
ASYMPTOTICS OF SOLUTIONS OF THE WAVE EQUATION ON

DE SITTER-SCHWARZSCHILD SPACE
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Abstract. Solutions to the wave equation on de Sitter-Schwarzschild space
with smooth initial data on a Cauchy surface are shown to decay exponentially
to a constant at temporal in�nity, with corresponding uniform decay on the
appropriately compacti�ed space.

1. Introduction

In this paper we describe the asymptotics of solutions to the wave equation on
de Sitter-Schwarzschild space. The static model for the latter is M = Rt � X,
X = (rbh; rdS)r � S2! with the Lorentzian metric

(1.1) g = �dt2 � ��1 dr2 � r2 d!2;

where

(1.2) � = 1� 2m

r
� �r2

3

with � and m suitable positive constants, 0 < 9m2� < 1; rbh; rdS the two positive
roots of � and d!2 the standard metric on S2. We also consider the compacti�cation
of X to

�X = [rbh; rdS]r � S2!:
Then � is a de�ning function for @ �X since it vanishes simply at rbh; rdS, i.e. 2� =
d�
dr 6= 0 at r = rbh; rdS. Moreover, in what follows we will sometimes consider

(1.3) � = �
1
2

as a boundary de�ning function for a di�erent compacti�cation of X: This amounts
to changing the C1 structure of �X by adjoining � as a smooth function. We denote
the new manifold by X 1

2
:

The d'Alembertian with respect to (1.1) is

� = ��2(D2
t � �2r�2Dr(r

2�2Dr)� �2r�2�!);(1.4)

where �! is the Laplacian on S2: We shall consider solutions to �u = 0 on M:
Regarding space-time as a product, up to the conformal factor �2, is in fact

misleading in several ways { in particular, solutions to the wave equation do not have
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simple asymptotic behavior on this space. Starting from the stationary description
of the metric, it is natural to �rst compactify the time line exponentially to an
interval [0; 1]T : This can be done using a di�eomorphism T : R ! (0; 1) with
derivative T 0 < 0: Set

(1.5) T+ = T�;+ = e�2�t in t > C;

with � to be determined and let

(1.6) T = T+ in t > C:

Similarly set

(1.7) T� = T�;� = e2�t; T = 1� T� in t < �C:
Near in�nity T depends on the free parameter �: The boundary hypersurface T+ = 0
(i.e. T = 0) in

(1.8) [0; 1]T � �X

is called here the future temporal face, T� = 0 the past temporal face, while r = rbh
and r = rdS are the black hole, resp. de Sitter, in�nity, or together spatial in�nity.

In fact, it turns out that we need to use di�erent values of � at the two ends, �bh
and �dS. This is discussed in more detail in the next section. There are product
decompositions near these boundaries

[0; 1]T � [rbh; rbh + �)� S2; [0; 1]T � (rdS � �; rdS]� S2:
If � is so large that these overlap, the transition function is not smooth but rather
is given by taking positive powers of the de�ning function of the future temporal
face, so the resulting space should really be thought of having a polyhomogeneous
conormal (but not smooth) structure in the sense of di�erentiability up to the
temporal faces. In particular, there is no globally preferred boundary de�ning
function for the temporal face, rather such a function is only determined up to
positive powers and multiplication by positive factors. Thus, there is no fully
natural `unit' of decay but we consider powers of e�t, resp. et, in a neighborhood
of the future and past temporal faces, respectively.

It turns out that there are two resolutions of this compacti�ed space which play
a useful role in describing asymptotics. The �rst arises by blowing up the corners

f0g � frbhg � S2; f0g � frdSg � S2; f1g � frbhg � S2; f1g � frdSg � S2;
where the blow-up is understood to be the standard spherical blow-up when locally
the future temporal face is de�ned by T�dS;+, resp. T�bh;+ at the de Sitter and
black hole ends. The resulting space is denoted �M: The lift of the temporal and
spatial faces retain their names, while the new front faces are called the scattering
faces. This is closely related to to the Penrose compacti�cation, where however the
temporal faces are compressed.

Thus, a neighborhood of the lift of f0g � frbhg � S2 is di�eomorphic to

(1.9) [0; �)� � [rbh; rbh + �)� S2!; � = �bh;+ = T�bh;+=�:

Similarly, a neighborhood of f0g � frdSg � S2 is di�eomorphic to

(1.10) [0; �)� � (rdS � �; rdS]� S2!; � = �dS;+ = T�dS;+=�:
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If � > 0 is large enough, these cover a neighborhood of the future temporal face
tf+, given by the lift of T = 0. Thus a neighborhood of the interior of tf+, is
polyhomogeneous-di�eomorphic to an open subset of

[0; �)x � (rbh; rdS)� S2!;
x = �

1=(2�bh;+)
bh;+ for r near rbh; x = �

1=(2�dS;+)
dS;+ for r near rdS;

(1.11)

where we let the preferred de�ning function (up to taking positive multiples) of tf+

be x = e�t in the interior of tf+, hence x = �
1=(2�bh;+)
bh;+ at the black hole boundary

of tf+. This means, in particular, that a neighborhood of tf+ is polyhomogeneous
di�eomorphic to

(1.12) [0; �)x � [rbh; rdS]� S2!:
If � is replaced by � as the de�ning function of the boundary of X, i.e. �X and

T+ are replaced by �X1=2 and T
1=2
+ (and analogously in the past) the resulting space

is denoted �M1=2: Thus �M1=2 is the square-root blow up of �M; where the square
root of the de�ning function of every boundary hypersurface has been appended to
the smooth structure. Here tf+ is naturally di�eomorphic to �X in �M; and to �X1=2

in �M1=2: Both �M and �M1=2 have polyhomogeneous conormal structures at tf+ and
tf�; we let the preferred de�ning function (up to taking positive multiples) of tf+
be x = e�t in the interior of tf+, hence x = �1=(2�) at @tf+.
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Figure 1. On the left, the space-time product compacti�cation
of de Sitter-Schwarzschild space is shown (ignoring the product
with S2), with the time and space coordinate lines indicated by
thin lines. On the right, �M is shown, with the time and space
coordinates indicated by thin lines. These are no longer valid
coordinates on �M . Valid coordinates near the top left corner are
� and �.

Solutions to the wave equation, when lifted to this space have simpler asymptotics
than on the product compacti�cation, (1.8). The �rst indication of this is that g
extends to be C1 and non-degenerate, up to the scattering faces, � = 0; away
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from spatial in�nity and uniformly up to the temporal face; the scattering faces
are characteristic with respect to the metric. We can thus extend �M across � = 0
to a manifold ~M; by allowing � to take negative values; then the scattering face
becomes an interior characteristic hypersurface.

A further indication of the utility of this space can be seen from our main result
which is stated in terms of

(1.13) Am
tf+(

�M):

This consists of those functions which are C1 on �M away from tf+; and are conormal
at tf+; including smoothness up to the boundary of tf+: Such spaces are well-
de�ned, even though the smooth structure on �M is not; the conormal structure
su�ces. Thus, the elements of (1.13), are �xed by the condition that for any k and
smooth vector �elds V1; : : : ; Vk on �M which are tangent to tf+;

V1 : : : Vkv 2 xmL2b;tf+(
�M);

where L2b;tf+(
�M) is the L2-space with respect a density �b such that x�b is smooth

and strictly positive on �M . Such a density is well-de�ned up to a strictly positive
polyhomogeneous multiple even under the operation of replacing x by a positive
power, although the weight xm is not. Thus, for all m 2 R;

xm+�C1( �M) � Am
tf+(

�M) � xmL1( �M); � > 0:

The main result on wave propagation is:

Theorem 1.1. Suppose u 2 C1( �M) satis�es �u = 0 for x 2 (0; 1); then there
exists a constant c and � > 0 such that

u� c 2 A�
tf+(

�M) = x�A0
tf+(

�M):

Thus, u has an asymptotic limit, which happens to be a constant, at tf+;
uniformly on �X:

While we have concerned ourselves with the behavior of the metric at the corner,
in regions where � < C (i.e. near temporal in�nity), it is worthwhile considering
what happens where � > C, i.e. at spatial in�nity. As we shall see, spatial in�nity
can be blown down, i.e. there is a manifold M and a C1 map �, � : �M ! M such
that � is a di�eomorphism away from spatial in�nity, and such that g lifts to a C1
Lorentz b-metric on M; with tangent (i.e. b-) behavior at the temporal face, smooth
at the other faces, with respect to which the non-temporal faces are characteristic.
One valid coordinate system in a neighborhood of the image of a neighborhood of
the black hole end of spatial in�nity, disjoint from temporal in�nity, is given by
exponentiated versions of Eddington-Finkelstein coordinates. In our notation, this
corresponds to

sbh;+ = �=T
1=2
�bh;+

= �
�1=2
bh;+ ; sbh;� = �=T

1=2
�bh;�

= �T
1=2
�bh;+

= ��
1=2
bh;+; !;

where as usual ! denotes coordinates on S2. Here

Fbh;+ = fsbh;� = 0g
is the characteristic surface given by � = 0 in T > 0 (i.e. the front face of the blow
up of the corner), and

Fbh;� = fsbh;+ = 0g
is its negative time analogue. The change of coordinates (�bh;+; �) 7! (sbh;+; sbh;�)
is a di�eomorphism from (0;1) � (0; �) onto its image, i.e. these coordinates are
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indeed compatible. As we show in the next section, the metric is C1 and non-
degenerate onM, and the boundary faces sbh;+ = 0 and sbh;� = 0 are characteristic.

We can again extend M to eM, which has only two boundary faces (the two temporal
ones) by allowing sbh;�, and analogously sdS;�, to take on negative values. Thus,

M has six boundary faces,

tf+; tf�;Fbh;�;FdS;�;
called the future and past temporal faces, and the future (+) and past (�) black
hole and de Sitter scattering faces.
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Figure 2. On the left, �M is shown, while on the right its blow-
down M. The time and space coordinate lines corresponding to the
product decomposition are indicated by thin lines in the interior.
The temporal boundary hypersurfaces of �M are continued by thin
lines, as are the characteristic surfaces Fbh;� and FdS;�, to show
that the Lorentz metric extends smoothly across Fbh;� and FdS;�
(but not across the temporal face!). The extended spaces are

denoted by ~M and eM. Valid coordinates near Fbh;+ \ Fbh;� are
(apart from the spherical coordinates) sbh;+ and sbh;�, as shown.

The following propagation result follows directly from the properties of this blow-
down.

Proposition 1.2. If u satis�es �u = 0 and has C1 Cauchy data on a space-like

Cauchy surface � � eM \ ft � 0g; for example � = ft = 0g (i.e. sbh;+ = sbh;�),

then u 2 C1(M
�
):

Combining Proposition 1.2 and Theorem 1.1, leads to the main result of this
paper:

Theorem 1.3. If u satis�es �u = 0 and has C1 Cauchy data on a space-like

Cauchy surface � � eM\ ft � 0g then there exists a constant c and � > 0 such that

(1.14) u� c 2 A�
tf+(M) = x�A0

tf+(M)

near the future temporal face, tf+:
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Remark 1.4. Our methods extend further, for example to Cauchy data at t = 0
which are conormal at @ �X; of growth smbh;+, m > �2, at the boundary. Standard
hyperbolic propagation gives the same behavior at Fbh;+ and FdS;+ in � < C;
and then the resolvent estimates for the `spatial Laplacian' �X (described below)
apply to yield the same asymptotic term but with convergence in the appropriate
conormal space, including conormality with respect to Fbh;+ and FdS;+:
Remark 1.5. Dafermos and Rodnianski [4] have proved, by rather di�erent methods,
a similar result with an arbitrary logarithmic decay rate, i.e. an analogue of

u� c 2 (log �)�NA0
tf+(M)

for every N: In terms of our approach, such logarithmic convergence follows from
polynomial bounds on the resolvent of �X at the real axis, rather than in a strip for
the analytic continuation; such estimates are much easier to obtain, as is explained
below.

As already indicated, by looking at the appropriate compacti�cation, one only
needs to study the asymptotics near tf+ in �M (or equivalently, M). We do this by
taking the Mellin transform of the wave equation and using high-energy resolvent
estimates for a `Laplacian' �X on �X. A conjugated version of this operator is
asymptotically hyperbolic, hence �ts into the framework of Mazzeo and the �rst
author [7], which in particular shows the existence of an analytic continuation for
the resolvent

R(�) = (�X � �2)�1; Im� < 0:

Here we also need high-energy estimates for R(�):
The operator �X has been studied by the second author and Zworski in [9], where

it is shown (using the spherical symmetry to reduce to a one-dimensional problem
and applying complex scaling) that the resolvent admits an analytic continuation,
from the `physical half plane', with only one pole, at 0; in Im� < �; for � su�ciently
small. Bony and Hafner in [1] extend and re�ne this result to derive polynomial
bounds on the cuto� resolvent, �R(�)�, � 2 C1c (X), as j�j ! 1 in the strip
j Im�j < �: This implies that, for initial data in C1c (X); the local energy, i.e. the
energy in a �xed compact set in space, decays to the energy corresponding to the
0-resonance. In our terminology this amounts to studying the behavior of the
solution near a compact subset of the interior of tf+: Our extension of their result
is both to allow more general initial data, not necessarily of compact support, and
to study the asymptotics uniformly up to the boundary at temporal in�nity. This
requires resolvent estimates on slightly weighted L2-spaces, which were obtained by
the authors in [8] together with the use of the geometric compacti�cation �M (or
M): For this to succeed, it is essential that the resolvent only be applied to `errors'
which intersect @M in the interior of Fbh;+ and FdS;+. This turns out to be a major
gain since the analytic continuation of the resolvent (even arbitrarily close to the
real axis) cannot be applied directly to the initial data. Thus essential use is made
of the fact that once the solution has been propagated to the scattering faces, the
error terms have more decay.

It is then relatively clear, as remarked above, that if one only knew polynomial
growth estimates for the limiting resolvent at the real axis (rather than in a strip),
one could still obtain the same asymptotics, but with error that is only super-
logarithmically decaying. This observation may be of use in other settings where
such polynomial bounds are relatively easy to obtain from estimates for the cuto�
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resolvent, as in [1], or analogous semiclassical propagation estimates at the trapped
set, by pasting with well-known high energy resolvent estimates localized near
in�nity. This has been studied particularly by Cardoso and Vodev [3], using the
method of Bruneau and Petkov [2, Section 3].

This paper is structured as follows. In Section 2 both the compacti�cations and
the underlying geometry are discussed in more detail. The `spatial Laplacian' and
relevant resolvent estimates are recalled in Section 3 and in Section 4 the main
result is proved using the Mellin transform.

2. Geometry

In this section the various compacti�cations of de Sitter-Schwarzschild space are
studied after an initial examination of the simpler case of de Sitter space.

2.1. De Sitter space. We start with the extreme case of de Sitter space, corresponding
to m = 0 in (1.1) and (1.2), to see what the `correct' compacti�cation of M
should be. However, rather than starting from the static model, consider this
as a Lorentzian symmetric space. De Sitter space is given by the hyperboloid

z21 + : : :+ z2n = z2n+1 + 1 in Rn+1

equipped with the pull-back of the Minkowski metric

dz2n+1 � dz21 � : : :� dz2n:

Introducing polar coordinates (R; �) in (z1; : : : ; zn), so

R =
q
z21 + : : :+ z2n =

q
1 + z2n+1; � = R�1(z1; : : : ; zn) 2 Sn�1; � = zn+1;

the hyperboloid can be identi�ed with R� � Sn�1� with the Lorentzian metric

d�2

�2 + 1
� (�2 + 1) d�2;

where d�2 is the standard Riemannian metric on the sphere. For � > 1; set x = ��1,
so the metric becomes

(1 + x2)�1 dx2 � (1 + x2) d�2

x2
:

An analogous formula holds for � < �1, so compactifying the real line to an interval
[0; 1]T , with T = x = ��1 for x < 1

4 (i.e. � > 4), say, and T = 1 � j� j�1, � < �4,
gives a compacti�cation, bM; of de Sitter space on which the metric is conformal to
a non-degenerate Lorentz metric. There is natural generalization, to asymptotically

de Sitter-like spaces bM, which are di�eomorphic to compacti�cations [0; 1]T � Y

of R� � Y , where Y is a compact manifold without boundary, and bM is equipped
with a Lorentz metric on its interior which is conformal to a Lorentz metric smooth
up to the boundary. These space-times are Lorentzian analogues of the much-
studied conformally compact (Riemannian) spaces. On this class of space-times the
solutions of the Klein-Gordon equation were analyzed by the third author in [10],
and were shown to have simple asymptotics analogous to those for eigenfunctions
on conformally compact manifolds.
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Theorem. ([10, Theorem 1.1.]) Set s�(�) =
n�1
2 �

q
(n�1)2

4 � �: If s+(�)�s�(�) =2
N; any solution u of the Cauchy problem for ��� with C1 initial data at � = 0 is
of the form

u = xs+(�)v+ + xs�(�)v�; v� 2 C1(bM):
If s+(�)�s�(�) is an integer, the same conclusion holds if v� 2 C1(bM) is replaced
by v� = C1(bM) + xs+(�)�s�(�) log x C1(bM).
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Figure 3. On the left, the compacti�cation of de Sitter space with
the backward light cone from q+ = (1; 0; 0; 0) and forward light
cone from q� = (�1; 0; 0; 0) are shown. 
+, resp. 
�, denotes the
intersection of these light cones with t > 0, resp. t < 0. On the
right, the blow up of de Sitter space at q+ is shown. The interior
of the light cone inside the front face �q+ can be identi�ed with
the spatial part of the static model of de Sitter space. The spatial
and temporal coordinate lines for the static model are also shown.

The simple structure of the de Sitter metric (and to some extent the asymptotically

de Sitter-like metrics) can be hidden by blowing up certain submanifolds of bM. In
particular, the static model of de Sitter space arises by singling out a point on
S
n�1
� , e.g. q0 = (1; 0; : : : ; 0) 2 Sn�1 � Rn. Note that (�2; : : : ; �n) 2 Rn�1 are local

coordinates on Sn�1 near q0. Now consider the intersection of the backward light
cone from q0 considered as a point q+ at future in�nity, i.e. where T = 0, and
the forward light cone from q0 considered as a point q� at past in�nity, i.e. where
T = 1. These intersect the equator T = 1=2 (here � = 0) in the same set, and

together form a `diamond', 
̂, with a conic singularity at q+ and q�: Explicitly 
̂
is given by z22 + : : : + z2n � 1 inside the hyperboloid. If q+, q� are blown up, as

well as the corner @
 \ f� = 0g, i.e. where the light cones intersect � = 0 in 
̂,
we obtain a manifold �M , which can be blown down to (i.e. is a blow up of) the

space-time product [0; 1] � Bn�1, with Bn�1 = fZ 2 Rn�1 : jZj < 1g on which
the Lorentz metric has a time-translation invariant warped product form. Namely,
�rst considering the interior 
 of 
̂ we introduce the global (in 
) standard static
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coordinates (t; Z), given by (with the expressions involving x valid near T = 0)

B
n�1 3 Z = (z2; : : : ; zn) = x�1

p
1 + x2(�2; : : : ; �n);

sinh t =
zn+1q

z21 � z2n+1

= (x2 � (1 + x2)(�22 + : : :+ �2n))
�1=2;

It is convenient to rewrite these as well in terms of polar coordinates in Z (valid
away from Z = 0):

r =
q
z22 + : : :+ z2n =

q
1 + z2n+1 � z21 = x�1

p
1 + x2

q
�22 + : : :+ �2n;

sinh t =
zn+1q

z21 � z2n+1

= (x2 � (1 + x2)(�22 + : : :+ �2n))
�1=2 = x�1(1� r2)�1=2;

! = r�1(z2; : : : ; zn) = (�22 + : : :+ �2n)
�1=2(�2; : : : ; �n) 2 Sn�2:

In these coordinates the metric becomes

(1� r2) dt2 � (1� r2)�1dr2 � r2 d!2;

which is a special case of the de Sitter-Schwarzschild metrics withm = 0 and � = 3.

Lemma 2.1. The lift of 
̂ to the blow up [bM; q+; q�] is a C1 manifold with corners,
�
. Moreover, [�
; @
\ f� = 0g] is naturally di�eomorphic to the C1 manifold with

corners obtained from [[0; 1]�Bn�1; f0g�@Bn�1; f1g�@Bn�1] by adding the square

root of the de�ning function of the lift of f0g � Bn�1 and f1g � Bn�1 to the C1
structure.

Remark 2.2. This lemma states that from the stationary point of view, the `right'
compacti�cation near the top face arises by blowing up the corner @R � @Bn�1,
although the resulting space is actually more complicated than needed, since the
original boundary hypersurfaces of the stationary space can be blown down to

obtain a subset of bM.
The fact that this approach gives � = x2 as the de�ning function of the temporal

face, rather than x (hence necessitating adding the square root of � to the smooth

structure), corresponds to the fact that, in the sense of Guillarmou [5], bM is actually
even.

Proof. Coordinates on the blow up of bM near the lift of q+ are given by

x; �j =

p
1 + x2

x
�j ; j = 2; : : : ; n;

these are all bounded in the region of validity of the coordinates, with the light
cone given by

Pn
j=2�

2
j = 1 (which is why the factor

p
1 + x2 was introduced), so

the lift �
 of 
̂ is
Pn

j=2�
2
j � 1. As

Pn
j=2�

2
j � 1 has a non-vanishing di�erential

where it vanishes, this shows that �
 is a C1 manifold with corners. Near the light
cone, @ �
 one can introduce polar coordinates in �, and use

x; r = (

NX
j=2

�2
j )
1=2; (!2; : : : ; !n) = r�1(�2; : : : ;�n) 2 Sn�1

as local coordinates. On the other hand, blowing up the corner of [0; 1]T � Bn�1,
where T = e�2t for t > 4, say, which is equivalent to (sinh t)�2 there, gives
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coordinates near the lift of T = 0 :

r; � = (sinh t)�2=(1� r2) = x2; !:

Thus, one almost has a di�eomorphism between the two coordinate charts, hence
locally between the manifolds, except that in the blow up of [0; 1]T � Bn�1, the
de�ning function of the temporal face is the square of the de�ning function of the

temporal face arising from the blow up of bM. This is remedied by adding the square
root of the de�ning function of the lift of f0g�Bn�1 and f1g�Bn�1, i.e. of x2, to
the smooth structure, thus proving the lemma. �

It is worthwhile comparing the de Sitter space wave asymptotics, which is

u = xn�1v+ + v�; v+ 2 C1(bM); v� 2 C1(bM) + xn�1(log x)C1(bM);
with our main result. The fact that the coe�cients in the de Sitter expansion are

C1 on bM means that on �M , the leading terms are constant. Thus, the de Sitter
result implies (and is much stronger than) the statement that u decays to a constant
on �M at an exponential rate.

2.2. Blow-up of the space-time product. We now turn to the compacti�cation
of de Sitter-Schwarzschild space. It turns out that while this cannot be embedded

into a space as simple as bM the �nal setting is not much more complicated. In terms
of de Sitter space, the di�erence is that while spatial in�nity in [0; 1]T � B3; blown
up at the corner, can always be blown down, the same is not true for temporal
in�nity.

In fact, the `black hole end' r = rbh resembles the `de Sitter end' quite closely,
which motivates the construction in the de Sitter-Schwarzschild setting. There is
a simpler construction, depending on the choice of a constant � > 0, which does
not quite work because of some incompatibility between the two ends (which whilst
very similar, are not quantitatively the same). With � as in (1.2), compactify M
by compactifying R into [0; 1]T as in (1.5)-(1.7), so

T+ = T�;+ = e�2�t in t > c;

and compactify (rbh; rdS) as [rbh; rdS], to obtain

[0; 1]T � [rbh; rdS]� S2 = [0; 1]T � �X:

Then blowing up the corners

f0g � frbhg � S2; f0g � frdSg � S2

(and analogously at T = 1; i.e. T� = 0), gives a space denoted �M: Thus, a
neighborhood U = U�;+ of the `temporal face' T+ = 0 is di�eomorphic to

(2.1) [0; �)� � [rbh; rdS]� S2!; � = T�;+=�:

In the interior of the temporal face, where � > 0, this is in turn di�eomorphic to
an open subset of

(2.2) [0; �)T � (rbh; rdS)� S2!:
If the same construction is performed, but using the smooth structure on the

the compacti�cation of X given by � = �1=2; i.e. �X1=2; and

~T�;+ = T
1=2
�;+ = e��t; t > c;
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then a neighborhood U of tf+ as above is di�eomorphic to

(2.3) [0; �)~� � [rbh; rdS]1=2 � S2!; ~� = ~T�;+=�;

where [rbh; rdS]1=2 denotes that � has been added to the smooth structure (or

equivalently (r�rbh)1=2 and (rdS�r)1=2 have been added to the smooth structure).
The distinction between (2.1) and (2.3) is the same as between [0; 1]T � �X and

[0; 1] ~T � �X1=2 (where ~T is de�ned analogously to T ), namely the square roots of the
de�ning functions of all boundary hypersurfaces have been added to the smooth
structure. We denote the resulting space by �M1=2.

The subtlety is that the de Sitter and black hole ends need di�erent values of �:
So what we actually need is to paste together U�bh;+\fr < r2g and U�dS;+\fr > r1g
for some r1; r2, rbh < r1 < r2 < rdS where �bh and �dS are chosen in a way that
re
ects the local geometry neat the two ends. The transition map in the overlap,
where r 2 (r1; r2), is given by

(�bh;+; r; !) 7! (�dS;+; r; !); �dS;+ = ��dS=�bh�1 �
�dS=�bh
bh;+ :

In the overlap, where � 6= 0 so � 7! ��dS=�bh�1 is smooth, this is a polyhomogeneous-
di�eomorphism, in the sense that it is polyhomogeneous in the local de�ning
functions of the lift of T = 0 (namely �bh;+ and �dS;+). In particular, the front
faces of the blow-ups have well de�ned boundary de�ning functions, namely �, up
to multiplying by a C1 non-vanishing function, so we consider the resulting space a
polyhomogeneous manifold with corners, where the `polyhomogeneous' (as opposed
to C1) faces are only the future and past temporal faces, tf+ and tf�. There is
also an analogous construction for �M1=2.

As indicated already, we also want a preferred de�ning function (up to taking
positive multiples) x of tf+ in order to measure the rate of decay at the temporal
faces; this should be polyhomogoneous-equivalent to the local de�ning functions
�bh;+ and �dS;+. We take this to be of the form x = f(r)e�t, f > 0 smooth for
r 2 (rbh; rdS). Comparison with (1.9)-(1.10) shows that we need to take f(r) =

��1=(2�bh) for r near rbh, f(r) = ��1=(2�dS) for r near rdS, hence x = �
1=(2�bh)
bh;+ near

the black hole boundary of tf+, and x = �
1=(2�dS)
bh;+ near the de Sitter boundary.

Then, in particular, a neighborhood of tf+ is polyhomogeneous di�eomorphic to

(2.4) [0; �)x � [rbh; rdS]� S2!:
We still need to determine the values � at the two ends. Writing T = T+ = T�;+,

the dual metric (which is the principal symbol of the wave operator, �) has the
form

G = 4��2�2T 2@2T � �2@2r � r�2@2!

in the original product compacti�cation, with @r =
d�
dr @� = 2�@�. The change of

variables from r to � is smooth and non-degenerate, i.e. 2� = d�=dr 6= 0 for � close
to 0, i.e. r close to rbh or rdS. Note that � > 0 for r near rbh, � < 0 for r near rdS
since � > 0 for r 2 (rbh; rdS).

After blow-up, in the coordinates (�; �; !);

G = 4��1�2�2@2� � 4��2(@� � ��1�@�)
2 � r�2@2!:

Thus,

G = ��1
�
4�2�2@2� � 4�2(�@� � �@�)

2
�� r�2@2!:
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If we set � = �(rbh) > 0 or � = ��(rdS) > 0 then1 the �2@2� terms cancel, so locally
near rbh

G = 4
�2@2� + 8�2�@�@� � 4�2�@2� � r�2@2!; 
 = ��1(�(rbh)
2 � �2);

where 
 is C1 by Taylor's theorem, and there is a similar expansion at rdS: Thus
the choice of � determines the compacti�cation �M; and it is only at this point that
the compacti�cation has been speci�ed. Note that this metric is a C1 Lorentzian
b-metric on [0; �)� � (rbh � �; rbh + �)r � S2! (i.e. is non-degenerate as a quadratic
form on the b-cotangent bundle), in particular it is C1 across � = 0. Denoting this

extension of �M by ~M (which is now non-compact); g becomes a polyhomogeneous

conormal Lorentz metric on ~M , smooth near � = 0 (where there is a well-de�ned
smooth structure). We write F for the set given by � = 0; i.e. the boundary

hypersurface of �M that is no longer a boundary hypersurface of ~M .
For this metric F is characteristic, and one has the standard propagation of

singularities in � > 0. In particular, for C1 initial data the solution is smooth
in � > 0 across � = 0: In fact, writing covectors as � d�

� + � d� +
P

�j d!j , i.e.

(�; �; !; �; �; �) are coordinates on bT � ~M , the dual metric, considered as a function

on bT � ~M , is
G = 4
�2 + 8�2�� � 4�2��2 � r�2j�j2;

so the Hamilton vector �eld of G is

HG =8(
� + �2�)�@� � 8�2(�� � �)@�

� �4@

@�

�2 + 8�
@�

@�
(2�� � ��2)� 4�2�2 � @r�2

@�
j�j2�@� � r�2H(!;�);

with H(!;�) denoting the Hamilton vector �eld of the standard metric on the sphere.
The conormal bundle N�f� = 0g is � = 0; � = 0; � = 0; so at this set

HG = 8�2��@� + 4�2�2@�

and so is indeed tangent to N�f� = 0g; and it is non-radial o� the zero section
(where � 6= 0) as long as � 6= 0.

At @F , i.e. at � = 0, however there are radial points over the conormal bundle of
F . Rather than dealing with them directly, which can be done in the spirit of [6],
we reduce the problem to the study of the high energy behavior of the resolvent of
the spatial Laplacian (which gives more, in fact), which was performed in [8].

2.3. Blow down of spatial in�nity. We now discuss the manifold with corners
M, in which spatial in�nity is blown down. A valid coordinate system near the
image of the black hole end of spatial in�nity, disjoint from temporal in�nity, is
given by

sbh;+ = �=T
1=2
�bh;+

= �
�1=2
bh;+ ; sbh;� = �=T

1=2
�bh;�

= �T
1=2
�bh;+

= ��
1=2
bh;+; !;

where as usual ! denotes coordinates on S2. In these coordinates the dual metric
is

G = 
(s2bh;+@
2
sbh;+ + s2bh;�@

2
sbh;�)� 2(�(rbh)

2 + �2)@sbh;+@sbh;� � r�2@2!;

and the boundary faces sbh;+ = 0 and sbh;� = 0 are characteristic. We can also

extend G to a smooth non-degenerate Lorentz metric on eM�. Recall that eM contains

1In terms of the `spatial Laplacian', �X , described in Section 3, ��(rbh)
2 and ��(rdS)

2 are
the asymptotic curvatures, hence they are natural quantities from that point of view as well.
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M as a closed domain with corners, namely locally in eM we simply allow the four
boundary de�ning functions sbh;�, sdS;�, to assume negative values (but we do

not extend M across the temporal faces). This calculation shows the following
important fact:

Lemma 2.3. The d'Alembertian � 2 Di�2(eM�), and indeed � 2 Di�2
b
(eM). Moreover

the scattering surfaces Fbh;� = fsbh;� = 0g and FdS;� = fsdS;� = 0g are characteristic.
Proposition 1.2 is an immediate corollary of this lemma and standard hyperbolic

propagation.

3. Resolvent estimates

Next consider the `spatial Laplacian', resolvent estimates for which constitute
one of the key ingredients in our analysis. From (1.4) with T = e�t; it follows that

� = ��2
�
(TDT )

2 � �2r�2Dr�
2r2Dr � �2r�2�!

�
:

Recall that not precisely T; but rather T�bh and T�dS ; were used above to construct
the compacti�cation.

By de�nition the spatial `Laplacian' is

�X = �2r�2Dr�
2r2Dr + �2r�2�!

Near � = 0; where � can be used as a valid coordinate in place of r;

�X = �r�2�D��r
2�D� + �2r�2�! 2 Di�20(

�X1=2):

This is not the Laplacian of a Riemannian metric on X; however it is very similar
to one. It is of the form d�d with respect to the inner product on one-forms given
by the �ber inner product with respect to the `spatial part' H = �2@2r + r�2@2! of
G and density on X given by dh = ��2r2 dr d!: In what follows we will also view
�X is a 0-operator on �X1=2; self-adjoint on

L2(X; jdhj); jdhj = ��2r2 jdrj jd!j = ��1j�j�1r2 jd�j jd!j;
and we will use the techniques of [7] to study its resolvent. It is also useful to
introduce the operator

L = ��X�
�1;

which is self-adjoint on

L2(X;��2 jdhj) = �L2(X; dh); ��2jdhj = ��3j�j�1r2 jd�j jd!j:
Thus, this space is L20(X) as a Banach space, up to equivalence of norms.

Let ~� = �1=�bh 2 C1(X), ~� > 0; for r near rbh or ~� = �1=�dS for r near rdS: The
normal operators N0;bh(L), N0;dS(L) of L in Di�20(

�X1=2) at r = rbh, resp. r = rdS,
are

N0;bh(L) = �2bhN0;bh(�H3); N0;dS(L) = �2dSN0;dS(�H3);

where �H3 is the hyperbolic Laplacian, explaining the usefulness of this conjugation.
In particular, it follows immediately from [7] (with improvements from [5]) that the
resolvent

R(�) = (L� �2)�1; on L20(
�X1=2); Im� < 0;

continues meromorphically to a strip j Im�j < � as an operator between weighted
L2-spaces (as well as other spaces):

R(�) : ~��L20( �X1=2)! ~���L20(
�X1=2); � > �;
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we keep denoting the analytic continuation by R(�). Thus,
R(�) = (�X � �2)�1 = ��1R(�)� on L2(X; jdhj); Im� < 0;

continues meromorphically to a strip j Im�j < �

R(�) : ~��L2(X; jdhj)! ~���L2(X; jdhj); � > �:

The result we need is proved in [8], giving polynomial bounds on the resolvent
in a strip around the real axis.

Proposition 3.1. If � > 0 is su�ciently small the only pole of the analytic
continuation of the resolvent R(�) in Im� < � is � = 0; which is simple, with
residue given by a constant 
 and for each k and � > � there exist m > 0 and C > 0
and M such that

(3.1) k~��i�R(�)kL(��1 ~��Hm
0
( �X1=2);Ck( �X)) � Cj�jM ;

for j�j > 1, Im� < �.

4. Asymptotics for solutions of the wave equation

We now proceed to study the asymptotics of solutions of the wave equation at
tf+:

Suppose u is a solution of the wave equation, �u = 0; and u is smooth on
~M�: Energy estimates show that u is necessarily tempered, in the sense that u 2
��sL2( �M) for some s > 0: This is shown directly below.

Let � = �0(�) 2 C1( �M) be a cuto� function, with � 2 C1c ([0; 1)), identically 1
near 0: If u satis�es �u = 0 and u is smooth in � (i.e. across the side faces), then
�u is smooth in �; and

�(�u) = [�; �]u = f

where f is also smooth in �; and vanishes in a neighborhood of the temporal face
{ since [�; �] 2 Di�1b(

~M); by Lemma 2.3, is supported away from the temporal
face. Moreover, v = �u is the unique solution of �v = f in �M� with v = 0 for �
su�ciently large.

Now we wish to take the Mellin transform in T = e�t; for functions supported in
a neighborhood of the temporal face, namely in U = f� < 1g: Such a neighborhood
is equipped with a �bration �M ! X; extending the �bration M ! X in the

interior, and there is a natural density jdtj = jdT j
T on the �bers. In coordinates

(~�; �; !) = (T�bh=�; �; !) valid near the temporal face boundary at r = rbh this

density takes the form jd~�j
�bh ~�

: So, the Mellin transform can be taken with respect to

this �bration and density. Thus the map v 7! v̂ from functions supported near the
temporal face to functions on 
�X, 
 � C,

v̂(�; z) =

Z
T i�v(T; z)

jdT j
T

:

If v is polynomially bounded in T; supported in T � 0, with values in a function
space H in z, this transform gives an analytic function in a lower half plane
(depending on the order of growth of v) with values in H.

In fact, writing the integral in coordinates valid near the boundary of the temporal
face, ~� = T�bh=�;

v̂(�; �; !) = �i�=�bh��1bh

Z
~�i�=�bhv(~�; �; !)

jd~�j
~�
:



WAVE SYMPTOTICS ON DE SITTER-SCHWARZSCHILD SPACE 15

The integral is then the Mellin transform of v with respect to ~� evaluated at �=�bh:

Thus, if v is smooth on ~M�, supported in f~� 2 Ig, I � (0; 1) compact, i.e. near but
not at the temporal face, then v̂ is in fact analytic in C with values in functions of
the form ~�i�C1, with C1 seminorms all bounded by Ckh�i�k, k arbitrary. If v is

just supported in ~� < 1 and is conormal on ~M; then v̂ is analytic in a lower half
plane with values in functions of the form ~�i�C1:

Assuming for the moment that �u is polynomially bounded in T , �(�u) = f

becomes N̂b(�)c�u = f̂ , where

N̂b(�) = ��2(�2 ��X) = ��2
�
�2 � �2r�2Dr�

2r2Dr � �2r�2�!

�
;

so �
�2 ��X

� c�u = �2f̂ :

If �u is polynomially bounded in T; then both f̂ and c�u are analytic in Im� <

�C, and as f is compactly supported in ~�; f̂ is in entire analytic with values
in functions of the form ~�i�C1; with C1 seminorms all bounded by Ckh�i�k; k
arbitrary. Thus, c�u = R(�)(�2f̂); Im� < �C;
and we recover �u by taking the inverse Mellin transform.

We now return to arbitrary (not a priori polynomially bounded) u, f = �(�u),

as above. Thus, f̂ is analytic in all of C, with values in functions of the form
~�i�C1, with C1 seminorms all bounded by Ckh�i�k, k arbitrary. Now note that
the inclusion

�1+sL1(X) ,! L20(
�X1=2)

is continuous for every s > 0. Thus, the inclusion

~�i����3C1( �X1=2) ,! Hm
0 ( �X1=2)

is continuous if

�(�+ �) < 2; � = max(�bh; �dS);

and Im� < �, which is to say

~�i��2C1( �X1=2) ,! ��1~��Hm
0 ( �X1=2)

is continuous.
In particular, then

k�2f̂k��1 ~��Hm
0
( �X1=2)

� Ckh�i�k

for all k in Im� < � < � (with new constants), 0 < � < � su�ciently small.
Proposition 3.1 shows that, for � > 0 su�ciently small and for all N and k,

(4.1) k~��i�R(�)(�2f̂)kCN ( �X) � Ckj�j�k; Im� < �:

The inverse Mellin transform of w = R(�)(�2f̂) is

�w(T; z) = (2�)�1
Z

T�i�w(�; z) d�:

Thus,

�w(~�; �; !) = (2�)�1
Z

~��i�=�bh��i�=�bhw(�; �; !) d�:

In view of (4.1) (in particular the analyticity of �w in the lower half plane with the
stated estimates), w = 0 for T < 0 (as can be seen directly by shifting the contour
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to Im� = �C, using the o� spectrum resolvent estimate kR(�)kL(L2(X;jdhj)) �
j Im(�2)j�1 and letting C ! +1). Since the unique solution of�v = f , v supported
in T � 0, is �u; it follows that �w = �u:

Shifting the contour for the inverse Mellin transform for w to Im� = � gives a
residue term at 0, and shows that

~���(�u� v) 2 L2([0; �)~�; C1( �X));

where v arises from the residue at 0, hence is a constant function. Note that (at the
cost of changing �) this is equivalent to the analogous statement with � replaced
by ~�. The derivatives with respect t satisfy similar estimates. Hence, the same
estimates hold for the conormal derivatives with respect to ~� (or equivalently �).
We thus deduce the leading part of the asymptotics of u at the future temporal
face, tf+:

This completes the proof of Theorem 1.1. The main result, Theorem 1.3, follows
from the combination of this result with Proposition 1.2.

References

[1] J.-F. Bony and D. Hafner. Decay and non-decay of the local energy for the wave equation in
the De Sitter - Schwarzschild metric. Preprint, arXiv:0706.0350, 2007.

[2] V. Bruneau and V. Petkov. Semiclassical resolvent estimates for trapping perturbations.
Comm. Math. Phys., 213(2):413{432, 2000.

[3] F. Cardoso and G. Vodev. Uniform estimates of the resolvent of the Laplace-Beltrami operator
on in�nite volume Riemannian manifolds. II. Ann. Henri Poincar�e, 3(4):673{691, 2002.

[4] M. Dafermos and I. Rodnianski. The wave equation on Schwarzschild-de Sitter space times.
Preprint, arXiv:07092766, 2007.

[5] C. Guillarmou. Meromorphic properties of the resolvent on asymptotically hyperbolic
manifolds. Duke Math. J., 129(1):1{37, 2005.

[6] A. Hassell, R. B. Melrose, and A. Vasy. Microlocal propagation near radial points and
scattering for symbolic potentials of order zero. Analysis and PDE, To appear.

[7] R. Mazzeo and R. B. Melrose. Meromorphic extension of the resolvent on complete spaces
with asymptotically constant negative curvature. J. Func. Anal., 75:260{310, 1987.

[8] R. B. Melrose, A. S�a Barreto, A. Vasy. Analytic continuation and semiclassical resolvent
estimates on asymptotically hyperbolic spaces. In preparation.

[9] A. S�a Barreto and M. Zworski. Distribution of resonances for spherical black holes. Math.
Res. Lett., 4(1):103{121, 1997.

[10] A. Vasy. The wave equation on asymptotically de Sitter-like spaces. Preprint,
arxiv:math/07063669, 2007.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge

MA 02139-4307, U.S.A.

E-mail address: rbm@math.mit.edu

Department of Mathematics, Purdue University, West Lafayette, IN 47907-1395,

U.S.A.

E-mail address: sabarre@math.purdue.edu

Department of Mathematics, Stanford University, Stanford, CA 94305-2125, U.S.A.

E-mail address: andras@math.stanford.edu


