
∑
i

NiQi+
∑
ij

QiRijQj)B̃+
∑

Q∗iL
′
ijQj+E′+E′′

where the E′, E′′ terms now involve commutators of the Qi or Q∗i and B̃ or
B̃∗, as well as commutators involving T, T ∗. This leads to the final line in
(9.22).

By Lemma 9.6, the symbol rij can be written as χ0V χ0 times χ1 and
χ2 factors, with V tangent to ξ = c at x = 0. (We have absorbed χ′1, χ

′
2

terms in E′, E′′.) As we can estimate V ω by a multiple of
√
ω and V ξ by

a multiple of x and hence of
√
ω, we obtain the desired symbol estimates.

The estimates on ri and r0 proceed analogously.
Having calculated the commutator in (9.22), we proceed to estimate the

‘error terms’ R0, Ri, Rij as operators. We start with R0. As follows from
the standard square root construction to prove the L2 boundedness of pseu-
dodifferential operators, there exists R′0 ∈ Ψ−1

b (M) such that

‖R0v‖ ≤ 2 sup |r0| ‖v‖+ ‖R′0v‖

for all v ∈ L2(M,dg). Here ‖ · ‖ is the L2(M,dg)-norm, as usual. Thus, we
can estimate, for any γ > 0,

(9.28) |〈R0v, v〉| ≤ ‖R0v‖ ‖v‖ ≤ 2 sup |r0| ‖v‖2 + ‖R′0v‖ ‖v‖
≤ 6C2(δβ + β−1)‖v‖2 + γ−1‖R′0v‖2 + γ‖v‖2.

Now we turn to Ri. Let T−1 ∈ Ψ−1
b (M) be elliptic (we will use this to

keep track of orders), and T1 ∈ Ψ1
b(M) a parametrix, so T1T−1 = Id +F ,

F ∈ Ψ−∞b (M). Then there exist R′i ∈ Ψ−1
b (M) such that

‖Riw‖ = ‖Ri(T1T−1 − F )w‖ ≤ ‖(RiT1)(T−1w)‖+ ‖RiFw‖
≤ 6C2(δβ + β−1)‖T−1w‖+ ‖R′iT−1w‖+ ‖RiFw‖

for all w with T−1w ∈ L2(M,dg). Similarly, there exist R′ij ∈ Ψ−1
b (M) such

that

(9.29) ‖(T1)∗Rijw‖ ≤ 6C2(δβ+β−1)‖T−1w‖+‖R′ijT−1w‖+‖(T1)∗RijFw‖

for all w with T−1w ∈ L2(M,dg). Thus,

(9.30) |〈RiQiv, v〉| ≤ 6C2(δβ + β−1)‖T−1Qiv‖ ‖v‖
+ 2γ‖v‖2 + γ−1‖R′iT−1Qiv‖2 + γ−1‖FiQiv‖2,
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and, writing Qjv = T1T−1Qjv − FQjv in the right factor, and taking the
adjoint of T1, (9.29) gives

(9.31) |〈RijQiv,Qjv〉| ≤ 6C2(δβ + β−1)‖T−1Qiv‖ ‖T−1Qjv‖
+ 2γ‖T−1Qjv‖2 + γ−1‖R′ijT−1Qiv‖2 + γ−1‖FijQiv‖2 + ‖RijQiv‖ ‖FQjv‖,

with Fi, Fij ∈ Ψ−∞b (M).
Finally we turn to the positive commutator argument itself. Let s <

sup{s′ : q0 /∈WFb,D̃ u}; hence, without loss of generality, we have WFs
b,D̃ u∩

U = ∅ where we shrink U as necessary. We will prove that q0 /∈WFs+1/2

b,D̃ u,

a contradiction unless s = +∞.
Let Λr be a quantization of

(9.32) |τ |s(1 + r|τ |2)−s/2, r ∈ [0, 1),

and set Ar = AΛr ∈ Ψ0
b(M) for r > 0. Then Ar is uniformly bounded in

Ψs
b∞(M), and we may further arrange that [�,Λr] = 0.
By (9.22),

〈i[A∗rAr,�]u, u〉 = ‖CB̃Λru‖2 + 〈R′�Λru,Λru〉+ 〈R0B̃Λru, B̃Λru〉

+
∑
〈RiQiB̃Λru, B̃Λru〉+

∑
〈RijQiB̃Λru,QjB̃Λru〉

+ 〈R′′Λru,Λru〉+ 〈(E + E′)Λru,Λru〉.

(9.33)

On the other hand, as Ar ∈ Ψ0
b(M) for r > 0 and u ∈ D̃, A∗rAru ∈ D̃, and

the pairing in the following computation is well-defined:

(9.34) 〈[A∗rAr,�]u, u〉 = 〈A∗rAr�u, u〉 − 〈�A∗rAru, u〉
= 〈Ar�u,Aru〉 − 〈Aru,Ar�u〉 = 0.

The first term on the right in (9.33) is thus bounded by the sum of the ab-
solute values of the others. The second term on the right in (9.33) vanishes,
to the third we can apply (9.28), to the fourth (9.30) and (9.31) applies
to the fifth. The penultimate term is bounded uniformly as r ↓ 0 by the
hypothesis on s, i.e. the assumed regularity of u. The last term is also uni-
formly bounded, the E part for the same reason and the E′ term by elliptic
regularity. Similarly, in applying (9.28)—(9.31) all the terms but the first
two terms on the right in each are also uniformly bounded as r ↓ 0 by the
assumed property of WFs

b,D̃ u. So, with a constant C ′(γ) independent of r
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and for some C3 > 0 depending only on the geometry

(9.35) ‖CB̃Λru‖2 ≤ C ′(γ)

+
(
6C2(δβ + β−1) + C3γ

)(
‖B̃Λru‖2 +

∑
i

‖T−1QiB̃Λru‖2
)

+ 6C2(δβ + β−1)‖B̃Λru‖
∑
i

‖T−1QiB̃Λru‖+ 2γ‖B̃Λru‖2.

The remaining terms on the right may be estimated as follows: writing
T−1Qi = QiT

′
i + x−1T ′′i for some T ′i , T

′′
i ∈ Ψ−1

b (M) (recall that x−1 = Q0),
and using Lemma 8.8 where necessary, we may choose our constants so as
to absorb the highest order terms into the left-hand-side (using ellipticity
of C on WF′(B̃) and microlocal elliptic regularity). In particular, then, we
may pick β sufficiently large, and γ = γ0 > 0, δ0 > 0, so small that for all
δ < δ0

C4‖B̃Λru‖2 ≤ C5 + C6‖dMT 2
−1B̃Λru‖2,

with C4 > 0. Letting r → 0 now keeps the right hand side bounded, proving
that ‖B̃Λru‖ is uniformly bounded as r → 0, hence B̃Λ0u ∈ L2(M,dg)
(cf. the proof of Proposition 8.10). In view of Lemma 8.8 this proves that
q0 /∈WFs+1/2

b,D̃ (u), and hence proves the first statement of the proposition.
Finally we need check that the neighborhoods of q0 which are disjoint

from WFs
b,D̃(u) do not shrink to {q0} as s → ∞. This argument is parallel

to the last paragraph of the proof of [9, Proposition 24.5.1]. In each iterative
step it is only necessary to shrink the elliptic set of B̃s by an arbitrarily small
amount, which allows us to conclude that q0 has a neighborhood U ′ such
that WFs

b,D̃(u) ∩ U ′ = ∅ for all s. This proves that q0 /∈WF∞
b,D̃(u). �

We note that in the proof above the ability to control Q0u terms in terms
of the ‖u‖D̃ was crucial, and it is this aspect of the proof that breaks down
in fiber dimension 1. The necessary modifications to the proof in this case
are discussed in the following section.

To carry through similar estimates in the glancing region we need the
following technical lemma. In essence this shows that, applied to solutions
of �u = 0 near Ġ, Dx and x−1Dzj are not merely bounded by Dt but small
compared to it. Such an estimate is natural since

x2p0|x=0 = x2τ2p̂0 = τ2 − ξ2 − |η|2h − |ζ|2k
gives

ξ̂
2

+ |ζ̂|2k ≤ C(x2|p̂|+ |x|+ |1− |η̂|2h|),

and 1− |η̂|2h vanishes at Ġ, so the right hand side is small near Ġ. In the re-
mainder of this section, a δ-neighborhood will refer to a δ-neighborhood with
respect to the metric distance associated to any Riemannian metric on the
manifold bS∗M. The notation ‖u‖D̃loc

and ‖�u‖2D̃′loc

is fixed in Remark 8.7.



52 RICHARD MELROSE, ANDRÁS VASY, AND JARED WUNSCH

Lemma 9.8. Suppose u ∈ D̃loc and that K ⊂ bS∗M is compact with

K ⊂ G \WFs+1/2

b,D̃′ (�u)

then there exist δ0 > 0 and C0 > 0 such that if A = {Ar : r ∈ (0, 1]}
is a bounded and basic family in Ψs

b∞(M) with WF′b(A) ⊂ U ⊂ bS∗M, a
δ-neighborhood of K, 0 < δ < δ0, and with Ar ∈ Ψs−1

b (M) for r ∈ (0, 1] then
for some

G ∈ Ψs−1/2
b (M), G̃ ∈ Ψs+1/2

b (M) with WF′b(G),WF′b(G̃) ⊂ U

and C̃0 = C̃0(δ) > 0

‖DxAru‖2 +
∑
i

‖x−1dZAru‖2k

≤ C0δ‖DtAru‖2 + C̃0(‖u‖2D̃loc
+ ‖Gu‖2D̃ + ‖�u‖2D̃′loc + ‖G̃�u‖2D̃′) ∀ r > 0.

Remark 9.9. As K is compact, this is a local result in the extended base,
[0, ε)x × Y . In particular, we may assume that K is a subset of bS∗M over
a suitable local coordinate patch in the extended base. Moreover, we may
assume that δ0 > 0 is so small that Dt is elliptic on U.

Proof. The proof is again very similar to [25]. By Lemma 8.8 we already
know that

‖dXAru‖2 ≤‖DtAru‖2

+ C ′0(‖u‖2D̃loc
+ ‖Gu‖2D̃ + ‖�u‖2D̃′loc

+ ‖G̃�u‖2D̃′).
(9.36)

for some C ′0 > 0 and for some G, G̃ as in the statement of the lemma. Thus,
we only need to show that if we replace the left hand side by ‖DxAru‖2 +
‖x−1dZAru‖2k (i.e. we drop the tangential derivatives, at least roughly speak-
ing), the constant in front of ‖DtAru‖2 can be made small.

A simple argument as in [25], amounting to moving the tangential deriva-
tives to the right side and freezing the coefficients at x = 0 (cf. also the
proof of Proposition 8.10), reduces the problem to showing that∣∣∣∣∫

M

(
(D2

t −
∑

hij(0, y)DyiDyj )AruAru
)
dg

∣∣∣∣
≤ C2δ‖DtAru‖2 + C̃2(δ)(‖u‖2D̃loc

+ ‖Gu‖2D̃),
(9.37)

which we proceed to do.
The key point is that the symbol of D2

t −
∑
hij(0, y)DyiDyj is small on

WF′b(A); more precisely, it is of size δ. It is convenient to microlocalize, i.e.
replace this tangential part of the wave operator by an operator F micro-
supported near G. So let ψ ∈ C∞(bS∗M) (ψ can thus be identified with a
homogeneous degree zero function on bT ∗M \ 0) with ψ ≡ 1 near WF′b(A),
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suppψ ⊂ U , |ψ| ≤ 1, and let F ∈ Ψ0
b(M) be such that

(9.38)

WF′b(F ) ⊂ U, WF′b
(
DtFDt − (D2

t −
∑

hijDyiDyj )
)
∩WF′b(A) = ∅

f = σb,0(F ) = ψ(1−
∑

hij η̂iη̂j),

where such ψ and F exist, since Dt is elliptic on WF′b(A). Now,∣∣∣∣∫
M

(
(DtFDt − (D2

t −
∑

hij(0, y)DyiDyj ))AruAru
)∣∣∣∣ ≤ C ′2‖u‖2D̃loc

since (DtFDt − (D2
t −

∑
hijDyiDyj ))Ar is uniformly bounded in Ψ−∞b (M),

by the first line of (9.38). Moreover, 1 −
∑
hij η̂iη̂j is a C∞ function on a

neighborhood of K in bS∗M which vanishes at G, so |1−
∑
hij ζ̂iζ̂j | < C3δ

on a δ-neighborhood of K, and hence

sup |f | ≤ C3δ.

Since there exists F ′ ∈ Ψ−1
b (M) with WF′b(F ′) ⊂ U satisfying

‖Fv‖ ≤ 2 sup |f | ‖v‖+ ‖F ′v‖

for all v ∈ L2(M,dg), we deduce that ‖Fv‖ ≤ 2C3δ‖v‖ + ‖F ′v‖ for all
v ∈ L2(M,dg). Applying this with v = DtAru, and estimating ‖F ′v‖ using
Lemma 6.8, (9.37) follows, which in turn completes the proof of the lemma.

�

For propagation at the glancing points it is convenient to introduce no-
tation for the Hamilton vector field of the ‘tangential part’ of the wave
operator. Thus, we let

(9.39) W [ = ∂t −Hĥ, ĥ(y, η) = |τ |−1|η|2h,

so W [ is homogeneous of degree zero, hence can be regarded as a vector field
on the cosphere bundle. This vector field is well-defined at G as a vector
field tangent to G. Away from G it depends on choices, but as pointed out
in a remark below, these choices do not affect the statement of the following
proposition. Moreover, this vector field also makes sense on Ġ, which is a
smooth manifold.

It is also useful to extend π̇ to a neighborhood of ∂M as projection to
∂M followed by π̇:

π̇e(x, t, y, z, ξ̂, 1, η̂, ζ̂) = (t, y, 1, η̂).

Proposition 9.10. Let u ∈ D̃loc and suppose

(9.40) K ⊂ bS∗M is compact with K ⊂ Ġ \WF∞
b,D̃′(�u).

Then there exist constants C0 > 0, δ0 > 0 such that if q0 = (t0, y0, 1, η̂0
) ∈ K

(hence |η̂|h = 1), to conclude that q0 /∈WFb,D̃(u) it suffices to know that for
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some 0 < δ < δ0, with C0δ ≤ β < 1, and for all q = (x, t, y, z, ξ̂, 1, η̂, ζ̂) ∈ Σ

(9.41) |π̇e(q)− exp(−δW [)(q0))| ≤ βδ and |x(q)| ≤ βδ
=⇒ π(q) /∈WFb,D̃(u).

Remark 9.11. In the estimate (9.41), W [ can be replaced by any C∞ vector
field which reduces to W [ at q0 since flow to distance δ along a vector field
only depends on the vector field evaluated at the initial point of the flow, up
to an error O(δ2). Similarly, changing the initial point of the flow by O(δ2)
does not affect the endpoint up to an error O(δ2). Thus, estimate (9.41) can
be further rewritten, at the cost of changing C0 again, as

| exp(δW [)(π̇e(q))− q0| ≤ βδ and |x(exp(δW [)(q))| ≤ βδ
=⇒ π(q) /∈WFb,D̃(u);

(9.42)

here we interchanged the roles of the initial and final points of the flow.

Proof. To prove this result it suffices to modify the proof of the glancing
propagation result of [25], with the modifications similar to those leading
to the normal propagation above. The key ingredient is Lemma 9.8, which
allows the Qi factors, including Q0, in the commutator in Corollary 9.6 to
be shown to be small, provided the symbol of the commutant is arranged
to be supported sufficiently close to the glancing set. Thus, the L0 term of
Corollary 9.6 dominates the commutator (there is no ξ dependence of the
commutant in this case near the characteristic set), with principal symbol
at x = 0 given by 2aHh−τ2a.

First take a function ω0 ∈ C∞(S∗(R×Y )) which is a sum of squares of 2l
(l = dimY ) homogeneous degree zero functions ρj :

ω0 =
2l∑
j=1

ρ2
j , W

[ρj(q0) = 0, ρj(q0) = 0,

dρj(q0), j = 1, . . . , 2l linearly independent at q0. Since dimS∗(R × Y ) =
2l + 1, dρj(q0), j = 1, . . . , 2l, together with dt (t is also homogeneous of
degree zero), span the cotangent space of the S∗(R × Y ), for dimensional
reasons (note that W [t(q0) 6= 0). In particular,

|τ−1W [ω0| ≤ C ′1ω
1/2
0 (ω1/2

0 + |t− t0|)

Then extend ω0 to a function on bT ∗M (using the trivialization) and set

(9.43) ω = ω0 + x2.

Then the ‘naive’ estimate, playing an analogous role to (9.15) in the hyper-
bolic region, is

|τ−1Hp0ω| ≤ C̃ ′′1ω1/2(ω1/2 + |t− t0|+ |ξ̂|2 + |ζ̂|2)

≤ C ′′1ω1/2(ω1/2 + |t− t0|+ τ−2|p0|);
(9.44)
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here we used p0|x=0 = τ2 − |ξ|2 − |η|2h − |ζ|2k, which lets us estimate

τ−2|ξ|2 ≤ C(τ−2|p0|+ |x|+ ω
1/2
0 + |t− t0|),

for 1 − |ζ̂|2y is homogeneous of degree zero and vanishes at Ġ (recall that
this last estimate motivates Lemma 9.8). Note that (9.44) is much more
precise than (9.15): we have a factor of ω1/2 + |t− t0|+ τ−2|p0| in addition
to ω1/2—this is crucial since we need to get the direction of propagation
right.

Finally put

(9.45) φ = t− t0 +
1
β2δ

ω,

and define a = a0 almost as in (9.17), with −ξ̂ replaced by t− t0, namely

(9.46) a = χ0(2− φ/δ)χ1((t− t0 + δ)/βδ + 1)χ2(|σ|2/τ2).

The slight difference is in the argument of χ1, in order to microlocalize more
precisely in the ‘hypothesis region’, i.e. where u is a priori assumed to have
no wave front set. This is natural, since for the hyperbolic points we only
needed to prove that singularities cannot stay at the boundary, while for
glancing points we need to get the correct direction of propagation. We
always assume for this argument that β < 1, so on supp a we have

φ ≤ 2δ and t− t0 ≥ −βδ − δ ≥ −2δ.

Since ω ≥ 0, the first of these inequalities implies that t − t0 ≤ 2δ, so on
supp a

(9.47) |t− t0| ≤ 2δ.

Hence,

(9.48) ω ≤ β2δ(2δ − (t− t0)) ≤ 4δ2β2.

Moreover, on supp dχ1,

(9.49) t− t0 ∈ [−δ − βδ,−δ], ω1/2 ≤ 2βδ,

so this region lies in the hypothesis region of (9.42) after β and δ are both
replaced by appropriate constant multiples.

Now, using (9.44), (9.48), and τ−1Hp0(t − t0) = 2, we deduce that at
p0 = 0,

τ−1Hp0φ = τ−1Hp0(t− t0) +
1
β2δ

τ−1Hp0ω

≥ 1− 1
β2δ

C ′′1ω
1/2(ω1/2 + |t− t0|)

≥ 1− 2C ′′1 (δ +
δ

β
) ≥ c0/4 > 0
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provided that δ < 2
16C′′1

, β
δ >

16C′′1
2 , i.e. that δ is small, but β/δ is not too

small—roughly, β can go to 0 at most as a multiple of δ (with an appropriate
constant) as δ → 0. Recall also that β < 1, so there is an upper bound as
well for β, but this is of no significance as we let δ → 0. It is also worth
remembering that in the hyperbolic region, β roughly played the same role
as here, but was bounded below by an absolute constant, rather than by
a suitable multiple of δ, hence could not go to 0 as δ → 0. With this, we
can proceed exactly as in the hyperbolic region, so (recalling that τ > 0 on
supp a!)

Hp0a
2 = −b20 + e, b0 = τ1/2(2τ−1Hp0φ)1/2δ−1/2(χ0χ

′
0)1/2χ1χ2,

with e arising from the derivative of χ1χ2. Again, χ0 stands for χ0(2−φ
δ ), etc.

In view of (9.49) and (9.42) on the one hand, and the fact that supp dχ2 is
disjoint from the characteristic set on the other, both supp dχ1 and supp dχ2

are disjoint from WFb,D̃(u). Thus, i[A∗A,�] is positive modulo terms that
are controlled a priori, so the standard positive commutator argument gives
an estimate for Bu, where B has symbol b0. Replacing a by aτ s+1/2, still
gives a positive commutator since Dt commutes with �, which now gives
(with the new B) Bu ∈ L2(M,dg). In particular q0 /∈WFs

b,D̃(u). �

Now, applying arguments that go back to [18] we find

Theorem 9.12. If u ∈ H−∞D̃,loc(M), then for all s ∈ R ∪ {∞},

WFs
b,D̃(u) \WFs+1

b,D̃′(�u) ⊂ Σ̇

is a union of maximally extended generalized broken bicharacteristics of �
in Σ̇ \WFs+1

b,D̃′(�u).

10. Fiber dimension 1

In this section we indicate the changes necessary in the previous sections
to accommodate fiber dimension 1. Fortunately, these are quite minor, due
to the rather trivial character of 1 dimensional Riemannian geometry. The
basic reason for treating fiber dimension 1 separately is that x−1 is not
bounded from D̃ to L2, and terms with x−1 arise throughout the previous
section. Here we introduce a class of operators that we call very basic in
order to eliminate these terms—this is possible as the metric on the fibers
can be put in a rather simple form.4

We can assume that all fibers are circles (disconnected fibers can be dealt
with similarly). Moreover, one may arrange that the fiber metric is k(y)dz2,
dz2 denoting the standard metric on the circle (corresponding to a circum-
ference of 2π, say). Correspondingly, locally in the base Y (and all our

4Another, perhaps more natural way to proceed would be to consider operators that
commute with the projection to fiber-constant functions at the boundary.
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considerations are local in the base) there is a circle action on ∂M , with
infinitesimal generator ∂z.

Definition 10.1. Let x−1Ve(M ;Y ) be the subspace of x−1Ve(M) consisting
of vector fields V such that [V, ∂z] ∈ Ve(M).

Remark 10.2. x−1Ve(M ;Y ) is not a left C∞(M)-module, but it is a left
C∞Y (M)-module, where

C∞Y (M) = {f ∈ C∞(M) : f |∂M is fiber constant}.
Note also that x is determined by the form of the metric up to multiplication
by a ∈ C∞Y (M).

Definition 10.3. We say that A ∈ Ψm
b∞(M) is very basic if it commutes with

∂z at x = 0, i.e. if [A, ∂z] ∈ xΨm
b∞(M).

Remark 10.4. Very basic operators form a C∞Y (M)-bimodule. Moreover,
they form a ring under composition as [AB, ∂z] = [A, ∂z]B+A[B, ∂z]. Also,
if A ∈ Ψm

b∞(M) is very basic, x−p[A, xp] ∈ Ψm−1
b∞ (M) is also very basic, by

the Jacobi identity.

The point of this definition is:

Lemma 10.5. If A ∈ Ψm
b∞(M) is very basic then

(1) (replaces Lemma 8.1) for any Q ∈ x−1Ve(M ;Y ) there exist very
basic Aj ∈ Ψm−1

b (M) and Qj ∈ x−1Ve(M ;Y ), j = 1, . . . , l, A0 ∈
Ψm

b (M) such that

[Q,A] = A0 +
∑

AjQj .

(2) (replaces Lemma 8.6) there exist B ∈ Ψm
b∞(M), E ∈ Ψm−1

b∞ (M)
depending continuously on A such that

(10.1) [x−1Dz, A] = B + Ex−1Dz,

with E very basic, and there exist B ∈ Ψm
b∞(M), C ∈ Ψm−1

b∞ (M)
depending continuously on A such that

(10.2) [Dx, A] = B + CDx,

and C is very basic.
(3) (replaces Lemma 6.2) if m = 0, A : D̃ → D̃ with norm bounded by a

seminorm of A in Ψ0
b(M).

Thus, for very basic operators x−1Dz behaves much like Dx.

Proof. (1,2): As very basic ps.d.o’s form a C∞Y (M) bimodule, it suffices to
check that the conclusion holds for Q = Dx, Dyi and Q = x−1Dz in some
local coordinates on Y . For Dyi this is immediate as Dyi is a very basic
element of Ψ1

b(M), so [A,Dyi ] is a very basic element of Ψm
b (M).

ForQ = x−1Dz, we compute [x−1Dz, A] = [x−1, A]x(x−1Dz)+x−1[A,Dz].
The second term is in Ψm

b∞(M) as A is very basic, while the coefficient of
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x−1Dz, E = [x−1, A]x ∈ Ψm−1
b∞ (M) is very basic in view of the previous

remark, proving the first line of (2). A similar argument applies to Dx =
x−1(xDx), noting that [A, xDx] ∈ xΨm

b∞(M) just by virtue of A ∈ Ψm
b∞(M).

(3): As in the proof of Lemma 6.2, this reduces to [A, V ] : D̃ → L2(M)
being bounded for A ∈ Ψ0

b∞(M) and V ∈ x−1Ve(M ;Y ). By (1), this follows
from A0, Aj being bounded on L2 while Qj : D̃ → L2(M). �

Of course, we need to know that there is a plentiful supply of very basic
operators.

Lemma 10.6. Suppose that a ∈ Sm(bT ∗M) is such that a|x=0 is invariant
under the circle action. Then there exists A ∈ Ψm

b (M) very basic such that
σ(A) = a.

Proof. Using a product decomposition of M near ∂M , extend the circle
action to a neighborhood O of ∂M . Let A′ ∈ Ψm

b (M) be a quantization
of a, so σ(A′) = a, and let A be the average of A′ under the circle action,
i.e. A′′ = (2π)−1

∫
S1 Aθ dθ, where Aθ is the conjugate of A by pull-back by

translation by θ. Due to the averaging, A commutes with the infinitesimal
generator of the circle action, ∂z, so A′′ is indeed very basic. Moreover,
σ(A′′)|x=0 = a|x=0 as a is invariant under the circle action, so the symbol of
Aθ at x = 0 is also a. Now let Ã ∈ xΨm

b (M) be such that σ(Ã) = a−σ(A′′);
then A = A′′ + Ã has all the desired properties. �

With the help of this lemma, all proofs in Section 8 go through, provided
we use commutants that are very basic.

Corollary 10.7. (Cf. Lemma 9.2.) With a trivialization in which the fiber
metric at x = 0 is k(y)dz2, suppose that ã, a are as in Lemma 9.2, where
|ζ|2 stands for the lift of the standard metric on the circle Z. Let A be as in
the previous lemma. Then [∂z, A] = B ∈ xΨm

b (M) and WF′b(B) ∩ Σ̇ = ∅.

Proof. We merely need to observe that a|x=0 is invariant under the circle
action, and apply the previous lemma to deduce [∂z, A] = B ∈ xΨm

b (M).
The wave front set statement follows from the construction of A: it holds
(in a uniform fashion) for each Aθ. �

With the notation of the paragraph preceding Lemma 9.3, since dg = Jν
with J ∈ C∞Y (M), as ∂z log J |x=0 = 0, Lemma 9.3 can be strengthened as
follows:

Lemma 10.8. With A = A† as in §9

[W,A∗A] = B + F, B ∈ xΨ2m
b (M), F ∈ xΨ2m−1

b (M)

WF′b(B) ∩ Σ̇ = ∅, σ(F ) = a{a,W log J},
(10.3)

with both B and F depending continuously on A. Here W log J ∈ xC∞(M)
is lifted to bT ∗M by the bundle projection.
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Now Lemma 9.5 can be strengthened to include a statement that κij is
very basic, i.e. κij ∈ C∞Y (M).

Then Corollary 9.6 remains valid even if the sums are so that Q0 = x−1

is excluded from them, and Lij are very basic.
Consequently, the proofs in the rest of Section 9 go through.

11. Edge propagation

The flow along (2.4) in the boundary, i.e. at x = 0, is explicitly solvable
in eT ∗∂MM : we have

ξ = |ζ| tan(|ζ|s+ C)
while |ζ| is conserved, (z, ζ/|ζ|) undergo geodesic flow at speed |ζ| with
respect to the base metric on the boundary, and

τ = A sec(|ζ|s+ C), η = B sec(|ζ|s+ C).

Thus along maximally extended integral curves, (z, ζ/|ζ|) undergoes time-π
geodesic flow and (τ, η) traverse a line through the origin in Rb+1. Since the
Hamilton vector field along these curves is nowhere vanishing, we conclude
from the arguments of [16] that for any k, l, WFe

k,l u is a union of such
integral curves. The Hamilton vector field vanishes at the endpoints of these
integral curves, at the codimension-two corner of the radial compactification
of eT ∗X, hence the question remaining is how the interior wavefront set
estimates on u extend to the corner, and thence into and out of eT ∗∂XX. In
fact, we can do a (crucial) bit more, obtaining propagation of coisotropic
regularity, i.e. regularity under Ak, along the flow discussed above.

Theorem 11.1. Let u ∈ H−∞,le (I × X) be a distributional solution to the
wave equation with �u = 0, t̄ ∈ I ⊂ R with I open.

(1) Let m > l + f/2. Given p ∈ ḢI , if (FI,p\∂M) ∩WFmAu = ∅, for
all A ∈ Ak then p /∈WFe

m,l′ Bu for all l′ < l and all B ∈ Ak.
(2) Let m < l + f/2. Given p ∈ ḢO, if a neighborhood U of p in

eS∗|∂MM is such that WFe
m,l(Au) ∩ U ⊂ ∂FO for all A ∈ Ak then

p /∈WFe
m,l(Bu) for all B ∈ Ak.

Remark 11.2. For any point p ∈ eT ∗∂MM\{ζ = 0} there is an element of
Ak elliptic there, hence (1), with k =∞, shows that solutions with (infinite
order) coisotropic regularity have no wavefront set in eT ∗∂MM\{ζ = 0}.
Indeed this result holds microlocally in the edge cotangent bundle. Note
that the set {x = 0, ζ = 0} is just the set of radial points for the Hamilton
vector field.

As the proof follows quite closely that of Theorem 8.1 of [19], we shall be
somewhat concise here. However, as the flowout cannot be put in a simple
model form as in [19], we need a lemma adapted from [8] to handle factors
from Am, replacing the powers of the fiber Laplacian used in [19]. This is
stated in the Appendix, in Proposition A.6.
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Proof of Theorem 11.1. We only consider part (1) of the Theorem; the proof
of (2) is completely analogous, cf. [19].

Let p = (t̄, ȳ, z̄, τ̄ , ξ̄, η̄) ∈ ḢI . We begin by constructing a localizer in the
fast variables. Let

Υ : eT ∗∂M (M)\{ξ = 0} → Z

be locally defined by

Υ(q) = z(expz0,ζ0 s∞Hq), s∞ =
sgn ξ
|ζ|Kq

arctan
|ζ|
ξ
.

where q ∈ eT ∗∂M (M) has coordinates (t0, y0, z0, τ0, ξ0, η0, ζ0). This map sim-
ply takes a point over the boundary to its limit point in the fiber variables
along the forward bicharacteristic flow, hence on the boundary, we certainly
have Υ∗(H) = 0. We now extend Υ smoothly to the interior of eT ∗M, thus
obtaining a map satisfying

Υ∗(H) = O(x).

Let ai be homogeneous degree zero defining functions for FI as in Sec-
tion 4. (In fact, for the proof of (1), one could use ζi in place of ai, as one
is only concerned about positivity at x = 0, where one can take ai = ζi, but
for the proof of (2), the use of ai is important.)

Now fix any sufficiently small neighborhood U of p in eT ∗M. There exists
δ > 0 such that

{x < δ, |ai| < δ, |η/τ − η̄/τ̄ |2 + |y − ȳ|2 + d(Υ, z̄)2 + |t− t̄|2 < δ} ⊂ U.
There exists β such that

H
(
|η/τ − η̄/τ̄ |2 + |y − ȳ|2 + d(Υ, z̄)2 + |t− t̄|2 − βx

)
> 0

on U, since the derivative falling on each term in the cut-off is O(x), and
H(x) = ξx+O(x2), i.e. is bounded above on U by a negative multiple of x.

We now need some cut-off functions. Let ψ be nonnegative, nonincreasing,
and supported in (−∞, ε), and χ ∈ C∞(R) be nonnegative, nondecreasing,
and supported in (ε,∞). We may further arrange that ψ, χ, −ψ′ and χ′

are squares of smooth functions. We also let φ ∈ C∞c ([0, ε)) be nonnegative,
nonincreasing, identically 1 near 0, with φ, −φ′ the squares of a smooth
function.

Set

(11.1) a2
m,l = χ(±τ)χ(±ξ)φ(x)φ(ε−1

∑
a2
j )ψ(p2(·)/τ4)

ψ
(
(|η/τ − η̄/τ̄ |2 + |y − ȳ|2 + d(Υ, z̄)2 + |t− t̄|2 − βx

)
(±τ)mxl,

with ± = sgn ξ̄τ̄ ,
Note that applying H to τmxl on the support of am,l gives a main term

(m + l)ξmxl, hence this term is positive provided m + l > 0. As long as
ε is sufficiently small that (β + 1)ε < δ, the support of the symbol lies in
U, hence choosing ε sufficiently small ensures the positivity of the term in
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H(a2
m,l) coming from the last cut-off term. The cut-off factors involving χ

are harmless as the support of the Hamilton vector field applied to these
intersects the characteristic set inside eT ∗M in a compact set. Finally,
the cut-off terms involving φ have the following properties: the Hamilton
derivative of φ(x) supported in the interior of eT ∗M , while the Hamilton
derivative of φ(ε−1

∑
a2
j ) is supported away from FI .

Using the above observations, providedm+l > 0, by choosing ε sufficiently
small, we can ensure that

H(a2
m,l) = ±(a′)2 ±

∑
j

b2j + e+ c+ k

where supp e ⊂ T ∗X◦, supp c is compact in eT ∗(M) and Σ ∩ supp(k) = ∅.
For k = 0, the proof is finished with a positive commutator argument as

in [19, Theorem 8.1]. For arbitrary k, we can now use Proposition A.6 to
finish the proof inductively. �

Remark 11.3. The reason for the appearance of f/2 in the statement of
the theorem is that in order to prove the theorem, we need to use ar,s
with r = m − 1

2 , s = −l − f−1
2 . Indeed, the commutator of A∗r,sAr,s (with

Ar,s ∈ Ψr,s
e (M) having principal symbol ar,s) with � is in Ψ2r−1,2s−2

e (M).
As in the commutator argument we use the metric density dg (to make
� formally self-adjoint), which is xf+1 times a non-degenerate smooth b-
density (with respect to which Hm,l

e (M) is weighted), a principal term in
this commutator of the form (A′)∗A′ provides a bound for the Hm,l

e (M)
norm of u provided that 2m − (2r − 1) = 0, 2l + (2s − 2) + (f + 1) = 0,
leading to the stated values of r and s in terms of m and l. As in order to
obtain a positive commutator we need r + s > 0 (or < 0 in the outgoing
region), we deduce that m > l + f

2 (resp. m < l + f
2 ) must be satisfied.

Moreover, the reason for l′ < l in the statement of the theorem is the
possible need for an interpolation argument, in case the a priori regularity
of u is weak, i.e. u ∈ Hq,l

e with q too small (possibly negative). This is
because, due to the standard error terms, the regularity of u can only be
improved by 1/2 order at a time, so already m = q+1/2 would have to satisfy
m > l + f

2 , i.e. we would need q > l + f−1
2 . In particular, if q > l + f−1

2 is
satisfied, i.e. if we have this much a priori regularity, we can take l′ = l.

12. Propagation of coisotropic regularity

Theorem 12.1. Let p ∈ Ḣ, ε > 0 and k ∈ N. Then there is k′ (depending
on k and ε) such that if �u = 0 and u has coisotropic regularity of order k′

relative to Hs (on the coisotropic ḞI) near ḞI,p strictly away from ∂M, then
u has coisotropic regularity of order k relative to Hs−ε (on the coisotropic
ḞO) near ḞO,p, strictly away from ∂M.

In particular, if �u = 0 and u is coisotropic (i.e. has infinite regularity)
relative to Hs (on the coisotropic ḞI) near ḞI,p strictly away from ∂M, then
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for all ε > 0, u is coisotropic relative to Hs−ε (on the coisotropic ḞO) near
ḞO,p, strictly away from ∂M.

Explicitly, with the argument presented below, one can take k′ = k if
ε > 1/2, and any k′ > 1

2ε k if ε ≤ 1/2.

Proof. First we show that the result holds with Hs−0 replaced by Hs−1/2−0.
Indeed, by Theorem 9.7, u is C∞ microlocally near ḞO,p strictly away from
∂M provided it is C∞ microlocally near ḞI,p away from ∂M , i.e.

WF(u) ∩ (ḞI,p \ ∂ḞI,p) = ∅ =⇒WF(u) ∩ (ḞO,p \ ∂ḞO,p) = ∅.

In particular, u is coisotropic as stated, provided that WF(u) ∩ (ḞI,p \
∂ḞI,p) = ∅. Thus, we we may assume that u is microlocalized near ḞI,p
and away from ∂M for t < t(p), hence that u and Aku lie in Hs

loc(M
◦) for

t < t(p) (with loc indicating locally in time). It is convenient to normalize
s to make Proposition 5.4 easier to use. Let Θs have Schwartz kernel

(12.1) κ(Θs)(t, t′) = ψ(t− t′)κ(|Dt|s)(t, t′)

where ψ(t) is a smooth function of compact support, equal to one near
t = 0 (cf. [19]). Since applying Θ−s to u preserves the hypotheses, except
replacing s by 0, and then the conclusion is preserved (shifting s back)
upon the application of Θs, we may apply Proposition 5.4, to conclude that

u ∈ Hs,s− f+1
2

e,loc (M) for t < t(p), hence for all t.
Then Theorem 11.1 part (1) can be applied, first with l = s − f+1

2 ,
m = s − 1

2 + 0 near incoming points (so m > l + f
2 ), to conclude that u

is coisotropic of order k relative to H
s− 1

2
+0,s− f+1

2
−0

e (M) near ∂ḞI . Note
that if U is a sufficiently small neighborhood of ḢI = ∂ḞI in eT ∗∂MM , this

implies that in fact u is microlocally in H
s+k− 1

2
+0,s− f+1

2
−0

e (M) on U \ ḢI ,
since M has elliptic elements near each point in U \ ḢI . Since bicharac-
teristics γ in π̇−1(Ḣ) \ (ḢI ∪ ḢO) ⊂ eT ∗∂MM tend to ḢI , resp. ḢO, as
the parameter along γ tends to ±∞, the standard (non-radial) propagation
of singularities, [19, Theorem 8.1(ii)], yields that u is coisotropic of order

k relative to H
s− 1

2
+0,s− f+1

2
−0

e (M) at π̇−1(Ḣ) \ ḢO—indeed, u is simply in

H
s+k− 1

2
+0,s− f+1

2
−0

e (M) microlocally on π̇−1(Ḣ) \ (ḢI ∪ḢO). Applying The-
orem 11.1 with m = s− 1

2 − 0, l = s− f+1
2 − 0 (the two small constants in

the −0 are chosen so that m < l + f
2 ), we conclude that u is coisotropic of

order k relative to H
s− 1

2
−0,s− f+1

2
−0

e (M) near ḞO, as claimed.
On the other hand, u is in Hs along ḞO,p by Theorem 9.7. Hence the

theorem follows by the interpolation result of the following lemma. �

Lemma 12.2. Suppose that u is in Hs microlocally near some point q away
from ∂M , and it is coisotropic of order N relative to Hm near q with s > m.
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Then for ε > 0 and k < εN
s−m , u is coisotropic of order k relative to Hs−ε

near q.
In particular, if u is in Hs microlocally near some point q away from ∂M

and u is coisotropic (of order ∞, that is) relative to Hm near q with s > m,
then u is coisotropic relative to Hs−ε for all ε > 0.

Proof. If Q ∈ Ψ0(M) and WF′(Q) lies sufficiently close to q, then the hy-
potheses are globally satisfied by u′ = Qu. Moreover, being coisotropic,
locally F can be put in a model form ζ = 0 by a symplectomorphism
Φ in some canonical coordinates (y, z, η, ζ), see [9, Theorem 21.2.4] (for
coisotropic submanifolds one has k = n − l, dimS = 2n, in the theorem).
Further reducing WF′(Q) if needed, and using an elliptic 0th order Fourier
integral operator F with canonical relation given by Φ to consider the in-
duced problem for v = Fu′ = FQu, we may thus assume that v ∈ Hs, and
Dα
z v ∈ Hm for all α, i.e. 〈Dz〉Nv ∈ Hm. Considering the Fourier trans-

form v̂ of v, we then have 〈η, ζ〉sv̂ ∈ L2, 〈η, ζ〉m〈ζ〉N v̂ ∈ L2. But this
implies 〈η, ζ〉mθ+s(1−θ)〈ζ〉Nθv̂ ∈ L2 for all θ ∈ [0, 1] by interpolation (in-
deed, in this case by Hölder’s inequality). In particular, taking θ = ε

s−m ,
〈η, ζ〉s−ε〈ζ〉kv̂ ∈ L2 if k < Nε

s−m , and the lemma follows. �

13. Geometric theorem

We now prove Theorem 1.3, using as our main ingredients Theorem 12.1
and a duality argument.

Let U1 be a small open neighborhood of a single point w ∈ F◦O,p such
that all points in FO ∩ U1 have a distance from ∂M between 0.9d0 and d0

for some small d0. Pick any time T greater than d0, so that all interactions
of U1 with the boundary occur under backward generalized bicharacteristic
flow for time less than T.

Let UG0 and UD0 now denote two open sets in T ∗M◦ such that UD0 con-
tains the whole time-T backward flowout of U1 in the sense of generalized
broken bicharacteristics. UG0 , by contrast, must contain only the geometric
backward flow from U1 (see §7 for the definitions of these flows). By hypoth-
esis, we may choose UD0 such that the nonfocusing condition holds relative
to Hs on UD0 . We may split the initial data into a piece microsupported in
UG0 and supported away from a boundary, and a remainder. The former
piece, by hypothesis, is globally in C(R;Ds), hence satisfies the conclusion
of the theorem. Thus it suffices to consider only the latter piece, which has
no wavefront set of any order in UG0 .

Let r < s. Let Ai, i = 1, . . . , N, denote first-order pseudodifferential op-
erators, generatingM as above, but now locally over a large set in M◦, and
with kernels compactly supported in M◦. Let B0 and B1 be pseudodiffer-
ential operators of order 0, compactly supported in M◦, and with micro-
support in UD0 resp. U1, such that B1 is elliptic at w and such that B0 is
elliptic on the time-T backward flowout of WF′B1 along generalized broken
bicharacteristics. Let U denote the forward time-evolution operator, taking
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wave equation solutions on [0, δ] to wave equation solutions on [T − δ, T ].
Theorem 12.1, together with time reversal symmetry, gives∑

|α|≤k′
‖Θ−r+1A

αB1U(u)‖2D̃([T−δ,T ])
<∞

=⇒
∑
|α|≤k

‖Θ−r+1−εA
αB0u‖2D̃([0,δ])

<∞,

with Θ· defined by (12.1). Thus, if we define Hilbert spaces

H0 =
{
u ∈ D̃([0, δ]) : �u = 0,

∑
|α|≤k

‖Θ−r+1−εA
αB0u‖2D̃([0,δ])

<∞
}

and

H1 =
{
u ∈ D̃([T − δ, T ]) : �u = 0,

∑
|α|≤k′

‖Θ−r+1A
αB1u‖2D̃([T−δ,T ])

<∞
}
,

we have U−1 : H1 → H0. Hence by unitarity of U with respect to the norm
on D̃, U : H∗0 → H∗1, where the dual spaces are taken with respect to energy
norm, i.e. the norm on D̃. Now

H∗0 =
{
u ∈ D̃([0, δ]) : �u = 0, u =

∑
|α|≤k

(Aα)∗D(B0)∗DΘ−r+1−0vα, vα ∈ D̃
}

and

H∗1 =
{
u ∈ D̃([T − δ, T ]) : �u = 0, u =

∑
|α|≤k′

(Aα)∗D(B1)∗DΘ−r+1vα, vα ∈ D̃
}

Thus since u satisfies the nonfocusing condition of degree k w.r.t. Hs for
t ∈ [0, δ] on UD0 , it lies in H∗0; hence U(u) ∈ H∗1, i.e. u also satisfies the
nonfocusing condition of degree k′ w.r.t. Hr for t ∈ [T − δ, T ] on U1. (Here
we have used Lemma 5.6 to see that lying in the range of (Aα)∗D yields
nonfocusing; recall that the D subscript means adjoint with respect to the
D inner product.) So microlocally near w and for t ∈ [T − δ, T ],

(13.1) u ∈
∑
|α|≤k′

Aα(Hr).

On the other hand, since WFu ∩ UG0 = ∅, Theorem 11.1 shows that there
exists β ∈ R such that microlocally near w and for t ∈ [T − δ, T ],

(13.2) Aαu ∈ Hβ ∀α

(The particular choice of β is dependent on the background regularity of the
solution.) We can interpolate (13.1) and (13.2) similarly to Lemma 12.2; the
only difference is that one has 〈η, ζ〉r〈ζ〉−k′ v̂ ∈ L2 rather than 〈η, ζ〉sv̂ ∈ L2,
with the notation of that lemma. This shows that near microlocally w, for
t ∈ [T − δ, T ], u ∈ Hr−0. Since r < s is arbitrary, this proves Theorem 1.3.

�
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14. Applications to Lagrangian data

An important class of examples of solutions satisfying the nonfocusing
condition is given by choosing as Cauchy data Lagrangian distributions in
X◦, with respect to Lagrangian manifolds transverse to the coisotropic sub-
manifold F obtained by flowout from the boundary. For the proof of the
proposition below it is useful to have the following lemma which puts the
coisotropic and Lagrangian manifolds into model form, and which seems to
be well-known although it is hard to find a published reference.

Lemma 14.1. Suppose that F is coisotropic of codimension k, L is La-
grangian, and F and L are transverse. Let ω denote the standard symplec-
tic form on T ∗Rn, and write Rn = Rn−k

y × Rk
z , with dual coordinates (η, ζ).

Then there is a local symplectomorphism mapping F , resp. L to {ζ = 0},
resp. {y = 0, z = 0} in (T ∗Rn, ω).

If in addition F and L are conic and the canonical one-form does not
vanish on TqF , with q ∈ F ∩L then there is a homogeneous symplectomor-
phism mapping a neighborhood of q into (T ∗Rn, ω), equipped with the stan-
dard (fiberwise) R+-action, such that F , resp. L are mapped into {ζ = 0},
resp. {y = 0, z = 0}.

Proof. By [9, Theorem 21.2.4] (and the subsequent remark), we may assume
that F is given by {ζ = 0} in (T ∗Rn, ω). As L is transverse to F , dζj ,
j = 1, . . . , k, restrict to be linearly independent on L at points in L ∩
F . Moreover, for q ∈ L ∩ F , we may assume that dηj(q), j = 1, . . . , n −
k, together with dζj(q), are linearly independent on L. Indeed, a linear
combination

∑
cj∂zj cannot be tangent to L at q, as it is the image of∑

cj dζj under the Hamilton map; for a Lagrangian submanifold the tangent
space is the image of the conormal bundle under the Hamilton map, and we
just established that

∑
cj dζj(q) is not an element of the conormal bundle

of L. By a symplectic linear transformation in T ∗Rn−k that switches the
roles of some components of dy and dη we can arrive at the stated situation.

Thus, L is locally a graph over {0} × (Rn)∗η,ζ , i.e. on L, y = Y (η, ζ),
z = Z(η, ζ). As L is Lagrangian with respect to ω =

∑
dηj∧dyj+

∑
dζj∧dzj ,

it follows that L is locally the graph of the differential of a function F :
(Rn)∗η,ζ → R, i.e. Y = dηF , Z = dζF . The map

(14.1) (y, z, η, ζ) 7→ (y − dηF, z − dζF, η, ζ)

is a local symplectomorphism, it preserves F = {ζ = 0}, and maps L to
{y = 0, z = 0} as desired.

For the conic version, one may apply [9, Theorem 21.2.4], so one can
assume that F is given by ζ = 0. We may assume that y(q) = 0; η(q) 6= 0
since q does not lie in the zero section. Now, the span of the ∂zj intersects
TqL trivially as above. Let V ∗ be the span of the

∑
cjdηj(q) which lie in

N∗qL, i.e. for which the image V under the Hamilton map
∑
cj∂yj ∈ TqL.

Taking W to be a complementary subspace to V in the span of the dyj , we
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see that functions with differentials in V plus functions with differentials in
W ∗, together with the ζj , give coordinates on L locally. Moreover, by the
conic hypothesis, W is at least one-dimensional. There is a homogeneous
symplectomorphism switching the roles of the variables in V and V ∗ (if V is
not already trivial); if η′′1 is away from 0, as one may assume, one can take
the map on V ⊕W ⊕ V ∗ ⊕W ∗ given by

(y′, y′′1 , η
′, η′′1) 7→ (− η

′

η′′1
, y′′1 +

y′ · η′

η′′1
, η′′1y

′, η′′1),

with the rest of the y′′ and η′′ as well as the z and ζ are unchanged under
the map. Note that the pullback of the differentials of the new η coordinates
is η′′1 dy

′
j + y′j dη

′′
1 and dη′′j , which have the same span as dy′j and dη′′j , hence

pull-back to be linearly independent in T ∗q L. Thus, one can arrange that L
is locally a graph over {0}× (Rn)∗η,ζ , which in addition is conic, so Y and Z
as above are homogeneous of degree zero. Then F may be arranged to be
homogeneous of degree 1 (we can take F =

∑
ηjYj +

∑
ζjZj—see [9, Proof

of Theorem 21.2.16]), so (14.1) is homogeneous, proving the lemma.
�

Proposition 14.2. Let p ∈ FI and let q ∈ FXI be its projection. Let u be a
solution to the wave equation with Cauchy data that is in D∞ near ∂X and
that in X◦ is given by (u,Dtu)�t=0= (u0, u1) with (u0, u1) ∈ (Is(L), Is−1(L))
where L is a Lagrangian intersecting FX transversely at ḞXq . Then u sat-
isfies the nonfocusing condition of degree (−s − n/4) + f/2−, microlocally
along ḞI,p.

Note that −s − n/4 − 0 is the a priori Sobolev regularity of the initial
data, hence the gain in this result is of f/2− 0 derivatives.

Proof. Without loss of generality, we may take u1 = 0 (if instead, u0 = 0
we simply consider the solution ∂tu). Decomposing by a partition of unity,
it suffices to assume that u0 has support in a small open set in X◦.

By the preceding lemma, there exists a local symplectomorphism Φ that
reduces this geometric configuration to a normal form: Φ maps FX to the
set {ζ = 0} and L to N∗{p} with p ∈ X◦. Quantize Φ to an FIO T of order
0, with parametrix S, so that ST −I, TS−I ∈ Ψ−∞(M◦). Thus if Y ∈ Am,

Tu = (TY S)Tv =⇒ u = Y v + r, r ∈ C∞(M◦),

and this would give the desired conclusion. As we are working locally in
M◦, T and S preserve the scale of spaces Dr; thus it now suffices to show
that there exists w ∈ D−s−n/4+f/2−0 such that (T (1 + Y )mS)w = Tu, with
Y ∈ A2. By Egorov’s theorem, TY S is a pseudodifferential operator of order
2 whose symbol vanishes quadratically on {ζ = 0}; it thus suffices to take
TY S = ∆z, where ∆z is the (indeed, any) Laplacian in the fibers.

Meanwhile, Tu ∈ Is(N∗{p}). We thus simply drop T and take u ∈
Is(N∗{p}), FX = {ζ = 0}, Y = ∆z. We lump together the base vari-
able (x, y) to a single set of variables ỹ, and shift our variables so that
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ỹ(p) = z(p) = 0. Thus, in our transformed coordinates we have

(1 + Y )−Nu =
∫
ei(ỹ·η+z′·ζ′+(z−z′)·ζ)a(z, ζ)b(x, ỹ, z′, ξ, η, ζ ′) dz′ dξ dη dζ dζ ′,

where a, the symbol of (1 +∆z)−N , is a symbol of order −2N, and where b
is a symbol of order s− n/4.

For N sufficiently large, the integral in ζ is absolutely convergent, taking
values in Lagrangian distributions of order s+ f/4 in the ỹ variables, hence

(1 + Y )−Nu ∈ C(z;H−s−n/4+f/2−0
loc ) ⊂ H−s−n/4+f/2−0

loc (X◦).

Thus u ∈ D−s−n/4+f/2−0 + Y (D−s−n/4+f/2−0) + · · · + Y N (D−s−n/4+f/2−0).
�

Appendix: Iterative regularity under modules

In this section we adapt the result of [7] and [8] to the present setting.
The key new ingredient is that the set of radial points is not discrete, so we
cannot be quite as specific with microlocalization as in these papers; we use
the construction of Section 11. The notation below is that of Definition 4.2
and Lemma 4.4; additionally, we use the ‘reduced’ multiindex notation,
dropping AN , which is an elliptic multiple of � and thus treated separately,
and set

(A.2) Aα =
N−1∏
i=1

Aαi
i , αi ∈ N0, 1 ≤ i ≤ N − 1.

Also let Wm,l ∈ Ψm,l
e (M) with σ(Wm,l) = |τ |mxl, and let

Aα,m,l = Wm,lAα.

The justification for treating AN separately is:

Lemma A.3. (See [7, Corollary 6.4].) Suppose M is a test module (see [7,
Definition 6.1]), and AN is a generator with principal symbol aN an elliptic
multiple of �. Suppose u ∈ C−∞ satisfies �u = 0 and u is coisotropic of
order k − 1 on O relative to Hm,l

e (M). Then for O′ ⊂ O, u is coisotropic
of order k on O′ relative to Hm,l

e (M) if for each multiindex α, with |α| = k,

αN = 0, there exists Qα ∈ Ψ0,0
e (M), elliptic on O′ such that QαAα,m,lu ∈

L2(M).

Proof. By Lemma 4.5 we only need to show that under our hypotheses,
for α with αN 6= 0, there exists Qα ∈ Ψ0,0

e (M) elliptic on O′ such that
QαAα,m,lu ∈ L2(M). But such Aα,m,l is of the form QαAβ,m,lANu with
βj = αj for j 6= N , βN = αN−1, and AN = W−1,2�+B, with B ∈ Ψ0,0

e (M),
W−1,2 ∈ Ψ−1,2

e (M). By the hypotheses, �u = 0 while for any Qα ∈ Ψ0,0
e (M)

with WFe
′(Qα) ⊂ O, QαAβ,m,lBu ∈ L2(M) since u is coisotropic of order

k − 1 on O relative to Hm,l
e (M) and QαAβ,m,lB ∈ Ak−1. �

Thus, below α, β will stand for reduced multiindices, with αN = 0, βN = 0.



68 RICHARD MELROSE, ANDRÁS VASY, AND JARED WUNSCH

Lemma A.4. (Special case of [7, Lemma 6.5] adopted to the present setting.)
Suppose Q ∈ Ψ0,0

e (M), and let C0 and Cij be given by (4.7), resp. (4.5).
Then, assuming (4.5), and using the notation of (A.2), we have

∑
|α|=k

i[A∗α,m,lQ
∗QAα,m,l,�]

=
∑

|α|,|β|=k

A∗α,m+1/2,l−1Q
∗C ′αβQAβ,m+1/2,l−1

+
∑
|α|=k

(
A∗α,m+1/2,l−1Q

∗Eα,m+1/2,l−1 + E∗α,m+1/2,l−1QAα,m+1/2,l−1

)
+
∑
|α|=k

A∗α,m,li[Q
∗Q,�]Aα,m,l,

(A.3)

where

Eα,m,l = Wm,lEα, Eα ∈ Ak−1 +Ak−1AN , WFe
′(Eα) ⊂WFe

′(Q),

and for all α, β,

(A.4) C ′αβ ∈ Ψ0,0
e (M), σ(C ′αβ)|Ḟ = −(m+ l)ξ̂δαβ,

with δ denoting the Kronecker delta function.

Remark A.5. The first term on the right hand side of (A.3) is the principal
term in terms of A order; both Aα,m,l and Aβ,m,l have A order k. Moreover,
(A.4) states that it has non-negative principal symbol near ∂Ḟ . The terms
involving Eα,m,l have A order k − 1, or include a factor of AN , so they can
be treated as error terms. On the other hand, one does need to arrange that
i[Q∗Q,�] is positive, as discussed below.

Proof. The commutator with � distributes over the factors in Aα,m,l =
Wm,lA

α1
1 . . . A

αN−1

N−1 . Using (4.5) for each individual commutator i[Ai,�],
(4.7) for Wm,l, and rearranging the factors (with error, i.e. commutator,
terms arising from rearrangement included in one of the Eβ,m,l terms asM
is a Lie algebra) gives the conclusion. See [7, Proof of Lemma 6.5] for a
more leisurely discussion. �

We now consider the operators from Lemma A.4 C ′ = (C ′αβ), |α| = k =
|β|, as a matrix of operators, or rather as an operator on a trivial vector
bundle with fiber R|Mk| over a neighborhood of Ḟ , where |Mk| denotes the
number of elements of the set Mk of multiindices α with |α| = k. Let c′ =
σ(C ′)|∂Ḟ .

Then c′ = σ(C ′)|∂Ḟ is positive or negative definite with the sign of
σ(C0)|∂Ḟ . The same is therefore true microlocally near ∂Ḟ . For the sake
of definiteness, suppose that σ(C0)∂Ḟ > 0. Then there exist a neighborhood
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Ok of ∂Ḟ , depending on |α| = k, and B ∈ Ψ0,0
e (M), G ∈ Ψ−1,0

e (M), with
σ(B) > 0 on Ok such that

(A.5) Q ∈ Ψm,l
e (M), WFe(Q) ⊂ Ok ⇒ Q∗C ′Q = Q∗(B∗B +G)Q.

With Ok as above, we assume that WFe
′(Q) ⊂ Ok,

i[Q∗Q,�] =
∑

B̃∗j B̃j + G̃+ F̃ , where

B̃j ∈ Ψ1/2,−1
e (O), F̃ ∈ Ψ1,−2

e (O), G̃ ∈ Ψ0,−2
e (O).

(A.6)

In the actual application to solutions u of the wave equation, stated below,
F̃ will be such that u is a priori regular on WFe

′(F̃ ), namely it is coisotropic
of the order that we wish to propagate.

In fact, due to the two step nature of the proof below, we also need another
microlocalizer Q′ ∈ Ψ0,0

e (M) satisfying analogous assumptions with B̃j , etc.,
replaced by B̃′j , etc.,

(A.7) i[(Q′)∗Q′,�] =
∑

(B̃′j)
∗B̃′j + G̃′ + F̃ ′,

with properties analogous to (A.6), except that WFe
′(Q′) ⊂ O′k, etc., where

O′k is contained in the elliptic set of Q.

Proposition A.6. (Cf. [8, Appendix]; modified version of [7, Proposi-
tion 6.7].) Suppose that ξ̂ < 0 on Ok, u is coisotropic of order k − 1 on
Ok relative to Hm,l

e (M), m > l + f
2 , WFe (�u) ∩ Ok = ∅ and that there

exist Q,Q′ ∈ Ψ0,0
e (Ok) that satisfies (A.6)-(A.7) with u coisotropic of order

k on a neighborhood of WFe
′(F̃ ) ∪WFe

′(F̃ ′) relative to Hm,l
e (M). Then u

is coisotropic of order k on O′′ relative to Hm,l
e (M) where O′′ is the elliptic

set of Q′.
The same conclusion holds if ξ̂ > 0 on Ok and m < l + f

2 .

Proof. For the reader’s convenience, we sketch the argument. We first prove
a weaker statement, namely that u is coisotropic of order k on O′ relative
to H

m−1/2,l
e (M) where O′ is the elliptic set of Q. Then we strengthen the

result to complete the proof of the proposition.
First consider u coisotropic of order k on Ok relative to Hm,l

e (M). Set

r = m− 1 and s = −l − f − 1
2

.
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Let Au′ = (QAα,r+1/2,s−1u
′)|α|=k, regarded as a column vector of length

|Mk|. Now consider

(A.8)
∑
|α|=k

〈u′, i[A∗α,r,sQ∗QAα,r,s,�]u′〉 = ‖BAu′‖2 + 〈Au′, GAu′〉+

∑
|α|=k

(
〈QAα,r+1/2,s−1u

′, Eα,r+1/2,s−1u
′〉+ 〈Eα,r+1/2,s−1u

′, QAα,r+1/2,s−1u
′〉
)

+
∑
|α|=k

(
‖B̃Aα,r,su′‖2 + 〈Aα,r,su′, F̃Aα,r,su′〉+ 〈Aα,r,su′, G̃Aα,r,su′〉

)
.

Dropping the term involving B̃ and applying the Cauchy-Schwarz inequality
to the terms with Eα,r+1/2,s−1, we have for any ε > 0,

‖BAu′‖2 ≤
∑
α

∣∣∣〈u′, i[A∗α,r,sQ∗QAα,r,s,�]u′〉
∣∣∣+ ε‖Au′‖2

+ ε−1
∑
α

‖Eα,r+1/2,s−1u
′‖2 + |〈Au′, GAu′〉|

+
∑
|α|=k

(
|〈Aα,r,su′, F̃Aα,r,su′〉|+ |〈Aα,r,su′, G̃Aα,r,su′〉|

)
.

Choosing ε > 0 small enough, the second term on the right can be absorbed
in the left hand side (since B is strictly positive), and we get

1
2
‖BAu′‖2 ≤

∑
α

|〈u′, i[A∗α,r,sQ∗QAα,r,s,�]u′〉|

+ ε−1
∑
α

‖Eα,r+1/2,s−1u
′‖2 + |〈Au′, GAu′〉|

+
∑
|α|=k

|〈Aα,r,su′, G̃Aα,r,su′〉|+
∑
|α|=k

|〈Aα,r,su′, F̃Aα,r,su′〉|

(A.9)

Now, all but the first and last terms on the right hand side are bounded by
the square of a coisotropic order k − 1 norm of u′ relative to Hm,l

e (M).
For the Eα,r+1/2,s−1 term this is immediate, for r + 1/2 = m− 1/2 ≤ m,

s − 1 = −l − f+1
2 , and Eα,r+1/2,s−1 = Wr+1/2,s−1Eα, Eα ∈ Ak−1, and as

the pairing is relative to the Riemannian density |dg|, while the weighting of
Hm,l

e (M) is relative to a smooth non-degenerate b-density, ‖Eα,r+1/2,s−1u
′‖

being bounded by a coisotropic order k − 1 norm of u relative to Hm,l
e (M)

requires that m− (r+ 1/2) ≥ 0, l+ f+1
2 + s ≥ 0 (and these are 1/2, resp. 0).

For the G and G̃ terms, this can be seen by factoring out some Aj from
Aα,r+1/2,s−1 = Wr+1/2,s−1Aα, i.e. writing it as Aα,r+1/2,s−1 = Aβ,r+1/2,s−1Aj
with |β| = |α| − 1 = k − 1, and regarding Aj simply as an operator in
Ψ1,0

e (M). As G ∈ Ψ−1,0
e (M), the claimed boundedness requires 2m− (−1 +

2 + 2(r + 1/2)) ≥ 0, 2l+ (f + 1) + 2(s− 1) ≥ 0, and both are in fact 0. For
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G̃ ∈ Ψ0,−2
e (M), the claimed boundedness requires (now we have factors of

Aα,r,s) 2m − (0 + 2 + 2r) ≥ 0 and 2l + (f + 1) + (−2 + 2s) ≥ 0, and again
both of these are 0.

The first term on the right hand side vanishes if �u′ = 0, while the last
term is bounded by the square of a coisotropic order k norm of u′ relative
to Hm,l

e (M) in a neighborhood of WFe
′(F̃ ).

We apply this with u′ replaced by uδ = (1 + δ|Dt|)−1u where now u is
coisotropic of order k − 1 relative to Hm,l

e and still solves �u = 0. Then
letting δ → 0, using the strong convergence of (1 + δ|Dt|)−1 to the identity,
and the assumption that u is coisotropic of order k relative to Hm,l

e (M)
in a neighborhood of WFe

′(F̃ ), shows that BAu ∈ L2(M), hence that u
is coisotropic of order k relative to H

m−1/2,l
e (M) on the elliptic set of B,

finishing the proof of the first part.
For the second part, we carry through the same argument, but replacing

Q by Q′, B̃ by B̃′, etc., and taking

r = m− 1
2
, s = −l − f − 1

2
.

The claim is that all but the first and last terms on the right hand side
of (A.9) (with the changes just mentioned) are bounded by the square of
either a coisotropic norm of order k − 1 of u′ relative to Hm,l

e (M) (namely,
the Eα,r+1/2,s−1 term) or a coisotropic norm of order k of u′ relative to

H
m−1/2,l
e (M) (the G and G̃′ terms).
For the Eα,r+1/2,s−1 term, as above, the claimed boundedness requires

m− (r + 1/2) ≥ 0, l + f+1
2 + s ≥ 0, and now these both vanish.

For theG and G̃′ terms the conclusion is also immediate, without factoring
out an Aj this time. Indeed, as G ∈ Ψ−1,0

e (M), the claimed boundedness
requires 2(m−1/2)−(−1+2(r+1/2)) ≥ 0, 2l+(f+1)+2(s−1) ≥ 0, and both
are in fact 0. For G̃ ∈ Ψ0,−2

e (M), the claimed boundedness requires (now we
have factors of Aα,r,s) 2(m−1/2)−(0+2r) ≥ 0 and 2l+(f+1)+(−2+2s) ≥ 0,
and again both of these are 0.

The regularization argument as above proves that u is coisotropic of order
k relative to Hm,l

e (M) on the elliptic set of B, finishing the proof of the
proposition. �

References

[1] V. A. Borovikov, The Green’s function for a diffraction problem on a polyhedral angle.
Dokl. Akad. Nauk SSSR 151 1963 251–254.

[2] Jeff Cheeger and Michael Taylor, On the diffraction of waves by conical singularities.
I, Comm. Pure Appl. Math. 35 (1982), no. 3, 275–331, MR84h:35091a.

[3] , On the diffraction of waves by conical singularities. II, Comm. Pure Appl.
Math. 35 (1982), no. 4, 487–529, MR84h:35091b.

[4] F. G. Friedlander, Sound pulses, Cambridge University Press, New York, 1958. MR 20
#3703



72 RICHARD MELROSE, ANDRÁS VASY, AND JARED WUNSCH
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