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Introduction

I shall assume some familiarity with distribution theory, with basic analysis
knowledge of the theory of manifolds would also be useful. Any one or two of these
prerequisites can be easily picked up along the way, but the prospective student
with none of them should perhaps do some preliminary readi i edlander2

Distributions: I good introduction is Friedlander’s b g%ﬁ@(ﬁmore ex-
haustive treatment see Volume I of Hérmander’s treatise »FB'T*

alﬁfrseig .on manifolds: Mos oif what we need can be picked up from Munkres’
book or Spivak’s little book .
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CHAPTER 1

Tempered distributions and the Fourier transform

Microlocal analysis is a geometric theory of distributions, or a theory of geomet-
ric distributions. Rather than study general distributions — which are like general
continuous functions but worse — we consider more specific types of distributions
which actually arise in the study of differential and integral equations. Distributions
are usually defined by duality, starting from very “good” test functions; correspond-
ingly a general distribution is everywhere “bad”. The conormal distributions we
shall study implicitly for a long time, and eventually explicitly, are usually good, but
like (other) people have a few interesting faults, i.e. singularities. These singulari-
ties are our principal target of study. Nevertheless we need the general framework
of distribution theory to work in, so I will start with a brief introduction. This is
designed either to remind you of what you already know or else to send you off to
work it out.'Proofs of some of the main theorems are outlined in the problems at
the end of the chapter.

1.1. Schwartz test functions

To fix matters at the beginning we shall work in the space of tempered distribu-
tions. These are defined by duality from the space of Schwartz functions, also called
the space of test functions of rapid decrease. We can think of analysis as starting
off from algebra, which gives us the polynomials. Thus in R™ we have the coordi-
nate functions, x1, ..., z, and the constant functions and then the polynomials are
obtained by taking (finite) sums and products:

(1.1) ¢(z) = Z Pat®, po € C, a € Ny, o= (ai,...,an),
la| <k

n
where 2% = z{* ...ap" = foj and No = {0,1,2,...}.
Jj=1

A general function ¢ : R” — C is differentiable at ¥ if there is a linear function
n

lz(z) = c+ > (z; — T;)d; such that for every e > 0 there exists 6 > 0 such that
j=1

(1.2) |p(z) — Lz(x)| < elx—Z| Y|z —2|<0.
The coeflicients d; are the partial derivative of ¢ at the point z. Then, ¢ is said

to be differentiable on R™ if it is differentiable at each point Z € R"™; the partial
derivatives are then also functions on R™ and ¢ is twice differentiable if the partial

1 ) ) MRS6h : 46002 o ) )
I suggest Friedlander’s little book ere is lostgn%%\pfr edition) as a good introduction
7] has all t

to distributions. Volume 1 of Hérmander’s treatise hat you would need and a good
deal more; it is a good general reference.

11
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12 1. TEMPERED DISTRIBUTIONS AND THE FOURIER TRANSFORM

derivatives are differentiable. In general it is k times differentiable if its partial
derivatives are k — 1 times differentiable.

If ¢ is k times differentiable then, for each Z € R"™, there is a polynomial of
degree k,

pi(z; ) = Z aeil(z —2)%/al, |a| = a1+ -+ ap,

la| <k
such that for each € > 0 there exists § > 0 such that
(1.3) lp(x) — pr(x, 7)| < ez —z|*  if |2 — | < 4.

Then we set
(1.4) DY¢(Z) = aq.

If ¢ is infinitely differentiable all the D%¢ are infinitely differentiable (hence con-
tinuous!) functions.

DEFINITION 1.1. The space of Schwartz test functions of rapid decrease consists
of those ¢ : R — C such that for every o, 8 € N}

(1.5) sup |28 DY¢(z)| < oo;
ERSING

it is denoted S(R™).
1.6
From (II.5) we construct norms on S(R") :

(1.6) Il = max sup [z*D¢(x)|.
o181 <k zekn

It is straightforward to check the conditions for a norm:

(1) lI9lle >0, [[¢lk =0 <= ¢ =0
(2) [ltollk = Itlll@llk, t € C
3) llo+2llk < Iollk + [Plle ¥ ¢, 9 € SR™).

The topology on S(R"™) is given by the metric

- o—Fk o=l
(1.7) Z e vl
SeeProb]em%M

1.8
PROPOSITION 1.1. With the distance function (h_7), S(R™) becomes a complete
metric space (in fact it is a Fréchet space).

Of course one needs to check that S(R™) is non-trivial; however one can easily
see that

(1.8) exp(—|z[?) € S(R™).
In fact there are lots of smooth functions of compact support and
(1.9) CPR") ={ue SR™");u=0in |z| > R= R(u)} C S(R") is dense.

The two elementary operations of differentiation and coordinate multiplication
give continuous linear operators:

zj: S(R") — S(R™)

(1.10) D;: S(R") — S(R™).
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1.2. LINEAR TRANSFORMATIONS 13

Other important operations we shall encounter include the exterior product,
S(R") x S(R™) > (¢, ¢) = oWy € S(R™™)
oW P(z,y) = d(x)P(y).

and pull-back or restriction. If R¥ ¢ R” is identified as the subspace z; =0,7>k,
then the restriction map

(1.12) 75 S(R™) — S(RF), 75 f(y) = f(y1s- -5y, 0,...,0)

is continuous (and surjective).

(1.11)

1.2. Linear transformations

A linear transformation acts on R” as a matrix?
(1.13) L:R" —TR", (Lz); = Y _ Ljxax.
k=1

The Lie group of invertible linear transformations, GL(n,R) is fixed by several
equivalent conditions

L € GL(n,R) <= det(L) # 0
(1.14) — IL'st. (LYLer=zVzeR"
< Jc>0st clz| <|La| <c | Vo e R™
Pull-back of functions is defined by
L*¢(x) = ¢(Lx) = (¢ o L)(x).

The chain rule for differentiation shows that if ¢ is diffferentiable then?®

(1.15) D;L*¢(x) = D;¢(Lx) = Y _ Li;(Dig)(La) = L*((L.D;)é) (@),

k=1
L.Dj =Y Li;Dx.
k=1
From this it follows that
(1.16) L* : S(R") — S(R™) is an isomorphism for L € GL(n,R).

To characterize the action of L € GL(n,R) on S'(R™) consider, as usual, the
distribution associated to L*¢ :

(117) Theg®) = | o(Le)o(a)dr

= I ¢(y) (L™ y)| det LI~ dy = Ty (| det LI~ (L™1) ).

2This is the standard action, but it is potentially confusing since it means that for the basis
n
elements e; € R™, Le; = kz Lyje.
=1

330 D; transforms as a basis of R™ as it should, despite the factors of .
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14 1. TEMPERED DISTRIBUTIONS AND THE FOURIER TRANSFORM

Since the operator | det L|~}(L™1)* is an ismorphism of S(R") it follows that if we
take the definition by duality
(1.18)  L*u(y)) = u(|det L| Y (L™Y)*), u € 8'(R"), v € S(R"), L € GL(n,R)
= L": §R") — S'(R")
1.2.2000.270
is an isomorphism which extends (II.16) and satisfies

(1.19)
D;L*u = L*((L+Dj)u), L*(z;u) = (L*x;)(L*u), uw € 8'(R"), L € GL(n,R),

. J1.2.2000.269
as in (I[.I5).

1.3. Tempered distributions

1.10
As well as exterior multiplication (|1_1'I) there is the even more obvious multi-
plication operation
S(R™) x S(R™") — S(R")
(@,9) = o(x)i(x)

which turns S(R™) into a commutative algebra without identity. There is also
integration

(1.20)

(1.21) /: S(R") — C.
Combining these gives a pairing, a bilinear map

(122 SR x S®") 3 (68)— [ ola)v(a)da.
R’n

If we fix ¢ € S(R™) this defines a continuous linear map:

(1.23) Ty : SR") 3¢ — /qzﬁ(x)w(:c)dx.

Continuity becomes the condition:

(1.24) Ik, Ck st |Typ(¥)] < Cill¥|lk ¥ ¥ € S(R™).

We generalize this by denoting by S’'(R™) the dual space, i.e. the space of all
continuous linear functionals
u €S (R") <= u:SR") — C
3 k, Cy, such that |u(y)| < Ci||¥||lx V ¢ € S(R™).

LEMMA 1.1. The map
(1.25) S(R"™) 3 ¢ — Ty € S'(R™)
s an injection.

PROOF. For any ¢ € S(R™), Ty(¢) = [ |¢(z)|*dz, so T, = 0 implies p = 0. O

If we wish to consider a topology on §’'(R™) it will normally be the weak topol-
ogy, that is the weakest topology with respect to which all the linear maps
(1.26) S'(R") sur—u(p) eC, ¢eSR")
are continuous. This just means that it is given by the seminorms
(1.27) SMR™) > ur— |u(p)| €R
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where ¢ € S(R™) is fixed but arbitrary. The sets
(1.28) {u e S'R"); [u(;)] < ¢, ¢; € P}

form a basis of the neighbourhoods of 0 as ® C S(R™) runs over finite sets and the
€; are positive numbers.
1.15
PROPOSITION 1.2. The continuous injection S(R™) — S'(R™), given by (I
has dense range in the weak topology.

P1.4 )
See Problem [T.8 for the outline of a proof.
The maps z;, D; extend by continuity (and hence uniquely) to operators

(1.29) z;, D, S'(R") — S'(R™).

This is easily seen by defining them by duality. Thus if ¢ € S(R™) set D;Ty = Tp, 4,
then

(1.30) T,66) = [ Dyov =~ [ oDy0.
the integration by parts formula. The definitions

(1.31) Dju(y) = w(=D;9), zju(¥) =ulx;h), weS'R"), ¢ e SR

1.18
satisfy all requirements, in that they give continuous maps (h_Z'Q) which extend the
standard definitions on S(R™).

);

1.4. Two big theorems
The association, by (I[.25), of a distribution to a function can be extended
considerably. For example if v : R — C is a bounded and continuous function

then
(1.32) T, () = / w(@)p(@)de

still defines a disfrihution which vanishes if and only if u vanishes identically. Using
the operations (I.29) we conclude that for any a, 3 € N2

(1.33) D% € 8'(R") if u:R™ — C is bounded and continuous.
Conversely we have the Schwartz representation Theorem:

THEOREM 1.1. For any u € S'(R™) there is a finite collection uqp : R* — C
of bounded continuous functions, ||+ || < k, such that

(1.34) u= > 2"Dfuags.
|| +18] <k

Thus tempered distributions are just products of polynomials and derivatives of
bounded continuous functions. This is important because it says that distributions
are “not too bad”.

The second important result (long considered very difficult to prove, but there
is a relatively straightforward proof using the Fourier transform) is 1t.}i8 Schwartz
kernel theorem. To show this we need to use the exterior product (|1_1'I) If K e
S’ (R™™) this allows us to define a linear map

(1.35) Ok : S(R™) — S'(R™)
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by

(1.36) Ok (4)(6) = / K - $ R dady.

THEOREM 1.2. There is a 1-1 correspondence between continuous linear oper-
ators

(1.37) A: S(R™) — S'(R™)
and S'(R™™) given by A = Ok.

P2.4
gi%f outlines of the proofs of these two results can be found in Problems .15
and [[.16.

1.5. Examples

Amongst tempered distributions we think of S(R™) as being the ‘trivial’ exam-
ples, since they are the test functions. One can say that the study of the singularities
of tempered distributions amounts to the study of the quotient

(1.38) S'(R™)/S(R™)

which could, reasonably, be called the space of tempered microfunctions.
The sort of distributions we are interested in are those like the Dirac delta
“function”

(1.39) i(z) € S'(R™), d(¢) = ¢(0).
The definition here shows that § is just the Schwartz kernel of the operator
(1.40) S(R™) 3 ¢ — ¢(0) € C = S(R?).

This is precisely one reason it is interesting. More generally we can consider the
maps

(1.41) SR™) > ¢ — D¢p(0), «aeNg.
These have Schwartz kernels (—D)*J since

(1.42) (—D)?5(6) = 5(D*@) = D*(0).
If we write the relationship A = O «— K as

(1.43) (A9)(6) = / K (0, 1)(2) () dady

1.21
then ('17{2) becomes

(1.44) Dg(0) = / (= D)*8(2)(x)da.

More generally, if K(z,y) is the kernel of an operator A then the kernel of A - D¢
is (=D)y K (v,y) whereas the kernel of D% o A is DY K(z,y).



S.Two.little.lemmas |

1.6. TWO LITTLE LEMMAS 17

1.6. Two little lemmas

Above, some of the basic properties of tempered distributions have been out-
lined. The main “raison d’étre” for S’'(R™) is the Fourier transform which we
proceed to discuss. We shall use the Fourier transform as an almost indispensable
tool in the treatment of pseudodifferential operators. The description of differential
operators, via their Schwartz kernels, using the Fourier transform is an essential
motivation for the extension to pseudodifferential operators.

Partly as simple exercises in the theory of distributions, and more significantly
as preparation for the proof of the inversion formula for the Fourier transform we
consider two lemmas.

First recall that if u € S’(R™) then we have defined D;u € S’'(R") by

(1.45) Dju(@) = u(~D;6) ¥ ¢ € SR").

“

In this sense it is a “weak derivative”. Let us consider the simple question of the
form of the solutions to

(1.46) Dju=0, ueS'(R").
Let I; be the integration operator:

I; : S(R™) — S(R™ 1)

(1.47)
Li(@) (Y1, s Yn—1) = /(b(ylan-yjflaxayja-”ynfl)dff-
Then if 7; : R™ — R ! is the map 7mj(x) = (¥1,...,Tj—1,Tjt1 ..., Tn), we define,
for v € S'(R" 1),
(1.48) miv(p) = v(ljp) V ¢ € S(R™).

2.2
It is clear from (|17[7) that I; : S(R") — S(R"~1) is continuous and hence LCRS
S’ (R™) is well-defined for each v € §’(R*~1).

2.1
LEMMA 1.2. The equation (h7I6) holds if and only if w = w;v for some v €
S'(R*1).

ProOF. If ¢ € S(R") and ¢ = D;9 with ¢ € S(R™) then ;¢ = I;(D,;¢) = 0.
Thus if u = 7r;-‘v then

(1.49) u(—D;¢) = m;v(=D;¢p) = v(I;(—D;¢)) = 0.

2.1
Thus u = 7jv does alwayg satisfy (|17[6)
Conversely suppose (I[.46) holds. Choose p € S(R) with the property

(1.50) / o(x)dz = 1.
Then each ¢ € S(R™) can be decomposed as

(151) d)(l‘) :p(l’j)ljd)(ﬂﬁl,...,Jﬁj_l,xj_;.l,...ﬂﬁn)—f‘Dj’l,/), ¢ ES(Rn)
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Indeed this is just the statement

¢ € SR, I;¢ =0 = 9(z) € S(R") where

Ty
w(x) = /C(ﬁl,...,$j,1,t,xj+1,...,$n)dt

Tj
= /C(xl,...,xj,l,t,gchrl,...,xn)dt.
oo

Using (ﬁ_:g‘l) and (%6) we have

(1.52) w(@) =u(p(z;)jo(x1,. .., 2j—1,Zj41,---Zn))-

Thus if

(1.53) () = u (p(x)Y(T1, .o, Tjo1, Tjg1, . Ty)) ¥V € S(R™H)

then v € &'(R""!) and u = 7}v. This proves the lemma. O

Of course the notation u = m;v is much too heavy-handed. We just write
u(r) = v(z1,...,2j-1,2j41,...,Tn) and regard ‘v as a distribution in one addi-
tional variable’.

The second, related, lemma is just a special case of a general result of Schwartz
concerning the support of a distribution. The particular result is:

LEMMA 1.3. Suppose u € S'(R™) and zju=0,j =1,...n then u = cd(x) for
some constant c.

PROOF. Again we use the definition of multiplication and a dual result for
test functions. Namely, choose p € S(R™) with p(z) = 1 in |z| < 3, p(z) = 0 in
|z] > 3/4. Then any ¢ € S(R™) can be written

(1.54) ¢ =¢(0) - p(z) + Zn; rii(x), ;€ S(RY).
j=
This in turn can be proved using Taylor’s formula as I proceed to show. Thus
(1.55) o(z) = ¢(0) + ixjgj(x) in |z| <1, with {; € C*.
j=1
Then,
(1.56) p(x)p(x) = H(0)p(x) + i ;pGj(x)
=

2.6
and p(; € S(R™). Thus it suffices to check (|1_54) for (1 — p)¢, which vanishes
identically near 0. Then ¢ = |z|72(1 — p)¢ € S(R™) and so

(1.57) 1=p)p=|2[*)¢ = z(x;C)
j=1
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2.6
finally gives (h_54) with ¢;(z) = p(z)¢;(x) + z;¢(z). Having proved the existence
of such a decomposition we see that if z;u = 0 for all j then

(1.58) u(¢) = u(p(0)p(x)) + Z u(zjihy) = c¢(0), ¢ =u(p(x)),

ie. u=co(x). O
1.7. Fourier transform

Our normalization of the Fourier transform will be

(1.59) Fole) = [ e o(a)da.
As you all know the inverse Fourier transform is given by
(1.60) Gu(a) = (2m) " [ e eu(e) .

Since it is so important here I will give a proof of this invertibility. First however,
let us note some of the basic properties.
Both F and G give continuous linear maps

(1.61) F,G: S(R") — S(R™).

2.7 2.8
To see this observe first that the integrals in (h_59) and (h_GO) are absolutely con-
vergent:

(162)  |Fo(e)| < / 6(2))d < / (14 [22) " dz x sup (1+ [22)"|6()],

reR™
where we use the definition of S(R™). In fact this shows that sup |F¢| < oo if ¢ €
S(R™). Formal differentiation under the integral sign gives an absolutely convergent
integral:

D;Fo§) = /Dg.e*”gqﬁ(x)dx = /e*i"”'g(—;vj@d;v
since sup(l + |z]? )”|qu5| < oo. Then it follows that D;F¢ is also bounded, i.e. F¢

is dlfferentlable and ( l 7 holds. This argument can be extended to show that F¢
is C*°,

(1.63) DF(&) = F((—x)%¢).
Similarly, starting from (h_:59), we can use integration by parts to show that
6700 = [ e tgo@de = [ (Do) @)
ie. £F¢ = F(D;¢). Combining this with (E_(%) gives

(1.64) §*DIF¢ = F(D*-[(—2)"¢]).
Since DY ((—z)P¢) € S(R™) we conclude
(1.65) sup |2 D] Fg| < oo = F¢ € S(R™).

This map is continuous since
sup|¢* DY F¢| < C-sup|(1+ [ef*)" Dy [(—x) ]
= [[Follk < Crllpllrron, ¥ k-
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The identity (%6172{), written in the form

F(Dj¢) =&F¢
F(xj¢) = —De; Fop
is already the key to the proof of invertibility:

(1.66)

THEOREM 1.3. The Fourier transform gives an isomorphism F : S(R") «—
S(R™) with inverse G.

PrOOF. We shall use the idea of the Schwartz kernel theorem. It is important
not to use this theorem itself, since the Fourier transform is a key tool in the
(simplest) proof of the kernel theorem. Thus we consider the composite map

(1.67) GoF: S(R") — S(R")

and write down its kernel. Namely

K@) = (@n) " [ [[ eve oy, a)adsdy
VoeSRy xRy) = K¢ S'(R*™).

2.15
The integrals in (h_68) are iterated, i.e. should be performed in the order indicated.
Notice that if ¢, € S(R™) then indeed

(1.68)

169 (@ 7)) = [cwien ([ [ cpoas ) aydeay

= K(CX)
so K is the Schwartz kerge}aof Gg-F.

The two identities ('1736) translate (with essentially the same proofs) to the
conditions on K :

D,. + Dy )K(z,y) = .
(1.70) (Da; + Dy K@) =0

(zj —y;) K (x,y) =0
Next we use the freedom to make linear changes of variables, setting

Ki(z,2) = K(z,z — 2), K1 € S'(R*™)

Le. Kp(¢) = K(v), ¥(z,y) = d(z,x —y)
2.17

where the notation will be explained later. Then (h‘?U) becomes
(1.72) Dy, Kp(x,z) =0and z;Kp(z,2) =0for j=1,...n

This puts us in a position to apply the two little lemmas. The first says K (z,z) =
f(z) for some f € 8'(R™) and then the second says f(z) = ¢d(z). Thus

(1.73) K(z,y)=cd(z—y) = G- F=cld.

It remains only to show that ¢ = 1. That ¢ # 0 is obvious (since F(d) = 1).
The easiest way to compute the constant is to use the integral identity

(1.71)

o0

(1.74) / e dy =n3

— 00

to show that*

4 1.2.2000.278
See Problem [T.9.
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Fle 1o’y = p5 e 1€l7/4

(1.75) = G(e &P/ = g5l
= G- F=1Id.

‘ 2

Now (27)™G is actually the adjoint of F :

(1.76) [ otFoic = eny [(G6)-Tdx v 6,6 € SEY).

It follows that we can extend F to a map on tempered distributions
F:SR") — S'(R"

- FSE) — SR

Fu(o) = u((2m)"Go) ¥ ¢ € S(R")

Then we conclude

COROLLARY 1.1. The Fourier transform extends by continuity to an isomor-
phism

(1.78) F:S'(R") «—— S'(R™)
2.13
with inverse G, satisfying the identities (h_GB)

Although I have not discussed Lebesgue integrability I assume familiarity with
the basic Hilbert space

L*(R™) =
{u :R"™ — C; f is measurable and / |f(2)|?dx < oo} / ~,
RTL

f~g<= f =g almost everywhere.

1.2.2000.274
This also injects by the same integration map (II. with S(R™) as a dense subset

S(R™) — L*(R?) — S(R™).
PRrROPOSITION 1.3. The Fourier transform extends by continuity from the dense
subspace S(R™) C L?(R™), to an isomorphism
F: L*(R™) «— L*(R")
1

satisfying || FullL> = (2m)2" [[ul| 2.

1 13ROOF. Given the density of S(R") in L?(R™), this is also a consequence of
( .'76;, since setting ¢ = Fu, for u € S(R™), gives Parseval’s formula

Fu(¢)Fo(0) = (2m)" / w(z)o(@)d.

Setting v = u gives norm equality (which is Plancherel’s formula).
An outline of the proof of the density statement is given in the problems below.
U
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1.8. Differential operators

The simplest examples of the F élrlgr transform of distributions are immediate

consequences of the definition and ( . Thus
(1.79) F (6) =1

2.13
as already noted and hence, from (II.66),
(1.80) F(DY(x)) =€~ VY aeNj.
Now, recall that the space of distributions with support the point 0 is just:
(1.81) {ue &' R");sup(u) C {0}} = {u= Z caD*6}.

finite

Thus we conclude that the Fourier transform gives an isomorphism
(1.82) F:{ue 8 (R");supp(u) C {0}} «— C[¢] = {polynomials in £}.

Another way of looking at this same isomorphism is to consider partial differ-
ential operators with constant coeflicients:

P(D): S(R") — S(R™)

= ZCQDO‘.

(1.83)

The identity becomes

(1.84) F(P(D)$)(§) = P(E)F(9)(§) ¥V ¢ € S(R™)

and indeed the same formula holds for all ¢ € S’(R™). Using the simpler notation
(&) = Fu(€) this can be written

(1.85) P(D)u(€) = PE)i(€), P) = cal®™

The polynomial P is called the (full) characteristic polynomial of P(D); of course
it determines P (D) uniquely.

It is important for us 9 £xtend this formula to differential operators with
variable coefficients. Using (I.59) and the inverse Fourier transform we get

(1.86) P(D)u(x) = (27) " / / @0 € P(¢)u(y)dydt

where again this is an iterated integral. In particular the inversion formula is just
the case P(¢) = 1. Consider the space

(1.87) CXR") ={u:R* — C; sup|D°‘ (z)] < o0 V o}

the space of C*° function with all derivatives bounded on R"™. Of course

(1.88) SR") Cc CE(R™)
but CZ(R™) is much bigger, in particular 1 € C(R™). Now by Leibniz’ formula
(1.89) D% (uv) = Z (a) DBy - D Py

B<a b

it follows that S(R™) is a module over C3(R™). That is,
(1.90) u€CL(R"), ¢ € S(R") = ugp € S(R").
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From this it follows that if
(1.91) P(z,D)= Y pa()D*, ps € CX(R")

lo|<m

then P(z, D) : S(R™) — S(R™). The formula (E_gg) extends to

(192 P(a. D)o = (20) " [ D€ P(a o(y)dyds
where again this is an iterated integral. Here
(1.93) P(z,6) = ) pa(2)E”

loe| <m

is the (full) characteristic polynomial of P.

1.9. Radial compactification

For later purposes, and general propaganda, consider the quadratic radial com-
pactification of R™. The smooth map

(1.94) QRC:R"3 2 +— Ll eR"

(1+[2*)2
is 1-1 and maps onto the interior of the unit ball, B" = {|z| < 1}. Consider the
subspace

(1.95) C®(B") = {u € S(R™); supp(u) C B"}.

This is just the set of smooth functions on R™ which vanish outside the unit ball.
Then the composite (‘pull-back’) map

(1.96) QRC* : C*(B") 5 u — u o QRC € S(R™)

is a topological isomorphism. A proof is indicated in the problems below.

The dual space of C*°(B") is generally called the space of ‘extendible distri-
butions’ on B™ — because they are all given by restricting elements of S’(R™) to
C>(B"™). Thus QRC also identifies the tempered distributions on R” with the ex-
tendible distributions on B™. We shall see below that various spaces of functions on
R™ take interesting forms when pulled back to B™. I often find it useful to ‘bring
infinity in’ in this way.

Why is this the ‘quadratic’ radial compactification, and not just the radial com-
pactification? There is a good reason which is discussed in the problems below. The
actual radial compactification is a closely related map which identifies Euclidean
space, R, with the interior of the upper half of the n-sphere in R?*! :

1
(1.97) RC:R”BJN—>< T a 1)
I+ [z?)2 (1+[zf?)2

€S ={X = (Xo,X") e R"™; Xy >0, X3 + | X'|* =1}
Since the half-sphere is diffeomorphic to the ball (as compact manifolds with bound-

ary) these two maps can be compared — they are not the same. However it is true
that RC also identifies S(R™) with C>°(S™1!).
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1.10. Problems

PROBLEM 1.1. Suppose ¢ : R® — C is a function such that for each point
Z € R™ and each k € Ny there exists a constant ¢, > 0 and a polynomial py(x; Z)
(in z) for which

1
(1.98) 6(@) = prlw )| < —lo =3l [o— 3] < e
k

Does it follow that ¢ is infinitely differentiable — either prove this or give a counter-
example.

PROBLEM 1.2. Show that the function u(z) = exp(x) cos[e®] ‘is’ a tempered
distribution. Part of the question is making a precise statement as to what this
means!

PROBLEM 1.3. Write out a careful (but not necessarily long) proof of the ‘easy’
direction of the Schwartz kernel theorem, that any K € S’(R™"*™) defines a con-
tinuous linear operator
(1.99) Ok : S(R™) — S'(R™)

[with respect to the weak topology on S&’'(R™) and the metric topology on S(R™)]
by
(1.100) Oko(¢Y) = K(p W g).
[Hint: Work out what the continuity estimate on the kernel, K, means when it is
paired with an exterior product ¢ X ¢.]

1.7

PROBLEM 1.4. Show that d in (|1_6) is a metric on S(R™). [Hint: If || - || is a
norm on a vector space show that

lutol |l [[o] |
L+ flutof = 1+ ull 14 vll

PROBLEM 1.5. Show that a sequence ¢, I# S(Rpg issCauchy, resp. converges

to ¢, with respect to the metric d in Problem T.4 1f and only if ¢,, is Cauchy, resp.
converges to ¢, with respect to each of the norms || - Hk
PROBLEM 1.6. Show that a linear map F' : S(R p is continuous

with respect to the metric topology given in Problem ZI 1f ana only if for each k
there exists N (k) € N a constant C, such that

1Elle < Crlldllng ¥ ¢ € S(R™).

Give similar equivalent conditions for continuity of a linear map f : S(R") — C
and for a bilinear map S(R") x S(R?) — C.

o 31.1,2000.264
PROBLEM 1.7. Check the continuity of (II.12).

PROBLEM 1.8. Prove Proposition H_le [Hint: It is only necessary to show that
if uw € S'(R™) is fixed then for any of the open sets in (1.1), B, (with all the ¢; > 0)
there is an element ¢ € S(R") such that u — Ty € B. First show that if ¢/,... ¢, is
a basis for ® then the set

(1.101) ={v e S'(R"); [{v, 9})| <9

is contained in B if the 5j > (0 are chosen small enough. Taking the basis to be
orthonormal, show that u — ¢ € B’ can be arranged for some ¢ € ®.]
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PRrROBLEM 1.9. Compute the Fourier transform of exp(—|z|?) € S(R™). [Hint:
The Fourier integral is a product of 1-dimensional integrals so it suffices to assume

z € R. Then
/e_ifre_“”de: 6_52/4/6_(“%5)2@.

Interpret the integral as a contour integral and shift to the new contour where
x + 5& is real ]

1.13
PrOBLEM 1.10. Show that (h_ZB) makes sense for ¢ € L?(R™) (the space of
(equivalence classes of) Lebesgue square-integrable functions and that the resulting
map L?(R") — S’(R™) is an injection.

PROBLEM 1.11. Suppose u € L?(R™) and that
DDy -+ Dpu € (14 |z]) "' L*(R™),

P1.5
where the derivatives are defined using Problem h_l'U Using repeated integration,
show that u is necessarily a bounded continuous function. Conclude further that

for u e S'(R™)
D€ (1+|z|) ™" 'L2R™") V o] <k +n

(1.102) : .
= D“u is bounded and continuous for |«| < k.

[This is a weak form of the Sobolev embedding theorem.]

PROBLEM 1.12. The support of a (tempered) distribution can be defined in
terms of the support of a test function. For ¢ € S(R™) the support, supp(¢), is the
closure of the set of points at which it takes a non-zero value. For u € §'(R™) we
define

(1.103)  supp(u) = 0%, O = U {O" C R™ open;supp(¢) C O' => u(¢) =0}.

Show that the definitions for S(R™) and S'(R™) are consistent with the inclusion
S(R™) C §'(R™). Prove that supp(d) = {0}.

PrOBLEM 1.13. For simplicity in R, i.e. with n = 1, prove Schwartz theorem
concerning distributions with support the origin. Show that with respect to the
norm || - [[x the space

(1.104) {p € SR);o(x) =01in |z] <€, e=¢(d) > 0}

is dense in

(1.105) {6 € SR): 6(a) = 2 i(a), ¥ € S(R)}.

Use this to show that

(1.106) u € 8'(R), supp(u) C {0} = u = Z ceDLS ().
¢, finite

PROBLEM 1.14. Show that if P is a differential operator with coefficients in
C2(R™) then P is local in the sense that

(1.107) supp(Pu) C supp(u) Vu e S'(R").

The converse of this, for an operator P : S(R") — S(R™) where (for simplicity)
we assume

(1.108) supp(Pu) C K C R"
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for a fixed compact set K, is Peetre’s theorem. How would you try to prove this?
(No full proof required.)

PROBLEM 1.15. (Schwartz representation theorem) Show that, for any p € R
the map

(1109)  Rypi S(R™) 36— (14 [a2) P2F 1 [(1 + %) 7/2Fg] € SR™)

is an isomorphism and, using Problem hpfil'_? or otherwise,

(1.110) p=n+l+k= |Rpdllx < Cil¢lr2, V¢ € SR").

Let Rl : S'(R") — S'(R™) be the dual map (defined by Tu(¢) = u(R,¢)). Show
that Rt is an isomorphism and that if u € S'(R™) satisfies

(1.111) lu(@)] < Cligllx, ¥V ¢ € S(R)

then Rtu € L2(R"™), if p > n+1+k, in the sense that it is in the image of the map
in Problem h_TU Using Problem h_H show that RnH(RnJeru) is bounded and
continuous and hence that

(1.112) uw= > P D%
|a|+18]<2n+2+k

for some bounded continuous functions uq,g.

PROBLEM 1.16. (Schwartz kernel theorem.) Show that any continuous linear

operator
T:S[Ry) — S'(RZ)
extends to a continuous linear operator
T:(1+ |y P HANRY) — (1+ |2) "2 HI(RY)
for some k and ¢. Deduce that the operator
T =1+ D )02 4 2?2 o T o (14 [y)*/2(1 +|DI*) ™2
L*(R™) — Coo(R™)

is continuous with values in the bounded continuous functions on R™. Deduce that

T has Schwartz kernel in Co (R”; L2(R™)) C &'(R™*™) and hence that T itself has
a tempered Schwartz kernel.

PRrROBLEM 1.17. Radial compactification and symbols.

PROBLEM 1.18. Series of problems discussing double polyhomogeneous sym-
bols.
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CHAPTER 2

Pseudodifferential operators on Euclidean space

2.27
Formula (T.92) for the action of a differential operator (with coefficients in
C2(R™)) on S(R™) can be written

P(z,D)u = (2n)™" / ' TVEP (g, € uly)dydE
(2.1)

~ (2m) / € Pz, €)a(€)de

where 4(§) = Fu(€) is the Fourier transform of u. We shall generalize this formula
by generalizing P(z,£) from a polynomial in £ to a symbol, which is to say a smooth
function satisfying certain uniformity conditions at infinjty. In fact we shall also
allow the symbol, or rather the amplitude, in the integral r(127) to depend in addition
on the ‘incoming’ variables, y :

(2.2) A(z,D)u = (2#)_’L/ei(z_y)'fa(aj, ¥, )u(y)dydE, u € S(R™).

Of course it is no%%ear that this integral is well-defined.

To interpret (2.2) we shall first look into the definition and properties of sym-
bols. Then we show how this integral can be interpreted as an oscillatory integral
and that it thereby defines an operator on S(R™). We then investigate the properties
of these pseudodifferential operators at some length.

2.1. Symbols

A polynomial, p, in £, of degree at most m, satisfies a bound
(2.3) Pl <CA+E)™ VEER™

Since successive derivatives, D¢p(§), are polynomials of degree m — |al, for any
multiindex «, we get the family of estimates

(24) IDEPE)] < Ca(1+ €)1V E€R", 0 € N.

Of course if [af > m then Dgp = 0, so we can even take the constant C, to be
independent of . If we consider the characteristic polynomial P(z,£) of a differ-
ential operator of order m_with coefficients in C2(R™) (i.e. all derivatives of the
coefficients are bounded)n(lb.ﬁ[) is replaced by

(25)  |DEDIP(z,8)] < Cap(l+ )™ 1Pl ¥ (2,6) €R™ xR", a, 8 € Nj.

There is no particular reason to have the same number of z variables as of £ vari-
ables, so in general we define:

27



3.

10

.11

.12

.13

28 2. PSEUDODIFFERENTIAL OPERATORS ON EUCLIDEAN SPACE

DEFINITION 2.1. The space ST (RP;R™) of symbols of order m consists of those
functions a € C°(RP x R™) satisfying all the estimates

(26)  |DeDla(z,€)] < Cap(1+ €)™ 1P on RP xR" ¥ o € Nj, B €Np.

For later reference we even define SI (€ R™) when Q,C RP and @ C clos(int($2))
as consisting of those a € C*(int(Q) x R™) satisfying (2.6) for (z,£) € int(Q) x R™.

3.7
The estimates (b_b’) can be rewritten

2.7 a = sup ma 1+ gy~ Al D*DPq z,&)| < o0
@D elly ~cint(9) ey 1D [D=Dea( o)
£eR™
With these norms SZ(£2;R™) is a Fréchet space, rather similar in structure to

C2(R™). Thus the topology is given by the metric

_la—bl[nm
(2.8) 2N a,be ST (QR™).
NZ T+ Jla=bllvm’

The subscript ‘co’ here is mot standard notation. It refers to the assumption of
uniform boundedness of the derivatives of the ‘coefficients’. More standard notation
would be just S™ (2 x R™), especially for Q = RP, but I think this is too confusing.

A more significant issue is: Why this class precisely? As we shall see below,
there are other choices which are not only possible but even profitable to make.
However, the present one has several virtues. It is large enough to cover most
of the straightforward things we want to do (at least initially) and small enough
to ‘work’ easily. It leads to what I shall refer to as the ‘traditional’ algebra of
pseudodifferential operators.

Now to some basic properties. First notice that

(2.9) (L+[E)™ < CA+ )™ ¥V EER” <= m < m'.
Thus we have an inclusion
(2.10) ST RY) < ST (U R™) YV om! > m.

3.8
Moreover this inclusion is continuous, since from (b‘?), lal|nm < |lal|nm if a €
S™(;R™) and m’ > m. Since these spaces increase with m we think of them as a
filtration of the big space

(2.11) SR =[Sz (uR").

Notice that the two ‘cos’ here are quite different. The subscript refers to the fact
that the ‘coefficients’ are bounded and stands for L°° whereas the superscript oo
stands really for R. The residual space of this filtration is

(2.12) SO R™Y) = () ST R).

3.10
In fact the inclusion (bTU) is never dense if m’ > m. Instead we have the following
rather technical, but nevertheless very useful, result.

LEMMA 2.1. For any m € R and any a € ST (;R™) there is a sequence in
S (Q;R™) which is bounded in ST(Q;R™) and converges to a in the topology
of S(’)’g, (QR™) for any m’ > m; in particular S °(Q;R™) is dense in the space
S™(Q;R™) in the topology of S™ (Q;R™) for m' > m.
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The reason one cannot take m’ = m here is essentially the same reason that un-
derlies the fact that S(R™) is not dense in C2(R™). Namely any uniform limit
obtained from a converging Schwartz sequence must vanish at infinity. In particu-
lar the constant function 1 € SO (RP;R™) cannot be in the closure in this space of
S (RP;R™) if no > 0.

PROOF. Choose ¢ € C2°(R™) with 0 < ¢(¢) < 1, ¢(€) = 1if [¢] < 1,¢(£) = 0 if
|€] > 2 and consider the sequence
(2.13) ar(z,€) = ¢(§/k)a(z,§), a€ SZ(LR™).
We shall show that ay, € S>°(£2, R™) is a bounded sequence in ST (2; R™) and that
ar — a in 87 (€;R™) for any m/ > m. Certainly for each N
(2.14) Jar(z,€)| < Cn (1 + €)™

since ¢ has compact support. Leibniz’ formula gives

/ ’

215 peplutz9= 3 (5 )07 oe/mDDg a0,
B'<p
On the support of ¢(£/k), |£] < k so, using the symbol estimates on a, it follows
that ay, is bounded in S72(2; R™). We easily conclude that
(2.16) |DED{ar(2,6)] < Cnapr(1+1E)N  Va,B N,k
Thus a, € S (;R™).
So consider the difference

(2.17) (@ —ar)(z,€) = (1= ¢)(§/k) a(z,8).
Now, |(1 — ¢)(€/k)] = 0 in |[¢] < k so we only need estimate the difference in

|€] > k where this factor is bounded by 1. In this region 1 + [£] > 1 + k so, since
-m' +m <0,

(2.18) (L+1€)™ |(a — ax)(z,€)| <
(1+ k)~m+m sup|(1-+ €)™ a(,€)] < (1+ k)™ |al g m — 0.

This is convergence with respect to the first symbol norm.
Next consider the & derivatives of (2.17). Using Leibniz’ formula

Dia-w) =X (D)pia- ) pia)
v<p
— (- a) - Dlale9) - () (07 0) () 1 D).
v<B
In the first term, Dfa(z7 €) is a symbol of order m — ||, so by the same argument
as above

(219) sup(1-+ [¢]) ™ HP1(1 — 6)(2)Dfa(z, &) — 0
§

as k — oo if m’ > m. In all the other terms, (D?~7¢)({) has compact support, in
fact 1 < |¢] < 2 on the support. Thus for each term we get a bound

(2.20) sup (1+ [¢))~™ Al g=18e . (1 + gyl < o=+
k<|€| <2k
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The variables z play the role of parameters so we have in fact shown that
(2.21) sup (1+[¢) =™ P DD (a — ax)| — 0 as k — oo.
£ER™

Thils means ar — a in each of the symbol norms, and hence in the topology of
ST (RP;R™) as desired. O

In fact this proof suggests a couple of other ‘obvious’ results. Namely

3.17] (2.22) ST RY) - ST (Q:R™) € ST (O R™).
This can be proved directly using Leibniz’ formula:
sup(1 + |¢) " AIDE D¢ (a(=,8) - b( ©))|

< (5)(0) swwta +16h 0t Dtz 6)

pla
7<pB

x sup(1 + [¢]) " PN D21 DETh(z, €| < oo,
§
We also note the action of differentiation:
D¢ ST R™) — S(Q;R™) and
Df: ST(GR™) — SR,
In fact, while we are thinking about these things we might as well show the impor-

tant consequence of ellipticity. A symbol a € SZ(2;R™) is said to be (globally)
elliptic if

3.18| (2.23)

Then b is C* since b= 01in C < [¢] < C + 6 for some § > 0. The symbol estimates
follow by noting that, in |¢| > C,

1.2.2000.277 | (2.28) Dgpfb =g lel=I8l G

where G is a symbol of order (|a|+|8])m— |5}, ] ?bs Jnay be proved by induction.

Ind eq, it 4§ Yme when a = 8 = 0. Assuming ( or some « and [, differentiation
of (ﬁz’zﬁ&%w@s

(2.24) la(z, ) 2 e(1+ €)™ = CL+[gh™ ", e >0
or equivalently®

(2.25) a( )] > (1 + €)™ i €] > C., € > 0.

LEMMA 2.2. Ifa € STZ2(2;R™) s elliptic there exists b € S (Q;R™) such that

(2.26) a-b—1¢€ S °(Q;R™).

ProoFr. Using (B_%g) choose ¢ as in the proof of Lemma Bﬁl_aand set

e gz c

(2.27) b(2,&) = {0 =9 <0

zj 2 e zj « )
GI ( 1 |a‘ |ﬁ|)(LZja‘)Gaﬁ aLZjGaﬁ'

INote it is required that e be chosen to be independent of z here, so this is a notion of uniform
ellipticity.
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By the inductive hypothesis, G’ is a symbol of order (Ja|+14|8])m —|8]|. A similar
argument applies to derivatives with respect to the & variables. (I

2.2. Pseudodifferential operators

3.2
Now we proceed to discuss the formula (|‘Z_Z) where we shall assume that, for
some w,m € R,

(2.29) a(z,y,€) = (1+ |z —y[*)**a(x,y, )
a € SR(RY;RE).

The extra ‘weight’ factor (which allows polynomial growth in the direction of x —y)
turns out, somewhat enigmatically, to both make no difference and be very useful!
Notice? that if a € C°(R?*" x R™) then a € (1 + |z — y|?)*/25™(R?*";R") if and
only if

(2.30)  |DgDyDYa(w,y,€)| < Capq(1+ |z =y (L + )™MV o, 8,7 € Ng.

3.2
If m < —n then, for each u € S(R™) the integral in (E_Z) is absolutely convergent,
locally uniformly in z, since

(2.31) la(z,y, Euly)| < C(L+ |z —y))* (L + )™ (1 + |y~
SO+ [+ )™M+ y)™, m < —n.

Here we have used the following simple consequence of the triangle inequality

(I+]z—y)) <@+ z))A+y)

from which it follows that

1+ |z + y)v ifw>0

(2.32) I+ |z -y < {(1+|x|)w(1+|y|)w ifw<0.

Thus we conclude that, provided m < —n,
(2.33) A SR™) — (1 + |=]?)*/2Co (R™).

To show that, for general m, A exists as an operator, we prove that its Schwartz
kernel exists.

PROPOSITION 2.1. The map, defined for m < —n as a convergent integral,
(2.34)
(1+ [z =y "SRR R") 3 a — I(a) =

(27T)_"/ei(z_y)fa(%yaé)dﬁ € (L+|af? +|y*)"/*Co (R*")
extends by continuity to
(2.35) I:(1+ |z —y|*)"/2S0 (R R") — S'(R*")

for each w, m € R in the topology of S;”O/ (R2%; R™) for any m' > m.

2 1.2.2000.276
See Problem 2.5,
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PROOF. Since we already have the density of S >°(R?";R") in S™(R?";R")
in the toplogy of @”}Q/gR%;R") for any m’ > m, we only need to show the conti-
nuity of the map (2.34) on this residual subspace with respect to the topology of
S’ (R27; R™) for any m/, which we may as well write as m. What we shall show
is that, for,each w R, there are integers N,k € N such that, in terms of the
) 3,?’ ) 1'% ) g ) )
norms in (rb_7 ) and ZF-LI_G)

(2.36) |1(a)(9)] < Cllallnmlols V¢ € SR™),
a=(1+lz—y>)"%a, aec SL°R™R).

To see this we just use integration by parts.
Set (z,y) = (1+ |z —y|?)*/%¢(x,y). Observe that

(14 & Dy)e'® € = (1 4 [¢]?)elle—) ¢
(1-¢- Dy)ei(wfy)'ﬁ =1+ |£|2)ei(wfy)-£.

Thus we can write, for @ € S, with a = (1 + |z — y|?)*/?a and for any ¢ € N

o) = [[m [emeajgp

(2.37) (1 =& Do)*(1+€- D) [a(a,,€)d(x, y)| dédudy
> @€ (0, y, €)dE) DY, &, y)dady.
7|<2q// /

Here the a(yq) arise by expanding the powers of the operator

(1-&-Du)"(14+& Do) = > Cu&"DiDY
lul.lv|<q

and applying Leibniz’ formula. Thus a(yq) arises from terms in which 2g — || deriva-

tives act on a so it is of the form

= (1 + |£|2)72q Z CN:VS’YD?m,y)d
[l <[] 1vI<2q
= |layllnm < Cmgnllal|N2g,m—2q ¥V m, N, q.

n+m

So (for given m) if we take —2¢ +m < —n, e.g. ¢ > max("5™,0) and use the
integrability of (1 + |x| + |y|)72"~! on R?", then

(2.38) [1(a)(@)] < Clallzgml|Bllzg+20+1 < CllalzqmllSllzq+w-r2n+1-
3.27
This is the estimate (b_36), which proves the desired continuity. O

In showing the existence of the Schwartz’ kernel in this proof we do not really
need to integrate by parts in both x and y; either separately will do the trick.
We can use this observation to show that these pseudodifferential operator act on
S(R™).

LEMMA 2.3. If a € (1 + |z — y|>)*/2S7 (R?*™;R™) then the operator A, with
Schwartz kernel I(a), is a continuous linear map

(2.39) A: S(R™) — S(R™).
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3.30
We shall denote by ¥ (R™) the linear space of operators (2.39), corresponding
to (1+ |z — y[?)~/%2a € ST (R?>";R"™) for some w. I call them pseudodifferential
operators 1‘%]‘ %g@i}z‘%nal type’ — or type ‘1,0°, the meaning of which is explained in

Problem 2.6 below.

3.28
PROOF. Proceeding as in (2.37) but only integrating by parts in y we deduce
that, for ¢ large depending on m,

Au(yp) = > (2m)™" / / / '@V, (2,y, ) D u(y)déy(z)dydz,

v7<2q
ay € (14 |z —y[>)"/28™ IR*™R") if a € (1 + |z — y[>)“/2™(R*"; R").

The integration by parts is justified by continuity from S_°°(R?"; R"). Taking —q+
m < —n — |w|, this shows that Au is given by the convergent integral

(240) Au(z)= 3" (@m)" / / D (2,y,€)D]uly)dedy,
v<2q
A S®R™) — (1+[al?) F ¢ R
3.33
which is really just (5_33) again. Here CO (R") is the Banach space of bounded
continuous functions on R™, with the supremum norm. The important point is
that the weight depends on w but not on m. Notice that

Dy, Au(x) = (2m)™" Z // ei(wfy)-ﬁ(gj + Dy, )ay - D} u(y)dydé

[v]<2q
and

r;Au(z) = (2m)" Z // elr=y) g (—ng + yj)a.y -Dgu(y)dydg.

[v|<2q
3.30 3.33 1.2.2000.282
Proceeding inductively (2:39) follows from (b.33) or (b.ZIU since we conclude that
2*D8Au € (1+ |z2) 5 C%(R™), ¥ o, f € NI
and this implies that Au € S(R™). O

2.3. Composition

There are two extreme cases of I(a), namely where a is independent of either
x or of y. Below we shall prove:

THEOREM 2.1 (Reduction). Each A € W2 (R™) can be written uniquely as
I(a") where a' € ST(RY; RE).

This is the main step in proving the fundamental result of this Chapter, which is
that two pseudodifferential operators can be composed to give a pseudodifferential
operator and that the orders are additive. Thus our aim is to demonstrate the
fundamental

THEOREM 2.2. [Composition] The space WS (R™) is an order-filtered x-algebra
on S(R™).
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We have already shown that each A € ¥32(R"™) defines a continuous linear map

(B‘%}%) We now want to show that
4.35| (2.41) Ae T2 (R") = A" € U (R"™)
(2.42) Ae U (RY), Be W (R") = Ao B € U™ (R"),
since this is what is nt by an order-filtered (the orders add on composition)

x-algebra (meaning (ET[) holds). In fact we will pick up some more information
along the way.

2.4. Reduction

3.31
We proceed to prove Theorem 2.1, which we can restate as:

3.26
PROPOSITION 2.2. The range of (b_371) (for any w) is the same as the range
of I restricted to the image of the inclusion map

SZ(R™R") 3 ar— a(z,§) € SR, RY).
PROOF. Suppose a € (1+ |z — y|2)w/QS;o°°(R2”;R”) for some w, then

5| (2.43) I((zj —yj)a) =I(—Dga) j=1,...,n.

E

Indeed this is just the result of inserting the identity
D, eEE = (35 — y;)et@V)E
3.26 4.5

into (2.34) and integrating by parts. Since both sides of (b7[3) are continuous on
(1+]z— y|2)w/2S§§ (R?";R") the identjfy_holds in general. Notice that if a is of
order m then D¢ a is of order m —1, so ( 43) shows that even though the operator
with amplitude (z; — y;)a(z,y,€) appears to have order m, it actually has order
m— 1 4.5

To exploit (b7[3) consider the Taylor series (with Legendre’s remainder) for
a(z,y,&) around x =y :

(_7;)‘04 «a «

5 (@41) alwyO= Y o y)(Dja)@,r.8)

la|<N-1

E

—i)lel
£ S By

(0%
la|]=N

Here,

1
(2.45) Ry.o(z,y,8) = /(1 - t)N_l(Dz‘a) (z, (1 —t)z + ty, &)dt.
0

Now,
(wtlal)
(2.46) (x —y)*(Dya)(z,y,6) € (L+ |z —y[) 7 SZR™R").
4.5
Applying (|'27{3) repeatedly we see that if A is the operator with kernel I(a) then
N-1
(2.47) A=>"A;j+Ry, AjeVII(R"), Rye VI NR")

Jj=0
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where the A; have kernels

jlal
¢ « «
(2.48) 10y —7 (DyDga)(z,2,6)).
lor|=3
To proceed further we need somehow to sum this series. Of course we cannot really

do this, but we can come close!

2.5. Asymptotic summation

Suppose a; € S7/(RP;R™). The fact that the orders are decreasing means
that those symbols are getting very small, for || large. The infinite series

(2.49) DIUIERY)

need not converge. However we shall say that it converges asymptotically, or since
it is a series we say it is ‘asymptotically summable,’ if there exists a € S (RP; R"™)
such that,

N—-1
(2.50) for every N, a — Z a; € STN(RP;R™).

j=0
We write this relation as

(2.51) a~ Zaj.
3=0

PROPOSITION, 2,3. Any series a;j € Sm=i(RP;R™) is asymptotically summable,
in the sense of (b_50), and the asymptotic sum is well defined up to an additive
term in S .>°(RP; R™).

4.10

PROOF. The uniqueness part is easy. Suppose a and a’ both satisfy (E_SU)
Taking the difference

N-— N—
(2.52) a—a = (a— Z a;) — (a' — Z a;) € STN(RP;R™).
=0 =0
Since S °°(RP;R"™) is just the intersection of the SV (RP;R™) over N it follows
that a —a’ € S_°(RP;R™), proving the uniqueness.

So to the existence of an asymptotic sum. To construct this (by Borel’s
method?®) we cut off each term ‘near infinity in ¢’. Thus fix ¢ € C*®(R") with
&) =0in | <1, ¢ =1in |§] > 2,0 < ¢(§) < 1. Consider a decreasing
sequence

=
=

<
<

(2.53) €g>¢€>-->¢ |0

We shall set

(2.54) a(z,6) =Y d(e&)ay ().
=0

Since ¢(€;€) = 01in [£] < 1/e; — oo as j — oo, only finitely many of these terms
are non-zero in any ball |£| < R. Thus a(z,§) is a well-defined C*° function. Of
course we need to consider the seminorms, in S (RP; R™), of each term.

3Emile Borel
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The first of these is

(2.55) sup sgp(l + 16N |o(e;€)] |aj(z,9)|-

Now [¢] < % on the support of Z)(féf)dj(?ﬁ,{) and since a; is a symbol of order
m — j this allows us to estimate (2.55) by

sup sup (1+ €))7 - [(L+1€) 7" |ay(=,6)|]

z Jg<t
J
1,5 ;

where the C}’s are fized constants, independent of ¢;.
Let us look at the higher symbol estimates. As usual we can apply Leibniz’
formula:

supsup(l + €)™ P D2 D g(e€)ay(z, )|

< ¥ supsup(L + [¢]) T T (D5 ) (66|
p<p ¢

X (14 [¢)) M D2 D ay (2, €)].

The term with u = 3 we estimate as before and the others, with 1 # 3 are supported
in Ei < ¢ < el Then we find that for all j
J J

(2.56) p(€;€)a; (2, )l nm < Cnj€

where Cy ; is independent of ¢;.
So we see that for each given N we can arrange that, for instance,

1
llp(ei€)ai(z,E)lINm < CN].—2
by choosing the ¢€; to satify

i 1 L
CNJ‘G; < ]—2 vV j>j(N).

No 'c?_/the crucial point here, we can arrange that for each N the sequence of norms
in (2.56) is dominated by Cyj~?2 by fixing €; < €;  for large j. Thus we can arrange
convergence of all the sums

Z llp(e€)a (2, &)l Nm

by diagonalization, for example s thing €; = %em. Thus by choosing €; | 0 rapidly
enough we ensure that the series (%.BZI) converges. In fact the same argument allows
us to ensure that for every N

(2.57) Z p(ej€)a;j(z, &) converges in STV (RF;R™).
Jj=2N

4.10 4.15
This certainly gives (E_SU) with a defined by (W) O
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2.6. Residual terms

4.12 4.9
Now we can apply Proposition 2.3 to the series in (|'27{8), that is we can find
b e ST(RY; RY) satisfying

Jlal

(2.58) b(x, &) ~ Z o (Dya)(z,z,¢).
Let B = be the operator defined by this amplitude (which is independent of
. Now (| 7 ) says that
N—-1
A—B= Aj + Ry — B
j=0
4.10 4.19
and from (E_SU) applied to (E_SS)
N-1
B=Y_ Aj+Ry, RyecVNR")
7=0
Thus
(2.59) A-Be U >*R") =TI (R").

Notice that, at this stage, we do not know that A — B has kernel I(c) with
c € S:°(R?",R™), just that it has kernel I(cy) with ey € SY(R?";R") for each
N.

However:

PROPOSITION 2.4. An operator A : S(R") — S'(R™) is an element of the
space U 2 (R™) if and only if its Schwartz kernel is C*>° and satisfies the estimates

(2.60) |DEDESK (2,y)] < CNap(l+ |z —y)) ™™ ¥V a,B8,N.
PROOF. Suppose first that A € W >*(R"), which means that 4 € U (R") for
every N. The Schwartz kernel, K 4, of A is therefore given by (E:I}ZI) with the am-

plitude ay € SY(R?";R"™). For N << —n — 1 — p the integral converges absolutely
and we can integrate by parts to show that

(z —y)*DIDYKa(,y)
=2 / @V (D) (D, 4 i€)P(Dy — i€)Van (x,y, £)dE

which converges absolutely, and uniformly in x, y, provided |3|+ |v|+ N —|a| < —n.
Thus
sup| x—y)*D D'VK| <oV a,pfBy

4.22

which is another way of writing (b_60)
sup (1 + |z — y[?) N|D§D3K| <ooV fB,v,N
4.22 ‘
Conversely suppose that (b_GU) holds. Define

(2.61) g(x,z) = K(z,z — 2).

4.22
The estimates (b_GU) become

(2.62) sup ‘Dngng(a:, z)| < ooV a,B,7.
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That is, g is rapidly decreasing with all its derivatives in z. Taking the Fourier
transform,

!

4.2 (2.63) b(z,€) = /e*iz'gg(gmz)dz
4.24
the estimate (b_G‘Z) translates to
sup }Dg‘éﬁng(x,fﬂ <ooVa,pfBy
z,§

i

26| (2.64)
< be S 7R RY).
4.23

4.25
Now the inverse Fourier transform in (E_GB), combined with (E_GT) gives

4.27| (2.65) K(z,y)=g(z,x —y) = (27r)7”/ei(w7y)'€b(a:,§)d§
i.e. K = I(b). This certainly proves the proposition and actually gives the stronger
result.
(2.66) A€V X°(R") <= A=1I(c), c € SL°(R;RE).

O

4.4 4.19 14.20
This also finishes the proof of Proposition b2 since in (2.58), (b_59) we have
shown that

4.28| (2.67) A=B+R, B=I(b), Re¥_>*R")
so in fact
4.29] (2.68) A=1I(e), e€ ST(RLRE), e~ Y J(Dy Dga)(z,z,£).
d
f .of .Composition.Theorem 2.7. Proof of Composition Theorem

First consider the adjoint formula. If
A:SR") — S(R")
the adjoint is the operator
A*: S'(RY) — S'(R™)
defined by duality:
4.30| (2.69) A*u(@) = u(Ag) ¥V ¢ € S(R™).
Certainly A*u € 8'(R"™) if u € §’'(R™) since
431 (2.70) A*u(y) = u(AY) and S(R™) 3 ¢ — A € S(R™)
is clearly continuous. In terms of Schwartz kernels,

Ap(x) = / K (e, y)é(y) dy, ¢ € S(R™)
4.32| (2.71)

A*u(z) = /KA*(x,y)u(y) dy, uwe S(R").
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We then see that
(2.72) /KA* z,y)uly)¢(z)dydz = /mdyu(gg)dx

= Ka-(z,9y) = Ka(y, )

where we are usir[%g;“{%le uniqueness of Schwartz’ kernels.
This proves (2.41) since

(2.73) Ka(y,z) = [(27T)n /e“y—z)-fa(yaxaﬁ)df]
. 1 i(z—y)Ex aly,x,&)d¢
- (2m)n / o

3.26
ie. A* = I(a(y,x,&)). Thus one advantage of allowing general operators (2.34) is

that closure under the passage to adjoint is immediate. "
For the composition formula we need to apply Proposition |‘Z_2 twice. First to
A€ U7 (R™), to write it with symbol a(z,§)

Ad(z) = (2m)" / ¢ €z, €)3(y)dyde
—2m) [ el (e

vion 4
Then we also apply Proposition 2.2 to B*,

B*u(z) = (2m)™" / e Eh(x, £)a(€)dE.

Integrating this against a test function ¢ € S(R™) gives

(Bou) = (6.8°0) = (20) " [ [ e So()h(e. A dedo

(2.74)
— Bo(e) = / b (y, €)b(y)dy

Inserting this into the formula for A¢ shows that
= AB(u) = (2m)" / e @V Ea(x, )b(y, ) u(y)dyde.

Since a(z,&)b(y,£) € STt (REr

(ry); RE) this shows that AB € gmm (R g
claimed.

2.8. Quantization and symbols

So, we have now shown that there is an ‘oscillatory integral’ interpretation of

(275) K(ay) = (2n) " [ D Sae,y.€)ds = 1(a)
which defines, for any w € R, a continuous linear map
I:(1+ |z —y[?)?SE(R*™R") — S'(R*")
the range of which is the space of pseudodifferential operators on R"™;
A€V (R") <= A:S(R") — S'(R") and

(276) 2\ % am 2n n
Jwst. Ka(z,y) =1(a), a€ (14 |z —y[*)2 52 (R*;R").
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4.4

Furthermore, we have shown in Proposition |‘Z_2 that the special case, w = 0 and
Odya = 0, gives an isomorphism

TL
(2.77) U7 (R") — ST (R™;R™).

qL
The map here, ¢;, = I on symbols independent of y, is the left quantization map and
its inverse o, is the left full symbol map. Next we consider some more consequences
of this reduction theorem. s 3

As well as the left quantization map leading t%:c?e isomorphism (|‘Z_77 ) there is

a right quantization map, similarly derived from (2.75):

(278)  qr(a) = (2m)" / e@VEa(y, )de, € ST (RRY).

In fact using the adjoint operator, %, on operators and writing as well * for complex
conjugation of symbols shows that

(2.79) qr = * - qr,  *

is also an isomorphism, with inverse o
R

(2.80) U7 (R") — S™ (R™;R™) .
dR

P5.1
These are the two ‘extreme’ quantization procedures, see Problem H.T for another
(more centrist) approach. Using the proof of the reduction theorem we find:

LEMMA 2.4. For any a € ST (R™;R"™),
1] )
. or, (qr(a)) (z,€) ~ Z—DO‘DO‘CL x,&) ~ e"<DPzDe> g
(2.81) (qr(a)) (z,6) ~ Y e Déa(z,

a!
«

For the moment the last asymptotic equality is just to help in remembering the
formula, which is the same as given by the formal Taylor series expansion at the
origin of the exponential.

4.29
Proor. This follows from the general formula (E_GB) O

2.9. Principal symbol

One important thing to note from (%gl) is that
(2.82) D2 Dga(z,£) € Sm™1*l(R™;R™)
so that for any pseudodifferential operator
(2.83) A€ U™ (R") = o1,(A) — or(A) € ST (R™;R").
For this reason we consider the general quotient spaces
(2.84) Szl (RPSRY) = 572 (RVRY) /ST (RYRY)
and, for a € ST (RP;R™), write [a] for its image, i.e. equivalence class, in the
quotient space S7 ™ (RP; R™) . The ‘principal symbol map’

O WL (RY) — ST U (R RY)
is defined by 0, (A) = [oL(A)] = [or(4)].

As distinct from oy, or og, 0., depends on m, i.e. one needs to know that the order
is at most m before it is defined.

(2.85)
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5.3
The isomorphism (2.77) is replaced by a weaker (but very useful) exact se-
quence.

LEMMA 2.5. For every m € R
0= IR < W (R T ST (RN RY) — 0
is a short exact sequence (the ‘principal symbol sequence’ or simply the ‘symbol
sequence’).

PROOF. This is just the statement that the range of e ghgmap is the null space
of the next i.e. that o, is surjective, which foll from J77), and that the null
space of o, is just YZ~1(R") and this is again ( 7 and the deﬁmtlon of 0. O

The fundamental result proved above is that
(2.86) U7(R™) - U™ (R™) C U™ (R,
In fact we showed that if A = ¢r(a), a € SZ(R™R™) and B = qr(b), b €
Sm" (R™; R™) then the composite operator has Schwartz kernel

KA-B(ma y) =1 ((I(l', E)b(ya 5))
4.29
Using the formula (E_GE) again we see that

ilal
(2.87) oL(A-B)~ ) —D¢[a(w,©)D3b(w,€)].

«

5.12
Of course b = o(B) so we really want to rewrite (b‘&’?) in terms of o (B).

LEMMA 2.6. If A€ U (R") and B € U™ (R™) then Ao B € U™ (R™) and
(288) Um-‘,—m’(AOB) :U7n(A) 'O',,n/(B),

ilol
(2.89) op(AoB)~ > —Déor(4) - DioL(B).

5.14 5.12
ProoF. The simple formula (E_SS) is already immediate from (5_87) since all
tgrli%s with |a > 1 are of qrdey m+m' —|a| < — 1. To get the ‘full’ formula
) we can insert into E 87) the inverse of ( 1 namely

or(z,§) ~ Z (= )l ‘D o (&) ~ e <PePe>gp (16

«

This gives the double sum (still asymptotically convergent)

ilel il 5
or(AoB) ~ 25: za: — Dé [oL(A)DS FDng or(B)].
Setting v = a + § this becomes
1kl A/ 1)lr—el B
L(AoB) Z Z Dé [oL(A) x DI D)oL (B)].
" 0<a<y

Then Leibniz’ formula shows that this sum over a can be rewritten as
16l
o1(AoB) ~ S o DYoy(4) - Dyow(B)
7!

~ ei<Dy1D§>o'L (A)(fE, §)UL (B)(Zh 17) |y:rﬂ7:f'
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5.15
This is just (3:89). O

5.14 5.15
The simplicity of (E_B'B) over (E_B'Q) is achieved at the expense of enormous loss
of information. Still, many problems can be solved using (| E éS which we can think
of as saying that the principal symbol maps give a homomorphism, for instance

from the filtered algebra W9 (R™) to the commutative algebra 5o (R™;R™).

2.10. Ellipticity

We say that an element of U7 (R™) is elliptic if it is invertible modulo an error
in ¥ >°(R™) with the approximate inverse of order —m i.e.
A e U2 (R") is elliptic
<~ 3 BeU "(R")st. AoB—1Ide T_*R").

Thus ellipticity, here by definition, is invertibility in W7 (R™ / U2 (R™), so the
inverse lies in U™ (R" / U >°(R"™). The point about elhptlclty is that it is a phe-
nomenon of the prmczpal symbol

(2.90)

THEOREM 2.3. The following conditions on A € ¥ (R™) are equivalent

(2.91) A is elliptic
(2.92) 3 bl € ST (R R™) st opm(A) - [b] =1 in SO (R R™)
(2.93) Fbe S (R™R™) st o (A)-b—1€ 5> (R"R")
1
(2.94) Fe>0s.t |op(A)(@,8)] = e(1+[E)™ in |¢| > -

PRroor. We shall show
(2.95) B9 — B9 — &) — &5 — B9,

3.21 5. 20 5.21
In fact Lemma 2.2°shows the equiyalence of (2.93) and (2.91). Since we know that
o0(Id) = 1 applying the identity (2.88) to the definition of ellipticity in (2.90) gives

(2.96) om(A) -0 _n(B) =1 in SR R™),

8 5.19
ie. that (B97) — @?' .
Now assuming (2.96) (i.e. (E_QE)L and recalling that 0,,(A) = [0 (A)] we find

that a representative by of the class [b] must satisfy
(2.97) or(A) by =14e;, e € SRR,

this being the meaning of the equality of residue classes. Now for the remainder,
e1 € SZH(R™;R™), the Neumann series

(2.98) Y=
Jj=1

is asymptotically convergent, so f € SL!(R";R") exists, and

(2.99) I+f) - (I4+e1)=14+e€c0, €oo€ SRR,
Then multiplying (E_EW) by (1 + f) gives
(2.100) or(A) - {bi(1+ )} =14 e

5.20
which proves (b‘%’) since b = b1 (1 + f) € S.(R™; R™). Of course
(2.101) sup(1+ [€))V |es| <00 ¥V N
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SO

(2.102) 30 st Jew(n€)] < % in ¢ > C.
From (B_%(%O) this means
1
(2.103) |on(A)(@, 9] - [b(e, )] = 5. €] > €.
5.26
Since [b(x, €)| < C(1 + |€])~™ (being a symbol of order —m), (B:703) implies
(2.104) it Jou(A)(w €)1 +1e) " = C >0,

5. 20 5.21
which shows that (|‘Z_93) implies (|‘Z_971) c o1 5 2
Conversely, as alyeady remarked, (2.92) implies (b‘9‘3)5 1
Now suppose (b_%') holds. Set By = ¢z (b) then from (E_B'B) again

(2.105) oo(A o By) = [qm(A)] - [b] = 1.
That is,
(2.106) AoB; —1d=E; € Y }(R").
Consider the Neumann series of operators
(2.107) > (1Y E.

j=1

The corresponding series of (left-reduced) symbols is asymptotically summable so
we can choose F' € U} (R"™) with

(2.108) or(F) ~ > (1) or(EY).
j=1
Then
(2.109) (Id+E1)(Id +F) = [d+Es, Es € U1°(R").
Thus B = Bi(Id+F) € U " (R"™) satisfies (5_918) and it follows that A is elliptic.

O

o . . . . . 5 = 16 .
In the definition of ellipticity in (|'2_‘JO) we have taken B to be a ‘right paramet-
rix’, i.e. a right inverse modulo ¥ *°(R™). We can just as well take it to be a left

parametrix.

LEMMA 2.7. A € U (R") is elliptic if and only if there exists B’ € U ™(R"™)
such that
(2.110) B oA=1d+E', E' € U °(R")
) ) 5.16
and then if B satisfies (E_QU), B — B’ € U_>°(R").
5.32
ProOOF. Certainly (%0) implies o_, (B’)-01m(A4) = 1, and the multiplication
here is commutatiye so (2.92) holds and A is elliptic. Conversely if A is elliptic we
get in place of (E:II)G)

BioA—1d=E; € VU (R").
5.45
Then defining F’ as in (ETUS) with Y in placeof Eh we get (Id+F")(Id +E]) =
Id £, and then B’ = (Id+F") o By satisfies (Z.T10). Thys ‘left” ellipticity as in
(2°T10) is equivalent to right ellipticity. Applying B to (2.110) gives
(2.111) B'o(Id+E)=B'o(AoB)= (Id+E')o B
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which shows that B — B/ € W >°(R"). O

Thus a left parametrix of an elliptic element of U7 (R™) is always a right, hence
two-sided, parametrix and such a parametrix is unique up to an additive term in
U 2(R™).

2.11. Elliptic regularity

One of the main reasons that the ‘residual’ terms are residual is that they are
smoothing operators.

LEMMA 2.8. If E € U >°(R"™) then
(2.112) E:S'(R") — S'(R") NC>®(R").

4.21
PRrROOF. This follows from Proposition b.ZI since we can regard the kernel as a
C® function of z taking values in S(RY)). O

Directly from the existence of parametrices for elliptic operators we can deduce
the regularity of solutions to elliptic (pseudodifferential) equations.

PROPOSITION 2.5. If A € U (R™) is elliptic and v € S'(R™) satifies Au = 0
then u € C*(R").

PrOOF. Let B € ¥ _*(R") be a parametrix for A. Then Bo A = Id+E,
E € U®(R"). Thus,

(2.113) u=(BA—-FE)u=—-FEu
5.42
and the conclusion follows from Lemma 2.8 O

2.12. The Laplacian
Suppose that g;;(x) are the components of an ‘co-metric’ on R", i.e.
gij(a:) eCX®R"),i,7=1,...,n

(2.114) | Z gij(a:)&fj} >elé]? VazeR"EER", €>0.

ij=1
The Laplacian of the metric is the second order differential operator

n

1 .
(2.115) A, = —D,,g" /gD,

where
g(z) = det g7 (), g"(x) = (gi5(x)) ™"
The Laplacian is determined by the integration by parts formula
(2.116) [ g7 @Deo- Doy = [ 8y0-Tdg ¥ 6,0 € S
R Gd
where

(2.117) dg = \/gdx.
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5.34
Our assumption in (|‘Z_F[4) shows that A = A, € Diff?2 (R") C ¥2 (R") is in
fact elliptic, since

ij=1
Thus A has a two-sided parametrix B € U_2(R")
(2.119) AoB=BoA=1Id mod W_°(R").

. .. [20.2.1998.103 L
In particular we see from Proposition b.5 that Au = 0, v € S'(R™) implies u €
C>(R™).
2.13. L? boundedness

So far we have thought of pseudodifferential operators, the elements of U2 (R™)
for some m, as defining continuous linear operators on S(R™) and, by duality, on
S'(R™). Now that we have proved the composition formula we can use it to prove
other ‘finite order’ regularity results. The basic one of these is L? boundedness:

PROPOSITION 2.6. [Boundedness] If A € W9 (R™) then, by continuity from
S(R™), A defines a bounded linear operator

(2.120) A: L*(R") — L*(R").

Our proof will be in two stages, the first part is by direct estimation. Namely,
Schur’s lemma® gives a useful criterion for an integral operator to be bounded on
L2

LEMMA 2.9 (Schur). If K(z,y) is locally integrable on R*"™ and is such that

(2.121) sup/ | K (x,y)|dy, sup/ | K (x,y)|dx < oo
zeR" JRn yeRn JRn

then the operator K : ¢ — [o,, K (z,y)¢(y)dy is bounded on L*(R™).

1.2.2000.280
PROOF. Since S(R™) is dense in L?(R™) (see Problem b.lS we only need to
show the existence of a constant, C, such that

(2.122) /|K¢(a:)|2da: < c/ 62 V¢ e SR
Writing out the integral on the left

1] Kol a
= / / / K (z,y)K (x,2)¢(y)¢(2) dydzdz

is certainly absolutely convergent and

/ | K ()| da
: (// ‘K(ﬁ’y)K(%z)|¢(y)|2dydxd2)%

X < / / K (2, ) K (z, z)|<;s(z)|%zzdgcdy>é .

(2.123)

4Schur
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These two factors are the same. Since

/|K(a:,y)||K(x,z)|dmdz§ sup /|K(x,z)‘dz sup /|K(m,y‘daj

zERN yER™
6.4 5.51 6.4
(ETTQQ) follows. Thus (b_ﬂl) gives (b.—[22). O
This standard lemma immediately implies the L? bo pdgdness of the ‘residual
(b‘GU.'

terms.” Thus, if K € U_*(R") then its kernel satisfies ). This in particular
implies

|[K(zy)] <C e —y)
5.51
and hence that K satisfies (|'2_1'21) Thus

(2.124) each K € U *(R") is bounded on L?*(R").

2.14. Square root

6.2
To prove the general result, (|‘Z._l‘20)7 we shall use the clever idea, due to Hor-
mander, of using the (approximate) square root of an operator. We shall say that

an element [a] € gm- (R™;R™) is positive if there is some 0 < a € S™(R™; R") in
the equivalence class.

PROPOSITION 2.7. Suppose A € U (R™), m > 0, is self-adjoint, A = A*, and
elliptic with a positive principal symbol, then there exists B € \Ifg/ 2(R"), B = B*,
such that

(2.125) A=B*+G, GecU ®R").

Proor. This is a good exercise in the use of the symbol calculus. Let a €

SE(R™R™), q,> O be g Posit.ive representative of the principal symbol of A. Now
(See Problem 2.19 for an outline of the proof)

(2.126) by = a? € ST/2(R™;R™).

Let By € \I/gé/z(R") have principal symbol by. We can assume that By = B, since
if not we just replace By by %(Bo + Bg) which has the same principal symbol.
The symbol calculus shows that B2 € ¥ (R") and

Om(B2) = (0m/2(Bo))? = b2 =ap mod ST
Thus
(2.127) A—-Bi=FE, € VT Y(R").

Then we proceed inductively. Suppose we have chosen B; € \I/gé/ 2 (R™), with
B;-‘ = Bj, for j < N such that

2

N
(2.128) A=Y Bj| =Enq1 eV VHRY.
§=0
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Of course we have done this for N = 0. Then see the effect of adding Bni1
w2 N Ry

N+1

N
(2129) A— > B;| =Enxi1—|Y_B;| By
j=0 j=0

N
— By ZBJ — By
=0

On the right side all terms are of order m — N — 2, except for

(2130) EN+1 — BOBN+1 — BN+1BO S \IJ?O_N_l(Rn).
The principal symbol, of order m — N — 1, of this is just
(2131) Umfol(ENJrl) -2 bo . U%,Nfl(BNle).

Thus if we choose

11
Omj2-N-1(BNt1) = 20 Om-N-1(ENny1)

47

and replace By by %(%Nfﬁl + Bjr41), we get the inductive hypothesis for N + 1.
Thus we have arranged (2.128) for every N. Now define B = (B’ + (B’)*) where

(2.132) or(B) ~ Y oL(B;).
j=0

6.14 6.10
Since all the B; are self-adjoint B also satisfies (ETBZ) and from (E_TZS)

2
N

(2133) A—B2=A— ZBj + B(N+1) c \Ijgé—N—l(]Rn)
7=0

N
for every N, since B(y11) = B—> Bj € \Pgé/z_N_l(R")- Thus A—B? € ¥ *(R")

=0

6.7 J 6.6
and we have proved (b.—[25), and so Proposition b_7

2.15. Proof of Boundedness
Here is Hormander’s argument. We want to show that
(2.134) lAgll < Clléll v ¢ € SE™)
where A € UY_(R™). The square of the left side can be written

/AQS-A_qux = /qs- (A*Ap)dx.
So it suffices to show that
(2.135) (¢, A*Ag) < Cllg]*.

O

Now A*A € W9 (R") with 0¢(A*A) = a¢(A)og(A) € R. If C > 0 is a large constant,

c > su?‘UL(A*A)(%f)‘



6.17

S.Sobolev.boundedness|

o)
[y
©

o e}
[\
= o

2

2

[} o)
N
w N

(o))
N
=

2

(6]

II

[e))

2

6.28

48 2. PSEUDODIFFERENTIAL OPERATORS ON EUCLIDEAN SPACE

then C'— A* A has ab_é)bltive representative of its principal symbol. We can therefore

apply Proposition to it:
(2.136) C—-—A"A=B*"B+G, GeU_ *R").
This gives

=Cl¢|* — 1 BS|* — (¢, Go).

The second term on the right is negative and, since G € ¥ > (R"™), we can use the
residual case discussed above to conclude that

. (¢, Go)| < C’||¢||621=> 149]* < Cllé)1* + C"ll9]1%,
o (b:TQO) holds and Proposition B5 is proved.

(2.137)

2.16. Sobolev boundedness

Using the basic boundedness result, Proposition BT& and the calculus of pseu-
dodifferential operators we can prove more general results on the action of pseudo-
differential operators on Sobolev spaces.

Recall that for any positive integer, k,

(2.138) H*R™) = {u € L*(R"); D € L*(R") Y |a| < k}.
Using the Fourier transform we find
(2.139) u e HFR™) = €*u(¢) € L*(R™) Y |a| < k.

Now these finitely many conditions can be written as just the one condition

(2.140) (1+1¢2) " a(e) e LARM).
Notice that a(¢) = (14 |£]2)*/2 = (¢&)F € Sk (R™). Here we use the notation
1
(2.141) © = (1+ 1)
6.21
for a smooth (symbol) of the size of 1 + ||, thus (b‘MO) just says
(2.142) u € H*(R") <= (D)*u € L*(R™).
For negative integers
(2.143)  H*R") ={uecS'R")j;u= Y  Dug, ugeL*R")}, —keN,
|BI<—k

The same sort of discussion applies, showing that

(2.144) u € HF(R™) <= (D)*u € L*(R").

In view of this we define the Sobolev space H™(R"), for any real order, by
(2.145) u€ H™, (R") <= (D)™u € L*(R").

It is a Hilbert space with

(2.146) lall2, = (D)™l = / (1+ [€[2)™a(e) [2de.

Clearly we have

(2.147) H™R™) 2 H™ (R") if m’ > m.
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Notice that it is rather unfortunate that these spaces get smaller as m gets bigger,
as opposed to the spaces U (R™) which get bigger with m. Anyway that’s life and
we have to think of

H>(R") =N H™R") as the residual space

2.148 m
( ) H=>°R") =JH™(R™) as the big space.

m

It is important to note that
(2.149) S(R™) ¢ H*(R™) ¢ H *°(R") ¢ S'(R™).

In particular we do not capture all the tempered distributions in H~>°(R"™). We
therefore consider weighted versions of these Sobolev spaces:

(2.150) (@) H™(R") = {u € §'(R"); (z) %ue H™R")}).

THEOREM 2.4. For each ¢,m, M € R each A € WM (R") defines a continuous
linear map

(2.151) A ()T H™(R™) — ()9 H™ M(R™).
PRrROOF. Let us start off with ¢ = 0, so we want to show that
(2.152) A:H™R") — H™MR"), Ac MR
6.26
Now from (E—MB) we see that
(2.153) w € H™(R") <= (D)™u € L*(R")
«— (D) M(D\My € L2(R") <= (D)Muc H™ M[R") Vm, M.

That is,
(2.154) (DYM . H™(R™) «— H™M(R") ¥V m, M.
To prove (E.'—I%Q) it suffices to show that
(2.155) B = (D)"M*m. A . (D)™™ : [*(R") — L*[R")
since then A = (D)~™*M . B. (D)™ maps H™(R") to H™ M (R") :
(2.156) H™(R") —2= H™ M (R")
o] e
L3*(R") = L2(R™).

6.37
Since B € ¥9_(R"), by the gogpposition theorem, we already k gvgs(bfl'%).

Thus we have proved (2.152). To prove the general case, ?bf'ﬁl), we proceed
in the same spirit. Thus ()7 is an isomorphism from H™(R") to (z)?H™(R"), by
definition. So to get (2.151) we need to show that
(2.157) Q= (x)"7-A-(x)7: H™(R") — H™ MR"),

6.34
i.e. satisfies (2.152). Consider the Schwartz kernel of Q). Writing A in left-reduced
form, with symbol a,

(2.158) Ko(z,y) = (2m)™ / T E () g, £)dE - (y)T.
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Now if we check that

lal

(2.159) (@) 1 y)a(z,€) € (L+ |z —y[*) * S (R*;R")

6.39 6.34
then we know that Q € U (R") and we get (b_l'57) from (2.152). Thus we want
to show that

q
(2.160) o= i) 1 0w, € Y @R
x
assuming of course that a(z,¢) € SM(R";R"). By interchanging the variables x
and y if necessary we can assume that g < 0. Consider separately the two regions

{@)sle —yl < (el +1uD} =
(2.161)

(@b =9l > 50l + o)} = 2.

In Q1, x is “close” to y, in the sense that

1 4 5
(2.162) ol < fo =yl +lyl < (2l +1yD) + |yl = |ol < 5 - 71yl < 2Jyl.
Thus
—q

(2.163) (x—y)~9- g;_q <C in Q.
On the other hand in s,
(2.164) |z] + y| < 8|z — y| = |z| < 8|z — y|
SO again

G
2.165 x—y)y 9 <C.
(2.165) )
In fact we easily conclude that

q
(2.166) oy 18 ccmmn) v,

)4
. . . @) . 6.42
singe differen agon by z or y make a:% terms “smaller”. This proves (b.—fGO)7 hence
(2.159) and (2.157) and therefore (2.151), i.e. the theorem is proved. O

2.17. Consequences

We can capture any tempered distribution in a weighted Sobolev space; this is
really Schwartz’ representation theorem which says that any u € S'(R™) is of the
form

(2.167) U= Z xo‘Dfuag, uqp bounded and continuous.
finite

Clearly C% (R™) C ()" L?(R"). Thus as a special case of Theorem E.'Ti’,_z
D} (@) LAR") — (2) T H PR
S0
LEMMA 2.10.

(2.168) S'(R™) = | Ja)™ HM(R™).
M
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The elliptic regularity result we found before can now be refined:
PROPOSITION 2.8. If A € W (R™) is elliptic then

(2.169) ;4u f ()P HY(R"™), u e (z)?» HT (R™)

= u € (r)’ H" (R"), p’ = max(p,p'), ¢" = max(q +m,q').
PROOF. The existence of a left parametrix for A, B € U "(R"),

B-A=1d+G, G e ¥ (R")
means that
(2.170) u = B(Au) + Gu € ()P H*T™(R™) + (z)? H®(R™) C (z)*" HI*™(R™).
O

2.18. Polyhomogeneity

%far we have been considering operators A € \I!m.(_R”) which correspond,
via (2.2), to amplitudes satisfying the symbol estimates (CBLG), ie., in S (R?";R").
As already remarked, there are many variants of these estimates and corresponding
spaces of pseudodifferential operators. Some w ekening .(af/ghe estimates is discussed
in the problems below, starting with Problem [2.16. Here we consider a restriction
of the spaces, in that we define

(2.171) S (RP;R) C ST (RP;R™).

:P.
The definition of the subspace (Ze. (1) is straightforward. First we note that if
a € C*(RP; R™) is homogeneous of degree m € R in |£] > 1, then

(2.172) a(z,t&) =t"a(z, ), |t, €] > 1.

If it also satisfies the uniform regularity estimates

(2.173) sup |D§‘D§a(2,§)| <ooVa,pf,
Z€R™, [£]<2

then in fact
(2.174) a € ST (RP;R™).
eq:P.
Indeed, (bl 73) is exactly the restriction of the symbol estimates to z € RP, |£] < 2.

On the other hand, in |£] > 1, a(z, &) is homogeneous so

D2 Da(z,6)] = |€]" P D2 D a(z )], £ =&

€l

from which the symbol estimates follow.

DEFINITION 2.2. For any m ¢ R, the subspace of (one-step)® polyhomogeneous
symbols is defined as a subset (2. by the requirement that a € Sg}l(RP;R”) if
and only if there exist elements am—;(z,£) € SZ(RP;R™) which are homogeneous
of degree m — j in || > 1, for j € Ny, such that

(2.175) and am ;.
j

grob:MM
5For a somewhat more general class of polyhomogeneous symbols, see problem 2.8
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Clearly
(2.176) oh(RP;R™) - STH(RP;R™) © ST+H™ (RP;R™),
since the asymptotic expansion of the product is given by the formal product of the
asymtotic expansion. In fact there is equality here, because
(2.177) (1+1€%)™? € S (RP;R™)

and multiplication by (1 + [£[?)™/2 is an isomorphism of the space SO (RP;R™)
onto Sii (RP;R™). Furthermore differentiation with respect to z; or & preserves
asymptotic homogeneity so
Dy; - Spi(R7R™) — S (R7R™)
Dy, : S (RP;R™) — S5 (RP;R™)

I

1=1,...,n.

It is therefore no surprise that the polyhomogeneous operators form a subalgebra.

PROPOSITION 2.9. The spaces W1 (R") C WL (R™) defined by the condition
that the kernel of A € W} (R™) should be of the form I(a) for some

(2.178) a€ (1+ |z —y/?)"/2Sm (R R"),
form an order-filtered x-algebra.
PRrROOF. Since the definition shows that
pn(R") C W (R™)
we know already that
() U (RY) C 0 ().
eq:P

:P. .
To see that products are polyhomogeneous it suffices to use (be.l /6) and (2 78]
which together show that the asymptotic formulee describing the left symbols of
A€ Un(R") and B € U™ (R™), e.g.

il
¢ (e (e
UL(A) ~ Z JDf Dy CL($7 Y, §)|U:$
imply that or(A) € ST, (R™R"), or(B) € Sp (R™;R™). Then the asymptotic for-
mula for the product shows that or(A- B) € ngfm/(R"; R™).
The proof of #-invariance is similarly elementary, since if A = I(a) then A* =
I(b) with b(z,y, 2) = a(y, z, &) € SF(R*";R™). O

This subalgebra is usually denoted simply U™ (R"™) and its elements are often
said to be ‘classical’ pseudodifferential operators. As a small exercise in the use of
the principal symbol map we shall show that

A€ U (R™), Aelliptic = 3 a parametrix

2.179
(2.179) Be U, "R"), A-B-1d, B-A—Ide€ U *(R").

In fact we already know that B € U "(R™) exists with these properties, and even
that it is unique modulo W >°(R™). To show that B € W ;"(R"™) we can use the
principal symbol map.
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For elements A € W7} (R™) the principal symbol ¢,,,(4) € S (]R" R™) has
a preferred class of representatives, namely the leading term in the expansion of
or(A)
om(A) = o(§)am(z,§) mod S;’ﬁ*l(]R";R")
where o] = 1in €] > 1, ¢|¢] = 0 in |¢] < 1/2. It is even natural to identify the
principal symbol with a,,(z, ) as a homogeneous function. Then we can see that

(2.180) A € UL(R"), om(A) homogeneous of degree m
= UL (R") + VYR
Indeed, we just subtract from A an element A, € Wi (R") with 0y, (A1) = 07, (A),
— m—1(Tn
thensgtnr(ﬁu;n?rié ;)?di(; Ij)éllro_ofA olf E(Egjf‘s#(n%tg'straight away that
0_m(B) =0m,(A)~!

has a homogeneous representative, namely a,,(z,&)~!. Thus we have shown that
forj=1

(2.181) Be W ™R")+ ¥ "/ (R").

:P.12
We take (Ze [81) as an inductive hypthesis or ge, eral j. Writing this decomposition
B = B’ + Bj it follows from the identity ( that

A-B=A-B'+ AB; =1d mod ¥_>(R")
SO ‘
A-Bj =1d—AB' € V) (R") N U J(R") = ¥_/(R").

Now applying B on the left, or using the principal symbol map, it fo lows Pat
Bje v " I(R™) 4+ W m—i= 1(]R”) which gives the inductive hypothesis (2. for
Jj+1.

It is usually the case that a construction in ¥*_ (R™), applied to an element of
U (R™) will yield an element of U7 (R™) and when this is the case it can generally
be confirmed by an inductive argument like that used above to check (b I 791

As a subspace®

ph(R7R™) € ST(R?;R™)

is not closed. Indeed, since it contains S_°°(RP;R™), its closure contains all of
S(’)”o/ (RP; R™) for m’ < m. In fact it is a dense subspace.” To capture its properties
we can strengthen the topology ST} (RP; R™) inherits_from S77 (RP; R™).

Then, as well as the symbgl porms || - [[nm in (|‘Z_7) we can add norms on the
terms in the expansions in (E.

(2.182) 1D D2 a5,y G =R¥ x {1 <|¢] <2}.

eq:P.
Then we can further add the symbol norms ensuring (2:175), i.e.,

k

(2.183) la=>"am—jlm-s-1nx VEN.
§=0

6Polyhomogeneous symbols may seem to be quite sophiEtlicgtig!thfects but they are really
smooth functions o Ing.IBBOldS with boundary; see Problems .

"See Problem
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Together these give a countable nu:gn;oer of norms on S (RP; R™). With respect to
the metric topology defined as in (E_B') the spaces ST}, (RP;R"™) are then complete.8.
Later when we wish to topologize W7} (R™), or rather related algebras, it is this
type of topology we will use. Namely we identify

(2.184) op : UL (R™) «— STL(R™; R™).
2.19. Linear invariance

It is rather straightforward to see that the algebra U2 (R™) is invariant under
affine transformations of R™. In particular if T,z = x + a, for a € R™, is translation
by a and

T, f(z) = f(z +a), T, : S(R") — S(R")
is the isomorphism on functions then a new operator is defined by
TrA.f =AT;f and A € U (R") = A, € U (R").
In fact the left-reduced symbols satisfy
or(Aa)(z,8) = oL(A)(x + a,§), Ag =T", AT
Similarly if T € GL(n) is an invertible linear transformation of R then
(2.185) Arf=T*A(T*)"'f, A€ ¥7(R") = Ay € U7 (R")
and o7 (Ar)(z,€) = o (A)(Tz, (T*)71€)| det(T)|

where T" is the transpose of T' (so Tz - £ = x - T%) and det(T") the determinant.
This invariance means that we can define the spaces W (V) and W7 (V) for
any vector space V' (or even affine space) as operators on S(V'). We arg much more
. . . . ] CoE . |C.Microlocalization
interested in full coordinate invariance which is discussed in Chapter #.

2.20. Problems
PROBLEM 2.1. Show, in detail, that for each m € R
(2.186) (1+62)2™ € ST(RP; R™)
for any p. Use this to show that
ST (RP;R™) - ST (RP;R™) = Sm+™ (RP; R™).

PrOBLEM 2.2. Consider w = 0 and n = 2 in the definition of symbols and
show that if a € S (R?) is elliptic then for r > 0 sufficiently large the integral

2m

1 1 d , o 1 [*d i
/%a(mw)@a(re )dH—% ; @loga(re )do,

0

exists and is an integer independent of r, where z = £; + &> is the complex variable
in R? = C. Conclude that there is an elliptic symbol, a on R2, such that there does
not exist b, a symbol with

(2.187) b #0on R? and a(¢) = b(¢) for [¢] > r

for any r.

grob:CC
83ee Problem [2.10.
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PROBLEM 2.3. Show that a symbol a € SZ* (RZ; RQ) which satisfies an estimate

(2.188) ja(z, &) < CL+ Y™, m' <m
is necessarily in the space S7¢(RR?; RE) for all € > 0.

PROBLEM 2.4. Show that if ¢ € CS°(R2 x R™) and ¢ € C°(R™) with ¢(§) =1
in |¢] < 1 then

¢
el

If a € SE(RE; RY) define the cone support of a in terms of its complement

(2.189) co(2,€) = ¢z, =7)(1 = ¥)(€) € S°(RL;RY).

(2.190)  conesupp(a)® = {(z,&) € R? x ( £\ {0});3
¢ € C°(RE;R™), ¢(%,€) # 0, such that cga € S °(RP; R™)}.
Show that if a € ST (RZ; RY) and b € ST (RZ; RY) then
(2.191) cone supp(ab) C cone supp(a) N cone supp(b).
If a € SIH(RE; RY) and cone supp(a)d does it follow that a € SZ>°(RE; Ry)?
PROBLEM 2.5. Prove that (bff{%) is a characterization of functions a € (1 +

|z — y[?)®/28™(R?";R™). [Hint: Use Liebniz’ formula to show instead that the
equivalent estimates

DD DYa(e,y,€)| < Capr(L+ & — )L+ €)™V 0, 8,7 € N
characterize this space.]

PROBLEM 2.6. Show that A € ¥_>°(R") if and only if its Schwartz kernel is
C*° and satisfies all the estimates

(2.192) D2 Da(z,y)| < Caysv (L + |z — )N

for multiindices o, 8 € Njj and N € Np.
PrROBLEM 2.7. Polyhomogeneous symbols as smooth functions.
PRrROBLEM 2.8. General polyhomogeneous symbols and operators.

PrROBLEM 2.9. Density of polyhomogeneous symbols in L*> symbols of the
same order.

PROBLEM 2.10. Completeness of the spaces of polyhomogeneous symbols.
PROBLEM 2.11. Fourier transform??

PROBLEM 2.12. Show that the kernel of any element of W2(R"™) is C* away
from the diagonal. Hint: Prove that (z — y)*K (z,y) becomes increasingly smooth
as |a increases.

PROBLEM 2.13. Show that for any m > 0 the unit ball in H™(R") C L?(R")
is not precompact, i.e. there is a sequence f; € H™(R™) which has || f;||,» < 1 and
has no subsequence convergent in L?(R").
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21.2.1998.118 PROBLEM 2.14. Show that for any R > 0 there exists N > 0 such that the
Hilbert subspace of HY (R")

21.2.1998.119] (2.193) {ue HN(R™);u(z) =0 in |z| > R}
is compactly included, iy [2(R") i.e. the intersection of the unit ball in HY(R")
with the subspace (2. is precompact in L?(R™). Hint: This is true for any

N > 0, taking N >> 0 will allow you to use the Sobolev embedding theorem and
Arzela-Ascoli.

21.2.1998.118
21.2.1998.120 PROBLEM 2.15. Using Problem bﬂ‘%ﬁt‘h@rwise) show that for any ¢ > 0
(1+[a])* H (R") — L*(R")

is a compact inclusion, i.e. any infinite sequence f,, such that (1+|z|*)~¢ is bounded
in H¢(R™) has a subsequence convergent in L?(R"). Hint: Choose ¢ € C°(R™)
with ¢(z) = 1 in |z| < 1 and, for each k, consider the sequence ¢(z/k)f;. Show
that the Fourier transform converts this into a sequence which is bounded in (1 +
€]2)—2¢HN (Rg) for any N. Deduce that it has a convergent subsequence in L*(R™).
By diagonalization (and using the rest of the assumption) show that f; itself has a
convergent subsequence.

1.2.2000.279 PROBLEM 2.16. About p and ¢.

21.2.1998.104
PROBLEM 2.17. Prove the formula (2.185] for the left-reduced symbol of the
operator Ar obtained from the pseudodifferential operator A by linear change of
variables. How does the right-reduced symbol transform?

1.2.2000. 280 PROBLEM 2.18. Density of S(R™) in L?(R™).
1.2.2000.281 PROBLEM 2.19. Square-root of a positive elliptic symbol is a symbol.

21.2.1998.107
21.2.1998.108 PROBLEM 2.20. Write out a proof to Proposition 13.2. Hint (just to do £t1 621_1998 112
egantly, it is straightforward enough): Write A in right-reduced form as in (b.?zl

and apply it to 4; this gives a formula for Aw.

21.2.1998.110 PROBLEM 2.21. Show that any continuous linear operator
S'(R™) — S(R™)
has Schwartz kernel in S(R?").
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CHAPTER 3

Isotropic and scattering calculi

In this chapter many of the general constructions with pseudodifferential op-
erators are carried out in the context of two global calculi on R™. Partly this is
done for the obvious reason, that these calculi and results have interesting appli-
cations, and partly it is preparatory to the discussion of the geometric algebras of
pseudodifferential operators on a compact manifold without boundary and for the
scattering algebra on a compact manifold with boundary. Thus, while this chapter
is somewhat interstitial, it is designed to clarify the later discussions by separating
the generalities of the construction from the particulars of the calculus involved. It
should be noted that in this chapter it is generally the polyhomogeneous calculus
which is under discussion unless it is explicitly stated to the contrary.

3.1. Isotropic operators

As noted in the discussion in Chapter E%ﬁe other sensible choices of the
class of amplitudes which can be admitted in the definition of a space of pseudo-
differential operators than the basic case of S (R?";R™) discussed there. One of
the smallest such choices is the class which is completely symmetric in the vari-
ables x and ¢ and consists of the symbols on R*". Thus, a € ST (R?",) satisfies the
estimates

(3.1) D2 Dfa(, )] < Cap(l +|a| + g™ 117

for all multiindices o and 3. If m < 0 this is in the space ST (Ry; Ry); if m > 0 it
is not, however,

LEMMA 3.1. For any p and n

(3.2) S™(RPF™) 0>m> (L J?)ms™ (R Rg) m <0
. 00 C >rz>m
(14 |z[*)™/25™(RE; RE), m > 0.

) 1.2.2000.304 »
Proor. This follows from (|3 ) and the inequalities

1+ Ja2] + I¢) < (1 + |y (1 + [¢]),
Lt Ja] +1¢] > (14 J2)' (1 + €)', 0 <t < 1.

In view of these estimates the following definition makes sense.
DEFINITION 3.1. For any m € R we define
(3-3) Viso (R™) C W _iso(R™) C (2)™+ WL (R™)

57
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as the subspaces determined by
A€V (R") < o1 (A) € Sii (R*™)
Acom . (R") <= op(A) € ST (R?™).

co—iso

(3.4)

As in the discussion of the traditional algebra in Chapter E% the *-
invariance and composition properties of these spaces of operators by proving an
appropriate ‘reduction’ theorem. Note however that there is a small difficulty here.
Namely it might be supposed that it is enough to analyse I(a) for a € ST (R3").
This however is not the case. Indeed the definition above is in terms of left-reduced
symbols. If a € ST (R?") is regarded as a function on R3" which is independent of
one of the variables then it is in general not an element of S™ (R3"). For this reason
we consider some more ‘hybrid’ estimates.

Consider a subdivision of R3" into two closed regions:

Ri(e) = {(x,9,€) € R*"; | —y| < (1 +|af” + |y” +1¢])2}
Ro(e) = {(@,9,€) € R*"; [w — y| > (1 +|a* + |y* + [¢[*) 2 }.

If a € C*°(R®") consider the estimates

(3.5)

m=la|=I8l=I"l  in R, (L
(36)  [DEDIDla(r,y,6) < Cags 5V E) e 1
((@,y))m(m1" in Ro(%).
The choice € = % here is rather arbitrary. However if € is decreased, but kept

positive the same estimates continue to hold for the new subdivision, since the
estimates in Ry are stronger than those in Ry (which is increasing at the expense
of Ry as e decreases). Notice too that these estimates do in fact imply that a €
((z, )™+ SR (R*™ R™).

‘ ‘ 1.2,2000.317
PROPOSITION 3.1. If a, € C>®(R3") satisfies the estimates (l3_b')_ﬁm =
I(a) € U™ . (R") and (E33) holds for o1 (A).

co—iso

PrOOF. We separate a into two pieces. Choose y € C°(R) with 0 < x < 1,

with support in [—£, 4] and with x = 1 on [~3, §]. Then consider the cutoff function

on B ] 9°9
(3.7) B3, €) = X ( 2 — ol ) .
T 2 1+ P 1 P

Clearly, ¥ has support in Rl(%) and 1 € SO (R®"). It follows then that a’ = va €
Sm (R3"). On the other hand, a” = (1 — 1)a has support in Ra(§). In this region

|z — y|, {(z,y)) and {(x,y,&)) are bounded by constant multiples of each other.
Thus a” satisfies the estimates
(3.8) |DIDyDYa"(2,y.6)| < Capylz —y|™ (€)1
m m— 1
<l (9,96, supp(a”) € Ra()

First we check that I(a”) € S(R*™). On Ry(3) it is certainly the case that
|z —y| > 1((z,y)) and by integration by parts

| —y[* D3 DJ1(a") = I(| D[ DY Dya").
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For all sufficiently large p it follows from (%T'gr)'gtgﬁ_gt%gl%s is the product of {(z,y))™+
and a bounded continuous function. Thus, I(a”) € S(R?") is the kernel of an
operator in W, > (R™).

So it remains only to show that A’ = I(a/) € ¥ _,. (R™). Certainly this is
an element of (z)™+¥7 (R™). The left-reduced symbol oé_?g’ has an asymptotic
expansion, as £ — 00, given by the usual formula, namely (2.58). Each of the terms

in this expansion
ilel

ar(A) ~ 3 Dy Dgale, 2,€)
(0%
is in the space SQZ_Q‘O"(R%). Thus we can actually choose an asymptotic sum in
the stronger sense that

ilol
/ m RQTL —p _ ¢ DaD m—2N RQ’IL N.
b eSoo( )a by b E ol e a (33,5) 6Soo ( )\V/

la]<N
4.8 4.6 4.7
Consider the remainder term in (b?[?), given by (b7[4) and (b7[5) Integrating by
parts in £ to remove the factors of (z — y)® the remainder, Ry, can be written as
a pseudodifferential operator with amplitude

jlal
(z,y,8) = Z / dt(1 — )N (DgDga)((1 — t)a + ty, £).
lo|=N
1.2.2000.317
This satisfies the estimates (|3.6 with m replaced by m — 2N. Indeed from the
symbol estimates on a’ the integrand satisfies the bounds

|D5D7D€D°‘ “a (1 —t)x + ty, &)|
C(A+ |(z + t(x — y)| + |g)m 2N IBI=hi=lol,

In Ri(g), lo —yl < g{(z,5.9) so |z +t(x — y)| + €] = 3((z,y,€)) and these
estimates imply the Eu]% %&}bﬁ]g estimates there. On Ry we 1mmed1ately get the

weaker estimates in (

Thus, for large N, the remainder term gives an operator in (z) %N \Iléo_ (R™).

The difference between A" and the operator B’ € U™ . (R™), which is Ry plus an

operator in W2V (R™) for any N is therefore in Wy (R") Thus A € ¥ _, (R™).
O

o0 —180 180 co—iso

This is a perfectly adequate replacement in this context for our previous reduc-
tion theorem, so now we can show the basic result.

THEOREM 3.1. The spaces W7 _i,(R™) (resp. Wi (R")) of isotropic (resp.,. . s
polyhomogeneous isotropic) pseudodifferential operators on R™, defined by (b@i
form an order-filtered x-algebra with residual space ¥ _>°(R™) = S(RQ”) (resp. the
same) as spaces of kernels.

180

PRrROOF. The condition that a continuous linear operator A on S(R™) be an
element of ™ . (R") is that it be an element of (1 + |z|?)™/2¥™ (R™) if m > 0

oco—iso

or ¥ (R™) if m < 0 with left-reduced symbol an element of ST (Ring) :
(3.9) ST (R™) e— T . (R™).

oco—iso

1.2.2000.317
Thus A* has right-reduced symbol in S ( %2"2) odbis; sptisties the estimates (IB 6 as
shows

a function of x,y and £. Thus Propostion at A* € v . (R™), since

oco—iso
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its left-reduced symbol is in S™(R?"). This shows the *-invariance. Moreover it
also follows that any B € U™ ___ (R™) has right-reduced symbol in S’ (R2"). Thus

if Ae O™ . (R") and B € U (R™) then using this result to right-reduce B we

co—iso iso

see that the composite opertor has kernel I(ar(z,&)br(y,€)) where ar, € ST (R*")

m'(R27). Now it again follows that this product gafisi estimates
S Bhob 3t 124159065, th

.6) of order m + m/. Hence, again applying Proposition 3.1, we conclude that
Ao B e ¥ (R™). This proves the theorem for ¥ _, (R™).

The proof for the polyhomogeneous space ¥ (R™) follows immediately, since

the symbol expansions all preserve polyhomogeneity. O

One further property of the isotropic calculus that distinguishes it strongly
from the traditional calculus is that it is invariant under Fourier transformation.
21.2.1998.107 PROPOSITION 3.2. If A € U, (R") (resp. W™ (R™)) then A € 7 . (R™)

(resp. U™ (R™)) where Au = Ad with @ being the Fourier transform of u € S(R™).

1S0

21.2.1998.108
The proof of this is outlined in Problem b.ZU.

S.Scattering.operators 3.2. Scattering operators

There is another calculus of pseudodifferential operators W]gligh is ‘smaller’ than
the traditional calculus. It arises by taking amplitudes in (|‘Z_Z) which treat the
base and fibre variables symmetrically, but not ‘simultaneously.” Thus consider the
spaces

21.2.1998.113| (3.10) SL™(RE,RE) = {a € C®(RP");
sup (14 [2[) =11 + [¢)) ™ D2 DY a(z,€)| < o0, ¥ a, 8}

Re+n
Observe that
21.2.1998.115] (3.11) SL™M(RE;RE) C (1 + [2[*)/2ST(RE; RYE).
We can then define
21.2.1998.114] (3.12) Ae UL (R") < A= (1+|z|*)"?B,
B e VL (R") and 01, (B) € SY™ (R, RE).

It follows directly from this definition and the properties of the ‘traditional” oper-
ators that the left symbol map is an isomorphism

1.2.2000.300] (3.13) op U (RM) — SLM(RERY).
To prove that this is ny %gebra, we need first the analogue of the asymptotic
completeness, Proposition 2.3; for symbols in SZ*(RP; R™).
1.2.2000.292 LEMMA 3.2. Ifa; € SI;3m=3(RP,R") for j € Ny then there exists
N
1.2.2000.293] (3.14) acS"(RP,RY) st a— Y a; € SNTN(R,RY) VN € N,
§=0

Even though there is some potential for confusion we write a ~ > a; for a symbol

1.2.2000.293 J
a satisfying (IB]ZI;
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4.12
PROOF. We use the same strategy as in the proof of Proposition b.3 with the
major difference that there ar (i%sentially two different symbolic variables. Thus
with the same notation as in (%.54) we set

1.2.2000.294] (3.15) a =Y ¢(e;z)p(e€)a;(z,€)
i

and we proceed to check that if the €; | 0 fast epopgh as 4.— oo then the series
converges in S4™(RP,R™) and the limit satisfies (@ ZE A

The first of the seminorms, for convergence, is
4j = Sgpsgp(l +12) T+ 1ED) TG (e2)d(esE)ay (2, )
On the support of this function either |z| > 1/¢; or |£] > 1/e. Thus
4; < Sgps%p(l + 1) T+ €)™ 0 (2,€)]
x Sgpsgp(l +12) T (1 + [E) P blej2)6(e56)
< & supsup(L+ [2) ™ (1 + gD 7" lay (2,)]
The last term on the right is a seminorm on S';7~7(RP, R") so convergence follows

by choosing the €; eventually smaller than a certain sequenc ngpositive numbers.
The same argument follows, as in the discussion leading to (%.56), for convergence

i Bh oSETiSS for the derivatives and also for the stronger convergence leading to
H : % .

. Since overall this is a countable collection of conditions, all can be arranged
by diagonalization and the result follows. O

8.2.1998.99
With this result on asymptotic completeness the proof of Theorem IB.l can be
followed closely to yield the analogous result on products. In fact we can also define

polyhomogen ous gperafors. T hi reguires a little work if we try to do it directly.
However see (T.97) and Problem } 7 which encourages us to identify

RC; x RC}, : Sp) (RP, R™) «— C®(SP! x §™1),
SR, R™) = (1+ [2[%)2(1+ [¢)™/2S%) (RP, R™), I,m € R.

[PolyDouble
These definitions are discussed as problems starting at Problem T.18. Thus we
simply define

1.2.2000.297 | (3.16)

1.2.2000.299 | (3.17) TLm(R™) = {A e Ui son(A) e Sf)’}T(R",R”)}.
1.2.2000.295 THEOREM 3.2. The spaces W™ _(R™) (resp. WL™(R™)) of scattering (resp.

polyhomogeneous scattering) pseudodifferential operators on R™, form an order-
bifiltered x-algebra

1.2.2000.296 (318) \I/l,m (Rn) o \I/l’,m’ (Rn) C \Ill+l’,7n+7n’(Rn)

o0 —S8C o0 —SC o0 —S8C

with residual spaces

o0 —8C 180

1.2.2000.355 ]| (3.19) (UL (RY) = [ WL (R W2 (R?) = S(R?™).
lm

l,m
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3.3. The residual algebra isotropic algebra

The residual isotropic (and scattering) algebra has two important properties
not shared by the residual algebra ¥_*°(R™), of which it is a subalgebra (and in
fact in which it is an ideal). The first is that as operators on L?(R") the residual
isotropic operators are compact.

o0

PROPOSITION 3.3. Elements of U, >°(R™) are characterized amongst continous
operators on S(R™) by the fact that they extend by continuity to define continuous

linear maps
(3.20) A: S8 (R") — S(R™).

In particular the image of a bounded subset of L*(R™) under an element of ¥;_>°(R™)
is contained in a compact subset.

PROOE'J.! Egokggglels of elements of ¥._>°(R") are in S(R?") so the mapping

property ( ollows.

The norm sup| <1 [(z)"** D*u(z)| is continuous on S(R™). Thus if S C L*(R™)
is bounded and A € U >°(R™) the continuity of A : L*(R") — S(R") implies that
A(S) is bounded with respect to this norm. The theorem of Arzela-Ascoli shows
that any sequence in A(S) has a strongly convergent subsequence in (z)"CJ, (R™)
and such a sequence converges in L?(R™). Thus A(S) has compact closure in L?(R™).

O

The second important property of the residual algebra is that it is ‘bi-ideal’ or
a ‘corner’ in the bounded operators on L?(R™). Note that it is not an ideal.

LEMMA 3.3. If A1, Ay € ¥ >°(R™) and B is a bounded operator on L?(R™)
then Ay BAy € U._>°(R™).

1S0

PROOF. The kernel of the composite C = A1 BAs can be written as a distri-
butional pairing
(3.21)
C(Qj‘, y) = / B(ml, y/)Al (33, JZ/)AQ (y/a y)dxldyl = (B7 Al (33, ')AQ('a y)) S S(Rgn)
R2n

Thus the result follows from the continuity of the exterior product, S(R?") x
S(R?*") — S(R*7). O

In fact the same conclusion, with essentially the same proof, holds for any
continuous linear operator B from S(R™) to S'(R™).

3.4. The residual isotropic ring

Recall that a bounded operator is said to have finite rank if its range is finite
dimensional. If we consider a bounded operator B on L?(R™) which is of finite rank
then we may choose an orthonormal basis f;, j = 1,..., N of the range BL?*(R").
The functionals v — (Bu, f;) are continuous and so define non-vanishing elements
g; € L?(R™). Tt follows that the Schwartz kernel of B is

N
(3.22) B=>Y_ fix)g{).
j=1
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If B € U _>°(R"™) then the range must lie in S(R™) and similarly for the range of

the adjoint, so the functions f; and g; are also in S(R"). Clearly the finite rank
elements of W;_*°(R™) form an ideal in ¥ . (R™).

PROPOSITION 3.4. If A € U, >°(R") then Id +A has, as an operator on L?(R™),

finite dimensional null space and closed range which is the orthocomplement of the
null space of Id+A*. There is an element B € ¥_°°(R"™) such that

1S0

(3.23) (Id +A)(Id +B) = Id 11, (Id+B)(Id+A) = Id —II,

where Iy, II; € U._°(R™) are the orthogonal projections onto the null spaces of

150

Id+A and Id+A* and furthermore, there is an element A" € ¥._>°(R™) of rank

equal to the dimension of the null space such that Id+A + sA’ is an invertible
operator on L2(R™) for all s # 0.

PROOF. Most of these properties are a direct consequence of the fact that A
is compact as an operator on LQ(IR")'1 r&eggggh%gss we give brief proofs.

We have shown, in Proposition I3f3TﬁtTaCh A € U _*(R"™) is compact. It
follows that

(3.24) No = Nul(Id +4) c L*(R™)

has compact unit ball. Indeed the unit ball, B = {uNul(Id+A)} satisfies B =
A(B), since u = —Au on B. Thus B is closed and precompact. Any Hilbert space
with a compact unit ball is finite dimensional, so Nul(Id +A) is finite dimensional.

Now, let Ry = Ran(Id 4+ A) be the range of Id +A; we wish to show that this is a
closed subspace of L2(R"). Let f;, — f be a sequence in Ry, converging in L?(R").
For each k there exists a unique uy € L?(R™) with us, 1 No and (Id +A)ug = fir. We
wish to show that uy — u. First we show that ||ug|| is bounded. If not, then along
a subsequent v; = uy(j, ||vj|| — oo. Set w; = wv;/||v;||. Using the compactness
of A, w; = —Aw; + fi)/||lvj|l must have a convergent subsequence, w; — w.
Then (Id +A)w = 0 but w L Ny and |jw|| = 1 which are contradictory. Thus the
sequence uy, is bounded in L?(R™). Then again uy = —Auy, + fi has a convergent
subsequence with limit « which is a solution of (Id +A4)u = f; hence R; is closed.
The orthocomplement of the range of a bounded operator is always the null space
of its adjoint, so Ry has a finite-dimensional complement Ny = Nul(Id +A*). The
same argument applies to Id +A* so gives the orthogonal decompositions

L*(R™) = Ny @ Ry, Ny = Nul(Id+A4), Ry = Ran(Id +A*)

(3.25) \
L*(R") = N, & Ry, Ny = Nul(Id +4*), R; = Ran(Id +A).

Thus we have shown that Id +A induces a continuous bijection {i Ry — Ry.
From the closed graph theorem the inverse is a bounded operator B : Ry — Ry.
In this case continuity also follows from the argument above.! TPLBS 2{)3001532tzhe

generalized inverse of Id +A in the sense that B = B—1d agi o5 (tS?}i It only
&3

remains to show that B € W, _>°(R"). This follows from (3:23), the identities in
which show that

(326) B=—-A—AB—1I;, —-B=A+ BA+1I,
= B=—A+ A%+ ABA —1I, + All,.

IWe need to show that |Bf| is bounded when f € Ry and ||f|| = 1. This is just the
boundedness of u € Ry when f = (Id +A)u is bounded in R;.
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1.2.2000.310
All terms here are in ¥, >°(R"); for ABA this follows from Proposition 13.3.
It remains to show the existence of the finite rank perturbation A’. This is
equivalent to the vanishing of the index, that is

(3.27) Ind(Id +A) = dim Nul(Id +A4) — dim Nul(Id +4*) = 0.

Indeed, let f; and g;, j = 1,..., N, be respective bases of the two finite dimensional
spaces Nul(Id +A4) and Nul(Id +A*). Then

N
(329 A= g@F)
j=1

is an isomorphism of Ny onto N7 which vanishes on Rg. Thus Id +A + sA’ is the
direct sum of Id +A as an operator from R to R; and sA’ as an operator from N
to Ny, invertible when s # 0.

1.2.2000.323
There is a very simple |§).Ii(%g£29 of the equality (IB.ZH if we use the trace func-

S.res
tional discussed in Section B.14 below; this however is logically suspect as we use

(although not crucially) approximation by finite rank operators in the discussion of
the trace and this in turn might appear to use the present result via the discussion
of ellipticity and the harmonic oscillator. Even though this is not really the case
we give a clearly independent, but less elegant proof.

Consider the one-parameter family of operators Id +tA, A € ¥._>°(R"). We
shall see that the index, the difference in dimension between Nul(Id +tA) and
Nul(Id +tA*) is locally constant. To see this it is enough to consider a general
A near the point t = 1. Consider the pieces of A with respect to the decompositions
L?(R") = N; ® R;, i = 0, 1, of domain and range. Thus A is the sum of four terms
which we write as a 2 x 2 matrix

Ago Aot
A= .
|:A10 An]

Since Id +A has only one term in such a decomposition, A in the lower right, the
solution of the equation (Id +tA)u = f can be written

(3.29) (t—1)Agouo+ (t—1)Agrus = f1, (t—1)Aoug+ (A +(t—1)An)uy = f1

Since A is invertible, for t — 1 small enough the second equation can be solved
uniquely for u . Inserted into the first equation this gives

(3.30) G(t)yuo = fr+ H(t)f1,
G(t)=(t—1)Ag — (t — 1)?Ap1 (A" + (t — 1) A1) Ao,
H(t) = —(t = 1) Aot (A" + (t = 1)An) ™"
The null space is therefore isomorphic to the null space of G(t) and a complement to
the range is isomorphic to a complement to the range of G(t). Since G(t) is a finite

rank operator acting from Ny to N7 the difference of these dimension is constant
in ¢, namely equal to dim Ny — dim N7, near t = 1 where it is defined.

2Namely the trace of a finite rank projection, such as either Ilp or Ilj, is its rank, hence
the dimension of the space onto which it projects. From the identity satisfied by the generalized
inverse we see that

Ind(Id +A) = Tr(ITp) — Tr(TT;) = Tr (Id +B)(Id +A) — (Id +A)(Id +B)) = Tr([B, A]) =0

from the basic property of the trace.
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This argument can be applied to tA so the index is actually constant in ¢ € [0, 1]
and since it certainly vanishes at ¢ = 0 it vanishes for all ¢. In fact, as we shall note
below, Id +tA is invertible outside a discrete set of t € C. O

1.2.2000.330 COROLLARY 3.1. IfId+A, A € U_°(R") is injective or surjective on L?(R™),

in particular if it is invertible as a bounded operator, then it has an inverse in the
ring Id +¥._ > (R™).

1S0

1.2.2000.333 COROLLARY 3.2. If A € U, °(R") then as an operator on S(R™) or S'(R™),

Id +A is Fredholm in the sense that its null space is finite dimensional and its range
is closed with a finite dimensional complement.

PRrROOF. This follows from the existence of the generalized inverse of the form
Id+B, B € ¥_>*(R"). O

3.5. Exponential and logarithm

1.2.2000.350 PROPOSITION 3.5. The exponential

1 .
1.2.2000.351] (3.31) exp(4) =) ﬁAJ DU (R™) — Id +0_2°(R™)
— J!
is a globally defined, entire, function with range containing a neighbourhood of the
identity and with inverse on such a neighbourhood given by the analytic function
(_1)j j —00 (PN
1.2.2000.352] (3.32) log(Id+A) = Y ~——A7, Ac U *(R"), ||A]2 <1

. iso
J

3.6. Fredholm property

An element A € ¥ _. (R™) is said to be elliptic (of order m in the isotropic

co—iso

calculus) if its left-reduced symbol is elliptic in S7 (R?").

THEOREM 3.3. Each elliptic element A € U _. . (R™) has a two-sided para-
metrix B € U_". (R™) in the sense that

co—iso

1.2.2000.365| (3.33) AoB—-1d, BoA—1d € U_>°(R")

and it follows that any u € 8’ (R™) satisfying Au € S(R™) is an element of S(R™);
if A e W (R™) is elliptic then its parametriz is in U (R™).

1S0 1S0

0
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ProoF. This is just the inductive argument used to prove Lemma E_%l Never-
theless we repeat it here.

The existence of a right inverse for o (A) means that the equation oy (A)c = d
always has a solution ¢ € A;_ for given d € Aj;, namely ¢ = bd. This in turn
means that given C; € 0/ (R™) there always exists B; € W/ —* __(R™) such

co—iso co—iso

that AB; — D; € W/_1. (R™). Choosing By € ¥ * , (R™) to have o_4(By) = b
we can define C; = Id—ABy € \I/;oliiso(R”). Then, proceeding inductively we

may assume that B; for j < [ have been chosen such that A(Bo + -+ Bj—1) —
Id=-C e ! (R™). Then using the solvability we may choose B; so that

AB, — C; = —Ci41 € \Il;f:ilso(R") which completes the induction, since A(By +
-+ By) —Id = AB; — C; = —Cj41. Finally by the asymptotic completeness we
may choose B ~ By + B1 + ... which is a right parametrix.

The argument showing the existence of a left parametrix for a left-elliptic op-

erator is completely analogous. 0
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Combining the earlier symbolic discussion and these analytic results we can see
that elliptic operators in these calculi are Fredholm.

PROPOSITION 3.6. If A € U™ . (R") (resp. A€ W™ (R™)) is elliptic then

co—iso co—sc

it has a generalized inverse B € U ™. (R"™) (resp. B € W M(R™)) satisfying
(3.34) AB —1d =1I;, BA—1d =TIy € U_>(R")

where Ty and Ty are the finite rank orthogonal (in L*(R™)) projections onto the
null spaces of A* and A.

PROOF. In the case of an elliptic isotropic operator or order m we know that
it has a parametrix B’ € ¥_"*(R"™) modulo ¥ >°(R™). Thus

150 150

AB' =1d—Ep, Er € U_°(R"),

150

B'A=1d—Ep, E; € U_=(R").

1S0

Using Proposition %ﬁ%’%ﬂ%ﬁ% that the null space of A is contained in the null space
of B’A = Id —Ep, hence is finite dimensional. Similarly, the range of A contains
the range of AB’ = Id —FER so is closed with a finite codimensional complement.
Defining B as the linear map which vanishes gn Nyl(4*), and inverts A on Ran(A)
with values in Ran(A*) = Nul(A4)~ gives ([3.34 ). Furthermore these identities show
that B € ¥_™. (R"™) since applying B’ gives

(3.35) B—FE.,B=DB'AB=B"-B'l,, B-BEr=BAB =B -1[)B' =
B=PRB — B/H1 + ELB/ + EBER — ELH()B/ S \Ij;o7ﬁiso(Rn)'

The proof in the scattering case is essentially the same. O

COROLLARY 3.3. If A € U (R"™) is elliptic then its generalized inverse lies in

150

U_"(R™) and similarly if A € WL™(R™) is elliptic then its generalized inverse lies

iso

in Wb (R,

3.7. The harmonic oscillator

The harmonic oscillator is the differential operator on R™

H=> (Dj+a3)=A+ [z

j=1

This is an elliptic element of W2 (R™). The main immediate interest is in the

spectral decomposition of H. The ellipticity of H — A, A € C, shows that
(3.36) (H-XNu=0, ueS'R") = uecSMR").

Since H is (formally) self-adjoint, i.e., H* = H, there are no non-trivial tempered
solutions of (H — \)u =0, A € R. Indeed if (H — A\)u =0,

(3.37) 0= (Hu,u) — (u, Hu) = (A — \)(u,u) = u = 0.

As we shall see below in more generality, the spectrum of H is a discrete subset of
R. In this case we can compute it explicitly.

The direct computation of eigenvalues and eigenfunctions is based on the prop-
erties of the creation and annihilation operators

(3.38) Cj=Dj+izj, C’;—‘:Aj:Dj—ia:j, 7=1...,n.
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These satisfy the elementary identities

[Aj,Ak] = [CJ,Ck] = 0, [Aj,Ck] = 25]'1@; j, k’ = 1, oy

eq:0.4] (3.39) H=S Cid;+n, [C;H]=-2C;, [A;,H]=24;.
j=1
Now, if X is an eigenvalue, Hu = Au, then
H(Cju) =C;(Hu+ 2u) = (A+ 2)C,u,

eq:HO.5 (3.40) ( ! ) J( ) ( ) !
H(Aju) = A;(Hu —2u) = (A —2)Au.

prop:HO.6 PROPOSITION 3.7. The eigenvalues of H are
eq:HO.7| (3.41) o(H)={n,n+2,n+4,...}.

PROOF. We alre know that eigenvalues must be real and from the decom-
position of H in (8.40) it follows that, for u € S(R™),

eq:H0.9| (3.42) (Hu,u) = Z|\Aju||2+n||u||2.
J

Thus if A € o(H) is an eigenvalue then A > n.
By direct computation we see that n is an eigenvalue with a 1-dimensional

eigenspace. Indeed, from (B:42), Hu = nu iff Aju = 0 for j = 1,...,n. In each
variable separately

2
Aju(zj) =0 < u(z;) = c1exp (—x—J> .

2
Thus the only tempered solutions of Aju = 0,4 = 1,...,n are the constant multiples
of
|z[?
9 w = (-5F)

which is often called the ground state. oqHO. 5
Now, if A is an eigenvalue with eigenfunction v € S(R™) it follows from (B.
that A — 2 is an eigenvalue with eigenfunction A;u. Since all the Aju cannot vanish
unless iy t.h/e ground state, it follows that the eigenvalues are contained in the
set in (g't.]ﬂ‘"l%\?ve can use the same argument to show that if u is an eigenfunction
with eigenvalue A then Cju is an eigenfunction with eigenvalue A + 2. Moreover,
Cju = 0 would imply v = 0 since Cjv = 0 has no non-trivial tempered solutions,
the solution in each variable being exp(z3/2). O

Using the creation operators we can parameterize the eigenspaces quite explic-
itly.

prop:HO.11 PROPOSITION 3.8. For each k € Ny there is an isomorphism

eq:H0.12| (3.44) {Polynomials, homogeneous of degree k on R"} > p
— p(C) exp (—%) € FEx

where By is the eigenspace of H with eigenvalue n + 2k.
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PROOF. Notice that the Cj, j = 1....,n are commuting operators, so p(C) is
well-defined. By iteration from (E.ZU )

(3.45) HC%g = C*(H + 2|a))ug = (n + 2|a])C%uq .

eq:HO.12 | . . Lo
Thus (IB.EIZI isal Lear map m.to the eigenspace as 1ndlcateq. o
To see that (B: S, isomorphism consider the action of the annihilation
operators. Again from (IBQ[);

0 8 #«

2elaluy B =a.

(3.46) 18] = || = APCYuy = {

:HO.12
This allows us to recover the coefficients of p from p(C)ug, so (IIeS.EIZI; 1S injective.
Conversely if v € Fy C S(R™) is orthogonal to all the C*ug then

(3.47) (A%, up) = (v,C%uo) =0V o] = k.

:HO.5 :HO.15
From (IIeS.ﬁU ), the A%v are all eigenfunctions of H with eigenvalue n, so (E.ﬁ? ) implies
that A%v = 0 for all |a| = k. Proceeding inductively in k we see that A% Aju = 0

for all |af| = k - 1 and Ajv € Ekil.im lligs:é},». =07i=1....n Since v € Ej,
k > 0, this implies v = 0 so Proposition E%S is proved. O

eq:HO.12
Thus H has eigenspaces as described in (B%YL%._The same argument shows that
for any integer p, positive or negative, the eigenvalues of H? are precisely (n+ 2k)P
with the same eigenspaces Ej. For p < 0, HP is a compact operator on L?(R™);
this is obvious for large negative p. For example, if p < —n — 1 then

(3.48) o DYH € U, (R™), o] <n+1,|8| <n+1

150

are all bounded on L2. If S C L?(R™) is bounded this implies that H~"71(9) is
bounded in (z)"T1CL (R™), so compact in (z)"C2 (R™) and hence in L?(R™). It is
a general fact that for compact self-adjoint operators, such as H "2, the eigen-
functions span L?(R™). We give a brief proof of this for the sake of ‘completeness’.

LEMMA 3.4. The eigenfunction of H, u, = 7~ % (21%la)=1/2Cq form an or-
thonormal basis of L*(R™).

PRrROOF. Let V C L2(R") be the closed subspace consisting of the orthocom-
plements of all the u,’s. Certainly H "2 acts on it as a compact self-adjoint
operator. Since we have found all the eigenvalues of H, and hence of H~"~1, it has
no eigenvalue in V. We wish to conclude that V' = {0}. Set

T=|H " v =sup{|[H " ol;p €V, |l¢] =1}.

Then there is a weakly convergent sequence ¢; — ¢, ||¢;| = 1, so |l¢| < 1, with
|H=""1p,|| — 7. The compactness of H "2 allows a subsequence to be chosen
such that H=""1¢; — 4 in L?(R™). So, by the continuity of H="~1, H™""1p =1
and [|[H™"lol| = 7, ol = 1. I " € V, ¢ L, [[¢'] = 1 then

t /

72 i (S P = o2 2l )+ 0(E)
— (H 2" 20,0y = 0= H " 2p =1%.

This contradicts the fact that H~2"~2 has no eigenvalues in V, so V = {0} and the

eigenbasis is complete. |
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Thus, if u € L?(R™) then
(3.49) u= Z Colla, Co = (U, Uq) -

:HD. 18
LEMMA 3.5. If u € S(R™) the convergence in (63.29) 18 rapid, i.e., |Co| <
Cn(1+|a|)™ for all N and the series converges in S(R™).

PROOF. Since u € S(R™) implies HNu € L?(R™) we see that
On > [(HNu,ua)| = |(u, HNuo)| = (n + 2|a)Nca| V .

Furthermore, 2iz; = C; — Aj and 2D; = C; + A; so the polynomial derivatives of
the u, can be estimated (using the Sobolev embedding theorem) by polynomials
in «; this implies that the series converges in S(R"). O

COROLLARY 3.4. Finite rank elements are dense in W, °(R™) in the topology
of S(R?™).

. . . eq:HO.18
ProOOF. Consider the approximation (t}.ﬁg to the kernel A of an element of
W_>°(R") as an element of S(R?"). In this case the ground state is

x|? 2 z|2 2
L

and so has rank one as an operator. The higher eigenfunctions
CQUO = Qa(x,y)Uo

are products of Uy and a polynomial, so are also of finite rank. O

3.8. L? boundedness and compactness

6.1
0 . o(R™) C W2 (R™) so, by Proposition bTG, these operators are
bounded on L?(R™). Using the same argument the bound on the L? norm can be
related to the norm of the principal symbol and an N x N matrix.

Recall that ¥0

PROPOSITION 3.9. If A € U (R";CN) has principal symbol

a= o’L(A)‘S%_1 € C>®(S*™ 1 M(N,C)
then

(3.50) _inf A+ Ellre@nieny < sup |la(p)]]-
Ec¥ 7 (R™CN) peS2n—1

1.2.2000.358
ProOOF. It suffices to prove (13.5()§ for all single operators A € ¥ _(R™). Indeed

180

if j,(2) = zv is the linear map from C to C¥ defined by v € CV then

(3.51) I AllB(L2ricNy) = sup 7w Adv B2 (R))-
{MMGCN;HUH:Hw1\|;1}000 a58

Since the symbol of j* Aj, is just ji o (A)j,, (13.'5“% follows from the corresponding

equality for a single operator:

(3.52) inf
T2 (R

iso

A+ Ellge@y < sup |a(p)l, a = 0L(A)|g. -
n) pESQ"_l
. . . ... [6-6
The construction of the approximate square-root of C'— A* A in Proposition b_7
only depends on the existence of a positive smooth square-root for C'— |a|?, so can
be carried out for any
(3.53) C> sup |a(p)?.

p€S2n71
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Thus we conclude that with such a value of C
[ Aul]* < Cllull? + [(Gu, u)| ¥V u € L*(R™),

where G € U_>°(R"™). Since G is an isotropic smoothing operator, for any § > 0

there is a finite dimensional subspace W C S(R™) such that
(3.54) 1(Gu, u)|| < S||ul|®> VueWt,

Thus if we replace A by A(Id —Ily) = A+ E where E is a (finite rank) smoothing
operator we see that

I(A+ Eyu|® < (C+0)|Gul|* ¥ u € LX(R") = [[(A+ B)|| < (C +9)*.
1.2.2000.363
This proves half of the desired estimate (|3.5I , namely

(3.55) inf |A+ E|gr2@ny < sup |a(p)l.
Eev > (R") pES2n—1

To prove the opposite inequality, leading to (%f%%t%enough to arrive at
a contradiction by supposing to the contrary that there is some A € W9 (R")
satisfying the strict inequality

[Alls2@ny < sup |a(p)|.
peS2n—1

From this it follows that we may choose ¢ > 0 such that ¢ = |a(p)|? for some p €
S?n=1 and yet A’ = A* A—c has a bounded inverse, B. By making an arbitrariy small
perturbatio 1p2f' g&) fy& symbol of A’ we may assume that it vanishes identically
near p. By (F}.SB we may choose G € W9 (R") with arbitrariy small L? such that
A = A’ + B has left symbol rapidly vanishing near p. When the norm of the
perturbation is small enough, A will still be invertible, with inverse B € B(L?(R™).
Now choose an element G € U?_(R™) with left symbol supported sufficiently near
p, so that Go A € U, °(R™) but yet the principal symbol of G should not vanish
at p. Thus

G=GoAoB:L*R") — SR"),
Gx =G =DB"0A*oG* : §'(R") — L*(R").
It follows that G*G : &'(R™) — S(R™) is an isotropic smoothing operator. This
is the expected contradiction, since G, and hence G*G, ma)é .13(.3 63(2%(1).%%13 to have

non-vanishing principal symbol at p. Thus we have proved ( ence the
Proposition. ([l

It is then easy to characterize the compact operators amongst the polyhomo-
geneous isotropic operators as those of negative.

LEMMA 3.6. If A € W) _(R™;CN) then, as an operator on L*(R™;CV), A is

1sO
compact if and only if it has negative order.

PROOF. The necessity of v. {ﬂﬁhﬁ'ﬁl&) sts;he principal symbol for a compact op-
[3 9 and th

erator follows from Proposition 3. e sufficiency follows from the density of
1
T_°(R*;CN) in U }(R*;CV) in the topology of ¥_2 . (R";C") and hence in

iso iso oco—iso

the topology of bounded operators. Thus, such an operator is the norm limit of
compact operators so itself is compact. O

.. [1.2.2000.357 .
Also as a consequence of Proposwﬁog Egsvgggcan see the necessity of the as-

sumption of ellipticity in Proposition B.6.
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COROLLARY 3.5. If A € W) _(R";CN) then A is Fredholm as an operator on

180

L2(R™; CN) if and only if it is elliptic.

3.9. Sobolev spaces

The space of square-integrable functions plays a basic role in the theory of
distributions; one reason for this is that it is associated with the embedding of
S(R™) in &' (R™). We know that pseudodifferential operators of order 0 are bounded
on L%(R™). There is also a natural collection of Sobolev spaces associated to the
isotropic calculus, and another associated to the scattering calculus. The isotropic
Sobolev space of order m may be defined as the collection of distributions mapped
in L2(R™) by any one elliptic operator of order —m. Correspondingly the scattering
Sobolev spaces have two orders.

Note that a differential operator P(z,D,) on R™ is an isotropic pseudodif-
ferential operator if and only if its coefficients are polynomials. The fundamental
symmetry between coefficients and differentiation suggest that the isotropic Sobolev
spaces of non-negative integral order be defined by

1.2.2000.337| (3.56)  HE (R") = {u € L*(R");2*DPu € L*R") if |a| + |B| < k}, k€ N.

1SO
The norms

1.2.2000.339] (3.57) ulfiso = > /|x°‘D§u|2dx
lal+181<k 7R

turn these into Hilbert spaces. For negative integral orders we identify the isotropic
Sobolev spaces with the duals of these spaces

1.2.2000.340 | (3.58) HE (R™) = (HF(R™)) — S'(R"), k € —N.

150
The (continuous) injection into tempered distributions here arises from the density
of the image of the inclusion S(R") — HE_(R™).

180

1.2.2000.338 LEMMA 3.7. For any k € Z,

1.2.2000.341] (3.59) HF

180 1S0

={u e S'(R");3 A e V.F elliptic and such that Au € L*(R™)}

1S0

and S(R™) — HE_(R™) is dense for each k € 7Z.

180

(R") = {ue S'(R"); Au e L*(R") YV A€ Uk

ProoF. 3 For k € N, the functions 2%¢% for |a| + |3] = k are ‘collectively
elliptic’ in the sense that

1.2.2000.344] (3.60) g(,&) = > (@) = |z + €7, e>0.
la|+|Bl=k
Thus Qr = Y. (DPx*2*DP) € W2k (R™), which has principal reduced symbol

|+ 81 <k
gk, has a left parameterix A;, € U_2F (R™). This gives the identity

150

1.2.2000.345| (3.61) Z Re pz®DP = AyQy, = 1d +E, where

la|+]BI<k
Rop = ApDP2 ¢ U Mt P Ry | e wooRm),

1S0

3This is an essentially microlocal proof.
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Thus if A € UF

1S0

(R™)
Au=—-AEu+ Y ARypa°Du.

o +18|<k
If u € HE (R™) then by definition 2% D"u € L?(R™). By the boundedness of oper-

ators of order 0 on L2, all terms on the right are in L?(R™) an we hayeshown the

inclusion of HF (R™) in the first space space on the righti in, (B.59). The converse
is immediate, sp Jhis proves the first equality in (8. or k > 0. Certainly the
Bz

third space in contains in the second. The existence of elliptic parametrix B
for the ellipic operator A proves the converse since any isotropic pseudodifferential
operator of order A’ of order k can be effectively factorized as

A=A (BA+E)=BA+F', B €W’ . (R"), E' € U_*(R").

co—iso iso

Thus, Au € L*(R") implies that A’u € L*(R").

It also follows from second identification that S(R™) is dense in HF _(R™). Thus,
if Au € L?(R™) and we choose f,, € S(R") with f,, — Au in L?>(R") then, with B a
parametrix for A, u,, = Bf,, — BAu = u + Eu. Thus u,, = u}, — Fu € S(R") — u
in L2(R") and Au,, — u in L?(R") proving the density.

The Riesz representation theorem shows that vS’(R™) is in the dual space,
H_F(R™), if and only if there exists v’ € HF_(R™) such that

iso iso

(3.62) v(u) = (u,v")riso = (U, Qoiv) 12, ¥V u € S(R™) — HF (R")

1SO
with Qo = Y D2**DF.
la|+|8]<k

This shows that Qay, is an isomorphism of HE_(R") onto H_*(R") as subspaces of
S’'(R™). Notice that Qo € W2k (R™) is elliptic, self-adjoint and inyertible, since it
is strictly positive. This now gives the same identification (&37'59%_1?0?%‘< 0

The case k = 0 follows directly from the L? boundedness of operators of order

0 so the proof is complete. O

In view of this identification we define the isotropic Sobolev spaces or any real
order the same way

(3.63) H{ (R ={ueSR");Auec L*(R") YV Ac U '}, seR.

180 150

These are Hilbertable spaces, with the Hilbert norm being given by || Aul| 2z~ for
any A € U2 _(R™) which is elliptic and invertible.

1S0

PROPOSITION 3.10. Any element A € U _, . (R"), m € R, defines a bounded
linear operator

(3.64) A: H:

1S0

(R™) — H-™(R™), Vs € R.

150

This operator is Fredholm if and only if A is elliptic. For any s € R, S(R") —
HE (R™) is dense and H_>(R™) may be identified as the dual of H (R™) with

respect to the continuous extension of the L? pairing.

PRrROOF. A straightforward application of the calculus, with the exception of the
necessity of ellipticity for an isotropic pseudodifferential OBeLakOL 19 be Fredholm.
This is discussed in the problems beginning at Problem |3. 0. 0
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3.10. The residual group

By definition, G;.>°(R™) is the set (if you want to be concrete you can think
of them as operators on L?*(R")) of invertible elements of the ring Id +¥;_>° (R™) 5000330
If we identify this topologically with ¥;_>°(R™) then, as follows from Corollary 133_1,7
G.>°(R™) is open. We will think of it as an infinite-dimensional manifold modeled,
of course, on the linear space U;_>°(R") ~ S(R?"). Since I have no desire to get too
deeply into the general theory of such Fréchet manifolds I will keep the discussion
as elementary as possible.
The dual space of S(R?) is S'(RP). If we want to think of S(RP) as a manifold
we need to consider smooth functions and forms on it. In the finite-dimensional
case, the exterior bundles are the antisymmetric parts of the tensor powers of the
dual. Since we are in infinite dimensions the tensor power needs to be completed
and the usual choice is the ‘projective’ tensor product. In our case this is something
quite simple namely the k-fold completed tensor power of S'(RP) is just S'(R*P).

Thus we set
16.1] (3.65) AFS(RP) = {u € §'(R*); for any permutation
e, U(Te(1),- - Teny) = sgn(e)u(zy,...xx)} .
In view of this it is enough for us to consider smooth functions on open sets
F C S(RP) with values in &'(RP) for general p. Thus
TG.2| (3.66) v: F— §'(RP), F c S(R") open

is continuously differentiable on F' if there exists a continuous map

v 1 F — §'(R"*?) and each u € F has a neighbourhood U
such that for each N 3 M with

lo(u+u') —v(u) — v ()| x < Cl)3, ¥ u,u+u' €U.

Then, as usual we define smoothness as infinite differentiability by iterating this
definition. The smoothness of v in this sense certainly implies that if f : X —
S(R™) is smooth then v o F' is smooth.

Thus we define the notion of a smooth form on F C S(R™), an open set, as a
smooth map

16.3| (3.67) a: F — AFS(RP) c S'(RFP).

In particular we know what smooth forms are on G._>°(R").

The de Rham differential acts on forms as usual. If v : I — C is a function
then its differential at f € F is dv: F — S'(R") = A’S(R"), just the derivative.
As in the finite-dimensional case d extends to forms by enforcing the condition that

dv = 0 for constant forms and the identity distribution over exterior products

T6.5| (3.68) d(a A B) = (da) A B+ (—1)%e*a AdB.

S.Representations‘ 3.11. Representations

|Sect .radial.compactification . .
In §T.9 the compactification of Fuclidean space to a ball, or half-sphere, is

described. We make the following definition, recalling that p € C®(S™T) is a
boundary defining function.
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DEFINITION 3.2. The space of of ‘Laurent functions’ on the half-sphere is

(3.69) L) = [J prCx@Emh),
keNy
pFCe(S™T) = {u € ¢ (int(S™T)); pPu e o (S™T).

More generally if m € R we denote by p™C>(S™T) the space of functions which
can be written as products u = p™wv, with v € C®(S™™T); again it can be identified
with a subspace of the space of C*° functions on the open half-sphere.

1.104 1.10
PROPOSITION 3.11. The compactification map (L.94) extends from (1.96; to
give, for each m € R, an identification of p~™C>(S™1) and ST (R™).

Thus, the fact that the UF (R™) form an order-filtered *-algebra means that
p?C>(S*™+) has a non-commutative product defined on it, with C>°(S*>*) a sub-

algebra, using the left symbol isomorphism, followed by compactification.

3.12. Symplectic invariance of the isotropic product

The composition law for the isotropic calculus, and in particular for it smooth-
ing part, is derived from its identification as a subalgebra of the (weighted) spaces
of pseudodifferential operator on R™. There is a much more invariant formulation
of the product which puts into evidence more of the invariance properties.

Let W be a real symplectic vector space. Thus, W is a vector space equipped
with a real, antisymmetic and non-degenerate bilinear form

(3.70) w: W xW — R, w(wy,ws)+w(ws,wy) =0V wy,ws € W,
ww,w)=0YVweW = w; =0.

A Lagrangian subspace of W is a vector space V' C W such that w vanishes when
restricted to V and such that 2dim V = dim W.

LEMMA 3.8. Every symplectic vector space has a Lagrangian subspace and for
any choice of Lagrangian subspace Uy there is a second Lagrangian subspace Us
such that W = U, @ Us s a Lagrangian decomposition.

PrROOF. First we show that there is a Lagrangian subspace. If dim W > 0 then
the antisymmetry of w shows that any 1-dimensional vector subspace is isotropic,
that is w vanishes when restricted to it. Let V be a maximal isotropic subspace,
that is an isotropic subspace of maximal dimension amongst isotropic subspaces.
Let U be a complement to V in W. Then

(3.71) w:VxU—R

is a non-degenerate pairing. Indeed u € U and w(v,u) = 0 for all v € V then
V +R{u} is also isotropic, so u = 0 by the assumed maximality. Similarly if v € V'
and w(v,u) = 0 for all u € U then, recalline that w vanishes on V, w(v,w) = 0 for
all w € W so v = 0. The pairing (%TTI)WW identifies U with V', the dual of
V. In particular dimw = 2dim V.

Now, choose any Lagrangian subspace U;. We proceed to show that there is a
complementary Lagrangian subspace. Certainly there is a 1-dimensional subspace
which does not meet Uy. Let V' be an isotropic subspace which does not meet U; and
is of maximal dimension amongst such subspaces. Suppose that dim V' < dim Uj.
Choose w € W with w ¢ V @ U;. Then V 3 v — w(w,v) is a linear functional



23.3.1998.178

23.3.1998.179

23.3.1998.180

23.3.1998.181

23.3.1998.182

23.3.1998.183

23.3.1998.184
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on Uj. Since U; can be completed to a complement, any such linear functional
can be written w(uy,v) for some u; € Uy. It follows that w(w — uq,v) = 0 for all
v € V. Thus V& R{w — w1} a non-trivial isotropic extension of V, contradicting the
assumed maximality. Thus V = U, is a complement of Uj. (]

Given such a Lagrangian decomposition of the symplectic vector space W, let

Xi,...X, bea basij‘zgqg.tg%sd_lf% of Uy, and let Z1,..., =, be the dual basis, of U;
. w1

itself. The pairing ( = Uy and V = Us identifies Uy = U] so the Z;
can also be regarded as a basis of the dual of Us. Thus X; ... X,,=Z1,...,2, gives
a basis of W/ = U{ & UJ. The symplectic form can then be written

n

(372) w(wl,wg) = Z(Ez(wl)Xz(wg) - El(wg)Xl(wl))

=1

This is the Darbouzx form of w. If the X;, =; are thought of as linear functions

i, & g[q&%wl.;sonsidered as a manifold then these are Darbouz coordinates in

which ecomes

(3.73) w=Y d& Adz;.
=1

The symplectic form w defines a volume form on W, namely the n-fold wedge
product w™. In Darboux coordinates this is just, up to sign, the Lebesgue form
dédz.

PROPOSITION 3.12. On any symplectic vector space, W, the bilinear map on

S(W),

(3.74)

aF#b(w) = (277)*2"/ e (W1w2) g (4 4wy )b(w + we )w™ (w1 )w? (w), dim W = 2n
w2

defines an associative product isomorphic to the composition of ¥, >°(Uy) for any
Lagrangian decomposition W = U; @ Us.

o 23.3.1998.181
COROLLARY 3.6. Eatended by continuity in the symbol space (t}.?zl defines a
filtered product on S°° (W) which is isomorphic to the isotropic algebra on R*"™ and
is invariant under symplectic linear transformation of W.

. . 23.3.1998.181 L . L .
PrOOF. Written in the form (L}.?ZI the symplectic invariance is immediate.
That is, if F' is a linear transformation of W which preserves the symplectic form,
w(Fwr, Fwe) = w(wy,ws) then

(3.75) F*(a#b) = (F*a)#(F*b) ¥ a,b € S(W).

The same result holds for general symbols once the continuity is established.

Let us start from the Weyl quatization of the isotropic algebra. As usual
for computations we may assume that the amplitudes are of order —oo. Thus,
A € U_*°(R™) may be written

180

316 Aule) = [ Aty = o) " [ @I o ), uly)dyde.



23.3.1998.185

23.3.1998.186

S.Complex.order

1.2.2000.334

1.2.2000.335

76 3. ISOTROPIC AND SCATTERING CALCULI

Both the kerpel Acg.y)oand the amplitude a(z,{) are elements of S (R?"). The
g 76) and 1t

relationship (B. its inverse may be written

Als+ s — ) = 20" [ e als, )
o9 = [ A g

If A has Weyl symbol a %nglg}“é%S %e%l sy3ghal b let ¢ be the Weyl symbol of
the composite A o B. Using (B.77) and

c(s,Q) :/ —it <A(s—&— 2 ,2)B(z,s — E)dt

(3.77)

2
eryn [ [ [tz dgine®a(G + 4 + 5,905 +5 - 1)
4 2’ 2 2 4’
t t
Where(I>=—t-C—l—(5—|—§—z)-§+(2_5+§),n.
Changing variables of integration toX:%—i—%—%,Y:%—i—%,E:f—(and

H = n — ( this becomes

c(s,():(27r)’2"4”///deXdEdH

HPXHYE) (X + 5,24 Oa(Y + s, H + ().

. 23.3.1998.181 . )
This reduces to (IB.FZI , written out in Darboux coordinates, after the change of
variable H' = 2H, 2’ = 22 and ¢’ = 2(. Thus the precise isomorphism with the
product in Weyl form is given by

; 1
BT Alwy) = o) [ (), 2)ulp)dyde
23.3.1998.181
so that composition of kernels reduces to (IB 71). (]

Discuss metaplectic group here.

3.13. Complex order

The identification of polyhomogeneous symbols of order zero on R2" with the
smooth functions on the radial compactification allows us to define the isotropic
operators of a given complex order z € C. Namely, we use the left quantization
map to identify

(3.79) U2

fo(R™) = p2C(SPMY) C W (R™).

Here, p € C*°(S?™1) is a boundary defining function. Any other boundary defining
function is of the form ap with 0 < a € C>(S?*™1). It follows that the definition is
independent of the choice of p since a* € C>®°(S?*™!) for any z € Z.

In fact it is even more useful to consider holomorphic families. Thus if Q2 C C
is an open set and h : 2 — C is holomorphic then we may consider holomorphic
families of order h as elements of
(3.80) UII(RP) = {A:Q — U

180

oo — lbO(RQTL);
03z p"PA(2) € C®(S*™) is holomorphic. }
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Note that a map from Q C C into C>°(S?*!) is said to be holomorphic it is defines
an element of C>(Q) x S?™1) which satisies the Cauchy-Riemann equation in the
first variable.

PrOPOSITION 3.13. Ifh and g are holomorphic functions on an open set 2 C C
and A(z), B(z) are holomorphic familes of isotropic operators of orders h(z) and
g(z) then the composite family A(z) o B(z) is holomorphic of order h(z) + g(z).

PROOF. It suffices to consider an arbitrary open subset Q' C Q with com-
pact closure inside €. Then h and g have bounded real parts, so A(z), B(z) €
wM . (R?") for z € Q' for some fixed M. It follows that the composite A(z)oB(z) €

P2M . (R?"). The symbol is given by the usual formula. Furthermore

co—iso

O

3.14. Traces on the residual algebra

The algebras we are studying are topological algebras, so it makes sense to
consider continuous linear functionals on them. The most important of these is the
trace. To remind you what it is we consider first its properties for matrix algebras.

Let M(N;C) denote the algebra of N x N complex matrices. We can simply
define

N
(3.81) Tr: M(N;C) - C, Tr(A) =) Ay
=1

as the sum of the diagonal entries. The fundamental property of this functional is
that

(3.82) Tr([A,B]) =0V A, B € M(N;C).

To check this it is only necessary to write down the definition of the composition

in the algebra. Thus
N

(AB)ij = AiBu; .
k=1
It follows that
N N
T

i=1 ik=1

N N
= Z Bszzk = Z(BA)kk = TI‘(BA)
) k=11i=1 k=1
eq:
which is just (5¥3). oo
Of course any multiple of Tr has the same property (13982) but the normalization
condition
(3.83) Tr(Id) =N
12 :3
distinguishes it from its multiples. In fact (I§98’2) and (I§983) together distinguish
Tr € M(N;C)’ as a point in the N? dimensional linear space which is the dual of
M(N;C).
eq:2
LEMMA 3.9. If F: M(N;C) — C is a linear functional satisfying (13382) and
B € M(N;C) is any matriz such that F(B) # 0 then F(A) = % Tr(A).
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PrOOF. Consider the basis of M (N;C) given by the elementary matrices Ej,
where Ej; has jk-th entry 1 and all others zero. Thus

EjxEpq = OrpEjq-
If j # k it follows that
EjjEj, = Ej, Ejlij; = 0.
Thus
F([EJJvE k]) = F(Ejk) =0if j # k.
On the other hand, for any ¢ and j
E;iE;; = Ej;, EijE;; = By
SO
F(Ej;) = F(En) VY j

Since the Ejj, are a basis,

F(A) = F() A4Ey)

N
Ell ZAJ] Ell TI"(A)
Jj=1

This proves the lemma. U

For the isotropic smoothing algebra we have a similar result.

ProrosITION 3.14. If F : U,
functional satisfying

(3.84) F([A,B)) =0V A, B € U_>®(R")

150

then F([A,B]) =0 for all A € V. _°(R") and B € U
multiple of the functional

W(R™) ~ S(R*™) — C is a continuous linear

(R™) and F is a constant

(3.85) Tr(A) = A(z, ) d.
]Rn

PRrROOF. Recall that ¥ °(R™) C ¥ (R") is an ideal so A € ¥ >°(R") and
B € ¥ (R™) implies that AB, BA € ¥, _°(R™) and it follows that the equality
F(AB) = F(BA), or F([A, B]) = 0, is meaningful. To see that it holds we just
use the continuity of F. We know that if B € ¥° (R™) then there is a sequence
B,, — B in the topology of ¥ (R") for some m. Since this implies AB,, — AB,
B,A— BA in ¥U_°°(R") we see that
F([A,B]) = lim F([A,B,])=0.

n—oo

180

:5
We use this identity to prove (EQBB) Take B = z; or Dj, j = 1,...,n. Thus
for any A € U_>(R")

180

F([4, 3,‘]]) = F([4, DJ]) =0.
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Now consider F as a distribution acting on the kernel A € S(R?"). Since the kernel
of [A,xz;] is A(z,y)(y; — x;) and the kernel of (A, D;) is —(Dy; + Dy,;)A(x,y) we
conclude that, as an element of S’(R?"), F satisfies

(z; —y)F(z,y) =0, (Day + Dy;)F(x,y) = 0.

If we make the linear change of variables to p; = %, ¢ = x; —y; and set

F(p,q) = F(x,y) these conditions become
D,F=0, ppF=0,i=1,...,N.
As we know from Lemmas E_% and E_.'i this implies that F = ¢d(p) so
Flz,y) = cd(x —y)

:5
as a distribution. Clearly §(z — y) gives the functional Tr defined by (EQBB), so the
proposition is proved. O

We still need to justify the use of the same notation, Tr, for these two func-
tionals. However, if L C S(R™) is any finite dimensional subspace we may choose
an orthonal basis ¢, € Lyt =1,...,,

/ Iw(x)lzda::(),/ i) T3 () dn = 0, i £ .
Rn» R™

Then if a;; is an | x [ matrix,

¢
A= aijpi(a)p(y) € UL O (R™).

1,j=1

From (ES&ES) we see that
TI‘(A) = Z 227 TI‘(()OZ@])

= ia“‘ = Tr(a).
i=1

Thus the two notions of trace coincide. ’?emagyagease this already follows, up to a
constant, from the uniqueness in Lemma 3.9.

3.15. Fredholm determinant

For N x N matrices, the linear space of which we denote M (IV;C), the deter-
minant is a multiplicative polynomial map
(3.86) det : M(N;C) — C, det(AB) = det(A) det(B), det(Id) = 1.

It is not quite determined by these conditions, since det(A)* also satisfies then. The
fundamental property of the determinant is that it defines the group of invertible
elements

(3.87) GL(N,C) = {A € M(N;C);det(A) # 0}.

1.2.2000.406
A reminder of a direct definition is given in Problem |3. 7.
The Fredholm determinant is an extension of this definition to a function on
the ring Id +¥_ >°(R"™), or even further to Id+W¥_*" ¢(R") for € > 0. This can

iso co—iso
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be done 1@ aeg&ggl JpRays using the density of finite rank operators, as shown in

Corollary e proceed by generalizing the formula relating the determinant to
the trace. Thus, for any smooth curve with values in GL(V;C) for any N,

A

(3.88) L det(4,) = det(A,) tr(A; ).
S S

) . ]1.2.2000.404 o .
In particular if (13.865 is augmented by the normalization condition

(3.89) d% det(Id+sA)| _, = tr(A) V A€ M(N;C)
then it is determined.

A branch of the | gagi &}P o be introduced along any curve, smoothly in the

parameter, and then (8. can be rewritten

(3.90) dlogdet(A4) = tr(A™"dA).

Here GL(N;C) is regarded as a subset of the linear space M(N;C) and dA is
the canonical identification, at the point A, of the tangent space to M (N, C) with
M(N,C) itself. This just arises from the fact that M(N,C) is a linear spage,
Thus dA(L(A + SB)‘ _o = B. This allows the expression on the right in (@9’0%7
to be 1nterpreted as a smooth 1-form on the manifold GL(N;C). Note that it is
independent of the local choice of logarithm.
To define the Fredholm determinant we shall extend the 1-form

(3.91) a=Tr(A 'dA)

to the group G .7 (R™) — Id +¥. °(R"). Here dA has essentially the same meaning
as before, given that Id is fixed. Thus at any point A = Id+B € Id +¥>°(R") it
°°(R™) using the linear structure:

is the identification of the tangent space with W

180

dA(i(1d+B+sE)|S:0) E, E € U >(R™).

180

iml.
Since dA takes values in ¥._°(R™), the trace functional in (IB 9 ; is well deﬁﬁeg 000.409

:he J-form o is closed. In the finite-dimensional case this follows from (
For (B.91) we can compute directly. Since d(dA) = 0, essentially by definition, and

(3.92) dA™' = —A"1dAAT!

we see that

(3.93) da = —Tr(A71(dA)A™(dA)) =0

Here we havgm S d the trace identity, and the antisymmetry of the implicit wedge
product in (b_%% Lo canlcude that dor = 0. For a more detailed discussion of this
point see Problem

From the fact that da = 0 we can be confident that there is, locally near any
point of G,>°(R™), a function f such that df = «; then we will define the Fredholm
determinant by detg.(A) = exp(f). To define detg, globally we need to see that this
is well defined.

LEMMA 3.10. For any smooth closed curve y : S' — G

(3.94) / = / 2o € il
¥ st

That is, o defines an integral cohomology class, [5%=] € HY(G,

*°(R™) the integral

1S0

o (R™); Z).

1S0
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PRrROOF. This is where we use the approximability by finite rank operators.
If 7 is the orthogonal projection onto the span of the eigenspaces of t g ﬁrnmomc oscillator

est IV eigenvalues of the harmonic oscillator then we know from Section B.7 that
anEnny — E in U,_°(R") for any element. In fact it follows that for the smooth
curve that v(s) = Id+E(s) and En(s) = mnE(s)mny converges uniformly with all
s derivatives. Thus, for some Ny and all N > Ny, Id+En(s) is a smooth curve in
G .>°(R™) and hence vy (s) = Idy +En(s) is a smooth curve in GL(V; C). Clearly

1S0

(3.95) /a—>/aasN—>oo,
YN

and for fnite N it fOélOXﬁ/b from the identity of the trace with the matrix trace (see

Sectiorl%dl 1}5?&&? J v Y@ is the variation of arglog det(yy) around the curve. This
gives (| 7] O

iml.10
Now, once we have (IBImQZI and the connectedness of G;_°°(R™) we may define

180

(3.96)  detpr(A) = exp( / @), 71 [0,1] — GRE(®R™), 7(0) =1d, 7(1) = A,

iml.9 7
Indeed, Lemma I3TU_Sh0WS that this is independent of the path chosen from the
identity to A. Notice that the connectedness of G;_>°(R™) follows from the connect-
edness of the GL(N, C) and the density argument above.
The same arguments and results apply to G_2"_¢(R") using the fact that the

oco—iso

(R™) for any € > 0.

2n—e
co—iso

iml,
PROPOSITION 3.15. The Fredholm determinant, defined by (LIS 96 on G .0 (R™)
(or GZ2""¢(R™) for € > 0) and to be zero on the complement in Id +¥_>°(R™) (or

1S0

Id +WU._2""¢(R™)) is an entire function satisfying

150

(3.97)  detg, (AB) = detp,(A) det,(B), A, B € Id+¥,_>°(R")
(or Id+W¥_2"¢(R")), detp (Id) = 1.

1S0

trace functional extends continuously to U_

1S0

PRrROOF. We start with the multiplicative property of detg, on Gi5°(R™). Thus
is y1(s) is a smooth curve from Id to A; and v2(s) is a smooth curve from Id to A
then v(s) = v1(s)y2(s) is a smooth curve from Id to A; As. Consider the differential
on this curve. Since
d(A1(s)As(s)) _ dAi(s)
ds - ds

dAQ (S)
ds

A2 (S) + Al (S)

the 1-form becomes

(3.98) v*(s)a(s)=Tr<A2<s>*1%(s)>+Tr<A2<s>*1A1<s>* As(s)).

In the second term on the right we can use the trace identity, since Tr(GA) =
Tr(AG) if G € VZ (R") and A € ¥_>°(R™). Thus (3 ecomes

1S0

1d42(s)
ds

Y (s)a(s) = v+ 1a.
Inserting this into the definition of detg, gives (| 13.97i when both factors are in
Gio® (R™). Of course if either factor is not invertible, then so is the product and
enc both detg,(AB) and at least one of detp,(A) and detg,(B) vanishes. Thus
iml.14
(B. holds in general when detp, is extended to be zero on the non-invertible
elements.
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Thus it remains to establish the smoothness. That detg,(A) is smooth in any
real parameters in which A € G;.>°(R™) depends, or indeed is holomorphic in holo-
morphic parameters, follows from the definition since « clearly depends smoothly,
or holomorphically, on parameters. In fact the same follows if holomorphy is exam-
ined as a function of £, A =1d+FE, for E € ¥. >°(R"). Thus it is only smoothness
across the non-invertibles that is at issue. To prove this we use the multiplicativity
just established.

If A=1d+FE is not jpvertible, B € W, >(R") then it has a generalized inverse
Id +FE’ as in Proposition E.B. Since A has index zero, we may actually replace E’ by
E'+E"” where E” is an invertible linear map from the orthocomplement of the range
of A to its null space. Then Id+E'+E"” € G..>°(R"™) and (Id+E'+E")A = 1d —Il,.
To prove the smoothness of detg, on a neighbourhood of A it is enough to prove the
smoothness on a neighbourhood of Id —1IIj since Id +E’+ E” maps a neighbourhood
of the first to a neighbourhood of the second and detg, is multiplicative. Thus
consider detp, on a set Id —IIy + E where E is near 0 in ¥;_>°(R"™), in particular
we may assume that Id +F € G_J°(R"™). Thus

detpy (Id +E — Ip) = det(Id +E) det(Id —IIp + (G — Id)TIy)

were G = (Id +E)~! depends holomorphically on E. Thus it suffices to prove the
smoothness of detp, (Id —IIp + HIIy) where H € ¥, °(R")

Consider the deformation Hs = ITo HIIy+ s(Id —IIy) HIIp, s € [0,1]. If Id =TIy +
H, is invertible for one value of s it is invertible for all, since its range is always
the range of Id —IIj plus the range of IIo HIIy. It follows that detp (Id —IIg + Hy)
is smooth in s; in fact it is constant. If the family is not invertible this follows

immediately and if it is invertible then

ddety, (Id —TIo + H,)
ds
= dety, (Id o + H,) Tr ((Id — Iy + H,) ' (Id —Pig) HIlp)) = 0

since the argument of the trace is finite rank and off-diagonal with respect to the
decomposition by Ilj.

Thus finally it is enough to consider the smoothness of detg, (Id —IIp + ITg H1Ip)
as a function of H € ¥_>(R"™). Since this is just det(IlpHIly), interpreted as a
finite rank map on the range of IIy the result follows from the finite dimensional

case. |

LEMMA 3.11. If A € GZ_(R") and B € G .>°(R") then ABA™! € G .>°(R")

and w v
(3.99) detp,(ABA™!) = detp (B).

iml.19
PrOOF. If ABA™! is not invertible then neither is B so both sides of (&3—99%7
vanish. Thus we may assume that B = Id +F is invertible and let Id +E(s) be a
smooth curve in G ,>°(R™) connecting it to the identity. Consider the function

150

(3.100) detp (A(Id +E(s))A™1) = detp, (Id +AE(s)A™Y).
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This is certainly smooth and non-vanishing and its logarithm has derivative

d (A(Id +E(5)A_1)
ds

Tr(A(Id+E(s)"tA™ )

E E
= Tr(A(Id +E(s)) " %A‘l) = Tr((Id+E(s)) ! %).
This is also the derivative of the logarithm of detg, (Id +E(s)) so the result follows.
(]

3.16. Fredholm alternative

Since we have shown that detp, : Id+¥. °(R™) — C is an entire function,

we see that G ;7 (R™) is the complement of a (singular) holomorphic hypersurface,
namely the surface {Id +F;detp,(Id +F) = 0}. This has the following consequence,
which is sometimes call the ‘Fredholm alternative’ and also part of ‘analytic Fred-

holm theory’.
LeMMA 3.12. IfQ C C is an open, connected set and A : Q@ — U_°(R"™) is a

holomorphic function then either 1d +A(z) is invertible of all but a discrete subset
of Q and (Id +A(z)) is meromorphic on Q with all residues of finite rank, or else

it is invertible at no point of Q.

PRrOOF. Of course the point here is that detp (Id+A(z)) is a holomorphic
function on Q. Thus, either detr(A(z)) = 0 is a discrete set, D C Q or else
detrr(Id +A(2)) = 0 on ; this uses the connectedness of ). Since this corresponds
exactly to the invertibility of Id +A(z) the main part of the lemma is proved. It
remains only to show that, in the former case, (Id +A(z))~! is meromorphic. Thus
consider a point p € D. Thus the claim is that near p

180

N
(3.101)  (Id+A(2))"' =1d+E(2) + » 27 Ej, E; € U .2°(R") of finite rank
j=1

and where E(z) is locally holomorphic with values in ¥:_>°(R"™).
If N is sufficiently large and Il is the projection onto the first IV eigenspaces
of the harmonic oscillator then B(z) = Id+E(z) — Iy E(z)Iy is invertible near p

with the inverse being of the form Id +F(z) with F'(z) locally holomorphic. Now
(Id4+F(2)(Id+E(2)) = ld+(Id+F () IINE(2)Iy
= (Id-IIy) +IyM(z)y + (Id —HN)M/(Z)HN.

It follows that this is invertible if and only if M (z) is invertible as a matrix on
the range of II. Since it must be invertible near, but not at, p, its inverse is a
meromorphic matrix K (z). It follows that the inverse of the product above can be
written

(3.102) Id —TIy + Ty K (2)Ty — (Id =TIx) M’ (2)T N K (2) .
This is meromorphic and has finite rank residues, so it follows that the same is true
of A(z)~ % O

This result for the smoothing operators, which really follows from the cor-
responding result for matrices, gives a similar result for a holomorphic family of
elliptic operators.
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PROPOSITION 3.16. Suppose Q) C C is open and connected, h(z) is holomorphic
on Q and A(z) € \If-h(z)(]R") is a holomorphic and elliptic family. Then if A(2) is

1sO
invertible at one point it is invertible for all but a discrete set and its inverse is

locally of the form B(z) + H(z) where B(z) € \Ili_sf(z)(R") is a locally holomorphic
family and H(z) is meromorphic with values in ¥_>°(R™) and has all residues of

finite rank.

. S.Complex.order
PROOF. By the results of Section |3 I3 we can choose, at least locally near any
point, a holomorphic parametrix B(z) for the family in \I/-_h(z)(R"). Suppose p € Q

1S0
is a point at which A(z) is invertible. Then the parametrix differs from the inverse
by a smoothing operator, so modifying B(z) by a constant smoothing operator if
follows that B(z)A(z) = Id+E(z) is a holomorphic family in Id +W¥. >°(R") with
E(p) = 0. It follows from the Fredholm alternative that Id +E(z) is invertible with
holomorphic inverse near p. Thus, A(z) is invertible for z in an open set around p;
the set at which it is invertible is therefore open. Let Z C Q be the closed set at
which A(z) is not invertible. If p is a boundary point of Z then it follows, using
the notation above for a parametrix of A(z) near p, that Id +E(z) is invertible near
p and hence p is an isolated point of non-invertibility. Thus all boundary points
of Z are isolated. A closed subset of an open connected set in Euclidean space is
either discrete or has a non-isolated boundary point, so this shows that the set of
non-invertibility it is discrete. The local structure of the inverse follows from this
discussion. (]

3.17. Resolvent and spectrum

One direct application of analytic Fredholm theory is to the resolvent of an
elliptic operator of positive order. For simplicity we assume that A € U (R"; CV)

with m € N, although the case of non-integral positive order is only slightly more
complicated.

PROPOSITION 3.17. If A € ¥ (R™;CN), m € N, and there exists one point

180

X € C such that A — X and A* — N both have trivial null space, then
(3.103) (A—-N"tew ™R CY)

is a meromorphic family with all residues finite rank smoothing operators; the span
of the ranges of the residues at any X is the linear space of generalized eigenvalues,
the solutions of

(3.104) (A — X\)Pu =0 for some p € N.

PROOF. Since A is elliptic and of positive integral order, m, A — X € ¥ (R")
is and entire elljptic family. By hypothesis, its inverse exists for some A € C. Thus,
by Proposition B.16 (A —\)~! € ¥ .”*(R") is a meromorphic family in the complex
plane, with all residues finite rank smoothing operators.

Let A be a pole of A — \. Since we can replace A by A — XA we may suppose
without loss of generality that A = 0. Thus, for some k the product A\ (A—=X)"1tis

holomorphic near A = 0. Differentiating the identities

(A= NN A= =M1d=DFA -4 - )N
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up to k times gives the relations
(3.105) AoRy_j=RjjoA=Ry_ji1, j=0, k-1,
Ao RO = R() 0 A= Id—|—R1, where
(A-=N"'=R A 4+ R N 4 4 Ry4 -+, Rpy1 =0.
Thus AP o Rg_pt1 = 0 = Rp_pr1 0 AP for 0 < p < k, which shows that all the
residues, R;, 1 < j <k, have ranges in the generalized eigenfunctions. O
iml.2
Notice also from (|3 105) that the range of R;_;41 is contained in the range of

Rj_j for each j =0,...,k — 1, and conversely for the null spaces

Ran(Ry) C Ran(Ri_1) C --- C Ran(R;)

Nul(Rg) D Nul(Rg—1) D -+ D Nul(Ry).

Thus,
(3.106) u € Ran(R,), p>1<= Ju; € Ran(Ry) s.t. AP luy = u.
S.Residue.trace | 3.18. Residue trace
. L. isotropic trace . .
We have shown, in Pr0p051t10n |3 4 the existence of a unique trace functignal
eeleyl

on the residual algebra ¥, > [Rilon' follow i iginating with Seeley, )
and developed by Guillemin and Wodzicki o investigate the traces

on the full algebra WZ (R™) of polyhomogeneous operators of integral order. We
will prove the existence of a trace but defer until later the proof of its uniqueness.
Observe that for A € U;_>°(R™) the kernel can be written

150

Alw,y) = (20)" / VG, (2, €) de

eq:5
and hence the trace, from (b98'5), becomes

|Feb.17.2000.eq:1| (3.107) Tr(A) = (27r)*”/ ar(z,€) dxd¢,
R2n

just the integral of the left-reduced symbol. In fact this is true for any amplitude
(of order —o0) representing A :
‘Feb.17.2000.eq:2‘ (3.108)

A= (277)—71/61(1—74)&(%%5) d¢ = Tr(A) = (271')_"/ a(x,x,€) dxdE .
RQTL

. . [Feb.17.2000.eq:1 )
The integral in (L}.l()? extends by continuity to ar € SZ(R*") provided m <

—2n. Thus, as a functional,

Feb.17.2000.eq:3 | (3.109) Tr: U2 ¢(R") — C, for any ¢ > 0.

o0, iso

<tend it further we need somehow to regularize the resultant divergent integral
in ( ; and to pay the price in terms of properties). Ocne ng{gan} way to do
this is to use a holomorphic family as dlbm%sbeq?lrbo%%c‘gqg IB 13.“Notice that we are

passing from the algebra-with-bounds in (B. 0 polyhomogeneous operators.

LEMMAFB 43, Hod2) & Vi (R™) is a holomorphic family then f(z) = Tr(A(2)),
defined by ( when z) < —2n, extends to a meromorphic function of z with
at most szmple poles on the divisor

{-2n,—2n+1,...,-1,0,1,..} C C.
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Feb.17.2000.eq:5|

Feb.17.2000.eq:6‘
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PROOF. We know that A(z) € UZ

its left-reduced symbol is of the form

oL(A(2) = (1 + |z]* + [2[*)*/%a(z; 2, €)

where a(z; x,y) is an entire function with values in Sphg( ™). For Rz < —2n the
trace of A(z) is

(R™) is a holomorphic family if and only if

f(z) = (@) / (L+ |2 + €2)72a(z: o, €) der de
R2n
Consider the part of this integral on the ball
fi(z) = @m)" / (14 |2 + €P)2a(z 2, y) de dt
[z|2+]€]2L1

This is clearly an entire function of z, since the integrand is entire and the domain
compact.

To analyze the remaining part fo(z) = f(2) — f1(2) let us introduce polar
coordinates

r= (|l‘|2 + |§|2)1/2’ f = (m;.f) c SQn—l ]
The integral, convergent in Rz < —2n, becomes

R =0 [ e a0 dor

Let us now pass to the radical compactification of R?" or more prosaically, introduce
t =1/r € [0,1] as variable of integration, so

—n ! —z 2\z/2~ 1 —2n dt
fa(z) = (2m) t2(1+ %) %a(z; =, 0) dot =" —.
0 §2n—1 t t
Now the definition of Sghg(R2”) reduces to the statement that
1
(3.110) b(z:t,0) = (1 +t2)*/%a(z; -:0) €C=(C % [0,1] x SRS

is holomorphic in z.
If we replace b by its Taylor series at t = 0 to high order,

(3.111) b(z;t,0) Z + " b (251, 6)

—o/
Feb.17.2000.eq:4 . .
where by (z;t,6) has the same regulamty (131 [0J, then %2(2) is decomposed as

(3.112) fa(z) = (27m)~ Z/ /S 1t jﬂ 2oy 4t 0.

[Feb.17.2000.eq:5
The presence of this factor t* in the remainder in (3. shows that ka (z) is

ho %ﬁowh%ol&l %z < —2n + k. On the other hand the individual terms in the sum

in (| can be computed (for Rz < —2n) as

t—z+j—2n :|1 / de
2r) ™" | ———— bj(z,0
( ) |:(—Z+j —271) 0 Js2n—1 ( )]'

1 L db
=0 g L 0T
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Each of these terms extends to be meromorphic in the entire complex plane, with
a simple pole (at most) at 2 = —2n + j. This shows that f(z) has a meromorphic
continuation as claimed. ]

By this argument we have actually computed the residues of the analytic con-
tinuation of Tr(A(z)) as

(3.113) lim 4(z—j+2n)Tr(A(z))2(277)*”/ a;(0) do
S2n—1

z——2n+)

when a;(6) € C>(S*"~1) is the function occurring in the asymptotic expansion of
the left symbol of A(z):

Feb.17.2000.eq:7| (3.114) o01(A(2)) ~ Y (2> + [£[*)7/*Ya (2, 0)
7=0
(2,6
(]2 + [€[2)/2
More generally, if m € Z and A(z) € ¥/-"*(R") is a holomorphic family then

1S0

|22 + €2 = o0, O = a;(0) = aj(—2n+34,0).

Tr(A(z)) is meromorphic with at most

simple poles at —2n —m + Ng.

Indeed this just follows by considering the family A(z — m).
We are especially interested in the behavior at z = 0. Since the residue there
is an integral of the term of order —2n, we know that

A(z) € UI™F#(R™) holomorphic with A(0) =

150

= Tr(A(z)) is regular at z = 0.

Feb.24.2000.eq:2‘ (3.115)

This allows us to make the following definition:
Trres(A) = lim zTr(A(z)) if
A(z) € U"t#(R™) is holomorphic with A(0) = A.

150

S.Complex.order
We know that such a holomorphic family exists, since we showed in Section t}. I3 the
existence of a holomorphic family F'(z) € ¥Z (R") with F'(0) = Id; A(z) = AF(z)

150

is therefore an example. Similarly we know tha‘@ e%‘r%?%& is ipdependent of the

choice of holomorphic family A(z) because of (B. applied to the difference,
which vanishes at zero.

LEMMA 3.14. The residue functional Trres(A), A € W2

Lo (R™), is a trace:

1S0 (R7L )

[Feb.24.2000.eq:4| (3.116) Trres([A,B]) =0V A, B € UZ

which vanishes on W_2""Y(R™) and is given explicitly by

|Feb.24.2000.eq:5| (3.117) Trres(4) :(277)*”/ a_on(6)do
SQn 1

where a_on (0) is the term of order —2n in the expansion of the left (or right) symbol
of a.
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Feb.24.2000.eq:5

PROOFEl _\g\{g;lﬁgyfsglready shown that Trres(A) is well-defined and (8- ol-
W1

lows from (B a_2,(0) the term of order —2n in the left-reduced symbol
of A = A(0). On the other hand, the same argument applies for the right-reduced
symbol.

Feb.24.2000.eq:4
To see (IB 6) just note that if A(z) and B(z) are holomorphic families with
A(0) = A, and B(0) = B then C(z) = [A(z), B(z)] is a holomorphic family with

C(0) = [A, B]. On the other hand, Tr(C(z)) = 0 whey Bz > 0, so the analytic
ke %i follows.

continuation of Tr(C(z)) vanishes identically and ( O

As we shall see below, Trges is the unique trace (up to a multiple of course) on
Uz (R™).

3.19. Exterior derivation
(R™) be a holomorphic family with A(0) = Id. Then
G(2) = A(z) - A(—2) € W0, (R")
is a holomorphic family of fixed order with G(0) = Id . By analytic Fredholm theory

(3.118) G7(2) € ¥ (R™) is a meromorphic family with finite rank poles.

It follows that A=1(2) = A(—2)G~1(z) is a meromorphic family of order —z with
at most finite rank poles and regular near 0. Set

(3.119) VL (R") 3 B — A(2)BA™'(2) = B(2).

Thus B(z) is a meromorphic family of order m with B(0) = B. The derivative gives
a linear map.

Let A(z) € U2

1S0

da

B120) LR 3 B DaB = S AR)BA ()] € VLR,
y4

PROPOSITION 3.18. For any bolgmorphic family of order z, with A(0) = 1d, the
map (E Z.U‘;, defined through (13: 'E;i, 15 a derivation and for two choices of A(z)
the derivations differ by an inner derivation.

PROOF. Since

A(2)B1Bo A (2) = A(2) BiAT (2) A(2) Bo A7 (2)
it follows that
d
aA(z)}}?lBgAfl(z)|z:0 = (DaBi)o By + Bio(DaBs).

If A;(2) and Az(z) are two holomorphic families of order z with 4;(0) = A43(0) = Id
then
As(2) = Ai(2)G(2)

when G(z) € ¥£2 (R™) is a meromorphic family, with finite rank poles. Thus

A2(2)BA7 ' (2) = Ai(2)G(2)BG™(2)AT ()
A1 (2)BA7N(2) 4+ 2A1(2)H(2) AT (2) .
Here H(z) = (G(2)BG~1(z) — B)/z is a holomorphic family of degree m with
H(0) = G'(0)B — BG'(0). Thus
d d

T Aa(2)B A (20 = - A(2)BA @)oo + [G(0). B
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Feb.24.2000.eq:E |

Feb.24.2000.eq:F |

Feb.24.2000.eq:G ‘
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which shows that the two derivations differ by an inner derivation, which is to say

commutation with an element of ¥ (R™). O

Note that in fact
Dy 0l

180

(R™) — O HR™) V m

since the symbol of A(z)BA~1(z) is equal to the principal symbol of B for all z.
For the specific choice of A(z) = H(z) given by

or(H(2)) = (1+[a|* + [¢[*)*?
we shall set
DsB=DgB.
Observe that £log(1 + |z|* + [¢[?) € S (R?™) V e > 0. Thus log(1 + [z|* + [¢[?),

defined by Weyl quantization, is an element of U_¢ . (R"™) for all € > 0. By differ-
entiation the symbols satisfy

1
DB = [ log(1+ |2 + |DI*), B] + (G, B]

where G € W} (R™). Thus Dy is not itself an interior derivation. It is therefore

an exterior derivation.

3.20. Regularized trace

S.Residue.trace
In Section |3. 8 we defined the residue trace of B as the residue at 2 = 0 of the
analytic continuation of Tr(BA(z)), where A(z) is a holomorphic family of order z
with A(0) = Id. Next we consider the functional

(3.121) Tea(B) = in(Te(BA(2)) — ~ Trnes(B))
2= z

In contrast to the residue trace, Tra(z) does depend on the choice of analytic
family A(z).

LEMMA 3.15. If Ai(2), i = 1,2, are two holomorphic families of order z with
A;(0) =1d and G'(0) = d%Ag(z)Al_z(zﬂZ:o then
(3.122) Tra,(B) — Tra, (B) = Trres(BG'(0)) .

PROOF. Writing G(z) = Az(2)A; ' (2), which is a meromorphic family of order
0 with G(0) = Id,

Tr(BAs(z)) = Tr(BG(2)A1(2))
= Tr(BA;(2)) + 2 Tr(BG'(0) Ay (2)) + 22 Tr(H (2) Ay (2))

where H(z) = £(G(z) — Id—2G’(0)) is then meromorphic with only finite rank

poles and is regular near z = (). Thns the analytic continuation of 22 Tr(H(2)A(2))
BT9T followe.

vanishes at zero from which ( O

This regularized trace Tra (B) therefore only depends on the first order, in z,
term in A(z) at z = 0. It is important to note that it is not itself a trace.

LEMMA 3.16. If By, By € WZ_(R™) then

1S0

(3123) ﬁA([Bl, Bg]) = TI'ReS(BgDABl) .
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PROOF. Since Tra([Bi, Ba)) is the regularized value at 0 of the analytic con-
tinuation of the trace of

Feb.24.2000.eq:H ‘ (3124) BlBgA(Z) — BgBlA(Z) = BQ[A(Z), Bl] + [Bl, BQA(Z)]
— By([A(2), BIA™} () Ay (2) + [B1 B A(2)].

. . JFeb.24.2000.eq:H ) .
The second term on the right in (IB 24) has zero trace before analytic contin-

uation. Thus Tra([B1, Bs]) is the regularized value of the analytic continuation of
the trace of Q(z)A(z) where

Q(2) = Ba[A(2), B1]A Y (2) = 2DaB; + 2°L(2)

[Feb.24.2000.eq9:G

with L(z) meromorphic of fixed order and regular at z = 0. Thus (B. ollows.
U
Note that
Feb.24.2000.eq:H1 | (3.125) Trres(DaB) =0V B € ¥Z_ (R™)

and any family A. Indeed the residue trace is the residue of z = 0 of the analytic
continuation of Tr(H (z)A(z)) when A(z) is any meromorphic family of fixed order
with H(0) = D4B. In particular we can take

H(z) = %(A(z)BAil(z) —B).
Then H(2)A(z) = %[A(z)7 B] so the trace vanishes before analytic continuation.
3.21. Projections
3.22. Complex powers

.Index.and.invertibility ‘ 3.23. Index and invertibility

We have already seen that the elliptic elements

(3.126) B2, (R™5CY) € W9, (R™5CY) o B(LR"5CY))

define Fredholm operators. The index of such an operator

(3.127) Ind(A) = dim Nul(A) — dim Nul(A*)

is a measure of its non-invertibility. Set

(3.128) EY, n(R™CN) = {A € B (R*;CN);Ind(A) =k}, k € Z.

PROPOSITION 3.19. If A € E2 (R™";CY) and Ind(A) = 0 then there exists
E € U >°(R™;CN) such that A+ E is invertible in B(L*(R™; CY)) and the inverse

then lies in WY _(R™; CN).

PRrROOF. Let B be the generalized inverse of A, assumed to be elliptic. The
assumption that Ind(A) = 0 means that Nul(A) and Nul(A*) have the same di-
mension. Let eq,---,e, € S(R*;CN) and f1, -, f, € S(R";CY) be bases of
Nul(A) and Nul(A*). Then consider

P
1.2.2000.375| (3.129) E=)_fix)e;(y) € T (R™CN).
j=1

By construction E is an isomorphism (in fact an arbitrary one) between Nul(A) and
Nul(A*). Thus A+ E is continuous, injective and surjective, hence has an inverse in
B(L*(R™;CY)). Indeed this inverse is B + E~! where E~! is the inverse of E as a
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map from Nul(A) to Nul(A*). This shows that A can be perturbed by a smoothing

operator to be invertible. O
Let
1.2.2000.374]| (3.130) Gl (R, CN) C B, o(R™CN) € EL,(R™;CN) C W0is(R™; CY)

denote the group of the invertible elements (invertibility being either in B(L?(R; CV)
or in U (R™;CY)) in the ring of elliptic elements of index 0.

1S0

1.2.2000.374
1.2.2000.373 COROLLARY 3.7. The first inclusion in (IB.lB(ii 15 dense in the topology of
To (R™;CN).
1.2.2000.372
PRrOOF. This follows from the proof of Proposition |3. 9, since A + sE is in-
vertible for all s # 0. ]

We next derive some simple formula for the index of an element of E2_(R"; CM).
First observe that the trace of a finite dimensional projection is its rank, the di-
mension of its range. Thus

[1.2.2000.376] (3.131) Ind(A) = Tr(Ixua)) — Tr(Ina(a))
where the Lace irgs?ayll?g reinterpreted as the trace on smoothing operators. The

identities, (3.34), satisfied by the generalized inverse of A shows that this can be
rewritten

(3.132) Ind(A) = — Tr(BA — 1d) + Tr(AB — Id) = Tr([A, B]).

Here [A, B] = Ilxui(a) — IInuia+) is a smoothing operator, even though both A and
B are elliptic of order 0.

1.2.2000.377
[1.2.2000.378] LEMMA 3.17. If A € E2_(R™; CN) the identity (IB 32‘5, which may be rewritten
(3.133) Ind(A) = Tr([4, B)),

holds for any parametriz B.

PRrROOF. If B’ is a parametrix and B is the generalized inverse then B’ — B =
E € U °(R™";CY). Thus

180

[A, B = [A, B] + [A, E].

1.2.2000.379
Since Tr([A, E] = 0, one of the argument? ge;'géoaswoothing operator, (IB.IBZ:)

follows in general from the particular case ( O

1.2.2000.379
Note that it follows from (L}.IBB that Ind(A) = Ind(A + FE) if E is smoothing.
In fact the index is even more stable than this as we shall see, since it is locally
constant on EX_(R™; CV). In any case this shows that

1S0

1.2.2000.381] (3.134) Ind: &Y

180

(R™;CN) — Z, Ind(a) = Ind(A) if a = [A],
Si()so (Rn; (CN) _ Eioso (Rn; CN)/\P;;)O (Rn; (CN)
C AR (R™CN) = WY (R™ CY) /T (R CV)

180

is well-defined.
1.2.2000.379
The argument of the trace functional in (IB.IBZ:) 1S a smoothing operator, but
we may still rewrite the formula in terms of the regularized trace, with respect to
the standard regularizer H(z) with left symbol (1 + |z|? + [£]?)2. The advantage
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. . Feb.24.2000.eq:G
of doing so is that we can then use the trace defect formula (13.123;5. Thus for any
elliptic isotropic operator of order 0

[1.2.2000.380] (3.135) Ind(A) = Trres(BD A).

Here B is a parametrix for A. The residue trace is actually a functional
TrRes : AL (R CY) — C,
(R™; C¥) then
(3.136) Ind(a) = Trres(a~'Dga), Dy : A% (R™;CN) — A2 (R™;CV)

so if we write a~! for the inverse of a in the ring £

1S0

being the induced derivation (since Dy clearly preserves the ideal W, >°(R™; CV).

From this simple formula we can easily deduce two elementary properties of
elliptic operators. These actually hold in general for Fredholm operators, although
the proofs here are not valid in that generality. Namely

(3.137) Ind : £2 (R™;CY) — Z is locally constant and
(3.138) Ind(ajas) = Ind(ay) + Ind(az) ¥V a1, as € 2 (R™;CN).

1.2.2000.382
The first of these follows the continuity of the formula (IB I Béi since under deforma-
tion of a in 2 (R™;C") the inverse a~! varies continuously, so Ind is continuous
and integer-valued, hence locally constant. Similarly the second, logarithmic addi-

tivity, property follows from the fact that Dy is a derivation, so
DH(CLlag) = (DHal)ag + a1Dgas

and the the trace property of Trges which shows that

1.2.2000.385| (3.139)
Ind(aiae) = TrReS((alag)_lDH(alag) = Tr(a;lafl ((Dgai)as + a1 Dgas)

= Tr(ay ‘a7 (Dyar)az) + Tr(ay ' Dyas) = Ind(ay) + Ind(az).

3.24. Variation 1-form

In the previous section we have seen that the index

1.2.2000.386 | (3.140) Ind: B2 (R";CN) — Z

180
is a multiplicative map which is the obstruction to perturbative invertibility. In the

next two sections we will derive a closely related obstruction to the perturbative
invertibility of a family of elliptic operators. Thus, suppose

1.2.2000.387 | (3.141) Y 3y A, € B, ((R";CY)

is a family of elliptic operators depending smoothly on a parameter in the compact
manifold Y. We are interested in the families perturbative invertibility question.
That is, does there exist a smooth family

1.2.2000.388]| (3.142) Y 3y +r— E, € U_(R";CY) such that (4, + E,) € G

1S0 1S0

(R™;CN) V y.

We have assumed that the operators have index zero since this is necessary (and
sufficient) for £, to exist for any one y € Y. Thus the issue is the smoothness (really
just the continuity) of the perturbation E,,.

We shall start by essentially writing down such a putative obstruction directly
and then subsequently we shall investigate its topological origins.
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1.2.2000.390

1.2.2000.391

1.2.2000.392

1.2.2000.393

1.2.2000.394
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1.2.2000.387
ProposITION 3.20. If a smooth family (tZ [4T), parameterized by a compact
ma zfg@ Yo gsgerturbatwely invariant in the sense that there is a smooth family as
(Eé.lﬂ th

mn en the closed 2-form on'Y

(3.143) p= TrRes( ?jldyay A a;ldyay : a;lDHay) €C™(Y;A?),
CLy [ ] € ngO O(RH;CN)ﬂ
s exact.

PRrROOF. Note first that § is indeed a smooth form, since the full symbolic
inverse depends smoothly on parameters. Next we show that 3 is always closed.
The 1-forms a, ~ld yQy, ! and da, are exact so differentiating directly gives

dg = 3 TrReS(ay_ldyay A a;ldyay A d(ay_lDHay))
1 _ _ _ _
=3 Trres(a, 'dyay A ay tdyay A ay 'dya,; " Dyay))

1
+§TrReS( Ld yay A ay 1q yay A ay DH(day))

(3.144)

1
=3 Trres(a, Ydya, Aa, Ydya, A Dp(a 1day)).

Using the trace property and the commutativity of a 2-form with other forms the
last expression can be written

1
(3.145) 6 TrReS(DH(a_ld ay A a;ldyay A a;lday)) =0

Feb.24.2000.eq
by property (LS 125) of the rebldue trace.

Now, suppose that a smooth perturbation as in (%7'1215%%0_%3% exist. We can
replace A, by A, + E, without affecting (3, since the residue trace vanishes on the
ideal of smoothing operators. Thus we can assume that A, itself is invertible. Then
consider the 1-form defined using the regularized trace

3.146 o =Try A—ld Ay).
Y

This is an extension of the 1-form dlog det z on G;_.2°(R"; CIV). The extension is not
in general closed, because the regularized trace does not satisfy the trace condition.

Using the stanadard formula for the variation of the inverse, dA, L= -A; 1dAyA; L
the exterior derivative is the 2-form
(3.147) do = —Tru (A, (dyA) A, dy Ay).

The 2-form argument is a commutator. Indeed, in terms of local coordinates we
can write

_ A
AN dyA) A dy Ay = § A, ((9 )dy; A dyy
7,k=1
1 < L, 0A A DA
= =) - AN ()AL
2jzl< Y 3% 4, (3%) y (3yk) y (ay ))dy]/\dyk

1., 0A _, 0A
=3 Z [A, (—j)7Ay (8—%)]dyj/\dyk
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, Feb.24.2000.eq:G
Applying the trace defect formula (3. shows that

1
1.2.2000.395 | (3.148) da = -3 Trres (A, 'dyAy A D (A, dyAy))

locally and hence globally.
Expanding the action of the derivation Dy gives

1
1.2.2000.396| (3.149) da@ =3 — 5 Trres (A, 'dy Ay NA Ny (D Ay)) = B — dy, where
1 _ -
v = 5 TrRres (Ay 1dyAy AN Ay 1DHAy) .
We conclude that if A, has an invertible lift then [ is exact. O

1.2.2000.396

Note that the form v in (L}.IZIQ 15 well-defined as a form on &2, ,(R™;CV),
and is independent of the perturbation. Thus the cohomology class which we have
constructed as the obstruction to perturbative invertibility can be written

1.2.2000.397 | (3.150) (6] = [B — dv] € H*(2, o(R™; CM)).

3.25. Determinant bundle

1.2.2000.397
To better explain the topological origin of the cohomology class (IB I SIii we con-
struct the determina ulloulrég%e. This was originally introduced for families of Dirac
operators by Quillen . Recall that the Fredholm determinant is a character
1.2.2000.398 | (3.151) detw : Id+¥ 2" H(R™;CY) — C,

detp,(AB) = detp,(A) detp(B)Y A, B € Id+¥_ 2"~ 1(R™;CV).

180

As we shall see, it is not possible to extend the Fredholm determinant as a mul-
tiplicative function to GY, (R™; C"), essentially because of the non-extendibility of
the trace.

However in trying to extend the determinant we can consider the possible values
it would take on a point A € G_(R™;C") as the set of pairs (4, 2), z € C. Thus
we simple consider the product

(3.152) D’ =G xC,

where from now on we simplify the notation and write G° = Gis(R™; CV) etc.
Although it is not reasonable to expect full multiplicative of the determinant, it is
more reasonable to expect the determinant of A(Id +B), B € ¥~2"~1 to be related
to the product of determinants. Thus it is natural to identify pairs in D°,

(A, 2) ~p (A", 2)) if
6158 ., ,
A A € G, A= A(Id+B), 2/ =detp(Id+B)z, B € ¥, p < —2n.

The equivalence relations here are slightly different, depending on p. In all cases
the action of the determinant is linear, so the quotient is a line bundle.

LEMMA 3.18. For any integer p < —2n, and also p = —oo, the quotient
.154) D) =D/ ~,

is a smooth line bundle over QB =G/GP.
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S.Problems.3

21.2.1998.121
21.2.1998.122

21.2.1998.123

21.2.1998.124

21.2.1998.126

21.2.1998.125

21.2.1998.127

21.2.1998.128
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PROOF. The projection is just the quotient in the first factor and this clearly
defines a commutative square
[~p]

(3.155) DO —2s DO

p

Lt

GO ————>-gg.

3.26. Index bundle
3.27. Index formulse

susceptible

3.28. Isotropic essential support
3.29. Isotropic wavefront set
3.30. Isotropic FBI transform

3.31. Problems

PROBLEM 3.1. Define the isotropic Sobolev spaces of integral order by
(3.156)
{ue L*(R");2°Dlu € L*R") YV |a] + 8| < k} keN
HE

iso

R") =

(R") {UES'(R");u: o 2*DBugp, uap ELz(R”)} ke —N.
lal+IB1<—F

Show that if A € WP _(R™) with p an integer, then A : HE (R™) — HF"P(R™) for

any integral k. Deduce (using the properties of elliptic isotropic operators) that the
general definition

(3.157)  HZ(R") = {ueS'(R");Aue L*(R"), V Ac UV "(R")}, meR

1S0 180
. . .. J21.2.1998.122 .
is consistent with (3. and has the properties

(R") = A : H™

180

(3.158) Ac oM

180

(R") — HZ M (R™),

1S0

(3.159) (HZ(®R") = S®R™), | JHZLR") = S'(R")

(3.160) Ae U (R"), ueS'(R"), Auc H™ (R") = u € H™ ~™(R"),

180

PROBLEM 3.2. Show that if € > 0 then
HE(R™) € (1+ [2])*LA(R™) N HY(R")

150

Deduce that HE (R™) < L?(R™) is a compact inclusion (i.e. the image of a bounded

set is precompact).

. 21.2.1998.127 .
PrOBLEM 3.3. Using Problem 13.2, or otherwise, show that each element of
U ¢(R™), € > 0, defines a compact operator on L%(R™).

iso
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21.2.1998.129 PROBLEM 3.4. Show that if £ € W, >°(R"™) then there exists F' € ¥, (R")
such that

(Id+FE)(Id+F) =Idg with G € ¥, _>°(R") of finite rank,
that is, G - S(R™) is finite dimensional.
21.2.1998.129
21.2.1998.130 PrROBLEM 3.5. Using Problem IB.ZI show that an elliptic element A € U7 (R™)

180
has a parametrix B € ¥, " (R") up to finite rank error; that is, such that Ao B—1Id

and B o A —Id are finite rank elements of ¥, >°(R"™). Deduce that such an elliptic
A defines a Fredholm operator

A: HM

1S0

(®") — B (R

1S0

for any M. [The requirements for an operator A between Hilbert spaces to be
Fredholm are that it be bounded, have finite-dimensional null space and closed
range with a finite-dimensional complement.]

21.2.1998.111 PROBLEM 3.6. [The harmonic oscillator] Show that the ‘harmonic oscillator’
n
H = |D|? + |z|?, Hu = ZDJQ»U—F ||,
j=1

is an elliptic element of W2 (R"). Consider the ‘creation’ and ‘annihilation’ opera-
tors

21.2.1998.131 ] (3.161) Cj = Dj +ix;, Aj = D;j —ix; =C7,
and show that

21.2.1998.132| (3.162) H =) CjA;+n=>Y_ A;C;—n,
j=1 j=1

[4;,H] =24;, [C;,H] = -2C;, [C1,C;] =0, [A,A;] =0, [A,C;] =2, 1d,
where [4, B] = Ao B — Bo A is the commutator bracket and d;; is the Kronecker
symbol. Knowing that (H — A)u =0, for A € C and v € §'(R"™) implies v € S(R™)
(why?) show that

21.2.1998.133 | (3.163) Ex={ueS'R");(H—-Nu=0}+#{0} < X en+2Nj
21.2.1998.134] (3.164) and E_pyor =4 > caC%exp(—[2[*/2), ca €Cp, k € No.
la|=k
1.2.2000.406 PROBLEM 3.7. [Definition of determinant of matrices.]
iml,
iml.6 PROBLEM 3.8. [Proof that da = 0 in (1213!.[193;.] To prove that the 1-form is

closed it suffices to show that it is closed when restricted to any 2-dimensional
submanifold. Thus we may suppose that A = A(s, ) depends on 2 parameters. In
terms of these parameters

A A
iml.7] (3.165) o = Te(A(s, ) A 0o 4 Tvpags, 19 C(;’t))dt.
Show that the exterior derivative can be written
iml.8| (3.166) da = Tr([A(s,t)’l%, A(s,t)*@])ds Adt
s

and hence that it vanishes.
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1.2.2000.349

21.2.1998.135

21.2.1998.136

21.2.1998.138
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PROBLEM 3.9. If E and F' are vector spaces, show that the space of operators
g (R™ E,F) from S'(R™; E) to S'(R™; F) is well-defined as the matrices with

entries in W17 (R™) for any choice of bases of E and F.

PROBLEM 3.10. Necessity of ellipticity for a psuedodifferential operator to be
Fredholm on the isotropic Sobolev spaces.

(1) Reduce to the case of operators of order 0.
(2) Construct a sequence in L? such that ||u,| = 1, u, — 0 weakly and
Au,, — 0 strongly in L2.

PRrROBLEM 3.11. [Koszul complex] Consider the form bundles over R™. That is
AFR™ is the vector space of dimension (}) consisting of the totally antisymmetric
k-linear forms on R™. If ey, es, ..., e, is the standard basis for R™ then for a k-tuple
a e defined on basis elements by

k
[e3%
(& (eil,...,eik) = H(Sljaj
Jj=1

extends uniquely to a k-linear map. Elements dz® € A*R™ are defined by the total
antisymmetrization of the e®. Explicitly,

dz®(vy,...,v5) = ngnweo‘(vm,...,vﬂn)
s

where the sum is over permutations 7 of {1,...,n} and sgnn is the parity of =.
The dx® for strictly increasing k-tuples « of elements of {1,...,n} give a basis for
A*R™. The wedge product is defined by dz® A dz? = dx™P.

Now let S’(R"; A¥) be the tensor product, that is u € S'(R™; A*) is a finite sum

(3.167) u=>Y uada”.
e . R1.2. 998,131
The annihilation operators in (bTGl—l)_claﬁ an operator, for each k,

D:S'(R"A%) — SR AMY), Du =" Ajuada’ Ada®.
j=1
Show that D? = 0. Define inner products on the A¥R™ by declaring the basis

introduced above to be orthonormal. Show that the adjoint of D, defined with
respect to these inner products and the L? pairing is

D* : S'(R™; AF) — S'(R™; AF7Y), D*u = Z Cjuqtjdz®.
j=1
Here, ¢; is ‘contraction with e;;’ it is the adjoint of da’ A Shew that D+ D™ is an
elliptic element of WL (R™; A*). Maybe using Problem |3.6 show that the null space

1S0

of D + D* on §'(R™; A*R"™) is 1-dimensional. Deduce that
(3.168) {u € S'(R™); Du =0} = Cexp(—|z|*/2),
{u e S'(R™; A¥); Du =0} = (S'(R™; AF"1), k> 1.

Observe that, as an operator from S'(R"; A°dd) to S’(R™; A®v*"), D + D* is an
elliptic element of Wl (R™; A°dd Aeven) and has index 1.

180
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22.2.1998.141 PROBLEM 3.12. [Isotropic essential support] For an element of S™(R™) define
(isotropic) essential support, or operator wavefront set, of A € U (R™) by
22.2.1998.145| (3.169) WFis0(A) = conesupp(oz(A)) € R*™\ {0}.

Show that WFis,(A) = cone supp(or,(A)) and check the following
22.2.1998.149 | (3.170) WF! (A + B)UWF, (Ao B) Cc WFi (A) N WF._(B),

180 180

22.2.1998.146 | (3.171) WF (A) =0 < A e U_>XR").

150 1S0

22.2.1998.150 PROBLEM 3.13. [Isotropic partition of unity] Show that if U; C S*~! is an open
cover of the unit sphere and U; = {Z € R*" \ {0}; |—§‘ € U} is the corresponding
conic open cover of R?" \ {0} then there exist (finitely many) operators A; €
W0 (R™) with WF{,_(A;) C U;, such that

1S0 1S0

22.2.1998.151] (3.172) Id— ) A € U °(R").

22.2.1998.152 PROBLEM 3.14. Suppose A € U (R™), is elliptic and has index zero as an

180

operator on S’(R™). Show that there exists E € ¥ °°(R™) such that A+ E is an
isomorphism of &'(R™).

22.2.1998.147 PROBLEM 3.15. [Isotropic wave front set] For v € S'(R™) define

22.2.1998.148] (3.173) WFiso (1) = () {WFis(4); A € T, (R"), Au € S(R™)}.

1S0 180
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CHAPTER 4

Microlocalization

4.1. Calculus of supports

Recall that we have already defined the support of a tempered distribution in
the slightly round-about way:

(41)  ifue S'(R"), supp(u) = {z € R"; 3 ¢ € S(R™), ¢(x) # 0, ¢u = 0}°.

Now if A: S(R") — &’(R™) is any continuous linear operator we can consider the
support of the kernel:
(4.2) supp(4) = supp(K4) C R™ x R" = R?".
We write out the space as a product here to point to the fact that any subset of
the product defines (is) a relation i.e. a map on subsets:

GCR"xR" ScR'=
4.3
(43) GoS={zeR" JyeSst (z,y) € G}.

One can write this much more geometrically in terms of the two projection maps

(4.4) R2"
AN
R"™ R™.
7.3
Thus mr(x,y) =y, mr(x,y) = 2. Then (121_3) can be written in terms of the action
of maps on sets as
(4.5) GoS=my (13" (S)NG).

From this it follows that if S is compact and G is closed, then G o S is closed,
since its intersection with any compact set is the image of a compact set under a
continuous map, hence compact. Now, by the calculus of supports we mean the
‘trivial’ result.

PROPOSITION 4.1. If A: S(R™") — S'(R") is a continuous linear map then
(4.6) supp(A¢) C supp(A) o supp(¢) ¥ ¢ € C=(R™).

7.1
PROOF. Since we want to bound supp(A¢) we can use (141) directly, i.e. show
that

(4.7) x ¢ supp(A) o supp(¢) = = ¢ supp(Ag).

Since we know supp(A) o supp(¢) to be closed, the assumption that x is outside
this set means that there exists ¢ € CZ°(R™) with

Y(x) # 0 and supp(¢)) Nsupp(A) o supp(¢) = 0.

99
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7.3 7.5
From (14_3) or (14_5) this means
(4.8) supp(A) N (supp(y)) x supp(¢)) = 0 in R*".
But this certainly implies that

()¢(y) =0
(4.9)
= YA(¢ /KAa:y x)p(y)dy = 0.
Thus we have proved (14_6) and the lemma. O

4.2. Singular supports

As well as the support of a tempered distribution we can consider the singular
support:

(4.10) singsupp(u) = {# € R™;3 ¢ € S(R™), ¢(z) # 0, u € S(R")}B.

Again this is a closed set since z ¢ singsupp(u) = 3 ¢ € S(R") with ¢u € S(R")
and ¢(z) # 0 so ¢(z') # 0 for |z — 2’| < €, some € > 0 and hence &’ ¢ sing supp(u)
i.e. the complement of singsupp(u) is open.

Directly from the definition we have

(4.11) sing supp(u) C supp(u) V u € §'(R"™) and
(4.12) singsupp(u) = ) <= u € C*°(R").

4.3. Pseudolocality

7

We would like to have a result like (h_b') for singular support, and indeed we can
get one for pseudodifferential operators. First let us work out the singular support
of the kernels of pseudodifferential operators.

PROPOSITION 4.2. If A € U (R™) then
(4.13) sing supp(A) = singsupp(Ka) C {(z,y) € R*";z = y}.
PROOF. The kernel is defined by an oscillatory integral

(4.14) Ia) = (2n) " [ e aa,y, ).
If the order m is < —n we can show by integration by parts that

(4.15) (x —y)*I(a) = I ((=D¢)%a),
and then this must hold by continuity for all orders. If a is of order m and |a| >
m +n then (—D¢)%a is of order less than —n, so

(4.16) (x —y)*I(a) € CL(R™), || > m + n.

In fact we can also differentiate under the integral sign:

(4.17) DEDY(x —y)*I(a) = I (DD} (—D¢)*a)
so generalizing (E_l%) to

(4.18) (x—y)al(a) e Ck (R") if |a| >m +n +k.

This unghless that I(A) is C* on the complement of the diagonal, {x = y}. This
proves ( ([



N[~
N[
= |o

~
N

2

7.23

7.24

Sect.Coolnv

7.27

4.4. COORDINATE INVARIANCE 101

An operator is said to be pseudolocal if it satisfies the condition
(4.19) sing supp(Au) C singsupp(u) ¥V v € C~°(R").
PROPOSITION 4.3. Pseudodifferential operators are pseudolocal.

PROOF. Suppose u € §'(R™) has compact support and T ¢ sing supp(u). Then
we can choose ¢ € S(R™) with ¢ = 1 near T and ¢u € S(R™) (by definition). Thus

(4.20) u=u +ug, ug =(1—¢)u, uzecSR").
Since A : S(R") — S(R"™), Aus € S(R™) so

(4.21) sing supp(Au) = singsupp(Auy) and T ¢ supp(uq).
Choose 9 € S(R™) with compact support, ¥(T) =1 and

(4.22) supp(¢) Nsupp(l — ¢) = 0.

Thus

(4.23) VAU = A1l — ¢)u = Au

where

(4.24) K (3, ) = $(@) Ka(z,5)(1 — 6(3)).

Combining (5_22%) and (Ii_ll'g) shows that K 5 € U >*(R") so, by Lemma Bfg,gﬁu €
C>*(R™) and T ¢ sing supp(Au) by (h_TB)((?) This proves the proposition. O

4.4. Coordinate invariance
If Q@ C R™ is an open set, put
(4.25) C(Q) = {u € S(R™); supp(u) € 0}
C.°(Q) = {u e S'(R™);supp(u) € Q}

respectively the space of C*° functions of compact support in €2 and of distributions
of compact support in Q2. Here K € 2 indicates that K is a compact subset of €.
Notice that if u € C°°(Q2) then u defines a continuous linear functional

(4.26) () 3 ¢ — ul@) = u(ve) € C

7.27
where if ¢ € C2°(Q) is chosen to be identically one near supp(u) then (14_26) is
independent of . [Think about what continuity means here!]

Now suppose

(4.27) F:Q— ¢
is a diffeomorphism between open sets of R™. The pull-back operation is

(4.28) F*: CP(Q) «— CX(Q), F*¢ =¢oF.
LemMA 4.1. If F is a diffeomorphgsy, (14_27), between open sets of R™ then
there is an extension by continuity of (E.28) to

(4.29) F*: Co®(Q) —— C°(Q).
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PROOF. The depsity of C2°(€2) in C;°°(€), in the weak topology given by the

seminorms from (4. 3, £4n be proved in the same way as the density pfS(R") in
S'(R™) (see Problem H.5]. Thus, we only need to show continuity of (h_?g) in this

sense. Suppose u € C°(Q2) and ¢ € C°(€) then
(F*0)(@) = [ u(F@)o()iz
~ [uwecw)Iawldy

7.29
where Jg(y) = (%;y)) is the Jacobian of G, the inverse of F. Thus (14_28) can be
written

(4.30)

(4.31) Fru(¢) = (|Jglu) (G*¢)
and since G* : C*(Q) — C>=(Q) is continuous (!) we conclude that F* is contin-
uous as desired. O

Now suppose that
A:SR") — S'(R")

has
(4.32) supp(A4) € Q x Q C R*",
Then
(4.33) A:CX(Q) — C > (Q)
by Proposition H Applying a diffeomorphism, F, as in (Ii_%%) set
(4.34) Ap :C(QY) — C7°(Q), A =G* o Ao F*.
LEMMA 4.2. If A satisfies (E_Z’?%) and F is o diffeomorphism (E_%%) then
(4.35) Kap(z,y)=(GxG)'K -|Ja(y)| on Q@ xQ
has compact support in Q' x .
PROOF. Essentially the same as that of (E‘%) O

7.34
PROPOSITION 4.4. .Euggose A€ U7 (R™) has /ﬁf%el satisfying (14_32) and F is
a diffeomorphism as in (A.27) then Ap, defined by (A.34), is an element of ¥ (R™).

PROOF. Since A € U7 (R"),

(4.36) Ka(z,y) = (27r)7”/ei(w7y)'5a(x,§)d§

for some a € ST (R™; ﬁ”)MNow choose ¢ € C(2) such that (x)y(y) = 1 on
supp(K 4), possible by (4.32). Then

(4.37) Ka=1(x)¢(y)a(z,f)) -

In fact suppose pe(z,y) € C°(R?*") and p =1 in |x — y| < e for € > 0, p(z,y) =0
in |z — y| > 2e. Then if

(4.38) Ka, =1 (pe(z,y)¢(2)P(y)a(z, )

we know that if

(4.39) A, =A— A then Ko = (1 — pe(z,y)) Ka € U7°(R™),
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7.15 7.34 7.38
by (14_1'3) Certainly A’ also satisfies (121_32) and from (121_35)
(4.40) (AD)p € U >°(R™).
7.38

7.42 .
So we only need to consider A. defined by (121_38) Again using (#1.35) (assuming
m < —n)

(4.41) Kaye(@,y) = (QW)_"/ei(G(x)_G(y))'gb(G(JU%G(y)7€)|%—j|d§
where b(z,y,&) = pe(r — y)v(x)Y(y)a(x, §). Applying Taylor’s formula,
(4.42) G(x) - Gly) = (x —y) - T(x,y)

where T'(z,y) is an invertible C°° matrix on K x K N {|z — y| < €} for € < e(K),
where €(K) > 0 depends on the compact set K € ©'. Thus we can set(?7)

(4.43) s n="T"(zy) ¢

and rewrite (IlTH) as

Kayp(,y) = (277)_”/ei(z_y)"’C(m,ym)dn
(4.44)

c(z,y,m) =b(G(z),Gy), (T") " (z,y)n) \%| | det T, )|

So it only remains to show that ¢ € S7(R?";R") and the proof is complete. We
can drop all the C* factors, given by |8G /ay} etc. and proceed to show that
(4.45) |DYDJDIa(G(x),G(y), S(x,y)8) | <CA+ )™ on K x K xR"

where K CC ' and S is C* with | det S| > €. The estimates with o = 8 = 0 follow
easily and the general case by induction:

Dy DyD{a(G(x),G(y), S(z,y)¢)

= Y M @ye (DYDY D) (G). Gly), S¢)
|l <la|+[B]+]v]
lo'[<[|al,|BI<]8]
[+ [vI<Ipl

where the coeflicients are C*° and the main point is that |v| < |u|. 0

4.5. Problems

PrROBLEM 4.1. Show that Weyl quantization

(4.46) SE(R™R™) 5 ar—s qw(a) = (27) " / @Y€ g €)de

rry
2 )
is well-defined by continuity from S5 *°(R™; R™) and induces an isomorphism

(4.47) ST(R™;R™) — T (R™) ¥ m € R.

qw
Find an asymptotic formula relating qw (A) to qr.(A) for any A € U7 (R").

PROBLEM 4.2. Show that if A € U (R™) then A* = A if and only if ow (A) is
real-valued.

PROBLEM 4.3. Is it true that every E € ¥ *°(R") defines a map from S’'(R™)
to S(R™)?
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PROBLEM 4.4. Show that S(R™) is dense in L?(R™) by proving that if ¢ €
C*(R™) has compact support and is identically equal to 1 near the origin then

(148) () = 2m) "2 / T Ep(¢ m)i(€)de € S(R™ if u € L2(R")

and u, — u in L?(R™). Can you see any relation to pseudodifferential operators
here?

PRrROBLEM 4.5. Check carefully that with the definition

(4.49) HYRY) = queSR";ju= Y D%, s € L*(R")
o<~k

for —k € N one does have
(4.50) u € H¥(R™) <= (D)*u € L*(R")
as claimed in the text.

PROBLEM 4.6. Suppose that a(z) € CZ(R™) and that a(z) > 0. Show that the
operator

(4.51) A= 2": Dij +a(z)

can have no solution which is in L?(R™).

PROBLEM 4.7. Show that for any open set  C R™, C*(Q) is dense in C; *° ()
in the weak topology.

7.47
PROBLEM 4.8. Use formula (121747[) to find the principal symbol of Ap; more
precisely show that if F* : T*Q' — T*w is the (co)-differential of F' then

om(Ar) = om(A) o F*.

We have now studied special distributions, the Schwartz kernels of pseudodif-
ferential operators. We shall now apply this knowledge to the study of general
distributions. In particular we shall examine the wavefront set, a refinement of sin-
gular support, of general distributions. This notion is fundamental to the general
idea of ‘microlocalization.’

4.6. Characteristic variety

If A€ U (R"), the left-reduced symbol is elliptic at (T, &) € R™ x (R™\{0}) if
there exists € > 0 such that
oL (A) (@, )] = €l¢|™  in

4.52 z
(4.52) {(,&) € R" x (R™\{0}); ]z — 7| <, |%—é—|| <e, |§|z%}.

Directly from the definition, ellipticity at (f,_z) is actually a property of the
principal symbol, ,,,(A4) and if A is elliptic at (T, &) then it is elliptic at (T, t£) for
any t > 0. Clearly

{(@.€) e R" x (R"\{0}); A is elliptic (of order m) at (z,¢)}
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is an open cone in R x (R™\{0}). The complement
(4.53) S (A) = {(z,£) € R" x (R"\{0}); A is not elliptic of order m at (z,¢)}

is therefore a closed conic subset of R™ x (R™\{0}); it is the characteristic set (or
variety) of A. Since the product of two symbols is only elliptic at (Z,€) if they are
both elliptic there, if follows from the composition properties of pseudodifferential
operators that

(4.54) S (A0 B) = S (A) U S (B).

4.7. Wavefront set
We adopt the following bald definition:
IfueC,*R") ={ueS(R"); supp(u) € R"} then

B3 W) = (){So(A): A € U0 (R") and Au € CX(R™)}.

Thus WF(u) C R™ x (R™\{0}) is always a closed conic set, being the intersection
of such sets. The first thing we wish to show is that WF(u) is a refinement of
sing supp(u). Let

(4.56) m: R" x (R™\{0}) > (z,§) —> 2z € R"
be projection onto the first factor.

PROPOSITION 4.5. Ifu € C_*°(R"™) then
(4.57) m(WF(u)) = sing supp(u).

PRrROOF. The inclusion 7(WF(u)) C singsupp(w) is straightforward. Indeed,
if 7 ¢ singsupp(u) then there exists ¢ € C2°(R") with ¢(Z) # 0 such that ¢u €
C>*(R™). Of course as a multiplicaﬁt_ign operator, ¢ € W9 (R") and o(¢) # (T,€)
for any & # 0. Thus the definition (4.55) shows that (T, &) ¢ WF (u) for all £ € R™\0

proving the inclusion.
Using the calculus of pseudodifferential operators, the opposite inclusion,

(4.58) m(WF(u)) D sing supp(u)
is only a little more complicated. Thus we have to show that if (7, ) ¢ WF(u) for
all £ € R™\0 then T ¢ sing supp(u). The hypothesis is that for each (7, €), & € R™0,

there exists A € W (R") such that A is elliptic at (7,€) and Au € C*(R™). The
set of elliptic points is open so there exists € = €(£) > 0 such that A is elliptic on

£
€
Let Bj, j =1,..., N be a finjte set of such operators associated to Ej and such that

the corresponding sets in (1.59) cover {Z} x (R"\.0); the finiteness follows from the
compactness of the sphere. Then consider

(4.59) {(x,€) e R" x (R"\0); |z — 7| <e,||§—|— | <€}

N
B =) B;B; = BucC®R").
j=1
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This operator B is elliptic at (T, §), for all £ # 0. Thus if ¢ € C2°(R™), 0 < ¢(x) < 1,
has support sufficiently close to T, ¢(z) = 1 in |x — T| < €/2 then, since B has non-
negative principal symbol

(4.60) B+ (1—¢) € 92 (R™)

5.31
is globally elliptic. Thus, by Lemma 2.7, there exists G € W2 (R") which is a
parametrix for B + (1 — ¢) :

(4.61) Id=GoB+G(1—¢) mod U ®(R").

Let ¢ € C°(R™) be such that supp(y)) C {¢ = 1} and () # 0. Then, from the
reduction formula

poGo(l—g)e U *R").
8.9

Thus from (14_61) we find

Yu = PG o Bu+¢YG(1 — ¢)u € C*(R").
Thus T ¢ sing supp(u) and the proposition is proved. O

We extend the definition to general tempered distributions by setting
(4.62) WFu)= | J WF(¢u), ueS'R").
peC(R™)
8.7

Then (h_57) holds for every u € S'(R™).

4.8. Essential support

Next we shall consider the notion of the essential support of a pseudodifferential

operator. If a € S™(RY;R") we define the cone support of a by
conesupp(a) ={(z,) € RY x (R"\0);3e>0andV M € R,3 Oy s.t.

4.63 I3
(4.63) £ _ £ 1<)t
&l [l
This is clearly a closed conic set in RY x (R"~\.0). By definition the symbol decays
rapidly outside this cone, in fact even more is true.

LEMMA 4.3. If a € SZ(RN;R™) then

(,7) ¢ conesupp(a) =

de>0st. VM a3 Cy with

la(z,&)] < Ca ()™M if [ — T < ¢,

(4.64) _
i — 4| < €.
Il [l
.15
Proor. To prove (Imzx) it suffices to show it to be valid for D, a, D¢, a and

then use an inductive argument, i.e. to show that

|DEDLa(w, n)| < Car(n) ™ if [0 — 7| < e,

(4.65) conesupp(Dy;a), conesupp(De, a) C conesupp(a).

Arguing by contradiction suppose that Dy, a does not decay to order M in any cone
around (T, §) ¢ conesupp . Then there exists a sequence (x;,&;) with
, 7 | & € .
(4.66) {x] — T g gl — 0 Gl e
and ‘Dwa(xj,fj)‘ > j<§j)M.
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We can assume that M < m, since a € SZ (R™;RY) . Applying Taylor’s formula
with remainder, and using the symbol bounds on Dzja, gives

(4.67)  a(z; +ter, &) = alw;, &) + it(Daya) (x5, 65) + O ((E)™) , (ee); = e

providing [t| < o Toking ¢ = (&)M=m — 0 as j — oo, the first and third terms
on the right in (4.67) are small compared to the second, so

(4.68) o (2 4+ (€)"7 ) | > ()M,
contradictin&%}%e assumption that (T, £) ¢ conesupp(a). A similar argument applies
to D¢,a so (4.64), and hence the lemma, is proved. O
For a pseudodifferential operator we define the essential support by
(4.69) WEF'(A) = conesupp (o1,(A)) C R™ x (R"\0).
LEMMA 4.4. For every A € U7 (R™)
(4.70) WF'(A) = conesupp(or(A)).

8.15
PRrOOF. Using (IZFGZI) and the formula relating og(A) to or,(A) we conclude
that

(4.71) conesupp(or(A)) = conesupp(or(4)),
8. 14
from which (IZF?U) follows. O
A similar argument shows that
(4.72) WF'(Ao B) C WF'(4) N WF'(B).

Indeed the asymptotic formula for o7, (A o B) in terms of o1, (A4) and o (B) shows
that

(4.73) conesupp(or (Ao B)) C conesupp (o1, (A)) Nconesupp (o, (B))

which is the same thing.

4.9. Microlocal parametrices

The concept of essential support allows us to refine the notion of a parametrix
for an elliptic operator to that of a microlocal parametriz.

LEMMA 4.5. If A € U (R™) and z ¢ %,,(A) then there exists a microlocal
parametriz at z, B € W ™ (R™) such that

(4.74) 2 ¢ WF' (Id—AB) and = ¢ WF'(Id —BA).
PRrOOF. If z = (%, §), € # 0, consider the symbol
_ T—T — ) £ é .
am) o =0 () a-anes (G5 - 5)/e)

where as usual ¢ € CP(R"), ¢(¢) = 1in [¢| < 3, ¢(¢) = 0 in [¢| > 1. Thus
7e € 8% (R™;R™) has support in

~ 1 ¢ €
(4.76) N 'E_E' =
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and is identically equal to one, and hence elliptic, on a similar smaller set

_, € 1 |¢ £ €
4.77 T <=, ¢l > == <=
T oAz g Tl = 2
Define L. € ¥ (R") by o1(L.) = 7. Thus, for any € > 0,
(4.78) z¢ WF'(Id—L.), WF'(L.) C {(x,é); |z — 7| <eand é—| - % < e} .

Let Ga,, € U2 (R™) be a globally elliptic operator with positive principal
symbol. For example take o1 (Gam) = (1 + [£]?2)™, so G 0 Gy = G4y for any s,
t € R. Now consider the operator

(4.79) J=(Id—L.) o Gay, + A*A € UZ(R™).
The principal symbol of J is (1 —7¢)(1+[£2)™ + |om(A)|? whigh,is globally elliptic

ife>0 g_;mall enough (so that 0,,(A) is elliptic on the set (4.76)). According to
Lemma 2.75, J has a global parametrix H € W 2™ (R"). Then

(4.80) B=HoA" e v " (R")
is a microlocal right parametrix for A in the sense that Bo A — Id = Rpi with
z ¢ WF'(RR) since
(481) RR=BoA—-Id=HoA*oA-1d
=(HoJ-1d)+ Ho(Id—L.)Gam o A

and the first term on the right is in W *°(R™) whilst z is not in the operator
wavefront set of (Id —L.) and hence not in the operator wavefront set of the second
term.

By a completely analogous construction we can find a left microlocal paramet-
rix. Namely (Id —L.) o Ga,,, + A o A* is also globally elliptic with parametrix H'
and then B’ = A* o H’ satisfies

(4.82) B'oA—1d= Ry, z¢ WF'(Ry).
Then, as usual,
(4.83) B=(B'oA—R,)B=B'(AoB)—R.B=DB'+B'Rr—R.B

so z ¢ WF'(B — B’), which implies that B is both a left and right microlocal
parametrix. 0

In fact t jsgaygument shows that such a left parametrix is essentially unique. See
Problem A.25.

4.10. Microlocality

Now we can consider the relationship between these two notions of wavefront
set.

PROPOSITION 4.6. Pseudodifferential operators are microlocal in the sense that

(4.84) WF(Au) C WF'(A) N WF(u) VYV A€ T2(R"), ue Co®(R").
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PROOF. We need to show that
(4.85) WF(Au) C WF'(A) and WF(Au) C WF(u).
the second being the usual definition of microlocality. The first inclusion is easy.
Suppose (T, €) & conesupp or,(A). If we choose B € VY (R™) with o, (B) supported
in a small cone around (T, £) then we can arrange
(4.86) (7,€) ¢ $o(B), WF'(B) N WF'(A) = 0.

8. 20
Then from (£72), WF'(BA) = 0 so BA € U5(R") and BAu € C*(R"). Thus
(7,8) ¢ WF(Auw). _

Similarly suppose (7,€) ¢ WF(u). Then there exists G € WO (R") which is
elliptic at (z,£) wi h Gu € C>®(R™). Let B be a microlocal parametrix for G at
(T,€) as in Lemma K.5. Thus
(4.87) u = BGu + Su, (T,£) ¢ WF'(9).

Now apply A to this identity. Since, by assumption, Gu € C°(R"™) the first term
on the right in

(4.88) Au = ABGu + ASu

8. 20 _
is smooth. Since, by (121.7_2)7 (7,€) ¢ WF'(AS) it follows from the first part of the
argument above that (Z,£) ¢ WF(ASu) and hence (7, ) ¢ WF(Au). O

We can deduce from the existence of microlocal parametrices at elliptic points
a partial converse of (8.24).

PROPOSITION 4.7. For any u € C~°(R") and any A € U7 (R")
(4.89) WE (1) € WF(Au) U Sy (A).

Proey. If (7, &) ¢ ¥,,(A) then, by definition, A is elliptic at (%, ¢). Thus, by
Lemma .5, A has a microlocal parametrix B, so

(4.90) u = BAu+ Su, (7,€) ¢ WF'(S).
It follows that (7, &) ¢ WF(Au) implies that (Z,£) ¢ WF(u) proving the Proposi-
tion. U

4.11. Explicit formulations

From this discussion of WF’(A) we can easily find a ‘local coordinate’ formu-
lations of WF(u) in general.

LEMMA 4.6. If (7,£) € R™ x (R"~\0) and u € S'(R"™) then (7,€) ¢ WF(u) if
and only if there exists ¢ € C°(R™) with ¢(T) # 0 such that for some € > 0, and
for all M there exists Cpy with

£ £

(4.91) |Gu(&)] < Car (&)™ in Il <e
PROOF. If ¢ € C*(R), ((£) =1 in [¢] < § and supp(¢) C [=2¢, %] then
(4.92) O = (L= 010 (i — =) € S (®)

is elliptic at £ and from (ﬁ_ﬁ%)
(4.93) 1(E) - dul€) € SR).
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Thus if or(A) = ¢1(z)7(§) then A(gou) € C> where d1¢2 = ¢, ¢1(T), ¢ (T) #0
¢1,02 € C(R™). Thus (7,€) ¢ WF(u). Converseéxggh(f, &) ¢ WF(u) and A i
chosen as above then A(¢1u) € S(R™) and Lemma A.6 holds. D

4.12. Wavefront set of K4

At this stage, a natural thing to look at is the wavefront set of the kernel of a
pseudodifferential operator, since these kernels are certainly an interesting class of

distributions.
8.27 PROPOSITION 4.8. If A € U (R™) then
WE(K4) = $,y,§7 €R2n>< R2n\0 ;
8.28] (4.94) (Ka) = " ( )

z=y, E+n=0and (z,§) € WF'(4)}.
In particular this shows that WF’(A) determines WF(K 4) and conversely.
Proor. Using Proposition IZSEg we know that 7 (WF(K4)) C {(z,2)} so
WE(Ka) € {(z,2:€n)}-
To find the wave front set more precisely consider the kernel
Kalayy) = (2n) " [ e, e)de
where we can assume |z —y| < 1 on supp(K4). Thus is ¢ € C°(X) then
9(z,y) = Ka(z,y) € C.*(R")

and

§(Cm) = (2m) / eI CE i) (9h) (., €)dCddy

= [ g, ~n)da

= ¢b(C + 1, —n).

The fact that ¢b is a symbol of compact support in x means that for every M
|6b(C +nm, =m)| < Cur ((C+m)) ™ ()™

This is rapidly decreasing if { # —n, so
WF(K4) C {(z,2,7,—n)} as claimed.

Moreover if (%,m) ¢ WE’'(A) then choosing ¢ to have small support, near T makes
qu rapidly decreasing near —7 for all (. This proves Proposition O

4.13. Elementary calculus of wavefront sets

We want to achieve a reasonable understanding, in terms of wavefront sets, of
three fundamental operations. These are

(4.95) Pull-back: F*u

(4.96) Push-forward: F,u and
(4.97) Multiplication: w1 - us.
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In order to begin to analyze these three operations we shall first introduce and
discuss some other more “elementary” operations:

(4.98) Pairing: (u,v) — (u,v) = /u(x)v(x)dm
(4.99) Projection: u(z,y) — /u(x,y)dy

(4.100) Restriction: u(z,y) — u(z,0)

(4.101) Exterior product: (u,v) — (uXv)(z,y) = u(z)v(y)
(4.102) Invariance: F*u, for F' a diffeomorphism.

Here (ES%BO) andﬁ&%?@) arg special cases of (15?95)7 (Iﬁ%@)) of (Ezg%f) and (Eﬁl%l) isa
combination of (4.97) and (%_95) Conversely the three fundamental operations can
be expressed in terms of these elementary ones. We can give direct definitions of
the lg‘gltrer which we then use to analyze the former. We shall start with the pairing

in (F0%).
4.14. Pairing

We know how to ‘pair’ a distribution and a C*° function. If both are C*° and
have compact supports then

(4.103) (u1,ug) = /ul(gc)uQ(x)dx

and in general this pairing extends by continuity to either C_ °°(R™) x C*>°(R") or
C®(R™) x C7°°(R™) Suppose both u; and us are distributions, when can we pair
them?

PROPOSITION 4.9. Suppose uy, us € C;°(R™) satisfy

(4.104) WF(u1) N WF (ug) =0

then if A € WO (R™) has

(4.105) WF(u1) "WEF'(A) = 0, WF(uz) N WF'(Id —A4*) = ()
the bilinear form

(4.106) (u1,u2) = (Aur, uz) + (ur, (Id —A")ug)

is independent of the choice of A.

9.10
Notice that A satisfying (I4TU5) does indeed exist, just choose a € S, (R™;R™)
to be identically 1 on WF(uz), but to have conesupp(a) N WF(u1) = 0, possible
because of (1.104), and set A = g1 (a).

9.11
ProOOF. Of course (IZLTUG) makes sense because Auy, (Id —A*)uy € C(R").
To prove gt_hI%t this definition is independent of the choice of A, suppose A’ also

satisfies (IZFTUB) Set

(4.107) (ur,u2) = (A'ur, uz) + (ug, (Id —A") us).
Then
(4.108) W' (A — A') N WF(u1) = WE' (A — A)") 0 WF(up) = 0.

The difference can be written
(4109) <U1, U/2>/ — <u1, U/2> = <(A — A')ul, U2> — <u1, (A — AI)*U/2>.
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Naturally we expect this to be zero, but this is not quite obvious since u; and wus
are both distributions. We need an approximation argument to finish the proof.
Choose B € ¥ (R™) with

110 WF'(B) N WF(u1) = WF'(B) N WF (uy) = ()
(4.110) WF'(Id-B)NWF(A— A") =0
If v, — w9, in C;*°(R"™), v, € C°(R™) then
(4.111) wp = ¢[(Id —B) v, + Bua| — uy

if ¢ =1 in a neighbourhood of supp(uz), ¢ € C>°(R™). Here Bus € C*(R™), so
(4.112)
(A— Aw, = (A—AN¢(Id —B) - v, + (A — A")pBus — (A — A" )ug in C°(R"),

since (A — A")¢(Id —B) € ¥ >*°(R"). Thus
(A=A ur,ug) — (A= A)ug, up)
(ur, (A= A" wp) — (ur, (A= A") ug),
since w,, — ug in C;°(R™) and (A — A")*w,, — (A — A’)" uy in C°>°(R"™). Thus
(4.113)  (ug,u2) — (uy,uz) = nILH;OK(A — A uy,wn) — (ur, (A— AN w,] = 0.
U

Here we are using the complezx pairing. If we define the real pairing by
(4.114) (u1,u2) = (u1,2)
then we find
PROPOSITION 4.10. If uy, ug € C;°°(R™) satisfy
(4.115) (z,€) € WF(u1) = (z,—¢§) ¢ WF(u2)
then the real pairing, defined by
(4.116) (u1,u2) = (Aug,uz) + (ur, Alug),
where A satisfies (%85), is independent of A.

PRrROOF. Notice that

(4.117) WF(u) = {(z,—£) € R" x (R"\0); (z,£) € WF(u) }.
We can write (1?17'11%5)7 using (%4), as
(4.118) (u1,u2) = <Aul,ﬂg> + <U1,At—’112>.

Since, by definition, Atus = A*us,
(4.119) (u1,u2) = (Auy, Us) + (u1, A*T2) = (u1,Ta)
9.11 9.17 9.9
is defined by (IT.TUG)7 since (M.115) translates to (h_.I04). O
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4.15. Multiplication of distributions

9.18
The pairing result (IIHG)QC%Q be used to define the product of two distributions
under the same hypotheses, (L.115).

PROPOSITION 4.11. If uy, ug € C;°°(R™) satisfy

(4.120) (z,€) € WF(u1) = (z, ) ¢ WF(u2)
then the product of uy and uy € C°(R™) is well-defined by
(4.121)9 . urua(¢) = (u1, pug) = (dur,uz) Vv ¢ € C°(R")

using (121_11'I6)

PrOOF. We only need to observe that if v € C;*°(R™) and A € U7 (R™) has
WEF’'(A) N WF(u) = 0 then for any fixed ¢ € CZ°(R")

(4.122) leAgullcr < Cllglor p=k+N
for QI N, depending on m. This implies the continuity of ¢ — ujus(¢) defined
by (£121). O

4.16. Projection

Here we write R? = RP x ]R’; and define a continuous linear map, which we
write rather formally as an integral

(4.123) C.®°MR") > ur— /u(x,y)dy € C.*°(RP)

by pairing. If ¢ € C*°(RP) then

(4.124) T € CP(R™), m: R">(x,y)— 2 €RP
10.1

and for u € C;>°(R") we define the formal ‘integral’ in (h_TZ?)) by

(1.125) ([ wlesw)dy,8) = ((m).u.6) = u(wio).

In this sense we see that the projection is dual to pull-back (on functions) under
71, so is “push-forward under 71,” a special case of (£.96). The support of the
projection satisfies

(4.126) supp ((71)«u) C w1 (supp(u)) V u € C; °(R™),
as follows by duality from
(4.127) supp(mi¢) C 77 " (supp @) .

PROPOSITION 4.12. Let w1 : RPY* — RP be projection, then for every u €
Co @ (RPHF)
WEF ((m1).u) C {(z,€) € RP x (RP\0);
(4.128) ((m1)«u) € {(=,6) k( \0)
3y € R* with (x,y,£,0) € WF(u) }.
PRrROOF. First notice that
(4.129) (m)x 2 CE(R™) — C°(RP).
10.4
Combining this with (121_1'26) we see that
(4.130) sing supp ((71)«u) C 1 (sing supp u)
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10.6
which is at least consistent with Proposition IZLTZ To prove the proposition in full
let me restate the local characterization of the wavefront set, in terms of the Fourier
transform:

LEMMA 4.7. Suppose K CC R™ and I' C R™"\.0 is a closed cone, then
= Au e S(R").
In particular

aagy MECTTR WO (K XT) =0, 0 € R sump(o) € K
4.132 —~
= ou(§) is rapidly decreasing in I.

Conversely suppose I' C R™\0 is a closed cone and v € §'(R™) is such that for
some ¢ € C°(R™)

(4.133) &L(f) is rapidly decreasing in T
then
(4.134) WEF(u) N {z € R"; ¢(x) # 0} x int(T") = 0.

10.7
With these local tools at our disposal, let us attack (I4T28) We need to show

that
(T,€) € R? x (RP\0) s.t. (T,y,&,0) ¢ WF(u) VycR™
= (7,&) ¢ WF ((m1)u).
Notice that, WF(u) being conigand m(WF (u)) being compact, WF(u)N(R" x Sl
is compact. The hypothesis (IZI [35) is the statement that
(4.136) {7} x RF x $"71 x {0} N WF(u) = 0.
Thus T has an open neighbourhood, W, in R?, and (€, 0) a conic neighbourhood 7,
in (R™\0) such that

(4.135)

(4.137) (W x R¥ x 1) N WF(u) = 0.
Now if ¢ € C°(RP) is chosen to have support in W
(4.138) (@u({, 7) is rapidly decreasing in ;.
Set v = ¢(m1)«u. From the definition of projection and the identity
(4.139) 0= o(m ) = (m1).[(7i0)ul.
we have
(4.140) (&) = v(e™%) = ((wi )u) (€, 0).

10.16
Now (IZFBB) shows that () is rapidly decreasing in 1 N (R x {0}), which is a
cone around ¢ in RP. Since v = ¢(m1).u this shows that (z,&) ¢ WF ((m1).u), as
claimed. (]

Before going on to talk about the other operations, let me note a corollary of
this which is useful and, even more, helps to explain what is going on:

COROLLARY 4.1. Ifu € CZ*(R") and
(4.141) WF (u) N {(z,y,£,0);2 € RP,y € R £ e RP\0} =0
then (m1)«(u) € C°(R™).
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10.7
PROOF. Indeed, (14_[28) says WF ((m1),u) = 0. O

Here, the vectors (z,y, £, 0) are the ones “normal” (as we shall segp;"ﬁxlly conor-
mal) 4o 1‘gghe surfaces over which we are integrating. Thus Lemma K.7 and Corol-
lary h_.l—Both state that the only singularities that survive integration are the ones
which are conormal to the surface along which we integrating; the ones even par-
tially in the direction of integration are wiped out. This in particular fits with the
fact that if we integrate in all variables then there are no singularities left.

4.17. Restriction
Next we wish to consider the restriction of a distribution to a subspace
(4.142) C.MR") sur—u | {y=0}eC *RP).

10.19
This is not always defined, i.e. no reasonable map (121_17[2) exists for all distributions.
fé(&wlegver under an appropriate condition on the wavefront set we can interpret
( ) in terms of pairing, using our definition of products. Thus let

(4.143) t:RP 32— (2,0) e R"

be the inclusion map. We want to think of u | {y = 0} as (*u. If u € C2°(R™) then
for any ¢’ € C°(R™) the identity
(4.144) Cu(l ') = u(¢'d(y))
holds.

The restriction map ¢* : C°(R™) — C°(RP) is surjective. If u € C;*°(R™)
satisfies the condition

(4.145) WF(u) N {(x,0,0,7);2 € R?,np e R* 7} =0
then we can interpret the pairing

Cu(d) = u(¢'d(y)) V¥ ¢ € CZ(RP)
where ¢’ € C°(R"™) and ("¢’ = ¢

9.20
to define t*u. Indeed, the right side makes sense by Proposition IZFH
Thus we have directly proved the first part of

10.21 10.20
PROPOSITION 4.13. Set R = {u € C;®(R"); (14_1—4'5) holds} then (14_1—4'6) de-
fines a linear restriction map ¢* : R — C;>°(RP) and

(4.147) WF(/*u) C {(x,£) € R? x (RP\0); 3 n € R™ with (x,0,¢,1) € WF(u)}.
10.21
PROOF. First note that (14_17[5) means precisely that

(4.146)

(4.148) @(€,m) is rapidly decreasing in a cone around {0} x R¥\0.
10.35
When u € C°(R"™) taking Fourier transforms in (m) gives
— 1 .
(1.149) Fl) = e [ e

10.24 10.25
In general (14_17[8) ensures that the integral in (14.149) converges, it will then hold
by continuity. 10.95
We actually apply (14_17{9) to a localized version of u; if ¢ € C2°(RP) then

o —

(4.150) G (u)(€) = (2m)* / Beya(e,n)dn.
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Thus suppose (T, €) € RP x (RP\0) is such that (%,0,&,n) € WF(u) for any n. If ¢
has support close to T and ¢ € C°(R™P) has support close to 0 this means

(4.151) @(57 n) is rapidly decreasing in a cone around each (£, 7).

10.24
We also have rapid decrease around (0, 7) from (IZFM'S) (make sure you understand
this point) as

(4.152) @({, 7) is rapidly decreasing in v x RP

for a cone, 7, around £. From (121191%59)

(4.153) wb/*(al,) (&) is rapidly decreasing in .

Thus (%, &) ¢ WF(1*(Cu)). Of course if we choose ((y) = 1 near 0, t*(Cu) :16%%6)

¢
so (T,€) ¢ WF(u), provided (%,0,&,m) ¢ WF(u), for all 5. This is what (&.147)
says. O

Try to pjgtyye what is going on here. We can restate the main conclusion of
Proposition &I 3 as follows.

Take WF(u) N {(,0,£,1) € R? x {0} x (R"\0)} and let Z denote projection
off the n variable:

(4.154) R? x {0} x R? x R¥ 25 R? x R”
then
(4.155) WF(*u) C Z(WF(u) N {y = 0}).

We will want to think more about these operations later.

4.18. Exterior product

This is maybe the easiest of the elementary operators. It is always defined

is a bilinear map such that
WF(u; Kug) C [(supp(u1) x {0}) x WF (uz)]
U [WF (u1) x (supp(uz) x {0})] U [WF(u1) x WF (uz)].

(4.156) (u1 W u2)(9) = u1 (u2(9(, ) = ua(ua(o(-,y)).
Moreover we can easily compute the Fourier transform:

(4.157) ur B (€, ) = ()i (n).

PROPOSITION 4.14. The (exterior) product

(4.158) C.®°(RP) x C°(R¥) «— C =(RPTF)

10.33| (4.159)

ProOF. We can localize near any point (Z,7) with ¢1(x)¢2(y), where ¢1 is
supported near T and ¢ is supported near y. Thus we only need examine the
decay of

10.34| (4.160) $rur K oy = ¢/1u\1(§) : <l5/2u\2(77)~

Notice that if qb/lu\l () is rapidly decreasin grgsund € # 0 then the product is rapidly
decreasing around any (£, 7). This gives (E 59 O
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4.19. Diffeomorphisms

We next turn to the question of the extension of F'*, where F' : 3 — s is
a C* map, from C*(3) to some elements of C~°°(£22). The simplest example of
pull-back is that of transformation by a diffeomorphism.

We have already noted how pseudodifferential operators behave under a diffeo-
morphism: F : 3 — Q2 between open sets of R™. Suppose A € U7 (R") has
Schwartz kernel of compact support in 1 x € then we define

(4.161) Ap : C () — C°(Qy)

Sect.Cool
by Ap = G*- A-F*, G = F~. In § Bd woshowed that Ap € U7 (R™). In fact we
showed much more, namely we computed a (very complicated) formula for the full
symbols. Recall the definition of the cotangent bundle of R™

(4.162) T'R" ~R" x R"
identified as pairs of points (7, £), where Z € R™ and
(4.163) & = df (%) for some f € C*(R").

The differential df () of f at T € R™ is just the equivalence class of f(x)— f(T) € Iz
modulo Z2. Here

Iz = {g € C=(R"); ¢(z) =0}
(4.164) 2={Y gh, gz,h EI}
finite

_ 11.2 11.3
The identification of , given by (F-162) and (1163), with a point in R™ is obtained
using Taylor’s formula. Thus if f € C°(R"™)

(4.165) T) + Z 895 (x —T); + Z gij(T)ziz;.
j

=1 7,j=1

The double sum here is in 72, so the residue class of f(z) — f(z) in Zz/Z2 is the
same as that of

n 8f 3 3
(4.166) Y 5@ -7
i=1 7
That is, d(x — T); = dzj;, j = 1,...,n form a basis for TXR" and in terms of this
basis
4.1 T)= — (T i
(4.167) df (7) ; o ()

Thus the entries of € are just (ng, e 887) for some f. Another way of saying this

is that the linear functions £ - x = &1 + Eox0 - - - £y, have differentials spanning
TrR™.
So suppose F': 1 — Q5 is a C* map. Then

(4.168) F* T2y — T2, § = F(T)
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is defined by F*df(y) = d(F*f)(T) since F* : Iy — Iy, F* : T2 — I2. Tn
coordinates F(x) =y =

N R T
(1169) By 110 = /(P = X2 50 g
ie. F*(n-dy)=¢-dx if
(4.170) & :Za—?(w) Tk
k=1 7

course if F'is a diffeomorphism then the Jacobian matrix %—5 is invertible
and (1.170) is a linear isomorphism. In this case
F*:TH,R" «—— T3 R™
(@,8) < (F(z),n)

11.6
with £ and n connected by (h_T70) Thus (F™*)* : C®°(T*Qy) — C>® (T Q).

(4.171)

PrOPOSITION 4.15. If F' : Q1 — Qo is a diffeomorphism of open sets of R™
and A € W (R™) has Schwartz kernel with compact support in 1 x Qo then

(4.172) om(Ar) = (F*) 0 (A)
and
(4.173) F* (WF'(Ap)) = WF'(A).

It follows that symbol 0,,(A) of A is well-defined as an element of SZQ)_M (T*R"™)
independent of coordinates and WF'(A) C T*R"™\0 is a well-defined closed conic
set, independent of coordinates. The elliptic set and the characteristic set X, are
therefore also well-defined complementary conic subsets of T*Q\O.

PROOF. Look at the formulae. O

The main use we make of this invariance result is the freedom it gives us to
choose local coordinates adapted to a particular problem. It also suggests that
there should be neater ways to write various formulae, e.g. the wavefront sets of
push-forward and pull-backs.

PROPOSITION 4.16. If u € CZ°°(R™) has supp(u) C Qs and F : Q1 — Qg is
a diffeomorphism then
(4.174)

WF(F*u) C {(z,£) € R" x (R™\0); (F(z),n) € WF(u),n; o

- ox;
i J

()&}
PROOF. Just use the standard definition
(4.175) WF(F*u) = (|{E(4); A(F*u) € C*}.

To test the wavefront set of F*u it suffices to consider A’s with kernels supported
in Q; x Q since supp(F*u € Q; and for a general pseudodifferential operator A’
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there exists A with kernel supported in €y such that A'u — Au € C*°(R™). Then
AF*u € C*(Q1) <= Apu € C°(Q2). Thus

(4.176) WF(F*u) = ({2(A); Apue ™}
(4.177) =({F*(S(Ap)); Apu € C*}
(4.178) = F* WF(u )

since, for u, it is enough to consider operators with kernels supported in Q25 x€Q5. O

4.20. Products

Although we have discussed the definition of the product of two distributions
we have not yet analyzed the wavefront set of the result.

PROPOSITION 4.17. If uy, ug € C;°(R™) are such that
(4.179) (2,€) € WF(u1) = (z,—€) ¢ WF(u2)
then the product uiug € C°(R™), defined by Proposition \%:72% satisfies
WEF (uiuz) C {(z,£);x € supp(u1) and (z,§) € WF(u2)}
(4.180) U{(z,€);z € supp(uz2) and (z,£) € WF(u1)}
U{(z,€);& =m +n2, (z,m) € WF(u;),i = 1,2}.

PrOOF. We can represent the product in terms of three ‘elementary’ opera-
tions.

(4.181) urus(z) = o [F*(ur Kug)]
where F : R2" — R2" ig the linear transformation
(4.182) F(z,y) = (z+y,z—y)

11.15
and ¢ : R" — R™ x {0} C R?" is inclusion as the first factor. Thus (H.181)

corresponds to the ‘informal’ notation
(4.183) uruz(x) = ur(z + yuz(z —y) [ {y =0}

and will follow by continuity onge we analyse the wavefront set properties.
We know from Proposition A.14 that

WF (u1 Kug) C {(X,Y,E,H); X €supp(u1),E =0, (Y, H) € WF(uz)}
(4.184) U{(X,Y,E,H); (X,E) € WF(u1), Y € supp(uz),H =0}
U{(X,Y,E,H); (X,Z) € WF(u1), (Y,H) € WF(Uz)}.
Since F' is a diffeomorphism, by Proposition 121_1'6_
WE(F"(u1 Rug)) = {(z,y,&m); (F' (2, 9), 2, H) € WF(u1 Kua),
(6,n) = AYE, H)}.
where F* is the transpose of F as a linear map. In fact F'* = F, so

WF(F*(u1 X’UQ)) C
{(z,y,&m);z+y € supp(ur), E+1=0,(z —vy, %(5 — 1)) € WF(uz) }

O {96 m) (2 4y, 5 (€ +0) € WEGn), (2, (€~ n)) € WF(ua)}
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10.22
and so using Proposition IZI 3

WE(F*(u1 Kug)) [ {y = 0}
C {(2,0,&,—&);x € supp(wr), (2, &) € WF(uz)}
U {(2,0,&m); (x € supp(uz), (z,€) € WF(uz) }
U {06 1); (5, 56+ ) € WF(ua), &, 56 — ) € WF(ur)}
Notice that
(4.185)

(,0,0,m) € WF (F*(u1 R ug)) = (=, %77) € WF(up) and (z, %77) WEF(us)
which introduces the assumption under which ujus is defined. Finally then we see
that
(4.186)

WEF(urug) C {(2,£); z € supp(ur), (x,€) € WF(uz)}
U{(z,&); 2 € supp(uz), (z,€) € WF(u1) }
U{(CE,&), ($7771) € WF(ul)a (CE,’I]Q) € WF(U‘2) and f =N + 772}

S . . - 121111-_%%
which is another way of writing the conclusion of Proposition H.17. 0

4.21. Pull-back
Now let us consider a general C*° map
(4187) F:Q — Qg, 0 C Rn,Qg Cc R™.

Thus even the dimension of domain and range spaces can be different. When can
we define F*u, for u € C;*°(€2) and what can we say about WF(F*u)? For a
general map F' it is not possible to give a sensible, i.e. consistent, definition of F*u
for all distributions u € C~*°(£22).

For smooth functions we have defined

(4.188) F*: C®(Qy) — (1)

but in general F*¢ does not have compact support, even if ¢ does. We therefore
impose the condition that F' be proper

(4.189) F Y K)e VK e Q,

(mostly just for convenience). In fact if we want to understand F*u near T; €
we only need to consider u near F @;}286 Qs.

The problem is that the map (14_1'87) may be rather complicated. However any
smooth map can be decomposed into a product of simpler maps, which we can
analyze locally. Set

(4.190) graph(F) = {(z,y) € U x Qo5 y = F(2)} -5 Q1 x Qa.

This is always an embedded submanifold of Q1 x s the functions y; — F;(x),
¢t =1,...,N are independent defining functions for graph(F) and z1,...,x, are
coordinates on it. Now we can write

(4.191) F=myouipog
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where g : Q1 «— graph(F) is the diffeomorphism onto its range x — (x, F'(x)).
This decomposes F' as a projection, an inclusion and a diffeomorphism. Now con-
sider

(4.192) Fro=g"-1p-mo

i.e. F*¢ is obtained by pulling ¢ back from Qs to 21 X Qg restricting to graph(F’)
and then introducing the z; as coordinates. We have directly discussed (73¢) but
we can actually write it as

(4.193) T3¢ = 1K ¢(y),

. . o 11.21
so the result we have proved can be applied to it. So let us see what writing (IZI 92)
as

(4.194) Fr¢=g"o1p(1X¥¢)
tells us. If uw € CZ°°(Qg) then
(4.195) WF(1®u) C {(z,y,0,n); (y,n) € WF(u)}

. Iigﬁl : . -
by Proposition 1.14. So we have to discuss ¢},(1 K u), i.e. restriction to y = F(x).
We can do this by making a diffeomorphism:

so that T ! (graph(F)) = {(x,0)}. Notice that g o Tr = 71, s0
(4.197) Fré=1},_o (TE(1Ru)).

11.12
Now from Proposition II 16 we know that
(4.198) WF(Tp(1Xu)) =TH(WF(1 X u))
={(X,)Y,E, H);(X,Y + F(X),&n) € WF(1X¥u),

— OF;
n= H,fl ==; + Ea—x‘ZHJ}
ie.
OF);
(4199) WE(TF(18w) = {(z,0,&0)i& = 3 =2 (@), (Fla), 1) € WF(w)}.
j J

So consider our existence condition for restriction to y = 0, that £ # 0 on WF(T'5(1X
u)) i.e.

OF;
(4.200) (F(x),m) € WF(u) = Y _ —(a)n; #0.
j 2
If (121112(2]%) holds then, from (ﬁ_lﬂg‘g) and Proposition %(.)1'1232
(4.201)  WF(F*u) C {(z,€); 3 (F(z),n) € WF(u) and &; = %(x)nj}
j K3

11.29 11.30
We can reinterpret (ITZUO) and (IZFZU"I) more geometrically. The differential of

F gives a map
. T;(I)QQ — T;Ql Ve

(4.202) (F(z),n) — (z,€) where & = 221;] M-
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11.29
Thus (ITZUO) can be restated as:
1203 V & € Qy, the null space of F; : Tp(,) Q2 — 17N
(4.203) does not meet WF(u)

11.30
and then (ITZD'I) becomes

(4.204) WF(F*u) C | Fi[WF(u) N T, Q) = F*(WF(u))
TEM

*

(proved we are a little careful in th b, _I;;1 is not a map; it is a ﬁe}%ion between
T*Qs and T*Q4) and %%lgs sense (EI.ZUB) holds. Notice that (ITZU'I) is a sensi-
ble “consequence” of (4.203), since otherwise WF(F*u) would contain some zero
directions.

PROPOSITION 4.18. If F : Q1 — Q9 is a proper C*™ map then F* extends (by
continuity) from C°(£22) to

(4.205) {ueCr®(Q); F*(WF(u) N (Q1 x 0) =0 in Ty }
and (1211128%1) holds.

4.22. The operation F,

Next we will look at the dual operation, that of push-forward. Notice the basic
properties of pull-back:

(4.206) Maps C° to C°(if F' is proper)
(4.207) Not always defined on distributions.
Dually we find

PRrROPOSITION 4.19. If F : Q1 — Qo is a C* map of an open subset of R™
into an open subset of R™ then for any u € C; ()

(4.208) Fi(u)(@) = u(F*¢)
1s a distribution of compact support and
(4.209) F,: C.®() — C_>(92)

has the property:
WEF(F,u) C {(y,n):y € F(supp(u)),y = F(z), Fjn=0}U
{(y,m)iy = F(x), (2, F;n) € WF(u)}.

PROOF. Notice that the ‘opposite * of (12112266) and (1211221%7) hold, i.e. Fj is always
defined buf even if u € C2°(€21) in general Fou ¢ C°(€22). All we really have to
prove is (14_2'[0) As usual we look for a formula in terms of elementary operations.
So suppose u € C°(2)

Fou(é) = u(F*¢) ¢ € C¥(Q)
(4.211) Z/U(x) o(F(x)) dx
— [ @ity - Fla)) oty) dyda.

(4.210)

Thus, we see that
(4.212) Foau=m.H"(uX))



12.9

4.22. THE OPERATION F, 123

where § = §(y) € C;°°(R™), H is the diffeomorphism
(4.213) H(z,y) = (z,y — F(z))

and 7 : R”*m g— R™ is projection off the first factor.

Thus 14_2"[2 is the desired decomposition into elementary operations, since
ulkd € C OO(]R"er), T " (uid) is always defined and indeed the map is continuous,
which actually proves (1.212).

So all we nee o9 1do is estimate the wavefront set using our earlier results.
From Proposition ¥.14 it follows that

(4.214)
WF(ul6) C {(2,0,&n);2 € supp(u), £ =0} U {(,0,£,0); (z,€) € WF(u)}
U {(,0,&m); (az&)eWF( )}
= {(2,0,&,n);z € supp(u),£ =0} U{(z,0,£,m); (z,€) € WF(u)}.

Then consider what happens under H*. This is a diffeomorphism so the wavefront
set transforms under the pull-back:

WE(H" (u 8 8)) = WE (u(2)5(y — F(2))
OF;

:{(va( )v‘*vn)ah‘z §i — oz, ( )njv(xogn)GWF( &6)}
(4215)  _ {(z,F(x),Z,n);x € supp(u),Z; = — Z
U@ F@), 50 € BT, (,6) € WF)), 2 =6 - Y Z—f;m}-

Finally recall the behaviour of wavefront sets under projection, to see that

WF(F.u) C {(y,n); 3 (x,y,0,n) € WF(H*(u X 5))}
= {(y,n);y = F(x) for some x € supp(u) and

OF;

0z; —In;=0,i=1,...,n}

U{(y,n);y = F(z) for some (z, f) € WF(u) and

Z@ nj,1= ,...,n)}.

This says

(4.216) WEF (F,u) C {(y,n);y € F(supp(v)) and Fj(n) =0}

(4.217) U{(y,n);y = F(z) with (z, F;‘ ) € WF(u)}

which is just (1%2'6[50) O

As usual one should note that the two terms here are “really the same”.
Now let us look at F, as a linear map,

(4.218) F,: C°(01) — C°°(y).
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12.8
As such it has a Schwartz kernel, indeed (14.212) is just the usual formula for an
operator in terms of its kernel:

(4.219) Fou(y) = / Ky, 2)u(z)dz, K(y,z) = 5(y — F(z)).
So consider the wavefront set of the kernel:

(4.220)  WF(3(y = F(x)) = WE(H"0(y)) = {(y, 21, €)sy = F(2),€ = Fn}.
Now changing the order of the factors we can regard this as a subset

(4.221) WF'(K) = {((y, ), (z,€));y = F(2),§ = F*'n} C (2 xR™) x (2 x R").

As a subset of the product we can regard WF'(K) as a relation: if T C Qo x
(R™\0) set

WF/(K)ol =
{(y, ) € Q2 x (R™\0); 3 ((y,m)), (,€)) € WF'(K) and (z,¢) € T'}
Indeed with this definition
12.14| (4.222) WF(F,u) C WF' (K)o WF(u), K = kernel of F,.

4.23. Wavefront relation
One serious application of our results to date is:

12.15 THEOREM 4.1. Suppose 1 C R™, Qo C R™ are open and A € C~°(Q1 x Q2)
has proper support, in the sense that the two projections

12.16| (4.223) supp(A4)

Ql QQ
are proper, then A defines a linear map
12.17| (4.224) A:CP(Qs) — C7(N)

and extends by continuity to a linear map
(4.225) A:{ueC;™(X);WF(u)N{(y,n) € Qz x (R™\0);

(4.226) 3 (z,0,y,—n) € WF(K)} =0} — CZ>=()
for which

(4.227) WF(Au) € WF'(A) o WF(u),
where

(4.228) WE'(4) = {((z,€). (y,m) €(Q x R") x (2 x R™); (§,7) # 0

and (z,y,&,—n) € WF(K)}.

PrOOF. The action of the map A can be written in terms of its Schwartz kernel
as

12.21| (4.229) Au(z) = /K(x,y)u(y)dy = (m1)«(K - (1 X u)).

Here 1 X v is always defined and
(4.230) WF(1 R u) C {(2,y,0,1); (y,n) € WF(u)}.
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So the main question is, when is the product defined? Our sufficient condition for
this is:

(4.231) (z,y,&£,m) € WF(K) = (x,y,—&,—n) ¢ WF(1 X u)
which is

(4.232) (2,9,0,n) € WF(K) = (2,4,0,—n) ¢ WF(1 X u)
(4.233) e Le. (y,—n) ¢ WF(u)

This of course is (14_2‘26)

(4.234) Auw is defined (by continuity) if

(4.235) {(y,n) € WF(u); 3 (z,0,y,—n) € WF(A)} = 0.

Then from our bound on the wavefront set of a product
WF (K- (1Xu)) C

{(z.y,&m); (&) =(&,0') + (0,7") with

(4.236) (z,y,€',n') € WE(K) and (z,1") € WF(u)}
U{(z,y,&m); (2,9, €m) € WF(K), y € supp(u) }
U{(z,y,0,n)i(z,y) € supp(A)(y,n) € WF(u)}.
This gives the bound
(4.237) WF (m.(K - (1R uw))) C {(z,€); (z,y,£,0) € WF(K - (1K u)) for some y}
(4.238) C WF'(A) o WF(u).
O

4.24. Applications

Having proved this rather general theorem, let us note some examples and
applications.

First, for pseudodifferential operators we know that
(4.239) WF'(4) € {(z,2,£,6)}

. . . . L 121122-%% .

i.e. corresponds to the identity relation (which is a map). Then (4.227) is the
microlocality of pseudodifferential operators. The next result also applies to all
pseudodifferential operators.

COROLLARY 4.2. If K € C~°°(Q1 x Q2) has proper support and

(4.240) WF' (K)N{(z,y,£0)} =0

then the operator with Scwartz kernel K defines a continuous linear map
(4.241) A:CX () — C°(M).

If

(4.242) WF'(K) N {(z,y,0,m)} =0

then A extends by continuity to

(4.243) A:C%°(Q) — C ().

12.17  [12.26
ProOOF. Immediate from (m)—( .243). O
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4.25. Problems
8.10
PROBLEM 4.9. Show that the general definition (14_62) reduces to
(4.244)  WF(u) = [ {Zo(A); A€ U (R") and Au € C*(R™)}, u € S'(R")
and prove the basic result of ‘microlocal elliptic regularity:’

If ue §'(R") and A € ¥ (R") then

(4.245) WEF(u) C $(A) UWF(Au).

PrROBLEM 4.10. Compute the wavefront set of the following distributions:
5(z) € S'(R™), |z| € S'(R™) and

(4.246) (@) 1 |z[ <1
n(L) =
XE 0 |z > 1.
PROBLEM 4.11. Let I' C R™ x (R™~\.0) be an open cone and define
(4.247) Cor(R™) ={u € C;*(R"); Au € C*(R")
(4.248) vV Ae U9 (R") with WF'(A)NT = 0}.

Describe a complete topology on this space with respect to which C2°(R™) is a dense
subspace.

PROBLEM 4.12. Show that, for any pseudodifferential operator A € W7 (R"),
WF'(A) = WF'(A4*).

PrROBLEM 4.13. Give an alﬁz_;latlve proof to Lemma 14_5 along the following
lines (rather than using Lemma If o1, (A) is the left reduced symbol then for
€ > 0 small enough

(4.249) bo ="e/or(A) € S (R™;R™).
If we choose By € U_"(R™) with or(By) = by then
(4.250) Id—Ao By =G € VY (R")
has principal symbol
(4.251) 00(G) =1—0r(A) - bo.
From (%7)
(4.252) Vesa00(G) = Ye/a.
Thus we conclude that if o7 (C) = 7,/4 then
(4.253) G = (Id—0)G + CG with CG € U} (R™).
Thus (%%50) becomes
(4.254) Id—ABy=CG+ R, WF'(Ry) ¥z
Let By ~ ;1(CG)j, By € 1 and set
3>

(4.255) B = By (I1d+B;) € U7 (R").
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From (12_554)

(4.256) AB = ABy(I + By)

(4.257) = (Id-CG)(I + By) — Ry (I1d+B;)
(4.258) =1d+Rs, WF'(Rs) # z.

Thus B is a right microlocal parametrix as desired. Write out the construction of
a left parametrix using the same method, or by findi $ goright parametrix for the
adjoint of A and then taking adjoints using Problem % 2.

PROBLEM 4.14. Essential uniqueness of left and right parametrices.

PRrROBLEM 4.15. If (z,£) € R"x(R™0) is a given point, construct a distribution
u € C;°°(R™) which has
(4.259) WF(u) = {(z,t{);t > 0} C R™ x (R"\0).

PROBLEM 4.16. Suppose that A € ¥ (R™) has Schwartz kernel of compact

support. If u € C;°°(R™) use the four ‘elementary operations’ (and an earlier
result on the wavefront set of kernels) to investigate under what conditions

(4.260) k(z,y) = Ka(x,y)u(y) and then vy(z) = (71)«k
make sense. What can you say about WF(v)?

PROBLEM 4.17. Consider the projection operation under 7 : RP x R¥ — RP,
Show that (71). can be extended to some distributions which do not have compact
support, for example

(4.261) {ue §'(R"™);supp(u) N K x R* is compact for each K cC R"}.
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CHAPTER 5

Pseudodifferential operators on manifolds

In this chapter the notion of a pseudodifferential on a manifold is discussed.
Some preliminary material on manifolds is therefore necessary. However the discus-
sion of the basic properties of differentiable manifolds is kept to a bare minimum.
For a more leisurely treatement the reader might well consult XX or YY. Our main
aims here are first, to be able to prove the Hodge theorem (given the deRham the-
orem). Then we describe some global object which are very useful in applications,
namely a global quantization map, the structure of complex powers and the zeta
function.

5.1. C*° structures

Let X be a paracompact Hausdorff topological space. A C*° structure on X is
a subspace

(5.1) FcC'X)={u: X — R continuous }
with the following property:
For each T € X there exists elements f1,..., f, € F such that for some open
neighbourhood 2 3 T
(5.2) F:Q32+— (fi(x),..., fulzx)) eR”
is a homeomorphism onto an open subset of R™ and every f € F satisfies
(5.3) fl1Q=goF forsome g€ C*(R").

13.
The map (5.2% is a coordinate system near T. Two C* structures F; and F»
are ‘compatible’ if F; U F; is also a C*° structure. Compatibility in this sense is an
equivalence relation on C*° structures. It therefore makes sense to say that:

DEFINITION 5.1. A C* manifold is a (connected) paracompact Hausdorff topo-
logical space with a maximal C*> structure.

The maximal C*° structure is conventionally denoted
(5.4) C™(X) c C'(X).
It is necessarily an algebra. If we let C3°(W) C C*°(X) denote the subspace of

f pcfions which vanish outside a compact subset of W then any local coordinates
(E_Zf have the property
(5.5) F*:CP(F(Q) «— {ueC™(X); u=0 on X\K,K CC Q}.
Futhermore C*°(X) is local:

u: X — Rand VT € X 3 Qz open, Q7 27T,
(5:6) s.t. u— fz =0 on Qz for some fz € C*(X) = u € C*(X).

129
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A map G: X — Y between C* manifolds X and Y is C* if
(5.7) G*: C®(Y) — C*(X)
ie. Gou e C>®(X) for all u € C=(Y).

5.2. Form bundles

A vector bundle is a triple 7 : V' — X consisting of two manifolds, X and V,
and a surjective C*>° map 7w with each

(5.8) Ve =71 ()

having a linear structure such that

(5.9) F ={u:V — R, u is linear on each V, }

is a C* structure on V' compatible with C*°(V) (i.e. contained in it, since it is
maximal).

The basic example is the cotangent bundle which we defined before for open
sets in R™. The same definition works here. Namely for each T € X set

Iz = {u € C*(X);u(x) =0}

Z={u= Z ugug; ui, up € Iz}
(510) finite
TiX =T /172, T°X = | T2 X,
TEX
So m: T*X — X just maps each T2 X to . We need to give T*X a C*> structure

so that “it” (meaning m : T*X — X) becomes a vector bundle. To do so note
that the differential of any f € C*°(X)

(5.11) df : X —T*X df@) =1[f - f@) eT:X
is a section (7 o df = Id). Put
(5.12) F={u:T*X — Rjuodf : X — RisC®V f € C®(X)}.

Then F = C*°(T*X) is a maximal C* structure on 7*X and
Fiin = {u: T*X — R, linear on each TxX;u € F}

is therefore compatible with it. Clearly df is C*°.

Any (functorial) operation on finite dimensional vector spaces can be easily seen
to generate new vectors bundles from old. Thus duality, tensor product, exterior
powers all lead to new vector bundles:

(5.13) X =(I;X)", TX = | | .X
rzeX
is the tangent bundle

& k factors
ACX = {u 2T, X X -+ xTp, X — R;u is multilinear and antisymmetric }

leads to the k-form bundle
APX = | AEX, AN X ~T7X
xeX

where equivalence means there exists (in this case a natural) C* diffeomorphism
mapping fibres to fibres linearly (and in this case projecting to the identity on X).
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A similar construction leads to the density bundles

n=dim X factors

Q°X = {u T X N+ ANT, X — R; absolutely homogeneous of degree a}

that is
u(tvy A..ovg) = [H%u(vr A Aoy).

These are important because of integration. In general if 7 : V' — X is a vector
bundle then

C¥(X;V)={u: X —V; rou=1d}
is the space of sections. It has a natural linear structure. Suppose W C X is a
coordinate neighbourhood and u € C*®(X;Q), Q = Q! X, has compact support in
W. Then the coordinate map gives an identification

X — Q}(z)R” vV a

and

(5.14) /u - /gu(x), = gu(@)|da]
2

is defined independent of coordiantes. That is the integral
(5.15) / CR(X;Q) —R
is well-defined.

5.3. Pseudodifferential operators
Let X be a C* manifold, and let C3°(X) C C*>°(X) be the space of C* functions
of compact support. Then, for any m € R, ¥™(X) is the space of linear operators
(5.16) A:CX(X) — C™®(X)
with the following properties. First,
if ¢, 1 € C*°(X) have disjoint supports then 3 K € C*(X x X;Qg)

(5.17) such that V u € C°(X) ¢AYu = /K(x,y)u(y),
X

and secondly if F' : W — R™ is a coordinate system in X and ¢ € C°(X) has
support in W then

3B e U2 (R™), supp(B) C W x W s.t.
vAYu | W = F*(B((F™1)* ($u))) ¥ u € C2(X).

This is a pretty horrible definition, since it requires us to check every coordinate
system, at least in principle. In practice the coordinate-invariance we proved earlier
means that this is not necessary and also that there are plenty of examples!

Any open cover of a C* manifold has a partition of unity subordinate to it, i.e.
if A, C X are open sets for r € R and

(5.18) xX=]J4
reR
there exists ¢; € C2°(X), all non-negative with locally finite support:

(5.19) V i supp(¢;) Nsupp(¢;) # 0 for a finite set of indices j,
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where each supp(¢;) C A, for some r = r(i) and
(5.20) > gilx)=1 Vu

In fact one can do slightly better than this, for a covering by coordinate neighbour-
hoods.

LEMMA 5.1. There exists a partition of unity on X (a C* manifold) ¢; s.t. for
every 1

(5.21) (U{supp(6;); supp(@;) N supp(6:) # 0}

is contained in a coordinate neighbourhood!

Using such a partition of unity we see that every element of U™ (X) can be
written in the form
A=D 0D 6 Kadi
i g

where the terms have smooth kernels if the supports of ¢; and ¢; do not meet, or
else are pseudodifferential operators in any local coordinates in a patch containing
both supports. Below we shall use this to prove:

THEOREM 5.1. Let X be a compact C*° manifold then the pseudodifferential
operators W*(X) form a symbol-filtered ring.

If X is a C* manifold we have defined the space (X)) as consisting of those
linear operators
(5.22) A:CP(X) — C™(X)

which are given locally by pseudodifferential operators of order m on X, in a precise
sense. Let us recast this definition in terms of the Schwartz kernel theorem. Over
the product, X2, consider the right density bundle, Qp = TR Here we use the
pull-back operation on vector bundles:

THEOREM 5.2. If W — Y is a C*> wvector bundle and F : X — Y is a C*®
map then F*W — X is a well-defined C* wvector bundle over X with total space

(5.23) FW = W
zeX
if € C®(Y; W) then F*¢ is a section of F*W and C*®(X; F*W) is spanned by
C®(X) - F*C>(Y; ).
Distributional sections of any C*° vector bundle can be defined in two equivalent
ways:

(5.24) “Algebraically” C~>(X; W) X) Q) c=(x;w)
> (X)

or

(5.25) “Analytically” C~>°(X; W) = [C(X; Q@ W)

1 e e W’ is the dual bundle and  the density bundle over X. In order to use
([5 75) we need to define a topology on C2°(X;U) for any vector bundle U over X.
One can do this by reference to local coordinates.
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If W — X is a vector bundle the spaces S™(W) of symbols on W is well-
defined for each m € R.

PROPOSITION 5.1. A pseudodifferential operator A € W™ (X) can be written in
terms of its kernel

(5.26) Ka €C®(X?%Qpg)
where
(5.27) K is C* in X2\ A

and if X; C X is a coordinate partition, p; € C(X) has support in X; then in
terms of the same coordinates x; = F(x;) and y; = F*(x;) in the two factors of X

(5.28) pi(w)p(y)Ka = Ki(z,y)|dy|, K; € V" (R"™).

Suppose p? is a partition of, ity of X, subordinate to a coordinate covering.
For each ¢ the symbol of K; in (E‘Z‘B) is an equivalence class on R™ x (R™\0), with
support in supp(p;) * (R?\0). Set

(5.29) om(T) = > a; (21, €9)
{i,7(7)€supp(p:)}
where

(5.30) r=F (€ dr;) €9 dre TR, 2 = Fy(n(r))
J

and the a; are representations of the symbols of the K;. This defines a function on
T*X\0, in fact the equivalence class

(5.31) om(A) € ST X)
is well-defined.

14.1 14.9
PROPOSITION 5.2. The principal symbol map in (5.3 i, defined as in (5.29),
gives a short exact sequence:

(5.32) 0— 0" HX) - om(X) I smU(T X)) — 0.

PRrOOF. First we need to check that o,,,(A) is indeed well-defined. This involves
checking what happens under a change of coordinate covering and a change of
partition of unity subordinate to it. First, under a change of partition of unity,
subordinate to a fixed covering note that

Py (@)W Ka =D _ o (@)} (@) (1) K a
(5.33) = p(@)pi(x)pi(y)p(y) K a
= (p})? Z pi(x)Kap;i(y).
where equality is m u; U1 since ¢, U] C WL for any C°°, fynction ¢.

It follows from (5.32] that the principal symbols, defined by (5.29), for the two
partitions of unity agree.
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For a change of coordinate covering it suffices to use the transformation law
for the principal symbol under a diffeomorphism of R™ and the freedom, just es-
tablished, to choose the partition of unity to be subordinates to both coordinate
coverings. Thus o, is well-defined.

Certainly if A € U™ 1(X) then 0,,(N) = 0. Moreover if A € ¥™(X) and
om(A) = 0 then all the operators p;(x)K p;(y) are actually of order m — 1. Since

(5.34) A= Zzpmg )Apip;  mod ¥H(X)

for any two partitions of units P¢ L (ph)? w gn, ghoose the P to each have support
in a region where p; # 0 for some j. Then (E_ZZU shows that A € U™~ 1(X).

Thus it only remains to show that the map oy, is surjective. If a € S™(T*X)
choose A4; € U7 (R™) by

(5.35) or(4;) = pi(x)(F*) " aipi(y) € SL(R" x R™)
and set
(5.36) A=Y "FAG; Gi=F
Then, from (%42.'3) om(A) = a by invariance of the principal symbol. O
The other basic properties of the calculus are easily established. For example
(5.37) Omtm' (A B) = op(A) - o (B)
if Ae U™(X),Be U™ (X),X compact. Similarly note that
(5.38) AB = Zp?Ap?B = ZpiApi - pjBpi mod ¥"m !
ij i

Wthh glg mﬁr

h;m the symbol calculus to construct a left and right parametrlx for
an elhptlc element of U™ (X), where X is compact, i.e. an element B € U~ (X),
such that

(5.39) AB —1d,BA —1d € ¥~°(X).
As a consequence of this construction note that:

PROPOSITION 5.3. If A € U™ (X) is elliptic, and X is compact, then
(5.40) A:C®(X) — C™®(X)

is Fredholm, i.e. has finite dimensional null space and closed range with finite di-
mensional complement. If v is a non-vanishing C* measure on X and a generalized
inverse of A is defined by

Gu = f ifu € Ran(A), Af = u, f L, Nul(4)
Gu =0 ifu L, Ran(A)
then G € UV~™(X) satisfies

(5.41)

GA =1Id —TN
(5.42) AG = 1d —77

where mn and TR are v-orthogonal projections onto the null space of A and the
v-orthocomplement of the range of A respectively.
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PROOF. The main point to note is that £ € U ~°°(X) is smoothing,
(5.43) E:C®(X)—C®(X) VEeU >®X).
Such a map is compact on L?(X), i.e. maps bounded sets into precompact sets by

the theorem of Ascoli and Arzela. The second thing to recall is that a Hilbert space
with a compact unit ball is finite dimensional. Then

(5.44) Nul(A) = {u € C*°(X); Au = 0} = {u € L*(X); Au = 0}
14.2
since, from (hﬂ% Au =0 = (BA-1Id)u = —Eu, E € ¥*°(X), so Au = 0,
u € C®(X) = u € C®(X). Then
(5.45) NMM%:MEL%XxAu:O/WPW:HCL%X)

is compact since it is closed (A is continuous) and so Nul(A) = E(Nul(4)) is
precompact. Thus Nul(A) is finite dimensional.

Next let us show that Ran(A) is closed. Suppose f; = Au; — f in C*(X),
uj € C*°(X). By what we have just shown we can assume that u; 1, Nul(A). Now
if B is the parametrix

(5.46) u; = Bfj+ Euj, E € U™ (X).

Suppose, along some subsequence, ||u;||, — oo. Then

5.47 4 :B(fj) ECﬁL>
(5:47) ol = 2 \Twl) T2 Tl

shows that ﬁ lies in a precompact subset of L2, ﬁ — u. This is a con-
il il

tradiction, since Au = 0 but ||ul| = 1 and u L, Nul(A4). Thus the norm sequence
|lu;| is bounded and therefore the sequence has a weakly convergent subsequence,
which we can relabel as u;. The parametrix shows that u = B f; + Fu; is strongly
convergent with limit u, which satisfies Au = f.

Finally we have to show that Ran(A) has a finite dimensional complerg%n%
If wg is orthogonal projection off Ran(A) then from the second part of (b.
f =7mRrE'f for some smoothing operator E. This shows that the orthocomplement
has compact unit ball, hence is finite dimensional. O

14.2
Notice that it follows that the two projections in (5.42) are both smoothing
operators of finite rank.

5.4. Pseudodifferential operators on vector bundles

We have just shown that any elliptic pseudodifferential operator, A € ¥™(X)
on a compact manifold X has a generalized inverse B € ¥~™(X), meaning

BA = Id—7TN
AB =1d —7g

where my and mg are the orthogonal projections onto the null space of A and
the orthocomplement of the range of A with respect to a prescribed C* positive
density v, both are elements of ¥ ~°°(X) and have finite rank. To use this theorem
in geometric situations we need first to make the “trivial” extension to operators
on sections of vector bundles.

As usual there are two ways (at least) to approach this extension; the high road
and the low road. The “low” road is to go back to the definition of ¥ (X) and

(5.48)
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to_generalize to W™ (X;V,W). This just requires to take the definition, following
([5_1'6), but using a covering with respect to which the bundles V, W are both locally
trivial. The local coordinate representatives of the pseudodifferential operator are
then matrices of pseudodifferential opertors. The symbol mapping becomes

(5.49) (X V, W) — ™0 (T* X Hom(V, W))

where Hom(V, W) ~ V ® W’ is the bundle of homomorphisms from V to W and
the symbol space consists of symbolic sections of the lift of this bundle to 7% X. We
leave the detailed description and proof of these results to the enthusiasts.

So what is the “high” road. This involves only a little sheaf-theoretic thought.
Namely we want to define the space U™ (X;V, W) using ¥ (X) by:

(5.50) UGV, W) =0(X) Q) CU(XEVERW).
C>(X?2)

To make sense of this we first note that ¥ (X) is a C°°(X?)-module as is the space
C®(X?%;VRW') where VX W' is the “exterior” product:

(5.51) (VRW )y = Vi @ W
. |15.3
The tensor product in (t5_50) means that
(5.52) Ae¥™(X;V,W) is of the form A = ZAi -G

where A; € U™(X), G; € C*°(X?,V K W’) and equality is fixed by the relation
(5.53) PA-G—A-9G =0.
Now what we really need to note is:

PROPOSITION 5.4. For any compact C*° manifold Y and any vector bundle U
over'Y

(5.54) C™®(Y;U) Y) Q) c=(V;U).
coo(Y)
PROOF. C™°(Y;U) = (C>*(Y;Q ® U')) is the definition. Clearly we have a
mapping

(5.55) Y) Q) C(Y;U)3 ) Ai-gi — C(Y;U)
co(Y) i

given by

(5.56) Zuz -gi(Y) = Zui(gz' )

since g;10 € C*(Y;Q) and linearity shows that the map descends to the tensor
product. To prove that the map is an isomorphism we construct an inverse. Since
Y is compact we can find a finite number of sections g; € C*°(Y; U) such that any
u € C®(Y;U) can be written

(5.57) w=> higi hi€C>(Y).
By reference to local coordinates the same is true of distributional sections with

(5.58) hi=vu-q¢ q ECOO(Y;U/).
This gives a left and right inverse. O
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THEOREM 5.3. The calculus extends to operators sections of vector bundles
over any compact C> manifolds.

5.5. Laplacian on forms

Since this is more differential geometry than differential analysis I will be brief.
We already defined the exterior derivative

(5.59) d:C®¥(X) — C®(X;T*X)
as part of the definition of T*X, i.e.
(5.60) df @) =[flza—fT@)) eTeXVTeX.

15.1
The importance of the form bundles is tha they give a resolution of (5:59).
[Actually I didn’t mean to be this brief, but was interupted while writing the

lecture!]

5.6. Hodge theorem
5.7. Pseudodifferential projections

PROPOSITION 5.5. If P € WY(M; E) is such that P2 — P € V=°°(M; E) then
there exists 11 € WO(M; E) such that 11> =11 and 1 — P € =°(M; E).

PROPOSITION 5.6. If P € WO(M;E) is such that P> — P € W=°°(M; E) and
F C H°(M;E) is a closed subspace corresponding to which there are smoothing
operators A, B € W=°(M; E) with Id—P = A on F and (P + B)L?>(M;E) C F
then there is a smoothing operator B’ € W~>°(M : E) such that F = Ran(P + B’)
and (P+ B')? =P + B'.

PROOF. Assumg firsg thages = 0, so F'is a closed subspace of L*(X; E). Ap-
b.5 to P

plying Proposition b. we may assume that it is a projection, without af-
fecting the other conditions. Consider the intersection E = F N Ran(Id —II). This
is a closed subspace of L?(M; E). With A as in the statement of the proposition,
E C Nul(Id —A). Indeed P vanishes on Ran(Id —P) and hence on E and by hypoth-
esis Id —P — A vanishes on F' and hence on E. From the properties of smoothing
operators, F is contained in a finite dimensional subspace of C*°(M; E), so is itself
such a space. We may modify P by adding a smoothing projection onto F to it,
and so assume that F' N Ran(Id —P) = {0}.

Consider the sum G = F' 4 Ran(Id —P). Consider the operator Id+B = (P +
B) + (Id —P), with B as in the statement of the Proposition. The range of Id +B
is contained in G. Thus G must be a closed subspace of L?(M;E) with a finite
dimensional complement in C*°(M; E). Adding a smoothing projection onto such
a complement we can, again by altering P by smoothing term, arrange that

(5.61) L*(M;E) = F @ Ran(ld - P)

is a (possibly non-orthogonal) direct sum. Since P has only been altered by a
smoothing operator the hypotheses of the Proposition continue to hold. Let II
be the projection with range F' and null space equal to the range of Id —P. It
follows that P’ = P + (Id —P)RP for some bounded operator R (namely R =
(Id —P)(P" — P)P.) Then restricted to F, P =1d and P =Id+A so R=—A on
F. In fact R = AP € U~°°(M; E), since they are equal on F' and both vanish on
Ran(Id —P). Thus P’ differs from P by a smoothing operator.
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The case of general s follows by conjugating with a pseudodifferential isomor-
phism of H*(M; E) to L?(M; E) since this preserves both the assumptions and the
conclusions. (]

5.8. Heat kernel
5.9. Resolvent
5.10. Complex powers
5.11. Problems

PROBLEM 5.1. Show that compatibility in the sense defined before Defini-
tion B.T is an equivalence relation on C* structures. Conclude that there is a
unique maximal C* structure containing any give C* structure.

PROBLEM 5.2. Let F be a C* structure on X a 5131 t Oy, 363(4, be a covering
of X by coordinate neighbourhoods, in the sense of I(115_2% and (b.3). Show that the
maximal %E;)gstructure containing F consists of ALL functions on X which are of
the form (5.3) on each of these coordinate patches. Conclude that the maximal C*
structure is an algebra.

PrOBLEM 5.3 (Partitions of unity). Show that any C* manifold admits parti-
tions of unity. That is, if O, a € A, is an open cover of X then there exist elements
Pai € C¥(X),a€ A i €N, with 0 < p,; <1, with each p,; vanishing outside
a compact subset K,; C O, such that only finite collections of the {K, ;} have
non-trivial intersection and for which

Z Pa,i = 1.

ac€A,ieN
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CHAPTER 6

Elliptic boundary problems

Summary

Elliptic boundary problems are discussed, especially for operators of Dirac type.
We start with a discussion of manifolds with boundary, including functions spaces
and distributions. This leads to the ‘jumps formula’ for the relationship of the
action of a differential operator to the operation of cutting off at the boundary;
this is really Green’s formula. The idea behind Calderon’s approach to boundary
problems is introduced in the restricted context of a dividing hypersurface in a
manifold without boundary. This includes the fundamental result on the boundary
behaviour of a pseudodifferential operator with a rational symbol. These ideas are
then extended to the case of an operator of Dirac type on a compact manifold
with boundary with the use of left and right parametrices to define the Calderon
projector. General boundary problems defined by pseudodifferential projections are
discussed by reference to the ‘Calderon realization’ of the operator. Local boundary
conditions, and the corresponding ellipticity conditions, are then discussed and the
special case of Hodge theory on a compact manifold with boundary is analysed in
detail for absolute and relative boundary conditions.

Introduction

Elliptic boundary problems arise from the fact that elliptic differential operators
on compact manifolds with boundary have infinite dimensional null spaces. The
main task we carry out below is the parameterization of this null space, in terms of
boundary values, of an elliptic differential operator on a manifold with boundary.
For simplicity of presentation the discussion of elliptic boundary problems here will
be largely confined to the case of first order systems of differential operators of
Dirac type. This has the virtue that the principal results can be readily stated.

Status as of 4 August, 1998

. |S.Manifolds. Ioafimteath . functions . MWB .
Read through Section 6.I-Section I6.2: It 1s pretty terse in places! Several vital

sections are still missing.

6.1. Manifolds with boundary

Smooth manifolds with boundary can be defined in very much the same was as
manifolds without boundary. Thus we start with a paracompact Hausdorff space
X and assume that it is covered by ‘appropriate’ coordinate patches with corre-
sponding transition maps. In this case the ‘model space’ is R™! = [0,00) x R"*~1,
a Euclidean half-space of fixed dimension, n. As usual it is more convenient to use

139
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as models all open subsets of R™1!; of course this means relatively open, not open
as subsets of R™. Thus we allow any

O=0NR", O cR" open,

as local models.

By a smooth map between open sets in this sense we mean a map with a smooth
extension. Thus if O; for 4 = 1,2 are open in R™! then smoothness of a map F
means that

(6.1) F:01— 0y, 30, CR", i=1,2, open and F : O} — O}
which is C* with O; = O, NR™! and F = F’|0;.

It is important to note that the smoothness condition is much stronger than
just smoothness of F' on O N (0,00) x R*~1.

By a diffeomorphism between such open sets we mean an invertible smooth
map with a smooth inverse. Various ways of restating the condition that a map be
a diffeomorphism are discussed below.

With this notion of local model we define a coordinate system (in the sense of
manifolds with boundary) as a homeomorphism of open sets

XoU -2 0cR™, 0,U open.

Thus &' is assumed to exist and both ® and ®~! are assumed to be continuous.
The compatibility of two such coordinate systems (U, ®1,01) and (Usz, P2, 02) is
the requirement that either Uy N Us = ¢ or if U3 N Us # ¢ then

Dyo=Dy0®07! D (U NUy) — (U NUy)

is a diffeomorphism in the sense described above. Notice that both ®1(U; N Us)
and ®5(U; N Us) are open in R™!. The inverse ®; 5 is defined analogously.

A C*° manifold with boundary can then be formally defined as a paracompact
Hausdorff topological space which has a maximal covering by mutually compatible
coordinate systems.

An alternative definition, i.e. characterization, of a manifold with boundary is
that there exists a C> manifold X without boundary and a function f € C*°(X)
such that df # 0 on {f =0} € X and

X ={pe X /() =0},

with coordinate systems obtained by restriction from X. The doubling construction
described below shows that this is in fact an equivalent notion.

6.2. Smooth functions

As in the boundaryless case, the space of functions on a compact manifold
with boundary is the primary object of interest. There are two basic approaches to
defining local smoothness, the one intrinsic and the other extrinsic, in the style of
the two definitions of a manifold with boundary above. Thus if O C R™! is open
we can simply set

C®0)={u:0—C;3aelC>0"),
O' C R" open, O =0 NR™!, u=ﬂ|o} )
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Here the open set in the definition might depend on u. The derivatives of u €
C*>(0’) are bounded on all compact subsets, K € 0. Thus

(6.2) sup |D%| < oo, 0O°=0nN((0,00) x R"71).
KNO°

eq:F1
The second approach is to use (%b as a definition, i.e. to set
:F1
(6.3) C>(0) = {u: 0° — C; §%Fholds V K € O and all a} .

In particular this implies the continuity of u € C*°(O) up to any point p € O N
({0} x R"~1), the boundary of O as a manifold with boundary.

As the notation here asserts, these two approaches are equivalent. This follows
(as does much more) from a result of Seeley:

:F2
PROPOSITION 6.1. If C*(0) is defined by (E.ES and O' C R™ is open with
O = O' NR™! then there is a linear extension map

E : C®(0) = C>®(0"), Eulor=u

which is continuous in the sense that for each K' € O', compact, there is some
K & O such that for each o

sup |D¥FEu| < Cq g sup |D%ul .
K’ KNO

The existence of such an extension map shows that the definition of a diffeo-
morphism of open sets O1, O2, given above, is equivalent to the condition that
the map be invertible and that it, and its inverse, have components which are in
C>®(01) and C*°(02) respectively.

Given the local definition of smoothness, the global definition should be evident.
Namely, if X is a C*° manifold with boundary then

C®(X)={u: X — C;(®")*(uly) € C>(0) V coordinate systems} .

This is also equivalent to demanding that local regularity, i.e. the regularity of
(®~1*(ulo), hold for any one covering by admissible coordinate systems.

As is the case of manifol ss%ithout boundary, C*°(X) admits pargi_%iplré%é).flggity.
In fact the proof of Lemma b.T applies verbatim; see also Problem }5_37

The topology of C*°(X) is given by the supremum norms of the derivatives in
local coordinates. Thus a seminorm

sup ‘Do‘(qfl)*(uhj)‘

KeO
arises for each compact subset of each coordinate patch. In fact there is a countable
set of norms giving the same topology. If X is compact, C*°(X) is a Fréchet space,
if it is not compact it is an inductive limit of Fréchet spaces (an LF space).

The boundary of X, X, is the union of the ®~1(O N ({0} x R"~1)) over
coordinate systems. It is a manifold without boundary. It is compact if X is
compact. Furthermore, X has a global defining function p € C*°(X); that is
p>0,0X ={p=0} and dp # 0 at 9X. Moreover if X is compact then any such
boundary defining function can be extended to a product decomposition of X near
0X:

(6.4) 3IC D OX,openin X e€> 0 and a diffeomorphism ¢ : C' >~ [0,¢€), x 0X.

If 0X is not compact this ﬁ séililgggsg?le for an appropriate choice of p. For an
outline of proofs see Problem 6.1.
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LEMMA 6.1. If X is a manifold with compact boundary then for a N bé)lwéiéz%o

defining function p € C*°(X) there exists € > 0 and a diffeomorphism

PROBLEM 6.1.

The existence of such a product decomposition near the boundary (which might
have several components) allows the doubling construction mentioned above to be
carried through. Namely, let

(6.5) X =(XUX)/0X
be the disjoint union of two copies of X with boundary points identified. Then
consider

(6.6) C%(X) = {(u1,u2) € C¥(X) & C(X);

(™) (uile) = flp,-), (9~ ) (uale) = f(=p,-),
fec™®((—1,1) x 9X)} .

~ ~ :F4
This is a C* structure on X such that X — X, as the first term in (E.S ~is an
embedding as a submanifold with boundary, so

C®(X) =C®(X)|x .

In view of this possibility of extending X to X, we shall not pause to discuss
all the usual ‘natural’ constructions of tensor bundles, density bundles, bundles of
differential operators, etc. They can simply be realized by restriction from X. In
practice it is probably preferable to use intrinsic definitions.

The definition of C*°(X) implies that there is a well-defined restriction map

C®(X) 3> ur— ulogx € C®(0X).

It is always surjective. Indeed the existence of a product decomposition shows that
any smooth function on X can be extended locally to be independent of the chosen
normal variable, and then cut off near the boundary.

There are important points to observe in the description of functions near
the boundary. We may think of C*°(X) C C*°(X?°) as a subspace of the smooth
functions on the interior of X which describes the ‘completion’ (compactification if
X is compact!) of the interior to a manifold with boundary. It is in this sense that
the action of a differential operator P € Diff " (X)

P:C®(X) — C®(X)

should be understood. Thus P is just a differential operator on the interior of X
with ‘coefficients smooth up to the boundary.’

Once this action is understood, there is an obvious definition of the space of
C*° functions which vanish to all orders at the boundary,

C®(X) = {u € C®(X); Pulgpx =0V P € Diff*(X)} .

Having chosen a product decomposition near the boundary, Taylor’s theorem gives
us an isomorphism

C=(X)/C=(X) = P> (9X) - [dplax]*.

k>0
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6.3. Distributions

It is somewhat confusing that there are three (though really only two) spaces of
distributions immediately apparent on a compact manifold with boundary. Under-
standing the relationship between them is important to the approach to boundary
problems used here.

The coarsest (as it is a little dangerous to say largest) space is C~°(X?°),
the dual of C°(X°; ), just the space of distributions on the interior of X. The
elements of C~°°(X°) may have unconstrained growth, and unconstrained order of
singularity, approaching the boundary. They are not of much practical value here
and appear for conceptual reasons.

Probably the most natural space of distributions to consider is the dual of
C>®(X; Q) since this is arguably the direct analogue of the boundaryless case. We
shall denote this space

(6.7) C™(X) = (C*(X;Q))

and call it the space of supported distributions. The ‘dot’ is supposed to indicate
this support property, which we proceed to describe.

If X is any compact extension of X (for example the double) then, as already
noted, the restriction map C>(X;Q) — C>(X;Q) is continuous and surjective.
Thus, by duality, we get an injective ‘extension’ map

(6.8) C®(X)sur—aelC X)), u(p) =ulp|x)-
We shall regard this injection as an identification C~°°(X) < C~°°(X); its range
is easily characterized.
eq:D2
PROPOSITION 6.2. The range of the map (%98%13 the subspace consisting of
those @ € C~°°(X) with suppa C X.

The proof is given below. This proposition is the justification for calling
Y ~>°(X) the space of supported distributions; the dot is support to indicate that
this is the subspace of the ‘same’ space for X, i.e.C _O"(f( ), of elements with support
in X.

This notation is consistent with C>(X) C C*(X) being the subspace (by
extension as zero) of elements with support in X. The same observation applies to
sections of any vector bundle, so

C®(X;Q) C C™(X;Q)
is a well-defined closed subspace. We set
(6.9) CT(X) = (€=(X;9)

and call this the space of extendible distributions on X. The inclusion map for the
test functions gives by duality a restriction map:

(6.10) Rx :C~°(X) — C~>®(X),
Rxu(p) = u(p) ¥V ¢ € C(X;0Q) — C*(X;Q).

We write, at least sometimes, Rx for the map since it has a large null space so
should not be regarded as an identification. In fact

(6.11) Nul(Rx) = {v € C~°(X);supp(v) N X° = ¢} = (~=(X\X°),
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is just the space of distributions supported ‘on the other side of the boundary’. The
primary justification for calling C~>°(X) the space of extendible distributions is:

PROPOSITION 6.3. If X is a compact manifold with boundary, then the space
CX(X°;Q) is dense in C*(X; Q) and hence the restriction map

(6.12) C—(X) < C~=(X°)

:D .
is injective, whereas the restriction map from (E.IU , Rx : C®(X) — C~(X),
s surjective.

PROOF. If V is a real vector field on X which is inward-pointing across the
boundary then
exp(sV): X — X

is a diffeomorphism with Fs(X) C X° for s > 0. Furthermore if ¢ € C*°(X) then
F*p — ¢ in C®°(X) as s — 0. The support property shows that F*¢ € C°(X°)
if s < 0and ¢ € C*(X). This shows the density of C2°(X°) in C>(X). Since
all topologies are uniform convergence of all deriga:tg) es in open sets. The same

argument applies to densities. The injectivity of (6.12) follows by duality.
On the other hand the surjectivity of (%.IU follows directly from the Hahn-
Banach theorem. (]

rop:D4 ~ _
PROOF OF PROPOSITION 6.2 For i € C~*°(X) the condition that suppa C X
is just
(6.13) a(p) =0V p e C® C (X\X;Q) CC®(X;Q).

:D10 . :D10
Certainly (E.IB holds if u € C~°(X) since ¢|x = 0. Conversely, if (e.

holds, then by continuity and the density of.Cé’o()N(\X; Q) in C=(X\X°; Q), what
follows from Proposition %.3, u vanishes on C*(X\ X°). O

It is sometimes useful to consider topologies on the spaces of distributions
C™*°(X) and C~*°(X). For example we may consider the weak topology. This is
given by all the seminorms u — ||{u, @)||, where ¢ is a test function.

LEM.MA 6.2. With respect to the weak topology, the subspace C2°(X°) is dense
in both C~*°(X) and C~*°(X).

6.4. Boundary Terms

To examine the precise relationship between the supported and extendible dis-
tributions consider the space of ‘boundary terms’.

(6.14) Cr(X) = {u € C~(X) ; supp(u) C aX} .

Here the support may be computed with respect to any extension, or intrinsically
on X. We may also define a map ‘cutting off’ at the boundary:

(6.15) C®(X) 3 ur u. € CT(X), us(p) = /Xucp VelC®X; Q).
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PRrROPOSITION 6.4. If X is a compact manifold with boundary then there is a
commutative diagram

(6.16) ¢ (X
(X

o

0—CpX(X) —=C®°(X) —=C(X) —=0

)
)

with the horizontal sequence exact.

PROOF. The commutativity of the triangle follows directly from the definitions.
The exactness of the horizontal sequence follows from the density of C°(X°; ) in
C®(X;Q). Indeed, this shows that v € Ca_;"(X) maps to 0 in C~*°(X) since
v(p) = 0V ¢ € C(X°;Q). Similarly, if u € C~°°(X) maps to zero in C~°°(X)
then u(p) = 0 for all ¢ € C°(X°;Q), so supp(u) N X° = 0. O

Note that both maps in (%.11%6) from C*°(X) into supported and extendible
distributions are injective. We regard the map into C~°°(X) as an identification.
In particular this is consistent with the action of differential operators. Thus P €
Diff™(X) acts on C*°(X) and then the smoothness of the coefficients of P amount
to the fact that it preserves C*°(X), as a subspace. The formal adjoint P* with
respect to the sesquilinear pairing for some smooth positive density, v

(6.17) (o) = /X oTv ¥ o, € CP(X)

acts on C®(X):
(6.18) (P*,9) = {pPy) V¢ €C¥(X), 9 €C¥(X), P": C¥(X) — C=(X).
However, P* € Diff™(X) is fixed by its action over X°. Thus we do have

(6.19) (P o, 9) = (p. PY) ¥ peC™(X), 9 €C™(X).

We define the action of P by duality. In view of the possibility of confusion,
we denote P the action on C~°°(X) and by P the action on C*°(X).
(6.20)
(Pu, @) = (u, P*p) YueC ®(X),peC®X), P:C°(X)— C>(X)

(Pu, @) = (u,P*¢) YuecC ™(X),peC?X), P:C°(X)— C(X).
BT7
It is of fundamental importance that (%_[9) does not hold for all p,9 € C®(X).

This failure is reflected in Green’s formula for the boundary terms, which appears
below as the ‘Jump formula’. This is a distributional formula for the difference

(6.21) Pu, — (Pu). € C°, u € C®(X) P € Diff " (X).

Recall that a product decomposition of C' C X near 90X is fixed by an inward
pointing vector field V. Let ¢ € C*(X) be a corresponding boundary defining
function, with Vx = 0 near 90X, with yy : C — 0X the projection onto the
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boundary from the product neighborhood C. Then Taylor’s formula for v € C*°(X)
becomes

1
(6.22) wne Y Xy (Viulor)at
2

It has the property that a finite sum
N

L.
uN = Qu — @Z EXV(Vkubx)l‘k
k=0 """

where ¢ = 1 near 0X, supp ¢ C C, satisfies

(6.23) P(uy)e = (Puy)., P € Dif"(X), m < N.
. BT9

Since (1 — p)u € C*°(X) also satisfies this identity, the difference in (%_21) can (of
course) only depend on the VFu|sx for k < m, in fact only for k < m.

Consider the Heaviside function 1. € C~°°(X), detained by cutting off the
identity function of the boundary. We define distributions
(6.24) oW (z) = Vit eCy, i >0.
Thus, 6 () = §(z) is a ‘Dirac delta function’ at the boundary. Clearly supp d(z) C
90X, so the same is true of 60)(z) for every j. If ¢» € C*°(0X) we define
(6.25) ¥ 60U (2) = p(Xp1) - 69 (z) € o (X).
This, by the support property of §¢), is independent of the cut off ¢ used to define
it.

PROPOSITION 6.5. For each P € Diff""(X) there are differential operators on
the boundary P;; € Diff """ 7"1(0X), i + j <m, i,5 > 0, such that
(6.26) Puc — (Pu)e = Y (P(Vilox) -89 (2), ¥ u € C¥(X),

0,J

and Pom—1 =1""0(P,dx) € C*(0X).

PrROOF. In the local product neighborhood C,
(6.27) p= Y nv'

0<i<m

where P, is a differential operator of the order at most m —1[, on X be depending on
x as a parameter. Thus the basic cases we need to analyze arise from the application
of V' to powers of x :

(6.28) ' (VIt1(aP). — (VIt1aP),)

0 l+p>j
= l+p<j.

1(j—p)! (G—p=1)
Bt (0P

Taking the Taylor sense of the Pj,
P~Y a'Py,
BT10 "
and applying P to (%‘2‘2) gives

(629)  Puo—(Pu)e= > (=1 (P (VFulo) 60717 M (a).
r+k<l
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BT15
This is of the form (%‘26) The only term with [ — 1 —r — k = m — 1 arises from
Il —m, k=r =0 so is the operator P,, at x = 0. This is just i ™o (P, dx). O

6.5. Sobolev spaces

As with C* functions we may define the standard (extendible) Sobolev spaces
by restriction or intrinsically. Thus, if X is an extension of a compact manifold
with boundary, X, the we can define

11.6.1998.253 | (6.30) H™(X)=H"™X)|X, VmecR; H"(X) C C~>(X).

That this is independent of the choice of X follows from the standard properties
of the Sobolev spaces, particularly their localizability and invariance under diffeo-
morphisms. The norm in H™(X) can be taken to be

11.6.1998.254 | (6.31) |w||sm = inf {HauHm(;();a e H™(X), u= ﬂx} .

A more intrinsic defintion of these spaces is discussed in the problems.
There are also supported Sobolev spaces,

11.6.1998.255 | (6.32) H™(X) = {u € H™(X);supp(u) C X} C C®(X).
Sobolev space of sections of any vector bundle can be defined similarly.

11.6.1998.256 PROPOSITION 6.6. For any m € R and any compact manifold with boundary
X, H™(X) is the dual of H-™(X;Q) with respect to the continuous extension of
the densely defined bilinear pairing

2}
92}
o
o
o
=
o
<
o
o
=1
B

(u,v) :/Xuv, ueC®(X), vel>®X;Q).

Both H™(X) and H™(X) are C®(X)-modules and for any vector bundle over
X, H"(X;E) = H™(X) @¢~(x) C*(X; E) and H"(X;E) = H™(X) @cw(x)
C®(X;E).

Essentially from the definition of the Sobolev spaces, any P € Diff k(X B, Es)
defines a continuous linear map

11.6.1998.257 | (6.33) P:H™(X;E)) — H™ (X, Ey).

We write the dual (to P* of course) action

11.6.1998.258 | (6.34) P:H™X;E) — H" *(X;E,).

These actions on Sobolev spaces are consistent with the corresponding actions on
distributions. Thus

C™X(XE) = JH™(X), C¥(X;E) = |H™(X),

C>*(X;BE) = JH™(X), C*(X;E) = H™(X).
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6.6. Dividing hypersurfaces

As already noted, the point of view we adopt for boundary problems is that
they provide a parametrization of the space of solutions of a differential opera-
tor on a space with boundary. In order to clearly indicate the method pioneered
by Calderon, we shall initially consider the restrictive context of an operator of
Dirac type on a compact manifold without boundary with an embedded separating
hypersurface.

Thus, suppose initially that D is an elliptic first order differential operator act-
ing between sections of two (complex) vector bundles Vi and V, over a compact
manifold without boundary, M. Suppose further that H C M is a dividing hyper-
surface. That is, H is an embedded hypersuface with oriented (i.e. trivial) normal
bundle and that M = M, U M_ where My are compact manifolds with boundary
which intersect in their common boundary, H. The convention here is that M is
on the positive side of H with respect to the orientation.

In fact we shall make a further analytic assumption, that

(6.35) D :C*(M;V;) — C*(M;V2) is an isomorphism.
As we already know, D is always Fredholm, so this im‘P}iﬁSI 1t91r§% .ti(ggological condi-

tion that the index vanish. However we only assume (B. o simplify the initial
discussion.
Our objective is to study the space of solutions on M. Thus consider the map

(6.36) {u€C®(My;Vi); Du=0in M2} 25 C®(H; Vi), buu = won, -

The idea is to use the boundary values to parameterize the solutions and we can
see immediately that this is possible.

‘ 11.4.1998.195 . J11.4.1998.196
LEMMA 6.3. The assumption (%.35) imples that map by in (%.365 18 1njective.

PRrROOF. Consider the form of D in local coordinates near a point of H. Let the
coordinates be x,¥y1,...,Yn—1 Where x is a local defining function for H and assume
that the coordinate patch is so small that V; and V4 are trivial over it. Then

n—1
D=ADy+ Y A;Dy + A’
j=1
where the A; and A’ are local smooth bundle maps from Vi to Va. In fact the
ellipticity of D implies that each of the A;’s is invertible. Thus the equation can
be written locally

n—1
Dyu=Bu, B=-Y A;'D, —A;'A'.
j=1
The differential operator B is tangent to H. By assumption u vanishes when re-
stricted to H so it follows that D,u also vanishes at H. Differentiating the equation
with respect to x, it follows that all derivatives of w vanish at H. This in turn
implies that the global section of Vi over M

- u in M+
u =
0 in M_

. . . . 11.4.1998.195 -
is smooth and satisfies Du = 0. Then assumption (%.35 implies that u = 0, so
u =0 in M, and by is injective. O
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. . 11.4.1998.195

In the proof of this Lemma we have used the strong assumption (%.35 - As
we show below, if it is assumed 'ﬁs‘tgaggtgh%sD is of Dirac type then the Lemma
remains true without assuming (|6.35). Now we can state the basic result in this
setting.

THEOREM 6.1. If M = M, U M_ is a compact manifold without boundary
with separating hypersurface H as described above and D € Diﬁ'l(M;Vl,Vg) s a
generalized Dirac operator then there is an element llc € WO(H; V), V = V4|H,
satisfying 12, = I and such that

(6.37) b : {u € C®(My;V1); Du=0} — HcC*(H;V)
is an isomorphism. The projection Il can be chosen so that
(6.38) by : {u € C®(M_;V1); Du=0} — (Id—II¢)C>®(H; V)

then ll¢ is uniquely determined and is called the Calderon projection.

11.4.1998.195
This result remains true for a general elliptic operator of lerS4t {)grg(éeligié (%.135
is assumed, and even in a slightly weakened form without (|6.35). Appropriate

modifications to the proofs below are consigned to problems.
For first order operators the jump formula discussed above takes the following
form.

LEMMA 6.4. Let D be an elliptic differential operator of first order on M, acting
between vector bundles Vi and Va. If u € C*°(M4; V1) satisfies Du =0 in M? then

(6.39) Du. = %al(D)(dx)(bHu) 5(x) € C~=(M: V).

Since the same result is true for M_, with an obvious change of sign, D defines
a linear operator

(6.40) D:{ue L' (M;Vi);uy =ulMy € C®(My; Vi), Duy =0in M3} —
1
gU(D)(dx)(bHu+ —bgu_)-d(x) € C*(H;Va) - d(x).
To define the Calderon projection we shall use the ‘inverse’ of this result.

11.4,1998.195
11 P RQBORITION 6.7. If D € Diff! (M; V1, V5) is elliptic and satisfies (L(')’.BS) then
(%.ZIU 15 an 1somorphism, with inverse Ip, and

(6.41) Mev =by <ID%U(D)(CZI)U <0(x) ) , veClC>®(H; W),
+

, . 29.3.1998.187
satisfies the conditions of Theorem 16.1.

11.4.1998.205 | . . .
PrROOF. Observe that the map (%.4” 1s injective, since its null space consists
of solutions of Du = 0 globally on M; such a solution must be smooth by elliptic
regularity and hence must \ﬁnjlslfglgéf ng assumed invertibility of D. Thus the main

task is to show that D in (%.ZIU 1s surjective.

Since D is elliptic and, by assumption, an isomorphism on C* sections QY6 1998 205
M it is also an isomorphism on distributional sections. Thus the inverse of (%.4”
must be given by D~'. To prove the surjectivity it is enough to show that
(6.42) D7 (w-6(x))| My € C®(My; Vi) Y w € C°(H; Va).

There can be no singular terms supported on H since w-§(x) € H~*(M;Vz) implies
that w = D~ 1 (w - 6(z)) € L*(M; V).
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Now, recalling that D=1 € W=1(M;Va, V), certainly u is C* away from H.
At any point of H outside the support of w, u is also smooth. Since we may
decompose w using a partition of unity, it suffices to suppose that w has support in
a small coordinate patch, over which both V7 and V5 are trivial and to show that
u is smooth ‘up to H from both sides’ in the local coordinate patch. Discarding
smoothing terms from D! we may therefore replace D~! by any local parametrix
Q@ for D and work in local coordinates and with components:

(6.43)
Qij(w;i(y) - 6(x)) = (2m) ™" / =N+ g, (2 oy, € n)w(y' )8 (x")da' dy dedn.

For a general pseudodifferential operator, even of order —1, the result we are seeking
is not true. We must use special properties of the symbol of @, that is D!,

|S.Rational.symbols 6.7. Rational symbols

LEMMA 6.5. The left-reduced symbol of any local parametriz for a generalized

Dirac operator has an expansion of the form

(6.44)

qi; (2 Zg O) "2 i 1(2,¢) with pij; a polynomial of degree 31 — 2 in (;

) ) . |13.4.1998.210
here g(z,() is the metric in local coordinates; each of the terms in (%mfore
a symbol of order —I.

PRrROOF. This follows by an inductive arument, of a now familiar type. First,
the assumption that D is a generalized Dirac operator means that its symbol
o1(D)(z,¢) has inverse g(z,() to1(D)*(z,(); this is the princiapl symbol of Q.
Using Leibniz’ formula one concludes that for any polynomial r; of degree j

9, (9(2,0) 72 r(2,0)) = 9(2. Q)27 411(2,€)

where 711 has degree (at most) j+ 1. Using this result repeatedly, and proceeding
by induction, we may suppose that ¢ = q;, + ¢;,; where ¢;, has an expansion up
to order k, and so may be taken to be such a sum, and g, , is of order at most
—k — 1. The composition formula for left-reduced symbols then shows that

Ul(D)QZH = 972ka+1 mod SF~!

where gi1 is a polynomial of degree at most 3k. Inverting o1 (D)(() as at the initial
step then shows that ¢;,, is of the desired form, g 2Ly with rpyq of degree
3k+1=3(k+1)—2, modulo terms of lower order. This completes the proof of

the lemma. (]
11.4.1998.204

With this form for %sydggagz)é)f @ we proceed to the proof of Proposition % 7.

That is, we consider (6. ince we only need to consider each term, we shall

drop the indicies. A term of low order in the amplitude gy gives an operator with
kernel in CV~?. Such a kernel gives an operator

C®(H; Va) — CN~I(M; V1)
with kernel in CV~?. The result we want will therefore follow if e, s}iié)gxg B{}gt each

term in the expansion of the symbol ¢ gives an operator as in (LG.ZIZF
To be more precise, we can assume that the amplitude g is of the form

g=(1-¢)g "¢
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where ¢’ is a polynomial of degree 3l — 2 and ¢ = ¢(£,n) is a function of compact
support which is identically one near the origin. The cutoff function is to remove
the singularity at ¢ = (£,7) = 0. Using continuity in the symbol topology the
integrals in 2’ and y’ can be carried out. By assumption w € C°(R"~1), so the
resulting integral is absolutely convergent in 7. If [ > 1 it is absolutely convergent
in £ as well, so becomes

Qw(y) - d(x)) = (27T)_”/em£+iy'"q(:v, y, & n)w(n)dédn.

In |[¢] > 1 the amplitude is a rational function of £, decaying quadratically as
& — oo. If we assume that x > 0 then the exponential factor is bounded in the half
plane ¢ > 0. This means that the limit as R — oo over the integral in ¢ > 0
over the semicircle || = R tends to zero, and does so with uniform rapid decrease
in 7. Cauchy’s theorem shows that, for R > 1 the real integral in £ can be replaced
by the contour integral over vy(R), which is, forR >> |n| given by the real interval
[ R, R] together with the semicircle of radius R in the upper half plane. If || > 1
the integrand is meromorphic in the upper half plane with a possible pole at the
singular point g(z,y,&,n) = 0; this is at the point £ = ir%(gc,y, 1) where r(z,y,n)
is a positive-definite quadratic form in 1. Again applying Cauchy’s theorem

Qw(y)s(x) = (2m) "+ / e @i (g . i (n)dn

where ¢’ is a symbol of order —k + 1 in 7.

1
The product e*"* (*¥M¢/(z,y, n) is uniformly a symbol of order —k+1inz > 1,
with = derivatives of order p being uniformly symbols of order —k + 1+ p. It follows
from the properties of pseudodifferential operators that Q(w - é(x)) is a smooth
function in x > 0 with all derivatives locally uniformly bounded as z | 0.

11.4.1998.204 29.3.1998.187
6.8. Proofs of Proposition }6.7 and Theorem }6.1

13.4.1998.207
This completes the proof of (%m similar argument applies in x < 0,
ﬁif.lhﬁi%%%% deformation into the lower half plane. Thus we have shown that
)15, 4somorphism which is the first half of the statement of Proposition
ermore we see that the limiting value from above is a pseudodifferential
operator on H :

(6.45) Qow = 11?813—1(@0 -8(x)), Qo € WO(H; Va, V7).

<

—~
[N

This in turn implies that I, defined by (%%ement of WO(H;V7), since it
is Qo o 10(D)(dx).

Next we check that Il is a projection, i.e. that ch = Ilg. If w = I,
v e C®(H; Vi), then w = byu, u :{Pi‘{ 9%) cggc)v|M+, sou € C®(My; V1) satisfies
Du = 0 in M$. In particular, by (%‘WW: 101 (D)(dz)w - §(z), which means
that w = Hcw so 112, = JLhisgalsg shows that the range of Il is precisely the
range of by as stﬁtieg} ag:%g‘)._'rheisame argument shows that this choice of the

projection gives (| (]

6.9. Inverses

Still for the case of a generalized Dirac operator on a compact manifold with
dividing hypersurface, consider what we have shown. The operator D defines a
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11.4.1998.203
map in (mmﬂﬁwerse
(6.46) Ip:{veC*(H;V);llcv=v} — {ueC®(My;V1); Du=0in M}

This operator is the ‘Poisson’ operator for the canonical boundary condition given
by the Calderon operator, that is u = Ipv is the unique solution of

(6.47) Du=0in My, ue C®(M4; Vi), ebgu = v.

We could discuss the regularity properties of I'p but we shall postpone this until
after we have treated the ‘one-sided’ case of a genuine boundary problem.

As well as I'p we have a natural right inverse for the operator D as a map from
C>®(M4; V1) to C*°(M_; Va). Namely

LEMMA 6.6. If f € C*°(My;Va) then u = D7'(f.)|a, € C®(M4;V4) and the
map Rp : f —— w is a right inverse for D, i.e. Do Rp =1d.

Proor. Certainly D(D~(f.) = fe, so u = D™ (fe)|am, € C°°(M4; V1) sat-
ifies Du = f in the sense of extendible distributions. Since f € C>®(My;Vs) we
can solve the problem Du = f in the sense of Taylor series at H, with the con-
stant term freely prescibable. Using Borel’s lemma, let v’ € C°°(M4; V) have the
appropriate Taylor series, with bgu’ = 0.. Then D(ul) — f. = g € C¥(M +. Va).
Thus u” = D~tg € C*°(M;V;). Since D(u’ — ") = f., the uniqueness of solutions
implies that u = (u' —u”)|p, € C®(My; V1), O

Of course Rp cannot be a two-sided inverse to D since it has a large null space,
described by Ip.

29.3.1998.187
PROBLEM 6.2. Show that, for D as in Theorem k’)’.l it feC®(Ms;Va)and v €
C*®(H; V1) there exists a unique u € C*°(M; V3) such that Du = f in C*=°(M; V3)
and byu = Icw.

6.10. Smoothing operators

The properties of smoothing operators on a compact manifold with boundary
are essentially the same as in the boundaryless case. Rather than simply point to
the earlier discussion we briefly repeat it here, but in an abstract setting.

Let H be a separable Hilbert space. In the present case this would be L?(X)
or L?(X; E) for some vector bundle over X, or some space H™(X; E) of Sobolev
sections. Let B = B(H) be the algebra of bounded operators on H and K = K(H)
the ideal of compact operators. Where necessary the norm on B will be written
I llz; K is a closed subspace of B which is the closure of the ideal F = F(H) of
finite rank bounded operators.

We will consider a subspace J = J(H) C B with a stronger topology. Thus we
suppose that J is a Fréchet algebra. That is, it is a Fréchet space with countably
many norms || ||, such that for each k there exists k' and Cj with

In particular of course we are supposing that J is a subalgebra (but not an ideal)
in B. To make it a topological *-subalgebra we suppose that

(6.49) [Alls < CllAlx YVAET, x: T — J.
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In fact we may suppose that £ = 0 by renumbering the norms. The third condition
we impose on J implies that it is a subalgebra of K, namely we insist that

(6.50) FNJ is dense in J,

in the Fréchet topology. Finally, we demand, in place of the ideal property, that J
be a bi-ideal in B (also called a ‘corner’) that is,

(651) Al,AQEJ,BGB:>AlBA2€j,
YV k 3 k' such that ||AlBA2||k < C||A1||k/||B||5||A2||k/ .

PROPOSITION 6.8. The space of operators with smooth éfiﬁmel%ﬁgting on sec-
tions of a vector bundle over a compact manifold satisfies (%7[8) —~(6.52) with H =
H™(X; E) for any vector bundle E.

PROOF. The smoothing operators on sections of a bundle E can be written as
integral operators

(6.52) Au(z) = /EA(x,y)u(y), Az, y) € C®(X?; Hom(E) ® Qr).

Thus J = C°°(X?; Hom(E) ® Qr) and we make this identification topological. The
norms are the C* norms. If P;, ..., pyem) is a basis, on C*°(X?), for the differential
operators of order m on Hom(F) ® Q, then we may take

(6.53) [Allm = sup || P; Al
J

for some inner products on the bundles. In fact Hom(E) = 7} E @ nx E* from it
which folloys easily that this is a basis Pj = P;, ® Pj r decomposing as products.
From this (6.48) follows easily since
(6.54) [AB|lm = sup [[(PiLA) - (P.rB)lloo[|AB||L~ < C||Al| o< | Bl L=

’ 507
by the compactneg of X. From this (%_53) follows with k = 0.

The density (6.50) is the density of the finite tensor product C*(X; E) @ C*
(X;E*®Qyp) in C*°(X?% Hom(E) ® Q). This follows fro cbhe boundaryless case
by doubling (or directly). Similarly the bi-ideal Conditionn&‘b@) can be seen from
the regularity of the kernel. A more satisfying argument using distribution theory
follows from the next result.

t

PROPOSITION 6.9. An operator A : C®(X;E) — C~°°(X; F) is a smoothing
operator if and only if it extends by continuity to C~*°(X; E) and then has range
in C®(X; F) — C~>®(X; F).

ProOF. If A has the stated mapping property then compose with a Seeley
extension operator, then FA = A is a continuous linear map

A:C®(X;E)— C®(X:F),
for an extension of F' to F over the double X. Localizing in the domain to trivialize
E and testing with a moving delta function we recover the kernel of A as

A(z,y) = A- 5, € C®(X; F).

Thus it follows that A € C>°(X x X;Hom(E,F) ® Q). The converse is more
obvious.
U
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, . . S0 . jS04 .
Returning to the general case of a bi-ideal as in (%7{8)7( .52) we may consider

the invertibility of Id+A, A € J.

S01 . S04
ProrosiTION 6.10. If A € J, satisfying (%7[8)7(%752), then Id +A has a gen-
eralized inverse of the form Id+B, B € J, with

AB=1d—ng, BA=1d—n, e INF
both finite rank self-adjoint projections.

PROOF. Suppose first that A € J and ||A||g < 1. Then Id +A is invertible in
B with inverse Id + B € B,

(6.55) B=Y) (-1)/47.

j=1
Not only does this Neumann series converge in 3 but also in J since for each k
(6.56) 147]], < Cell Al | A7 | Al < CrllAll 2, 5> 2.

Thus B € J, since by assumption J is complete (being a Fréchet space). In this
case Id +B € B is the unique two-sided inverse. <03

For general A € J we use the assumed approximability in (%_50) Then A =
A+ A" when A" € FNJ and ||A"||g < C||A”||x < 1 by appropriate choice. It
follows that Id +B” = (Id +A”) =1 is the inverse for Id +A” and hence a parameterix
for Id + A:

(6.57) (Id+B")(Id+A) = Id+A +B"A
(Id+A)Id+B") = I1d+A + A'B”
with both ‘error’ terms in F N 7. O

6.11. Left and right parametrices

Suppose that H; and Hs are Hilbert spaces and A : H; — Hs is a bounded
linear operator between them. Let J1 C B(H1) and J2 C B(H2) be bi-ideals as in
the previous section. A left parametrix for A, modulo J1, is a bounded linear map
B, : Ho — 'Hy such that

(6.58) BroA=1Id+Jy, J. € Ji.

Similarly a right parametrix for A, modulo J5 is a bounded linear map Bg : Ho —
‘H; such that

(659) AoBgr =Id+Jgr, Jr € Jo.

PRrROPOSITION 6.11. If a bounded linear oper o A oltt — H2 has a left
parametrizc By, modulo a bi-ideal Jv, satisfying (6. 8)7(%752), then A has closed
range, null space of finite dimension and there is a generalized left inverse, differing
from the original left parametriz by a term in J1, such that

(6.60) BroA=Id—ry, 7, € /iNF,

with 7y, the self-adjoint projection onto the null space of A.
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ProOOF. Applying Proposition Egli'& Id +J; has a generalized inverse Id +J,
J € Ji, such that (Id+J)Id+J) = (Id—n}), ;. € Ji N F. Replacing By, by
B = (Id +J)By, gives a new left parametrix with error term 7} € J1 N F. The
null space of A is contained in the null space of B} o A and hence in the range
of Fp; thus it is finite dimensional. Furthermore the self-dajoint projection my,
onto the null space is a subprojection of 77, so is also an element of J; N F.
The range of A is closed since it has finite codimension in Ran(A(Id —=)) and
if f, € Ran(A(ld —7r)) = Aup, u, = (Id—ng)uy,, converges to f € Ha, then
un = By, fn, converges to u € Hy with A(Id —mp)u = f. O

PROPOSITION 6.12. If a bounded linear operalg 1 — Ho has a right
parametric Br modulo a bi-ideal Ja, satisfying |67[8 |6_52 then it has closed
range of finite codimension and there is a generalized right inverse, differing from
the original Tight parametriz by a term in Jo, such that

(661) AoBr=Id—ng, tr € JoNF,
with Id —mg the self-adjoint projection onto the range space of A.

PROOF. The operator Id +Jg has, by Proposition %.gll'ﬁ, a generalized inverse
Id+J with J € Ji. Thus Bf, = Br o (Id+J) is a right parametrix with error term
Id -7, 7z € Ji N F being a self-adjoint projection. Thus the range of A contains
the range of Id —7; and is therefore closed with a finite-dimensional complement.
Furthemore the self-adjoint projection onto the range of A is of the form Id —7wpg
where g is a subprojection of 7%, so also in J3 N F. (I

The two cases, of an operator with a right or a left parametrix are sometimes
combined in the term ‘semi-Fredholm.” Thus an operator A : H1 — Ho is semi-
Fredholm if it has closed range and either the null space or the orthocomplement
to the range is finite dimensional. The existence of a right or left parametrix,
modulo the ideal of compact operators, is a necessary and sufficient condition for
an operator to be semi-Fredholm.

6.12. Right inverse

In treating the ‘general’ case of an elliptic operator on compact manifold
with boyndary we shall start by constructing an analogue of the right inverse in
Lemma % B. So now we assume that D € Diff! (X;V1,V3) is an operator of Dirac
type on a compact manifold with boundary.

To construct a right inverse for D we follow the procedure in the boundaryless
case. That is we use the construction of a pseudodifferential parametrix. In order
to make this possible we need to extend M and D ‘across the boundary.” This
is certainly possible for X, since we may double it to a compact manifold without
boundary, 2X. Then there is not obstruction to extending D ‘a little way’ across the
boundary. We shall denote by M an open extension of X (of the same dimension)
so X C M is a compact subset and by D an extension of Dirac type to M.

The extension of D to D, being elliptic, has a parametrix Q. Consider the map

(6.62) Q' L*(X;Va) — HYX; V1), Q'f = Qfe|X

where f. is the extension of f to be zero outside X. Then Q' is a right parametrix,
DQ' = Id+E where E is an operator on L?(X;V,) with smooth kernel on X?2.
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8.6.1998.246 -
Following Proposition k’)’.lZ, D has a generalized right inverse Q" = Q'(Id+E’) up
to finite rank smoothing and

(6.63) D: H'(X; Vi) e L*(X;Va)

has closed range with a finite dimensional complement in C*°(X; V3).
28.4.1998.215

PROPOSITION 6.13. The map (6.63) maps C*=(X; V) to C(X; V1), it is sur-

jective if and only if the only solution of D*u = 0, u € COO(X;VQ) is the trivial

solution.
ProOF. The regulagjty statempent, that Q'C>(X;V) C C(X; V1) follows as
in the proof of Lemma %:6: Thus @' maps C®(X; V1) to C®(X;Va) if and only

if any paramatrix Q' does so. Given f € C*®(X;Vs) we may solve Du' = f in
Taylor series at the boundary, with v’ € C*(X;V;) satisfying bgu’ = 0. Then
D(u'). — f € C®(X;Va) so it follows that Q'(f.)|x € C®(X;V1).

Certal? Y, 48y sofution of D*u = 0 with u € C=(X;Va) is grihogonal to the
range of (6.63) so the condition is necessary. So, suppose that (%TGBWurjec—
tive. Let f € L?(X;Vs) be in the orthocomplement to the range. Then Green’s
formula gives the pairing with any smooth section

(Dv, f)x = (Dv, fe)g = (0,D"fe) ¢ = 0.
This means that D*f. = 0 in X, that is as a supported distribution. Thus, f €
C>®(X; Vo) satisfies D* f = 0. O

As noted above we will proceed under the assumption that D*f has no such
non-trivial solutions in C*>°(X; V2). This condition is discussed in the next section.

THEOREM 6.2. If unique continuation holds for D* then D has a right inverse
(6.64) Q:C™(X : V) — C¥(X; V1), DQ =1d

where Q = Q' + E, Q'f = Qf|X where Q is a parametriz for an extension of D
across the boundary and E is a smoothing operator on X.

28.4.1998.215

PROOF. As just noted, unique continuation for D* implies that D in (%_6377
is surjective. Since the parametrix maps C*°(X;Vs) to C*(X;Vi), D must be
surjective as a map from C*(X;V7) to C*°(X; V). The parametrix modulo finite
rank operators can therefore be corrected to a right inverse for D by the addition
of a smoothing operator of finite rank. O

S.Boundary.map 6.13. Boundary map

The map b from C®(X; E) to C*(0X; E) is well defined, and hence is well
defined on the space of smooth solutions of D. We wish to show that it has closed
range. To do so we shall extend the defintion to the space of square-integrable
solutions. For any s € R set

(6.65) N*(D) = {u € H*(X; E); Du = 0}

Of course the equation Du = 0 is to hold in the sense of extendible distributions,
which just means in the interior of X. Thus AN'*°(D) is the space of solutions of D
smooth up to the boundary.
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LEMMA 6.7. If u € N°(D) then
(6.66) Du,=v-6(z), ve H 2(0X; E)

defines an injective bounded map b : N°(D) — H~2(8X; E) by b(u) = ic(D)(dz)v
which is an extension of b : N°°(D) — C>(0X; E) defined by restriction to the
boundary.

PRrOOF. Certainly Du, C C3%(X; E) has support in the boundary, so is a sum
of products in any product decomposition of X near 9.X,

D(u.) = Zvj 69 ().

Since D is a first order operator and u. € LQ(X';E)7 for any local extension,
Du. € H'(X; E). Localizing so that E is trivial and the localized v; have compact
supports this means that

-1~ j n
(6.67) L+ [0+ [€%) 7205’ € LAR™).
If v; # 0 for sqme jo= O $his is not true even in some region |n| < C. Thus v; =0
(LG.'BG' ; must h

for 7 > 0 an old. Furthermore integration in £ gives

/R(H Il + [¢?) 7 de = (1 + [n*) "%, ¢> 0, so
(6.68)
| skt P <o

Thus v € H-2(0X; E) and b is well defined. The jumps formula shows it to
be an extension of b. The injectivity of b follows from the assumed uniqueness of
solutions to Du =0 in X. (]

6.6.1998.234
Notice that (%.68 is actually reversible. That is if v € H~2(0X;E) then
v-é(x) € H ~Y(X; E). This is the basis of the construction of a left parametrix for
b, which then shows its range to be closed.

- 6.6.1998.231

LEMMA 6.8. The boundary map b in Lemma 6.7 has a continuous left paramet-
riz Ip : H-2(0X; E) — NO(D), Ip o b = Id+G, where G has smooth kernel on
X x 0X, and the range of b is therefore a closed subspace of H_%(GX; E).

PROOF. The parametrix I; Giseg'ggg éisifectly by the parametrix Q for D, and
extension to X. Applying @ to (|6.'66. ; gives

— — -1
(6.69) u=Ipv+ Ru, Ip=RxoQo ;a(D)(dx)

H~2(0X; E) to L2(X; E)

with R having smooth kernel. Since f; is bourlsd%dlggor%4
i e range of bis closed. [

8.
and R is smoothing it follows from Proposition . a

6.14. Calderon projector

) - 6.6.1998.231 1
Having shown that the range of b in Lemma 6.7 1s closed in H~ 2 (0X; E) we

now deduce that there is a pseudodifferential projection onto it. The discussion
above of the boundary values of the Q(w - §(x)) is local, and so applies just as well
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in the p%e_seq%glgl.%% general case. Since this is just the definition of the map IAB in

Lemma 6.8, we conclude directly that

(6.70) Py = 1}1(@;@, v E€C®(OXE)
defines P € VY (0X; E).
6.6.1998.240

LEMMA 6.9. If P is defined by (6. en P2 — P € U=°(0X; E) and there
exist A, B € U~>°(0X; E) such that P —Id = A on Ran(b) and Ran(P + B) C

Ran(b).

PRrROOF. That P? — P € U~°(9X; E) follows, as above, from the fact that Q
is a two-sided parametrix on distributions supported in X. Similarly we may use
the right inverse of D to construct B. If v € H~2(8X; E) then by construction,

DIpv = R'v
where R’ has a smooth kernel on X x dX. Applying the right inverse @ it follows
that v’ = Ipv—(QoR')v € N°(D), where Qo R’ also has smooth kernel on X x 0.X.

Thus b(u') = (P + B)v € Ran(b) where B has kernel arising from the restriction of
the kernel of Ao R’ to 0X x X, so B € U~>(0X; E). O

4.6.1998.227 -
Now we may apply Proposition 5.6 with 7 = Ran(b) and s = —3 to show the
existence of a Calderon projector.

PROPOSITION 6.14. If D is a generalized Dirac operator on X then there is an
element Il € V(90X ; E) such that 1% = Il, Ra (Hedss ﬁgn(?)) on H™2(0X; E),
Il — P € U~>°(0X; E) where P is defined by (%7%&11(1‘[0) = Ran(b) on
C®(0X; E).

PROOF. The existence of psuedodifferential projection, I, differing from P

by a smoothing operator aﬁlc% with range Ran(b) is a direct consequence of the

application of Proposition ESTGf_wlgtif%)_Qﬁ'ows that Ran(b) N C*(0X; E) is dense in
Ran(b) in the topology of H ™% (0X; E). Furthermore, if follows that if v € Ran(b)N
C®(dX; E) then u € N°(D) such that bu = v is actually in C*(X; E), i.e. it is in
N>°(D). Thus the range of b is just Ran(b) N C>°(dX; E) so Ran(b) is the range of
Il¢ acting on C*(0X; E). O

In particular b is just the continuous extension of b from N (D) to N°(D), of
which it is a dense subset. Thus we no longer distinguish between these two maps
and set b = b.

6.15. Poisson operator
6.16. Unique continuation
6.17. Boundary regularity
6.18. Pseudodifferential boundary conditions

The discussion above shows that for any operator of Dirac type the ‘Calderon
realization’ of D,

1
(6.71) De : {u € H*(X; Ey);Tlcbu = 0} — H* Y (X; Ey), s> 3
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is an isomorphism. 8.4 1998 .1

We may replace the Calderon projector in (16 7T) by a more general projection
I1, acting on C*°(0X, V1), and consider the map
(6.72) Dy : {u € C®(X;V1);IIbu = 0} — C=(X; Va).

In general this map will not be particularly well-behaved. We will be interested in
the case that I € ¥°(0X;V7) is a pseudodifferential projection. Then a condition
for the map Dy to be Fredholm can be given purely in terms of the relationship
between IT and the (any) Calderon projector Ilc.

THEOREM 6.3. If D € Diff'(X; Ey, Es) is of Dirac type and Pi € ¥°(0X; E))
is a projection then the map
(6.73) Dii : {u € C®(X; E1); M(ugx) = 0} = C®(X; Ey)
is Fredholm if and only if
(6.74) ITollc : Ran(Ilg) NC*°(0Vh) — Ran(Il) NC*°(0E1) is Fredholm

and then %e.sz:qgfgg.iooDn is equal to the relative index of ll¢ and II, that is the

index of (6.

Below we give a symbolic condition equivalent which implies the Fredholm con-
ifion, o 8§ gnough regularity conditions are imposed on the generalized inverse to

en this symbolic is also necessary.

PROOF. The null space of Dy is easily analysed. Indeed Du = 0 implies that
u € N, so the null space is isomorphic to its image under the boundary map:

{u € N;IIbu = 0} R {vel;Ilv=0}.
Since C is the range of Il this gives the isomorphism
(6.75) Nul(Dpr) =~ Nul (IT o II¢ : ¢ — Ran(II)) .

In particular, the null space is finite dimensional if and only if the null space of
II o I1¢ is finite dimensional.
Similarly, consider the range of Dy. We construct a map

(6.76) 7:C®(0X; V1) — C®(X;Va)/ Ran(Dn).

Indeed each v € C*>°(0X; V1) is the boundary value of some u € C®°(X : V1), let
7(v) be he class of DU. This is well-defined since any other extension u’ is such
that b(u —u') = 0, so D(u —u') € Ran(Dy). Furthermore, 7 is surjective, since D¢
is surjective. Consider the null space of 7. This certainly contains the null space of
II. Thus consider the quotient map

7 : Ran(Il) — C*°(X : V2)/ Ran(Dn),
which is still surjective. Then 7(v) = 0 if and only if there exists v’ € C such that
II(v — v") = 0. That is, 7(v) = 0 if and only if II(v) = IT o II¢. This shows that the
finer quotient map
(6.77) 7’ Ran(IT)/ Ran(IT o Tl¢) «+— C*°(X;V2)/ Ran(Dy)

is an isomorphism. This shows that the range is closed and of finite codimension if
II o IT¢ is Fredholm.
The converse follows by reversing these arguments. O
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6.19. Gluing

Returning to the case of a compact manifold without boundary, M, with a
dividing hypersurface H we can now give a gluing result for the index.

THEOREM 6.4. If D € Diffl(M;El,Eg) is of Dirac type and M = My N My is
the union of two manifolds with boundary intersecting in their common boundary
8M1 n 8M2 = H then

(678) Ind(D) = Ind(Hlyc, Id —Hgyc) = Ind(HQ,C, Id _Hl,C)
where I1; ¢, ¢ = 1,2, are the Calderon projections for D acting over M;.
6.20. Local boundary conditions
6.21. Absolute and relative Hodge cohomology

6.22. Transmission condition
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C.Wave.kernel

16.1

16.2

16.4

16.5

CHAPTER 8

The wave kernel

Let us return to the subject of “good distributions” as exemplified by Dirac
delta ‘functions’ and the Schwartz kernels of pseudodifferential operators. In fact
we shall associate a space of “conormal distributions” with any submanifold of a
manifold.

Thus let X be a C°° manifold and Y C X a closed embedded submanifold —
we can easily drop the assumption that Y is closed and even replace embedded
by immersed, but let’s treat the simplest case first! To say that Y is embedded
means that each § € Y has a coordinate neighbourhood U, in X, with coordinate
T1,...,Ty in terms of which g = 0 and

(8.1) YNU={z,=- =z =0}.
We want to define
(8.2) I*(X,Y;Q%) C C~®(X;Q2)

to consist of distributions which are singular only at ¥ and small “along Y.”

So if uw € C;°°(U) then in local coordinates (lSTT we can identify v with v’ €
C.°°(R™) so v’ € H(R™) for some s € R. To say that u is ‘smooth along Y’ means
we want to have

(8.3) DL Db € HY(RY) Yy, Do

Thk+1

and a fixed s, independent of [ (but just possibly (different from the initial s);
of course we can take s = s’. Now conditions like (l8_37 do not limit the singular
support of u’ at alll However we can add a requirement that multiplication by a
function which vanishes on Y makes u’ smooth, by one degree, i.e.

(8.4) bt e HTPIR™) pl = py + - + pr
This last condition implies
(8.5) DIt .. Dt b € HS(R™) if |q] < |pl.

Consider 1\@/1@‘5 happens if we rea Tange the order of differentiation and multi-
plication in (E.Si. Since we demand (l85 for all p,q with |q| < |p| we can show in

tial that

(8.6) Vigl <lpl <L

(8.7) =
L

(8.8) [ De)ue H'®R™) ¥ pairs, (jir,) € (1,.... k)%
=1

163
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16.3 16.6
Of course we can combine E 3) and (lS‘S’T and demand
Ly

HD:DL H ‘/'C]'LD‘gi)u/ € Hcs(Rn)(]Jvél) € (1, - 'ﬂk)g

(8.9) u

VLlaLQp’L (k+1 )

PrOBLEM 8.1. Show that lS_'JT implies ( lS_XT and l8717

16.7
The point about (lS_QT is that it is easy to interpret in a coordinate indepen-
dent way. Notice that putting C*° coefficients in front of all the terms makes no
difference.

LEMMA 8.1. The space of all C*° wvector fields on R™ tangent to the submanifold

{z1 =+ =z = 0} is spanning over C=(R™) by
(810) :L‘iDj, Dp 1,7 <k,p>k.
PRrROOF. A C*° vector field is just a sum
(8.11) V=> a;Dj+ > byD,.
1<k p>k
Notice that the D, for p > k, are tangent to {z1 = --- = z = 0}, so we can
assume b, = 0. Tangency is then given by the condition
(8.12) Vz)yi=0and {z1=-- =2z, =0},i=1,...,h

ie a; =) ajore,1 < j < h. Thus
i=1

(8.13) V=> ajmD;
=1
16.9
which proves (IBTU) O
16.7
This allows us to write (%_97 in the compact form
(8.14) V(R", Y;)Pu' C HS(R™) Y p

where V(R™,Y%) is just the space of all C* vector fields tangent to Y = {x1 =
= xj, = 0}. Of course the local coordinate just reduce vector fields tangent to ¥’
to vector fields tangent to Yy so the invariant version of (% lZI% is

(8.15) V(X,Y)Pu C H*(X;Q2) V

16.1
To interpret (E I5) we only need recall the (Lie) action of vector fields on half-
densities. First for densities: The formal transpose of V' is —V, so set

(8.16) VoY) = o(=V)
if € C®(X;Q),¢ € C®(X). On R™ then becomes

[rvew=-[o-ve
- [ oo da

8.17
(547 =/WM@+®@¢M

(5\/ = Z Diai V= EaiDi.
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i.e.

16.13| (8.18) Ly (¢ldx|) = (V@)|dz| + dv .
Given the tensorial properties of density, set

16.14] (8.19) Ly (¢|dz|") = V¢ldz|" + toy¢.

This corresponds to the natural trivialization in local coordinates.
16.15 DEFINITION 8.1. If Y C X is a closed embedded submanifold then

IH* (X,Y;Q%) = {uen (X;Q%) satisfying (11)}

16.16] (8.20) r(x,vief) = Jrme (x,v:0f).

Clearly
(8.21) weI'(X,Y;0%) = u | X\Y € C™ (X\Y;Q%)
and
(8.22) N (xv;0h) =c= (x501).

Let us try to understand these distributions in some detail! To do so we start with
a very simple case, namely Y = {p} is a point; so we only have one coordinate
system. So construct p =0 € R".

uel! (R",{O};Q%) — u = u/|dz|? when

16.19| (8.23)
D%/ € Hi(R™), s fixed V |a| > |3).

Again by a simple commutative argument this is equivalent to

(8.24) Dz’ € HX(R™) ¥ |a] = |6
. 16.20

We can take the Fourier transform of (%.24 and get

(8.25) P Dgi’ € ()T LXR™) Y |al > |4].
. . . 16.21

In this form we can just replace £7 by (£)I81, i.e. (%.25 just says

(8.26) Dga/'(¢) € (&)~ PIL2R™) V o
Notice that this is very similar to a symbol estimate, which would say
(8.27) Dgd/ (€) € ()M 1PIL=®(R™) V¥ a.
16.2 16.2

16, JAEMMA 8.2.16T e estimate (lS_%% implies (%.27 for anym > —s—%; conversely

(8.Z7) implies (8.26) for any s < —m — 3.

16.2 16.2
PROOF. Let’s start with the simple derivative, (%.27 implies (lB_ZG% This really
reduces to the case a = 0. Thus

(8.28) ©MLER") C L*R") = M < —g

is the inequality

(5.20) (/ |u|2dg)% <sup() 1 | <€>2Md£>%
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and
2M 2\ M . n
(8.30) () dg:/(1+|g|) € < oo iff M < 2.
16.2 16.2
To get (%.27 we just show that (%.27 implies
(8.31) (€)*HelDgal € ()™ L® C L¥if m+ s < —g.
16.2
The converse is a little trickier. To really see what is going gn we can reduce (k%%
to a one dimensional version. Of course, near & = 0, (8.26) just says 4’ is C*, so
we can assume that |¢] > 1 on supp @’ and introduce polar coordinates:
(8.32) E=tw, we St > 1.
Then
16.2 16.2
Ezercise 2. Show that (lB_ZG% (or maybe better, (%.255) implies that
(8.33) DEPU (tw) € t7* FLA(RT x S"~ L t" " Ldtdw) V k
for any C> differential operator on S™~1!. O

16.2
In particular we can take P to be elliptic of any order, so (%.33 actually implies

(8.34) sup DFPa(t,w) € t*"FL2(R*; " Ldt)
or, changing the meaning to dt,
(8.35) sup |DFPa(t,w)| € t—*7F "5 L2 (R*, dt) .
wesSn—1

So we ari%igithe one dimensional case, with s replaced by s + an Now we can

rewrite ( as
-1
16.30] (8.36 DAIDFPG e 'L, Y kr —q=—5 —k— = 1,
t
Now, observe the simple case:
1
(8.37) f:ot<1,thef“L2’:>feL°°1f7~<—5
since
¢ i t 3
2
(5.39) swifl= [ g (fur) [ [
16. 3
Thus from (i8_36% we deduce < ([ [g]?)?
1
(8.39) DfPi et "L* ifr < -7, ie. —q>—s—k—g.
16.2
Finally this gives (%.27 when we go back from polar coordinates, to prove the
lemma.
DEFINITION 8.2. Set, for m € R,
(8.40) IMR™,|[0}) = {u € Co*(R");a € S™ % (R")}
with this definition,
(8.41) TH*(R",{0}) C I*(R", {0}) C I3 (R",{0})
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provided

8.42 s>-m—">4.
( 4

16.3
Ezercise 3. Using Lemma 24, prove (IB.ZII carefully.
So now what we want to do is to define I'(X, {p}; Q2) for any p € X by

ue IMX, {p}; Q%) <= F*(¢u) € I (R",{0}),

(8.43)
u [ X\{p} € C=(X\{p}).

Here we have a little problem, namely we have to check that I™ {323{0}) is invariant
under coordinate changes. Fortunately we can do this using (IB.ZII .

LEMMA 8.3. If F : Q — R™ is a diffeomorphism of a neighbourhood of 0 onto
its range, with F(0) = 0, then

(8.44) F*{u € I™(R™, {0};supp(u) C F(Q)} c I™(R", {0}).

PrOOF. Start with a simple case, that F' is linear. Then

(8.45) u = (QW)_"/eirfa(f)d&a € SMTE(RM).
SO

et A Sa(€)d¢é Fx = Ax
1z At {

(8.46)

= (2m)™™ [ e Ma((A) " n)| det A| " dn.

\\\

Since a((A*)~1n)|det A|~t € S™~TR™) we have proved the result for linear trans-
formations. We can always factorize F is

(8.47) F=G-A, A= (F,)
so that the differential of G at 0 is the identity, i.e.
(8.48) G(x) =2+ O(|z[*).
Now (%%[é}) allows us to use an homotopy method, i.e. set

(8.49) Gs(z) =z + s(G(z) — x) s€0,1)
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so that Gy = Id, G, = G. Such a l-parameter family is given by integration of a
vector field:

Gio = [ 5Gods
0

d
:/s%aaw(x))ds

(8.50) ’ S dg

= — ds (6Ij¢) (Gs(x)) ds

~ [Gi(vaas
0
when the coefficients of V, are
d
8.51 GiVey = G
( ) - s 3] dS 5
l\ggx.zvl by (8.4 %Gs,i = Ea:ixjafj(a:), so the same is true of the V;;, again using
(B IEi. 17.1
We can apply (B. to compute
li

(8.52) Gru— / G (Vau) ds

0

16.3
when u € I7* (R™, {0}) has support near 0. Namely, by (%ZI ;, u e ITH? (R",{0}),
with s < —m — 7, but then

(8.53) Viu € THETH(R™, {0})
n 16.3
since V.= > b;(z)x;x;D;. Applying (IS.ZII again gives
i,j=1
(8.54) GE(Vou) € I'™ (R™,{0}), Vm' >m — 1.
This proves the coordinates invariance. O

Last time we defined the space of conormal distributions associated to a closed

embedded submanifold Y C X :
TH*(X,Y) = {ue H*(X); V(X,Y)*u Cc H*(X) V k}
8.55
(8.55) TH*(X,Y) =TI"(X,Y) = | JsIH*(X,Y).

Here V(X,Y) is the space of C* vector fields on X tangent to Y. In the special case
of a point in R™, say 0, we showed that

(8.56) u € I*(R"),{0}) <= u € C,®°(R") and @ € SM(R"™), M = M(u).
In fact we then defined the “standard order filtration” by

(8.57) ue IR, {0}) = {u e C,°R"); i€ S™ % (R")},

and found that

(8.58) IH;(R",{0}) C I[Sf%(]R", {0}) C IHCS/ (R™,{0}) V &' < s.
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Our next important task is to show that I7*(R™, {0}) is invariant under coordinate
changes. That is, if F': Uy — R” is a diffeomorphism of a neighbourhood of 0 to
its range, with F'(0) = 0, then we want to show that

(8.59) F*u e I"(R",{0}) V u e IT*(R",{0}),supp(u) C F(Uy).

Notice that we ];%ady know the coordinate independence of the Sobolev-based
space, so using (g 58), we deduce that

(8.60) F*u e Ié”l (R™,{0}) VY u e I*(R™,{0}),n" > m,supp(u) C F(Uy).
In fact we get quite a lot more for our efforts:
LEMMA 8.4. There is a coordinate-independent symbol map:
(8.61) I™(X, {p}; Q)@ > o2 >> gmti-1] (T;R";Q%)
given by the local prescription
(8.62) o (u) = a(€)|dg| >
where u = v|dx\% is local coordinate based at 0, with & the dual coordinate in T X.
PROOF. Our definition of 1™ (X, {p};Q2) is just that in any local coordinate
based at p
(8.63) we I™(X, {p}; Q%) = ¢u = v|dz|2,v € ["(R", {0})
and u € C>*(X\{p}; Q%). So the symbol map is clearly supposed to be
(8.64) o™ (u) @ =, 8(¢)|d¢|z e s EI(R™ Q2)

where ¢ € 1 548 the 1-form ¢ = £-dz in the local coordinates. Of course we have to
show that (. is independent of the choice of coordinates. We already know that
1911 ge of coordinates changes © by a term of order m — % — 1, which disappears in
ngjge residue class is determined by the Jacobian of the change of variables.

From we see exactly how ¢ transforms under the Jacobian, namely as a

density on
T;R" : A € GL(n,R) = A*v(n)|dn|?
= 0((A")™"n)| det A7 |dy|

son= At =
(8.65) Axv(n)ldy| = 0(£)]dE].
However recall from (lS_G‘S% that uisa ha%f—élensity, so actually in the new coordinates
v/ = A*v - | det A|2. This shows that (lS_GZ‘% is well-defined.

Before going on to consider the general case let us note a few properties of
Im(X, {p} ) ; -

Exercise: Prove that

If P € Diff™(X;Q2) then
(8.66) P I™(X, {p}; Q%) — "M (X {p};Q2) ¥V m
o™ M (Pu) = oM(P) - 0™ (u).

To pass to the general case of Y C X we shall proceed in two steps. First let’s
consider a rather ‘linear’ case of X = V a vector bundle over Y. Then Y can be
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identified with the zero section of V. In fact V is locally trivial, i.e. each p € y has
a neighbourhood U s.t.

(8.67) = N(U) ~R} x U,,U' C RP

by a fibre-linear diffeomorphism projecting to a coordinate system on this base. So
we want to define
(8.68) I™(V,Y;Q3%) = {u e I*(V,Y;Q7);
17.24
of ¢ € C°(U) then under any trivialization (R.

dulz,y) = (20) " / ¢ €a(y, £)dé|dz|}, mod C,

a€S™ T (RDRY).

17.2
Here p = dim Y, p4+n = dim V. Of course we have to check that (l8_69% is coordinate-
independent. We can write the order of the symbol, corresponding to u having order
m as

(8.70)

(8.69)

dimV ~dimY dimV  codimY
m n + 5 m+ 1 5 .
These additional shifts in the order are only put there to confuse you! Well, actually
they make life easier later.

Notice that we know that the space is invariant under any diffeomorphi 9
the fibres of V| varying smoothly with the base point, it is also obvious that (E.GQ
in independent the choice of coordinates is U’, since that just transforms these
variables. So a general change of variables preserving Y is

(8.71) (y, @) — (f(y,2), X(y,2)) X(y,0)=0.

In part) ular f is a local diffeomorphism, which just changes the base variables
in &76'9% so we can assume f(y) = y. Then X(y,7) = A(y) -  + O(z?). Since
x +— A(y) -z is a fibre-by-fibre transformation it leaves the space invariant too, So
we are reduced to considering

(8.72) G:(y,x) — (y,z + Xay(z,y) iz )y + Bbi(z, y)x;.

To handle these transformations we can use the same homotopy method as before
ie.

(8.73) Gs(z,y=(y + s) Z bi(z,y)zi, x + s Z aij(z,y)zix;)

is a l-parameter family of diffeorznorphisms. Moreoz;ér

(8.74) %G:u — Gk

where

(8.75) V, = ; Bie(s,2,y)xi0y, + ”Zk R ”Zk aijk(a,y, ), @%.

So all we really have to show is that
(8.76) Ve : IM(U' x R", U’ x {0}) — MY U’ x R", U’ x {0}) V M.

Again the spaces are C*°-modules so we only have to check the action of x;0,, and
;T + jOy, . These change the symbol to

(8.77) Dgi 8yla and iDgi ng : fka



-
N

8

[y
w

8

18.4

18.5

18.6

18.7

8. THE WAVE KERNEL 171

respectively, all one order lower.

This shows that the definition (l8_69§j is actually a reasonable one, i.e. as usual
it suffices to check it for any covering by coordinate partition.

Let us go back and see what the symbol showed before.

LEmMMA 8.5. If
(8.78) we I™(V,Y; Q% )u = v|dz|?|d¢|2
defines an element
(8.79) o™ (u) € SR (Y o)

independent of choices.

Last time we discussed the invariant symbol for a conormal distribution asso-
ciated to the zero section of a vector bundle. It turns out that the general case
is not any more complicated thanks to the “tubular neighbourhood” or “normal
fibration” theorem. This compares Y — X, a closed embedded submanifold, to the
zero section of a vector bundle.

Thus at each point y € Y consider the normal space:

(8.80) N,Y = N,{X,Y} = Tz/T,Y.

That is, a normal vector is just any tangent vector to X modulo tangent vectors to
Y. These spaces define a vector bundle over Y :

(8.81) NY = N{X;Y}= | | NY

yey
where smoothness of a section is inherited from smoothness of a section of T, X, i.e.
(8.82) NY =T,X/T,Y.

Suppose Y; C X; are C*° submanifolds for 4 = 1,2 and that F': X; — X5 is a
C* map such that

(8.83) F(Y;) CYa.

Then F; : T, X1 — Tp(,) X2, must have the property

(8.84) Fo:T,)Y1 — Tp)Y2a Vy €Y.

This means that F, defines a map of the normal bundles

(8.85) F.: NY; —= NY,
b

Notice the very special case that W — Y is a vector bundle, and we consider
Y — W as the zero section. Then

(8.86) Ny{W; Y}e— W, VyevY
since
(8.87) TW=1TYeT,W, VYyeW.

That is, the normal bundle to the zero section is naturally identified with the vector
bundle itself.
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So, suppose we consider C°° maps
(8.88) f:B— N{X;Y}=NY

where B C X is an open neighbourhood of the submanifold Y. We can demand
that

(8-89) fly)=(y,0) e NyY VyeY

which is to say that f induces the natural identification of ¥ with the zero section
of NY and moreover we can demand

(8.90) f+: NY — NY is the identity.
18.6
Here f. is the map (18_85), so maps NY to the normal bundle to the zero section

of NY, which we have just observed is naturally just NY again.

THEOREM 8.1. For any closed embedded submanifo 518% C X ther . Lhists a
gl fibration, i.e. a diffeomorphism (onto its range) (B.88) satisfing (E_SQ? and
ZETQ’D%; two such maps f1, fo are such that g = fa 0 f1_1 s a diffeomorphis 46T
the zero section of NY, inducing the identity on Y and inducing the identity (8.90).

PRrOOF. Not bad, but since it uses a little Riemannian geometry I will not

prove it, see [ ], [ ]. (For those who know a little Riemannian geometry, f~! can be
taken as the exponential map near the zero section of NY, identified as a subbundle
of Ty X using the metric.) Of course the uniqueness part is obvious. O

Actually we do not really need the global aspects of this theorem. Locally it is
immediate by using local coordinates in which ¥ = {z; =--- = 23, = 0}.

Anyway using such a normal fibration of X near Y (or working locally) we can
simply define

I™(X,Y:97) = {ueC ®(X;0Q2);uis C° in X\Y and
(f71)7(gu) € I™(NY,Y;Q3) if ¢ € C*(X), supp(¢) C B}.

Naturally we should check that the definition doesn’t depend on the choice of f.
This means knowing that I™(NY,Y; Q%) is invariant under g, as in the theorem,
1 gye have already checked this. In fact notice that g is exactly of the type of
(B.72). Thus we actually know that

(8.91)

(8.92) o™ (g*u) = o™ (u) in STTETE(NFY; Q7).
So we have shown that there is a coordinate invariance symbol map
(8.93) o™ (X, Y;Q7) — §TTEtE-Ul(Nry; 03)

giving a short exact sequence
(8.94)
0 I NX,Y:0Q%) — I"™(X,Y;Q7)@ > ¢™ >> g7 it i-[(N*y: Q3) — 0

(8.95) where n =dim X — dimY,p = dimY.

Asymptotic completene ries over immediately. We also need to go back and
check the extension of (Eslﬁcg%r
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ProrosiTION 8.1. If Y — X is a closed embedded submanifold and A €
W (X;02) then

(8.96) A:IM(X,Y;Q7) — IMT™(X Y Q2)V M
and
(8.97) o™ M(Au) = o™ (A)a™(A) | N*Y oM (u).

Notice that o™ (A) € S™~(T*X) so the product here makes perfectly good sense.

PROOF. Since everything in sight is coordinate-independent we can simply
work in local coordinates where

(8.98) X ~RP xRLY = {z =0}.

Then u € I™(X,Y;Q2) means just

(8.99) u= (2w)*”/eiw'5a(y7§)dg- |dx|?,a € S™ETE(RP, R™).
Similarly A can be written in the form

(8.100) A= (2m) P / o e ) kW= np (5 y € n)dedn.

Using the invariance properties of the Sobolev based space if we write
(8.101) A=Ay+Xz;B;, A = qr(b(0,y,¢,n))

we see that Au € I™M (X, Y;Q2) is equivalent to Agu € I™M (X, Y;Q%). Then
(8.102) Aou = (271')_”_”/e”fﬂ(y—yl)'"b((),y’,f,n)b(y’,f)dy/dndé,
where we have put Ap in right-reduced form. This means

(8.103) Agu = (27)™" / e ey, £)de

where

©100) (&) = @n)7 [ S0y maly' '

Regarding £ as a parameter, this is, before ' integration, the kernel of a pseudo-
differential operator is y. It can therefore be written in left-reduced form, i.e.

£105) ol €)= (@n) 7 [ SOy, mdndy’ = e(y,6,0)
where e(y, §,n) = b(0,y, {,p)g{y, §) plus terms of order at most m+M — 7+ 4 —1.
This proves the formula (897). O

Notice that if A is elliptic then Au € C* implies u € C*°, i.e. there are no
singular solutions. Suppose that P is say a differential operator which is not elliptic
and we look for solutions of

(8.106) Pu € C™®(X07).
How can we find them? Well suppose we try

(8.107) we IM(X,Y;Q7)
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for some submanifold Y. To know that « is singular we will want to have

18.25| (8.108) o(u) is elliptic on N*Y

(which certainly implies that u ¢ C°). 181
8 ;];he simplest case would be Y a hypersurface. In any case from (18.97 and

(IéTUG) we deduce

(8.109) o™(P) - oM (u) = 0.
So if we assume (%§T%%) then we must have
(8.110) o™(P) | N*Y =0.
DEFINITION 8.3. A submanifold is said to be characteristic for a given operator

P € Diff™(X; Q%) if (B1T0) holds.

o o 18.26
§f course even if P is characteristic for y, and so (IS 109) holds we do not recover

(%?TUGL just

18.29] (8.111) Pue I™M-1(X v;Q3)

i.e., one order smoother than it “should be”. The task might seem hopeless, but
let us note that these are examples, and important ones at that!!
Consider the (flat) wave operator

18.30] (8.112 P=P? - D?=D]—AonR"
t 7 t
i=1
A hypersurface in R"*! looks like
(8.113) H = {h(t,x) =0},(dh #0on H).
The symbol of P is
(8.114) P)=7— [P =1" -~ — &,
18.27
where 7, & are the dual variables to ¢, z. So consider (%_1_1'0)7
(8.115) N*Y = {(t,z; Adh(t,y)); h(t,z) = 0}.
18.32
Inserting this into (E‘rm) we find:
on\? oh \* oh \?
18.34 11 AZPY () () h—
(8.116) ( 8t> ( 8x1) < aa:n> 0 on 0
i.e. simply:
oh\”
18.35] (8.117 — | =|dh|? on h(t,z) = 0.
ot

This is the “eikong] gguation” for i (and hence H).
Solutions to (E [T7) are easy to find — we shall actually find all of them (locally)
next time. Examples are given by taking h to be linear:

18.36| (8.118) H={h=at+b-x =0} is characteristic for P <= a* = |b|*.

Since h/a defines the same surface, all the linear solutions correspond to planes

18.37| (8.119) t=w-z,weS"
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So, do solutions of Pu € C*>° which are conormal with respect to such hyper-
surfaces exist? Simply take

(8.120) u=v(t—w-z) veIl*(R {0};Q2).
Then
(8.121) Pu=0,uec I*(R" H;Q?).

For example v(s) = §(s),u = 0(t —w - x) is a “travelling wave”.

8.1. Hamilton-Jacobi theory

Let X be a C* manifold and suppose p € C>®(T*X\0) is homogeneous of
degree m. We want to find characteristic hypersurfaces for p, namely hypersurfaces
(locally) through z € X

(8.122) H={f(x)=0} heC®x)h(x)=0,dh(T)#0
such that
(8.123) p(x,dh(x)) = 0.

19.2 19.2
Here we demand that (E_TZ?)) hold near z, not just on H itself. To solve (%_1'23) we
need to impose some additional conditions, we shall demand

(8.124) p is real-valued
and
(8.125) dfibrep # 0 or X(p) = {p =0} C T*X\0.

This second condition is actually stronger than really needed (as we shall see) but
in any case it implies that

(8.126) Y(P) CcT*X\0is a C*™ conic hypersurface

by the implicit function theor 1
The strategy for solving (E—I'ZS) is a geometric one. Notice that
(8.127) Ap ={(z,dh(x)) € T*X\0}

actually determines h up to an additive constant. The first question we ask is —
precisely which submanifold A C T*X\0 corresponds to graphs of differentials of
C*° functions? The answer to this involves the tautologous contact form.
a: T"X —T(T*X) ¢ moa=1d

alz, ) =7"¢ € T(’;yf)(T*X).

Here 7 : T*(T*X) — T*X is the projection. Notice that if z1,...,z, are local
coordinates in X then z1,...,x,,&1,...,&, are local coordinates T* X, where £ €
T X is written

(8.128)

(8.129) = &du.

i=1
Since 1, ...,Tn, &1, - - ., &, are local coordinates in T* X they together with the dual
coordinates Z1,...,2,, Xi,...,X, are local coordinates in T™*(T™* X ) where
(8.130) CETo(T"X) = ¢ =) Ejdr; + > X;d¢;.

Jj=1 Jj=1
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In these local coordinates
(8.131) a=>Y &adu;!
j=1

The first poin 1és7that « is independent of the original choice of coordinates, as is
evident from (B.128).

_ 9.6
LEMMA 8.6. A submanifold A C T*X\0 is, near (T,€) € A, of the form (%TZ?)
for some h € C=(X), if

(8.132) m: A — X is a local diffeomorphism
and
(8.133) a restricted to A is exact.

19.12
PROOF. The first condition, (m), means that A is locally the image of a
section of T*X :

(8.134) A ={(z,¢(x)),¢ € C(X; T"X)}.
19.12 19.7
Thus the section ¢ gives an inverse Z to 7 in (8.132). It follows from (%_1'28) that
(8.135) Zra=(.
Thus if « is exact on A then ( is exact on X, ( = dh as required. O

) . o 19.13
Of course if we are only working locally near some point (Z,£) € A then (E 33)
can be replaced by the condition

(8.136) w=da=0on X.

Here w = da is the symplectic form on T*X :

(8.137) w=Y_d&; A da;.
j=1

DEFINITION 8.4. A submanifold A C T*X of dimension equal to that of X is
said to be Lagrangian if the fundamental 2-form, w, vanishes when pulled back to

A.

By definition a symplectic manifold is a C*° manifold S with a C* 2-form
w € C>(9; A?) fixed satisfying two constraints

(8.138) dw =20
(8.139) WA ANw#0 dim S = 2n.
n factors
A particularly simple example of a symplectic manifold is a real vector space, nec-
essarily of even dimension, with a non-degenerate antisymmetric 2-form:

w:ExE—R
w:E—— B*.
19.17

Here &(v)(w) = w(v,w) YV w € E. Now (%_1'38) is trivially true if we think of w as

a translation-invariant 2-form on F, thought of as a manifold.
Then a subspace V C E is Lagrangian if

w,w)=0Vv,weV
2dimV =dim E.

(8.140)

(8.141)
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Of course the point of looking at symplectic vector spaces and Lagrangian subspaces
is:
LEMMA 8.7. If S is a symplectic manifold then TS is a symplectic vector space

for each z € S. A submanifold A C S is Lagrangian iff T.A C T.S is a Lagrangian
subspace ¥ z € A.

We can treat w, the antisymmetric 2-form on F, as though it were a Euclidean
inner product, at least in some regards! Thus if W C E is any subspace set

(8.142) We ={veEwhw) =0Ywe W}
LEMMA 8.8. If W C FE is a linear subspace of a symplectic vector space then

dim W +dim W = dim FE; W is Lagrangian if and only if
(8.143) WY =W.

PrOOF. Let W0 C E* be the usual annihilator:

(8.144) Wo={acE*alv)=0YvecW}
Then dim W0 = dim E — dim W. Observe that
(8.145) QWY — WO,

Indeed if & € W and &(v) = « then
(8.146) a(w) =oW)(w) =w,w) =0YweW
implies that v € W*. Conversely if v € W then o = ©(v) € W. Thus dim W¥ +
dimW =dim F.

Now if W is Lagrangian then a = @(w),w € W implies
(8.147) a(v) =w(w)(w) =w(w,v) =0V v e w.

19.25 19.24

Thus G(W) C WO — W € W, by (8:123), and since dim W = dim W, (B.113)
holds. The converse follows similarly. O

The “lifting” isomorphism @ : E «—— E* for a symplectic vector space is like the
Euclidean identification of vectors and covectors, but “twisted”. It is of fundamental
importance, so we give it several names! Suppose that S is a symplectic manifold.
Then

19.26| (8.148) 0, T,8S «—T;SVzeb.

. . . 19.26 )
This means that we can associate (by the inverse of (IB.IZIS)) a vector field with
each 1-form. We write this relation as

H, € C™(S;TS) it v e C®(S;T*S) and
O, (Hy)=yVzeb.

Of particular importance is the case v = df, f 1§ {S Then Hg is written
Hy and called the Hamilton vector field of f. From (K.

19.27| (8.149)

(8.150) w(Hyg,v) =df(v) =vfVovel,s, VzES’.
19.28
The identity (18_1'50) implies one important thing immediately:
(8.151) Hif =0V feC™(S)
since

(8.152) Hyf =df(Hy) =w(Hy, Hy) =0
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by the antisymmetry of w. We need a generalization of this:

LEMMA 8.9. Suppose L C S is a Lagrangian submanifold of a symplectic man-
ifold then for each f € I(S) ={f € C=(X); f | {s =0}, Hy is tangent to A.

PROOF. Hy tangent to A means Hy(z) € T.AV z € A If f =0 on A then
df =0 on T,A, ie. df(z) € (T.A)® C (T.S) V z € A. By (km) the assumption

that A is Lagrangian means @, (df (z)) € T:A, i.e. H¢(z) € T¢A as desired. O
This lemma gives us a necessary condition for our construction of a Lagrangian
submanifold
(8.153) A C 2(P).

Namely H, must be tangent to A! We use this to construct A as a union of integral
curves of H,. Before thinking @bgut this seripusly, let’s look for a moment at the
conditions we imposed on p, (8.124) and (E.l%). If p is real then H), is real (since

w is real). Notice that
19.32| (8.154) If S =T X then each fibre T X C T*X is Lagrangian .
Remember that on T* X, w = da, o = £ - dz the canonical 1-form. Thus T3 X is just

15agonst, so dxr = 0,80 a =0 on g;{ and hence in particular w = 0, proving
(E.ISZL). This allows us to interpret (K.125) in terms of H), as

19.4
19.33| (8.155) (E_TZIS) «—— H, is everywhere transversal to the fibres T, X.

19 NOW we want to construct a little piece of Lagrangian manifold satisfying
(|8.153). Suppose z € X(P) C T*X\0 and we want to construct a piece of A
through z. Since 7, (H, (%)) # 0 we can choose a local coordinate, t € C*°(X), such

that
(8.156) T (Hy(2))t # 0, ie. Hy(m*t)(z) # 0.
Consider the hypersurface through 7(z) € X,
(8.157) H={t=t(2)} = n(z) € H.
Suppose f € C*(H),df (w(z)) = 0. In fact we can choose f so that
(8.158) =1 1H [ €C®(X), df(n(2) =z
where z € Z(P) was our chosen base point.

9.3
19.37 JEPREM 8.2. (Hamilton-Jacobi) Suppose p € C°°(T*X\0) sqlisfies (Egg%)
and (8.125) near z € T*X\I%, H is a hypersurface through m(z) as in (E_TEG), (8-153)
and f € C*(H) satisfies (|8T58), then there exists f € C*°(X) such that
A= graph (df) C 2(P) near z

19.38| (8.159) f 1 H=f nearn(z)
df(n(2)) = z

and any other such solution, f', is equal to f in a neighbourhood of 7(z).

PROOF. We need to do a bit more work to prove this important theorem, but
let us start with the strategy. First notice that AN 7~1(H) is already determined,
near 7(z).

To see this we have to understand the relationship between df (h) € T*H and
df(h) e T*X, h € H,f | H = f. Observe that H = {t = 0} lifts to T}, X C T*X a
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19.29 . )
hypersurface. By (%.151)7 H, is tangent to T5; X and non-zero. In local coordinates

t,x,...,Tn_1, the 2’s in H,
0
8.160 Hy=——
( ) ¢ or
where 7,1, ...,&, are the dual coordinates. Thus we see that
(8.161) g THX — T*H  7g(8)(v) = B(v),v € ToH C TpX,

is projection along 9. Now starting from f € C*°(H) we have
(8.162) Af C T*H.
Notice that if f € COO(X),ﬂH = f then
(8.163) AN T5X has dimension n — 1
and
(8.164) (AN THEX) = Ay

The first fOl%OWéb from the fact that A is a graph over X and the second from the

definition, (K.I61). So we find O

1o JEMMA 810 If 2 € E( ) and H is a hypersurface through w(z) satisfying
(m) and ( ) thepmag + (S(P)NTHX) — T*H is a local diffeomorphism in
a neighbourhood z; if EIS—IEB) 15 to hold then

19.43| (8.165) AfNThX = (m5) " (Ay) near z.

ProoOF. We know that H,, is tangent to X(P) but, by assumption (%?1'%68) is not
tangent to T/ X at z. Then X(P)NT}; X does have dimension 2n—1—1 = 2(n—1).
Moreover mgris projection along 0, which cannot be tangent to X(P)NTj X (since
it would be tangent to ¥(P)). Thus 7% has injective differential, hence is a local
isomorphism.

So this is our strategy:

Start with f € C*°(H), look at Ay C T*H, lift to ANT5;X C X(P) by k.
Now let

(8.166) A= U{Hp — curves through (75) " (As)}.

This we will show to be Lagrangian and of the form A o it follows that

(8.167) plz,df)=0,f | H=f.

2. Riemann metrics and quantization

Metrics, geodesic flow, Riemannian normal form, Riemann-Weyl quantization.



20.1

20.2

20.3

i

0.4

20.5

20.6

i

0.7

N

N
©

0

[ee]

0

20.10

[\
o
-
[

[\
o
=
N

180 8. THE WAVE KERNEL

8.3. Transport equation

The first thing we need to do is to finish the construction of characteristic
hypersurfaces using Hamilton-Jacobi theory, i.e. prove Theorem XIX.37. We have
already defined the submanifold A as follows:

1) We choose z € X(P) and t € C*(X) s.t. Hpm*(t) # 0 at dz, then selected
fEC®H),H={t=0}NQ,Q> 7z s.t.

(8.168) z(w) =df(v) Vv e Ty, H.
Then we consider
(8.169) Ay = graph{df} = {(z,df (z)), 2 € H} CT"H
as our “initial data” for A. To move it into ¥(P) we noted that the map
(8.170) S(P)n THX — T"H
{t=0 ir|1| TX}

20.1
is a ?}ocal diffeomorphism near z, df (w(z)) by (|8T68) The inverse image of Ay in
(R170) is therefore a submanifold Ay C %(p) N T3 X of dimension dim X — 1 =
dim H. We define

(8.171) A= U{HP — curves of length e starting on Af}
So we already know:

(8.172) A C 3(P) is a manifold of dimension n,

and

(8.173) m: A — X is a local diffeomorphism near n,

What we need to know most of all is that
(8.174) A is Lagrangian.

That is, we need to show that the symplectic two form vanishes identically on
T,A, V2 €A (at least near z). First we check this at z itself! Now

(8.175) T.A =T, As + sp(Hp).
Suppose v € T, A ¢, then
(8.176) w(v, H,) = —dp(v) = 0 since Ay C X(P).
Of course w(H,, H,) = 0 so it is enough to consider
(8.177) w|(TAp x T.Ay).
20.3
Recall from our discussion of the projection (% [70) that we can write it as projection
along O0,. Thus
wx (v,w) =wy (', W) if v,w € T,(TuX),
(cip)«v =7 (cy)sw =w' € TL,(T*H)
20.10

where z = df (m(z)). Thus the form (|81 77) vanishes identically because Ay is La-
grangian. R

In fact the same argument applies at every point of the initial surface Ay C A :

(8.179) T A is Lagrangian V 2’ € Aj.

(8.178)
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To extend this result out into A we need to use a little more differential geometry.
Consider the local diffecomorphisms obtained by exponentiating H,, :

(8.180) exp(eH,)(ANQ) C AV esmall, Q> 2 small.
This indeed is really the definition of A; more precisely,
(8.181) A= |J exp(eH,)(Ay).
€ small
The main thing to observe is that, on T*H, the local diffeomorphisms exp(eH)) are
symplectic:
(8.182) exp(eH,) 'wx = wx.

(é!%ai%ly (%.91%52), (I%g[%%) and (%g[%) prove (%%%4) The most elegant wary to prove
(5.182)

is to use Cartan’s identity (valid for H, any vector field, w any form)

(8.183) % exp(eHp)*w = exp(eHp)" (La,w)

where the Lie derivative is given explicitly by
(8.184) Ly =douwy 4y od,

cy being contradiction with V' (i.e. a(--,...) — a(V,,+,...)). Thus
(8.185) Lp,w=dw(Hp, "))+ Lv(dlll,u) = d(dp) = 0.

0

Thus from (%%%2), (I%%’%B) and (%%4) we know that
(8.186) A = graph(df), f € C®(X), near 7(z),

must satisfy the eikonal equation
(8.187) p(z,df(xz)) =0 near w(z), Hf | H = f

where we may actually have to add a constant to f to get the initial condition —
since we only have df = df on TH.
So now we can return to the construction of travelling waves: We want to find

(8.188) weI*(X,G:0%) G={f=0}
such that wu is elliptic at z € (p) and

(8.189) Pu € C®(X).
So far we have noticed that

(8.190) Omirt(Pu) = 0, (P) | N*G - o(u)
so that

(8.191) N*G C ©(p) <= p(x,df) =0on f=0
implies

(8.192) Pu e I"™M=1(X G:Q7) near n(2)

20.24
which is one order smoother than without (18_1'9"1)
It is now clear, I hope, that we need to make the “next symbol” vanish as well,
i.e. we want

20.26| (8.193) Omtn—1(Pu) = 0.
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Of course to arrange this it helps to know what the symbol is!

PROPOSITION 8.2. Suppose P € \I/’”(X;Q%) and G C X is a C™ hypersurface
characteristic for P (i.e. N*G C ©(P)) then ¥ u e IM(X,G;Q2)

(8.194) Omtm—1(Pu) = (—iH, + a)om,(u)
where a € S™(N*G) and H, is the Hamilton vector field of p = o, (P).

PROOF. Observe first that the formula makes sense since A = N*G is La-
grangian, A C X(p) implies H), is tangent to A and if p is homogeneous of degree
m (which we are implicitly assuming) then

(8.195) Ly, : S™(A;Q3) — ST A Q) Vm

where one can ignore the half-density terms. So suppose G = {x; = 0} locally,
which we can always arrange by choice of coordinates. Then

(8.196) X =N*G = {(0,2',£6,0) e T*X}.

To say N*G C X(p) means p =0 on A, ie.

(8.197) p=m1q(z, &) + Y &pj(w, &) near 2
7j>1

with ¢ homogeneous of degree m and the p; homogeneous of degree m — 1. Working
microlocally we can choose Q € U™ (X,Q2), P; € U 1(X,Q7) with

(8.198) om(Q) = ¢, 0m—1(P}) = p; near z.
20.30

Then, from (m)

(8.199)

P=21Q+D,,Pi+ R+ P, ReVU" Y(X;0%)z¢ WF'(P'),P' € ¥"(X,Q%).
Of course P’ does not affect the symbol near z so we only need observe that
or—1(z,u) = —dg, o (1)
(8.200) Vuel'(X,G;03)
0r(Dg;u) = Dy o ().

This follows from the local expression
(8.201) u(z) = (2m)~* /e”lgla(x’,&)dfl.
20.32
Then from (|8T99) we get

Omtm—1(Pu) = =Dg, (qon (u)) + Z Dy, (pjom(u)) + 7 - om(u)

0 0
=i ij[A%j—q[Aa—& on(u) + d o (u).

j>1

(8.202)

20.30
Observe from (|8 I97) that the Hamilton yegfor field of p, at z1 = £’ = 0 is just the
expression in parenthesis. This proves (E.IQZL . (Il
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So, now we can solve (I%g[%%) We just set
(8.203) o (u)(exp(eHp)z') = e exp(eH,)*[b] V 2/ € Ay = AN {t =0}.
where A is the solution of
(8.204) HyA=a, A[t=0=0 onA
and b € S™(Ap) is a symbol defined on Ag = AN {t = 0} near z.

PROPOSITION 8.3. Suppose P € U™(X; Q%) has homogeneous principal symbol
of degree m satisfying

(8.205) p = om(P) is real

(8.206) dfipre p#0 onp=0

and z € X(p) is fized. Then if H 5 w(z) is a hypersurface such that m.(Hp) N H
and G C H is an hypersurface in H s.t.

(8.207) zZ=cy(z) e H.,G

there exist a characteristic hypersurface G C X for P such that GN H = G near

w(z), z € NX,G. For each

(8.208) up € I3 (H, G; Q) with WF(up) C 7,
v a fixed small conic neighbourhood of Z n T*H there exists
(8.209) welI(X,G; Q%) satisfying
(8.210) ul G=ug near mz € H

(8.211) Py e C* near mz € X.

Proor. All the stuff about G and %.i§6just Hamilton-Jacobi theory. We can
take the symbol of ug to be 11%]08 Ain (@Tﬁggzzﬁonce we think a little about half-
densities, and thereby expect (8.210) and (8.211) to hold, modulo certain singular-

ities. Indeed, we would get

(8.212) uy | G —ug EITJF%_l(H, G;Q%) near 7z € H

(8.213) Pu e I" 2(X,G;Q7) near 7z € X.

So we have to work a little to removg lgwer order terms. Let me do this inforgally,
without worrying too much about (m) for a moment. In fact I will put (%_ZTQ)
into the exercises!
20.46 20.44
All we really have to observe to improve (IB_ZTB) to (IS‘ZTI) is that

geI"(X,G;02) =3 uwel ™ (X;G;07)
s.t. Pu—gEIT*I(X,(N?;Q%)

which we can then iterate and asymptoti‘Ej 1X7 sum. In fact we can choose the
solution so u [ H € C*°, near wZz. To solve (8.214) we just have to be able to solve

(8.215) —i(Hy +a)o(u) = o(g)

which we can do by integration (duHamel’s principle). O

(8.214)
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. 20.48 o )
The equation (IS.ZIS) for the symbol of the solution is the transport equation.
We shall use this construction next time to produce a microlocal parametrix for P!

8.4. Problems

PrROBLEM 8.2. Let X be a C* manifold, G C X on C* hypersurface and
t € C*°(X) a real-valued function such that
(8.216) dt #00onT,GVpe L=Gn{t =0}

T
Show that the transversality condition (%.216) ensures that H = {t = 0} and
L = H NG are both C* submanifolds.

T
PROBLEM 8.3. Assuming (%.216) show that dt gives an isomorphism of line
bundles

1

(8.217) O3 (H) = QF(X) ~ Q2 (X)/|dt]?
and hence one can define a restriction map,
(8.218) C®(X;02) — C®(H; Q).

PRrROBLEM 8.4. Assuming 1 and 2, make sense of the restriction formula
(8.219) VH I (X, G;Q%) i (H,L;Q%)
and prove it, and the corresponding symbolic formula
(8.220) Oyl (wl H)= ()" (om(u) | NIG) /|d7’|%.

NB. Start from local coordinates and try to understand restriction at that

level before going after the symbol formula!

8.5. The wave equation

We shall use the construction of travelling wave solutions to produce a para-
metrix, and then a fundamental solution, for the wave equation. Suppose X is a
Riemannian manifold, e.g. R™ with a ‘scattering’ metrice:

(8.221) g= Z gij(x)dxidwj,gij = 0j;|x|R.
i,j=1
Then the associates Laplacian, on functions, i.e.

n

1 0 . 0
8.222 Ay = — ——(bgg¥ (z U
(5.222) > Jran oo
where g (z) = (g;j(x))~" and g = det g;;. We are interested in the wave equation
(8.223) Pu= (D? — A= f on R x X

Eor §implicity we assume X is either compact, or X = R™ with a metric of the form

(B.

The cotangent bundle of R x X is
(8.224) T*(R x X) ~ T*R x T*X
with canonical coordinates (¢, x, 7, ). In terms of this

(8.225) o(P) =7~ [¢PlE) = > g7 ()&

4,j=1
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Thus we certainly have an operator satisfying the conditions of (%2%3) and (%‘.12"%5),
since
(8.226) d fibre p = (@ @) =0=r7=0and g¥(2)§ =0= € =0.

or’ o¢ !
As initial surface we consider the obvious hypersurface {t = 0} (although it will
be convenient to consider others). We are after the two theorems, one local and
global, the other microlocal, although made to look global.

THEOREM 8.3. If X is a Riemannian manifold, as above, then for every f €
C®RxX) FNMuelC >R xX) satisfying
(8.227) Pu=fu=0int<inf{t; 3({,z) € supp(f)}.

THEOREM 8.4. If X is a Riemannian manifold, as above, then for every u €
C >R x X),
(8.228) WF(u)\WF(Pu) C S(P)\WF(Pu)
is a union of mazimally extended H,-curves in the open subset X(P)\W F(Pu) of
3(P).

21.5
Let us think about Theorem %.3 first. Suppose ZX is fixed on 0z € C~*°(X; Q)
is the Dirac delta (g measure) at Z. Ignoring, for a moment, the fact that this is not
quite a generalized function we can look for the “forward fundamental solution” of
P with pole at (0,%) :
PEz(t,z) = 6(t)dz(x)

(8:229) Ez=0int <0.

21.5
Theorem %.3 asserts its existence and uniqueness. Conversely if we can construct
E; for each Z, and get reasonable dependence on Z (continuity is almost certain
once we prove uniqueness) then

(8.230) K(t,x;t,z) = Ez(t — t,x)

. ) 21.6
is the kernel of the operator, f &> u solving (|8.227).

So, we want to solve (8.229). First we convert it (without worrying about
rigour) to an initial value problem. Namely, suppose we can solve instead

PGa(t,z) =0in R x X

(8:231) Gz(0,2) =0, D;Gz(0,z) = dz(x) in X.
Note that
(8.232) (g(t,z,7,0) ¢ 3(P) = (t,2;7,0) ¢ WF(G).

This means the restriction maps, to t = 0, in (8.231) are well-defined. In fact so is
the product map:

(8.233) E;(t,x) = H(t)Gs(t, x).
21.11 21.9
Then if G satisfied (% simple computation shows that Ej; satisfies (%229)
)

Thus we nf_to solve

Now (B.231) seems very promising. The initial data, dz, is certainly conormal to
the point {Z}, so we might try to use our construction of travelling wave solutions.
However there is a serious problem. We already noted that, for the wave equation,
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there cannot be any smooth characteristic surface other than a hypersurface. The
point is that if H has codimension &k then

(8.234) NZH C TZ(R x X) has dimension k.

To be characteristic we must have

(8.235) N:HCYE(P)= k=1

Since the only linear space contained in a (proper) cone is a line.

However we can easily ‘guess’ what the characteristic surface corresponding to
the point (x,Z) is — it is the cone through that point:

This certainly takes us beyond our conormal theory. Fortunately there is a way
around the problem, namely the possibility of superposition of conormal solutions.

To see where this comes from consider the representation in terms of the Fourier
transform:

(8.236) 5(z) = (27)" / ¢

The integral of course is not quite a proper one! However introduce polar coordi-
nates £ = rw to get, at least formally

(8.237) o(x) = (271')_"/ / e ern=ldr dw.
0 §n—1
In odd dimensions ¥~ ! is even so we can write
1 T
(8.238) 6(e) = g3y / / T dio i odd .
T
§n—1 —oo

Now we can interpret the r integral as a 1-dimensional inverse Fourier transform
so that, always formally,

5(;10)2# / frn(z - w)dw
S’n—l

(8.239) n odd
1 irs . n—
fn(s) = @ /6 A"
In even dimensions we get the same formula with
1 )
(8.240) £uls) = 5 [ €relrintar
These formulas show that
(8.241) fn(s) = |Ds|"15(s).

Here |Ss|"~! is a pseudodifferential operator for n even or differential operator
(= D*7 1) if n is odd. In any case

21.21] (8.242) fn € I 15 (R, {0})!
Now consider the map

21.22] (8.243) R" x S" ' 3 (z,w) =z -weR.
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Thus C* has different
(8.244) w-dr+z-dv#0orz-w=0
So the inverse image of {0} is a smooth hypersurface R.

LEMMA 8.11. For eachn > 2

1 o n
(8245) fn(x’w) = 2_ /el(w-w)r|r|n71dr c szi (]R % Snil,R) )
™

PROOF. Replacing |r["~! by p(r)|r["~! + (1 — p(r))|r|"~!, where p(r) = 0 n
r < 2,p(r) = 1inr > 1, expresses f, as a sum of a C* term and a conormal
distribution. Check the order yourself! O

PROPOSITION 8.4. (Radon inversion formula). Under pushforward correspond-
ing to R x S*71@ > 1, >> R"

(m1)« fr, = 2(2m)"716(x),
I = foldw||dz|.
PROOF. Pair with a test function ¢ € S(R") :

(8.247) (1)« f) = / falz - w)p(x)dr dw

by the Fourier inversion formula. O

(8.246)

So now we have a superposition formula expressing d(z) as an integral:
1
§n—1

where for each fixed gy fj (2 -w) is conormal with respect to z-w = 0. This gives us
a strategy to solve (8.231).

PROPOSITION 8.5. Fach T € X has a neighbourhood, Uz, such that for t > 0
(independent of &) there are two characteristic hypersurfaces for each w € S*~1

(8.249) HZ ) C (=) x Us
depending on T,w, and there exists

(8.250) uF(t, 7, w) € I*((—1|E] x UE,H(?M))
such that

(8.251) Pu*t € C™®

+ 7 — 0= 5= . 1 _
(8.252) {u +alt=0=0dz(zw) in Uz

Di(ut +u™) 1 {t=0}=0 inU;.

PROOF. The characteristic surfaces are constructed through Hamilton-Jacobi
theory:

N*H* c %(P),

(8253) H, :H:tm{t:()} = {xw:()}
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There are two or three because the conormal direction to Hy at 0; wdz, has two
3(P) :

(8.254) T==1, (r,w) € Tj (R x X).

With each of these two surfaces we can associate a microlocally unique conormal
solution

Put =0, vt [{t=0}=u
uf € I'(R", {z-w = 0})
Now, it is easy to see that there are unique choices
uf +ug =6(z - w)
Dt + Dy | {t =0} =0.

21.30
(See exercise 2.) This solves (18_252) and proves the proposition (modulo a fair bit
of hard work!).

(8.255)

(8.256)

O

So now we can use the superposition principle. Actually it is better to add the
variables w to the problem and see that

ui(tﬂxﬂ'da"f) € I*(R x R™ x Sn71 X R”,Hi)
Hic]RanXSn—lan
being fixed by the condition that

(8.257)

(8.258) HENR xR x {w} x {2} = HE,,.

Then we set

(8.259) Gl (t ) = / (" + u ) (@, 25w, 7).
Snfl

21.11
This satisfies (%_ZB—I) locally near  and modulo C*. i.e.

PG, € C=((—() x Us)
/ — —
(8.260) G T{t =0} =av,
v; € C®
DtG% = 5@(33) + vg

Let us finish off by doing a calculation. We have (more or less) shown that

u* are conormal with respect to the hypersurfaces H*. A serious question then

is, what is (a bound one) the wavefront set of G? This is fairly easy provided we
understand the geometry. First, since u® are conormal,

(8.261) WF(u*) c N*H*.
Then the push-forward theorem says

WF(GF) C {(t,z,7,6): 3 (t.a,7,§w,w) € WF(u™)}
(8-262) G* = (m).u® = / ut(t, 8w, T)dw

Snfl
so here

(8.263) (t,z,7,&w,w) € TR x R® x "1 = T*(R x R™) x T*S" 1.
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We claim that the singularities of G lie on a cone:

(8.264) WF(GL) C Az C T*(R x R™)

where A; is the conormal bundle to a cone:

Az = cl{(t,z;7,8); t #0,D(x,Z) = £t,
(7,6) = 7(1, Fdo D(x, 7))

where D(x, %) is the Riemannian distance from z to Z.

(8.265)

8.6. Forward fundamental solution
Last time we constructed a local parametrix for the Cauchy problem:
PG = feC™() 0,2) e QCRx X
(8.266) G.lt=0=n
D.GL [ {t =0} = dz(z) +u” o', u” € C>®(Qp)

where P = D? — A is the wave operator for a Riemann metric on X. We also
computed the wavefront set, and hence singular support of Gz and deduced that

(8.267) sing - supp.(G) C {(t,2);d(z,) = |1]}
in terms of the Riemannian distance.
(8.268)

221
This allows us to improve (|8_266) in a very significant way. First we can chop
Gz off by replacing it by

(8.269) ¢ <w> .

€

where ¢ € C*°(R) has sup grt near 0 and is identically equal to 1 in some neigh-
bourhood of 0. This gives (8:266) again, with G, now supported in say d? < t?+ €2,

(8.270)

Next we can improve (R.266) a little bit by arranging that
(8.271) u'=u" =0, Dff|_=0Vk
This just requires adding to G’ a C*, v, function, so that
(8.272) v|_=u, Dw|_ =-u", Di(Pu)| =-Dif| = k>0
Once we have done this we consider
(8.273) E; =iH(t)G;
which now satisfies

PE. = (t)05(z) + Fz, Fz € C*(Qs)

(8.274) , L
supp(E;) C {d*(z,2) <t + e} n{t >0}

Here F vanishes in ¢ < 0, so vanishes to infinite order at ¢ = 0.
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Next we remark that we can actually do all this with smooth dependence of Z.
This should really be examined properly, but I will not do so to save time. Thus
we actually have
E'(t,z,z) € CT°(P(—00,€) x X x X)
22.9| (8.275) PE' =§(t)oz(x) + F
supp B/ C {d*(z,z) >t + 2} N {t > 0}.
We can, and later shall, estimate the wavefront set of F. In case X = R" we can
take E to be the ezact forward fundamental solution where |x| or Z > R, so

supp(F) C {t > 0} N {|z|, |z| < R} N {d® < * + ¢*}
22.10 8.276
( ) F eC®((—o0,¢6) x X x X).

Of course we want to remove F, the error term. We can do this because it is

a Valterra operator, very s %ilfadr to an upper triangular metric. Observe first that
the operators of the form (%.276) form an algebra under t-convolution:

t
(8.277) F=Fol, F(tz,z) = //Fl(t, —t' x, 2V Fo(t', 2, Z)da' dt’.
0

In fact if one takes the iterates of a fixed operator
(8.278) FR = p=D o p

One finds exponential convergence:

a oy (k) ~ CFHHING N .
(8.279) |DeDYF (t,m,x)}§T|t| int<e—9JVN.
22.10 .
Thus if F' is as in (%_276) then Id + F has inverse Id + F,
(8.280) F=> (-1yFY

j=1
again of this form. ~ 99 .10
Next note that the composition of E’ with F' is again of the form (18_276), with
R increased. Thus
22.14| (8.281) E=E'+4+FoF

. . s %2?% .
is a forward fundamental solution, satisfying (R.275) with F' = 0.
In fact F is also a left parametrix, in an appropriate sense:

22.15 PROPOSITION 8.6. Suppose u € C~°((—o0,€) x X) is such that
22.16| (8.282) supp(u) N [T, 7] x X is compact ¥ T and for T < €

then Pu=0— u=0.
PrRoOOF. The trick is to make sense of the formula
22.17| (8.283) 0=FE Pu=u.

In fact the operators G with kernel G(t,z,Z), defined in ¢ < € and such that
Gx¢p CC®V ¢eC>® and

22.18| (8.284) {t >0} N{d(z,z) < R} D supp(G)

22.16
g4 on the space (18_282) as t-convolution operators. For this algebra E x P = Id so
(%.283) holds! O
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We can use this proposition to prove that E itself is unique. Actually we want
to do more.

THEOREM 8.5. If X is either a compact Riemann manifold or R™ with a scat-
tering metric then P has a unique forward fundamental solution, w.

(8.285) supp(E) C {t > 0}, P =1d

and

(8.286) supp(F) C {(t,2,Z) e R x X x X;d(z,T) <t}
and further

(8.287) WF'(E) Cc IdUF,

where Fy is the forward bicharacteristic relation on T* (R x X)

(=(tz,78) ¢ X(P) = Fi(¢) =0
(8.288) (=218 eX(P)= F(() = {C/ = (tlvx/aT/afl)
t' >t x (" =exp(TH,)C for some T}.

PROOF. (1) Use Ej defined in (—o0,€e x X to continue E globally.
(2) LUse fhe freedom of choice of {t = 0} and uniqueness of E' to show that
(E‘.ZBB)can Eg grranged for small, and hence all,
(3) Then get (8.2Z88) by checking the wavefront set of G.

U
As corollary we get proofs of (%22%0) and (%2231)
PrROOF OF THEOREM XXI.5.
(8.289) u(t,z) = / B(t—t, 2,2\ f(t', 2 )dz/dt.
(]

PROOF OF THEOREM XXI.6. We have to show that if both WF(Pu) Z 2z and
WEF(u) # z then exp(dH,)z ¢ W F(u) for small ¢. The general case that follows from
the (assumed) connectedness of H, curves. This involves microlocal uniqueness of
solutions of Pu = f. Thus if ¢ € C*°(R) has support in ¢ > —¢, for § > 0 small
enough, m*t(z) =

(8.290) P(¢(t — t)u) = g has z ¢ WF(g),
and vanishes in ¢ < §. Then

Pt —thu=Exg

(8.291) = exp(TH,)(z) ¢ WF(u) for small .
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8.7. Operations on conormal distributions

I want to review and refine the push-forward theorem, in the general case,
to give rather precise results in the conormal setting. Thus, suppose we have a
projection

(8.292) XXxY@>z>>X

where we can view X X Y as compact manifolds or Euclidean spaces as desired,
since we actually work locally. Suppose

(8.293) @@ C X xY is an embeded submanifold.

Then we know how to define and examine the conormal distribution associated to
Q. If
(8.294) ueI™(X xY,Q;Q)

when is 7, (u) € C7*°(X; Q) conormal? The obvious thing we ned is a submanifold
with respect to what it should be conormal! From our earlier theorem we know
that

(8.295) WF(r () € {2, 3 (2,69,0) € WF(u) € N*Q}.
So suppose Q = {¢;(z,y) =0,5=1,...,k}, k = codim Q). Then we see that

k k
(8296) (faév ga O) € N*Q — (j7g) € Qag: ZTjszjvajdyqj = 0.

j=1 j=1
Suppose for a moment that @ has a hypersurface, i.e. £k =1, and that
(8.297) Q — m(Q) is a fibration

then we expect
THEOREM 8.6. m, : I"™(X x Y,Q,Q) — I (X, 7(Q)).

ProOF. Choose local coordinates so that

(8.298) Q = {z1 =0}

1 , ,
(8.299) u= o /e”“fla(a: 2y, &1)d6
(8.300) Tu = % /emglb(m’,&)d&
(8.301) b= /a(x’,y,{)dy.

O

Next consider the case of restriction to a submanifold. Again let us suppose
@ C X is a hypersurface and Y C X is an embedded submanifold transversal to

Q:

QMY =QY
(8.302) le. T,Q+T,Y =T,X VqgeQy
== Qy is a hypersurface in X.

Indeed locally we can take coordinates in which
(8.303) Q={z1=0}Y ={2" =0}, z=(x1,2",2").
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THEOREM &.7.

(8.304) Cy  I™(X,Q) — I3 (Y, Qy )k = codimY in X.
23.9
PRroOF. In local coordinates as in (%_303)
1 .
u= 2—/e”lgla(x(x’,x”,fl))df,
(8.305) T 4
cfu = —/e”lgla(x’,(),fl)d&.
27

Now let’s apply this to the fundamental solution of the wave equation. Well rather
consider the solution of the initial value problem

PG(t,xz,z) =0
(8.306) G(0,2,%) =0
D.G(0,z,%) = dz(x).

We know that G exists for all time and that for short time it is

(8.307) G- / (u(t,z, T;w) +u_(t, z,T;w))dw + C=
S§n—1
where uy are conormal for the term characteristic hypersurfaces H), satisfying
N*Hy C ¥(P)
(8.308) _
H.n{t=0}={(x—Z) -w=0}

Consider the 2 x 2 matrix of distribution

(DG G
(8.309) U(t) = (DtQG DtG) .
Since WFU C X(P), in polar 7 # 0 we can consider this as a smooth function of
t, with values in distribution on X x X. O

THEOREM 8.8. For eacht € R U(t) is a boundary operator on L*(X)@® H'(X)
such that

(8.310) ue) (Z?) - (pf%)

where u(t, x) is the unique solution of
(D? — A)u(t) =0
(8.311) u(0) = uo
Dy 4+ u(0) = us.
PROOF. Just check it! O

23.12
Consider again the formula (18_307) First notice that at z =z, t =0, dH* =
dt + d(x — T)w) (by construction). so

(8.312) Hin{z=2}={t=0}CRxX —>Rx X xY xS" .
Moreover the projection

(8.313) Rx X xS —R
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clearly fibres {t = 0} over {t = 0} €= {0} C R. Then we can apply the two
theorems, on push-forward and pull-back, above to conclude that

(8.314) T(t) = / Glt,2,7) | 7 = 3dw € C~(R)
X

is conormal near ¢t = 0 i.e. C* in (—¢,€)\{0} for some ¢ > 0 and conormal at 0.
Moreover, we can, at least in principle, work at the symbol of T'(¢) at t = 0. We
return to this point next time.

3 Jor the moment let us think of a more ‘fundamental analytic’ interpretation of

2
(kzm) By this I mean
(8.315) T(t) = trU(t).
REMARK 8.1. Trace class operators A)\; Smoother operators are trace order,
tr = [ K(z,x)
(8.316) / U(t)(t) is smoothing

(8.317) (T'(t), (1)) = tr{U(t), o(t)).
8.8. Weyl asymptotics

Let us summarize what we showed last time, and a little more, concerning the
trace of the wave group

PROPOSITION 8.7. Let X be a compact Riemann manifold and U(t) the wave
group, so

(8.318) U(t) : C¥(X) x C¥(X) 3 (ug,ur) — (u, (), D +tu(t)) € C®(X) x C=(X)

where u is the solution to

(D} — Au(t) =0

(8.319) u(0) = ug

Dyu(0) = up
The trace of the wave group, T € §'(R), is well-defined by
(8.320) T(¢) =TrU(¢),U(¢) = /U(t)¢(t)dt V¢eSR)
and satisfies
(8.321) T=Y({1+) 2cos(th;)

j=1

(8.322) where 0 = \g < A\] < A3 ... Aj >0
is the spectrum of the Laplacian repeated with multiplicity
(8.323) sing . supp(T) Cc LU {0} U —-L

where L 1is the set of lengthes of closed geodesics of X and
if v € CX(R),¥(t) =0 if |t| > inf L —¢€,¢ >0,
(8.324) VT € I(R,{0})
oc(yT) =
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04 & ROOF. We have already discusged (I%%%l) and the first part of (%%3'54) (given
(R-323)). Thus we need to show (R.323), the Poisson relation, and compute the
symbol of T' as a cononormal distribution at 0 .

Let us recall that if G is the solution to

(D} = A)G(t,2,7) =0
(8.325) G(0,2,2) =0
D.G(0,z,%) = dz(x)

then

(8.326) T = m.(tA2D:G),
where

(8.327) A RXX —>RxXxX

is the embedding of the diagonal and
(8.328) mT:RxX —R
is projective. We also know about the wavefront set of G. That is,

(8.320) WF(G) C {(t,z,2,7,6,€);7° = |€]* = [¢]%,
. eXp(SH;D)(Ov'f7T7 g) = (t,I,T, g)’ some S}
24.11
Let us see what (%_329) says about the wavefront set of 7. First under the
restriction map to R x A
WE@AD:G) C{(ty,7m); 3
(8.330) AT i
(ta z, y77—7£a£); n= 6 - 5}

Then integration gives
(8.331) WF(T)c{(t7); 3 (t,y,7,0) € WF(D:G)}.
L. 2412 124.13
Combining (8-330) and (8-331) we see
t esing.supp(T) = 3 (¢, 7) e WF(T)
(8.332) = 3 (t,r,2,7,§E) € WF(D:G)
= 3 s st exp(sHp)0,z,7,&) = (t,z,7,§).

Now
(8.333) p=1>—[¢? so H, =270, — H,, g=|¢?,

H, being a vegtor field on T*X. Since WF is conic we can take [{| = 1 in the last
condition in (E.BBZ). Then it says

(8.334) s = 27t, exp(tHy,)(z, &) = (x,9),

since 72 = 1.

The curves in X with the property that their tangent vectors have unit length
and the lift to T*X is an intze‘grlasl curve of H 14 are by definition geodesic, parame-
terized by arclength. Tg%(m) is the statement that |¢| is the length of a closed
geodesic. This proves (8.323).



196 8. THE WAVE KERNEL

So now we have to compute the symbol of T" at 0. We use, of course, our local
representation of G in terms of conormal distributions. Namely

(8.335) G=Y 0;Gj, ¢;€C™(X),
J
where the ¢; has support in coordinate particles in which

Gj(t,z,2) = / (us(t,z, Ty w) +u_(t, z,T;w)) dw,

(8.336) o -
— thy (t,z,T,w)€ =
upm = o /e ay(x,Z,& w)d.
3
Here hy are solutions of the eikonal equation (i.e. are characteristic for P)
|Oehs]? = |hel?
(8.337) he| =(@—1)w
:l:athi > 07
which fixes them locally uniquely. The a4 are chosen so that
(8.338) (ut +us | =0,(DyusrDeu) | 0((z —7) - w)Pus € C™.
24.17
Now, from (18_336)
(8.339) wp +u | =5 @D (g g )(x,Z, & w)dE =0
S0 a4 — a_. Similarly
1 o
DtU,+ + DtU,_ | = — ez((m—z)-w){ [(Dth+)a+ + (Dth_)a_]df
t=0 27
(8.340) 1
= an((x —7) w)

24.18 ) _ . )
From (%.337) we know that Dihy = Fi|d,(z — Z) - w| = Fi|w| where the length is
WitE Legpect to the Riemann measure. We can compute the symbols or both sides
in (8:340) and consider that
1 n
iyt M7 = Drhees Db
24.19
is necessary to get (%33’8) Then

T =2n5D0)
(8.342) Z / / e (229D, ), 7, w, €)dEdwd.

J + X §n—1
) 24.21 ) )
Here dz is really the Riemann measure on X. From (%.34 ) the leading part of this
is

i T,T,w 1 n—
(8.343) —Z/ / hat (8,2, KWW ' d¢dwda

(8.341) —2i|wlay =

since any term vanishes at ¢ contributes a weaker singularity. Now

(8.344) hi = +|w|t + (x — ) - w + 0(t?).
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From which we deduce that

1 itT
(8.345) YOT() = 5 / " a(r)dr

a(t) ~ C, Vol(X)|r|"C,, =

where C), is a universal constant depending only on dimension. Notice that if n is
odd this is a “little” function.
The final thing I want to do is to show how this can be used to describe the

asymptotic behaviour of the eigenvalue of A : O
PROPOSITION 8.8. (“Weyl estimates with optimal remainder”.) If N(X) is the

number of eigenvalues at A satisfying A3 < X, counted with multiplicity, the
(8.346) N(\) = Cp, VOl(X)A" + oA 1)

The estimate of the remainder terms is the here — weaker estimates are easier

to get.

ProoOF. (Tauberian theorem). Note that

A
(8.347) T = F(u) where N() = / OV,
0
1(A) being the measure
(8.348) pN) =D A=A
)\?Espec(A)

Now suppose p € S(R) is even and [ p=1, p > 0. Then N,(\) = [(N)p(A—X) is
a C* function. Moreover

d/\
(8.349) oY) =i p.
Suppose we can choose p so that
(8.350) pzo,/p:LpeS, plt) =0, [t| > €

for a given € > 0. Then we know f1p is conormal and indeed

%Np(/\) ~ CVol(X)A"1 ...

= N,(\) ~ C"Vol(X)\" + lots.

So what we need to do is look at the difference

24.28| (8.351)

(8.352) Np(A) =NV = / N = X)p(N) = N(A)p(X).
It follows that a bound for N
(8.353) INOE ) = N < (14 AL+ )™ 1+ )
gives
(8.354) N(A) = N,(\) <ot
24 .31
which is what we want. Now (18_355) follows if we have
(8.355) NA+1) —NN<COA+|A)  t/A
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This in turn follows from the positivity of p, since
(8.356) [ o= 3y < e .

) . . |24.27 )
Finally then we need to check the existence of p as in (%_3’50) If ¢ is real and
even so is ¢. Take ¢ with support in (—§, §) and construct ¢+ ¢, real and even with

@. O
8.9. Problems

PROBLEM 8.5. Show that if F is a symplectic vector space, with non-degenerate

bilinear form w, then there is a basis v1,...,v,, w1, ..., w, of E such that in terms
of the dual basis of E*
(8.357) w= Zv]* A wj.

J

Hint: Construct the w;,v; successive. Choose v # 0. Then choose w; so that
w(vy,w1) = 1. Then choose va 80 w(vy,v2) = w(wy,ve) = 0 (why is this possible?)
and wg 0 w(vz, w2) = 1, w(v1,w2) = Y(wi, w2) = 0. Then proceed and conclude
that (8.357) must hold.

Deduce that t %?1@ a linear transformation T': E — R2" so that w = T*wp,
with wp given by (B.I37).

19.45
PROBLEM 8.6. Extend problem %.5 to show that T can be chosen to map a
given Lagrangian plane V C E to

(8.358) {r =0} C R*™
Hint: Construct the basis choosing v; € V' V j!

PROBLEM 8.7. Suppose S is a symplectic manifold. Show that the Poisson
bracket

(8.359) {f.9} =Hyg
makes C*°(S) into a Lie algebra.
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CHAPTER 10

Hochschild homology

10.1. Formal Hochschild homology

The Hochschild homology is defined, formally, for any associative algebra. Thus
if A is the algebra then the space of formal k-chains, for k € Ny is the (k + 1)-fold
tensor product

(10.1) AP — A AR - @ A

The ‘formal’ here refers to the fact that for the ‘large’ topological algebras we shall
consider it is wise to replace this tensor product by an appropriate completion,
usually the ‘projective’ tensor product. At the formal level the differential defining
the cohomolgy is given in terms of the product, x, by

(10.2)
blag®@a1 ®@ - @ap) =b(ap®@a1 @ ®@ap) + (—1)*(ap*xar) ® a1 @ - Q ay_1,
k—1 )
Via@ar ® - ®@ag) = (1Y ar® - ®aj_1@aj11xa; Qaj12®@ - @ ag.
§=0

LEMMA 10.1. Both the partial map, b’, and the full map, b, are differentials,
that is

(10.3) (b)? =0 and b* = 0.

[ . . HHdifferential
ProoF. This is just a direct computation. From (&UTZ’f)_lt_fGHOTvs that

(10.4) (¥’ 2(a0 ®Ra1 Qa2 ® ap)
J

= (D (-1P( - @ap1 xap @ - ®aj-1 ® aj11 %6 @ a2 @ @ am)

j:2p:0
m—1 m—2

— ("'®aj+1*aj*a’j—l®"')_ E ("'®a'j+21*aj+l*a/j*®"')
j=1 7=0

+Y 0D (=1 (a0® - ®a; 1004150001 2@ - -Bapi1xap@- ) = 0.

201
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Similarly, direct computation shows that
(b—)W(ag @ @ am) = (—1)""ay % ag * tm @ - Gm_1)

m—2
A D a0 * e @+ @ i1 KA @)+ (A0 K G K A1 @),
=1
BVb—b)ap® - @am) =(—1)"(a1 % Ao * @ @+ A1)
m—2
+ Z(—l)”m(ao*am@---@aiﬂ *a; ®---) and
=1

(b= (a0 @ @ am) = — (A0 * Am * A1 @ -+ )
SO
(10.5) (b= +0'(b—0) = ~(b V)
(]

The difference between these two differentials is fundamental, roughly speaking
b is ‘trivial’.

LEMMA 10.2. For any algebra with identity the differential b’ is acyclic, since
it satifies

(10.6) b's + sb' = Id where
(10.7) $(ap® - ®am) =Id®ag @ -+ @ .

ProoOF. This follows from the observation that
(10.8) V(Id®ag®@ - @ am) =ag @+ Dy + » (—1)/1d@---a;xa; 2@ --).
i=1

O

DEFINITION 10.1. An associative algebra is said to be H-unital if its b’ complex
is acyclic.

Thus the preceeding lemma just says that every unital algebra is H-unital.
10.2. Hochschild homology of polynomial algebras

Consider the algebra C[z] of polynomials in n variables', z € R™ (or z € C" it
makes little difference). This is not a finite dimensional algebra but it is filtered by
the finite dimensional subspaces, P,,[z], of polynomials of degree at most m;

Clz] = U Pplz], Pnlz] C Phgilx].

Furthermore, the Hochschild differential does not increase the total degree so it is
enough to consider the formal Hochschild homology.

The chain spaces, given by the tensor product, just consist of polynomials in
n(k + 1) variables

((C[x])@)(kﬂ) = Clzo,z1,...,2x), z; € R".

1The method used here to compute the homology of a polynomial algebra is due to Sergiu
Moroianu; thanks Sergiu.
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Furthermore composition acts on the tensor product by

p(x0)q(w1) = p @ q — p(0)gq(z0)
which is just restriction to xy = x1. Thus the Hochschild differential can be written

b: Clxo,...,zx] — Clzo,...,zr-1],
k=1
(bq) (0, 1, -, wp—1) = D _(=1)p(@o, . Tj1, 25,25, T, - 1)
=0

+ (_]‘)kq($07 Liyees LTh—1, xO)'
One of the fundamental results on Hochschild homology is

THEOREM 10.1. The Hochschild homology of the polynomail algebra in n vari-
ables is

(10.9) HH,,(Clz]) = C[z] ® A*(C™),
with the identification given by the map from the chain spaces
Clxg,...,zk] 2 ¢ — — . — dz?* Ao AdzdF.
[0 NEY 1929 P a%kp\gmo:m:_.:wk ] i

24.9
Note that the appearance of the original algebra C[z] on the left in (T0.9) is

not surprising, since the differential commutes with multilplication by polynomails
in the first variable, g

b(r(xzo)g(xo, ..., xk)) = r(xo)(bg(zo, ..., zk)).
Thus the Hochschild homology is certainly a module over C[z].

ProoF. Consider first the cases of small k. If £ = 0 then b is identically 0. If
k =1 then again
(bg)(zo) = q(z0,z0) — q(z0,20) =0
vanishes identically. Thus the homology in dimension 0 is indeed C[x].
Suppose that & > 1 and consider the subspace of Clzg, x1, ..., xx] consisting of
the elements which are independent of x;. Then the first two terms in the definition
of b cancel and

k-1
(bg)(zo, 1, .., Th—1) = Z(—l)jp(ffoa e X1, T T, Ty e, T 1)
j=2
+ (=D)*q(z0,21,...,26_1,20), Du,q = 0.
It follows that bgq is also independent of ;. Thus there is a well-defined subcomplex
on polynomails independend of x; given by

Clzo, z2,..., 2] D g — (Bq)(xo, Ty ..oy Th—1)
k—1 k-1 _
:Z(—l)jp(xo,xg,xg,xg,...,xk,1)+ (—].)J
=2 =3
p(l‘oa sy Lj—15T5, Ljy Tj41s - - - ,ﬂfk—l) + (—l)kQ(l‘o, Z2, ... 7331@—1,330)
The reordering of variables (xg,x2,23,...,25) — (Z2,23,...,%k, To) for each k,

transforms b to the reduced Hochschild differential b’ acting in k variables. Thus b
is acyclic.
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Similarly consider the subspace of C[zg, 1, ..., z)]| consisting of the polynomi-
als which vanish at x; = zg. Then the first term in the definition of b vanishes and
the action of the differential becomes

(10.10) (bq)(zo,x1,...,Tk-1) = p(T0,T1,Z1,Z2y ..., Th—1)+
k—1

Z(_l)jp(x07 s L1, L5, Lj, Tjt1, - - - 7$k71)
j=2

M1l
e

+ (—l)kq(ﬂfo,xl, ey L1, 330), if b(xo,xo,xg, . )

It follows that bg also vanishes at 1 = xg.
By Taylor’s theorem any polynomial can be written uniquely as a sum

Q(xo,l“l,xz, .- -,l’k) = Q1(330;3317$27 .- -,l’k) + q//(x()vaa e ,l‘k)

of a polynomial which vanishes at 1 = g and a polynomial which is independent
of x1. From the discussion above, this splits the complex into a sum of two sub-
complexes, the second one of which is acyclic. Thus ’T&e. 9Igochschild homology is
the same as the homology of b, which is then given by (II0.10), acting on the spaces

(10.11) {q € Clzo, 21, ...,2x];q(x0,21,...) =0}.

This arg Gt can be extended iteratively. Thus, if £ > 2 then b maps the
subspace of (;;;l [) of functions independent of x5 to functions independent of o
and on these subspaces acts as b’ in k — 2 variables; it is therefore acyclic. Similar it
acts on the complementary spaces given by the functions which vanish on xo = 7.
Repeating this argument shows that the Hochschild homology is the same as the
homology of b acting on the smaller subspaces

(1012) {qg € Clxo,x1,...,2kl;q(...,xj_1,25,...) =0, j=1,...,k},

' (bq)(zo, w1, ..., ap—1) = (—1)Fq(z0, 21, . .., TR—1, T0).

Note that one cannot proceed further directly, in the sense that one cannot reduce
to the subspace of functions vanishing on x; = zo as well, since this subspace is
not linearly independent of the previous ones?

k-1
Tp — Ty = Z(le —zj).
j=0
. . . . . . . 24.94
It is precisely this ‘non-transversality’ of the remaining restriction map in (II0.12)

which remains to be analysed.
Now, let us we make the following change of variable in each of these reduced
chain spaces setting

Yo = To, Y1 = T; — Tj—1, for j=1,... k.

Then the differential can be written in terms of the pull-back operation
k-1
EP : Rnk — Rn(k+1)7 EP(yO; Yi, - - 7yk—1) = (Z/anla s Yk—1, — Zyj)a
j=1

bg = (—1)"E}q,

2Hence Taylor’s theorem cannot be applied.
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The variable zy = yg is a pure parameter, 59 a0 be dropped from the notation (and
restored at the end as the factor C[z] in (}TD_Q%) Also, as already noted, the degree
of a polynomial (in all variables) does not increase under any of these pull-back
operations, in fact they all preserve the total degree of homogeneity so it suffices to
consider the differential b acting on the spaces of homogeneous polynomials which
vanish at the origin in each factor

QZI = {q S (Cm[yla SRR yk]7 CI(S?J) = qu(y)ﬂ q(yla e Yji—1, 07 Yj4+1s- - 7yk) = 0}
b:Qp — Qrtq, bg=(—1)"EpLq.
To analyse this non-transversality further, let J; C Clyi,...,yx] be the ideal
generated by the n monomials yf, [ =1,...,n. Thus, by Taylor’s theorem,

Ji - {q S C[yla e 7yk]§Q(ylaZ/27 s ayj—laovijyk) =0.
Similary set

k—1
JP = {q S (C[ylaayqu(ylaa_ZyJ) = 0)
j=1

For any two ideals I and J, let I - J be the span of the products. Thus for these
particular ideals an element of the product is a sum of terms each of which has a
factor vanishing on the corresponding linear subspace. For each k there are k + 1
ideals and, by Taylor’s theorem, the intersection of any k of them is equal to the
span of the product of those k ideals. For the k coordinate ideals this is Taylor’s
theorem as used in the reduction above. The general case of any k of the ideals
can be reduced to this case by linear change of coordinates. The question then, is
structure of the intersection of all k+1 ideals. The proof of the theorem is therefore

completed by the following result. O
LEMMA 10.3. The intersection Q7' N Jp = Q™ - Jp for every m # k and
(10.13) Q¥ nJp = AR(CM).
PrROOF. When m < k ﬁl—%ei_%geal Q7 vanishes, so the result is trivial.
Consider the case in ( ), when m = k. A homogeneous polynomial of

degree k in k variables (each in R™) which vanishes at the origin in each variable is
necessarily linear in each variable, i.e. is just a k-multilinear function. Given such
a multilinear function ¢(y1, ..., yx) the condition that bg = 0 is just that

(10.14) QWi Y1, Y1 — Y2 — - — Yr—1) = 0.

Using the linearity in the last variable the left side can be expanded as a sum of
k — 1 functions each quadratic in one variables y; and linear in the rest. Thus the
vanishing of the sum implies the vanishing of each, so

gy, yk—1,y;) =0V i=1,... k-1

This is the statement that the multlinear function ¢ is antisymmetric between the
jth and kth variables for each j < k. Since these exchange maps generate the
permutagion group, ¢ is necessarily totally antisymmetric. This proves the isomor-
phism (IT0.13) since A¥(C") is the space of complex-valued totally antisymmetric
k-linear forms.?

Thus it remains to consider the case m > k+ 1. Consider a general element q €
QN Jp. To show that it is in Q7" - Jp we manipulate it, working modulo Q}' NJp,

3Really on the dual but that does not matter at this stage.
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and use induction over k. Decompose ¢ as a sum of terms ¢;, each homogeneous in
the first variable, y1, of degree [. Since ¢ vanishes at y; = (% zf}b% first term is ¢,
linear in y;. The condition bg = 0, i.e. ¢ € Jp, is again just (10.I4). Expanding in
the last variable shows that the only term in bg which is linear in g4 is

@Yy Yh—1,—Y2 = — Yr—1)-

Thus the coeflicient of y; ;, the ith component of y; in ¢, is an element of Q’,Z"fll
which is in the ideal Jp(R*~1), i.e. for k — 1 variables. This ideal is generated by
the components of ys + - - - 4+ yi. So we can proceed by induction and suppose that
the result is true for less than k variables for all degrees of homogeneity. Writing
yo+ -+ Y= W1 +y2+ - +yr) — y1 It follows that, modulo Q7" - Jp, ¢1 can
be replaced by a term of one higher homogeneity in y;. Thus we can assume that
q; = 0 for i < 2. The same argument now applies to ¢o; expanded as a polynomial
in y; the coeflicients must be elements of QZL:E NJp. Thus, unless m —2 =k — 1,
i.e. m = k + 1, they are, by the inductive hypothesis, in QZL:E - Jp(R*¥=1) and
hence, modulo Q7" - Jp, g2 can be absorbed in ¢3. This argument can be continued
to arrange that ¢; =0 for i < m —k + 1. In fact ¢; = 0 for i > m — k + 1 by the
assumption that ¢ € Q.

Thus we are reduced to the assumption that ¢ = ¢;—+1 € Q' NJp is homoge-
neous of degree m — k41 in the first variable. It follows that it is multilinear in the
last k — 1 variables. The vanishing of bg shows that it is indeed totally antisymmet-
ric in these last k — 1 variables. Now for each non-zero monomial consider the map
J:{1,2,...,n} — Ny such that J(i) is the number of times a variable y; ; occurs
for some 1 < [ < k. The decomposition into the sum of terms for each fixed J is
preserved by b. It follows that we can assume that ¢ has only terms corresponding
to a fixed map J. If J(i) > 1 for any ¢ then a factor y; ; must be present in ¢, since
it is antisymmetric in the other & — 1 variables. In this case it can be written y; ;¢’
where bg’ = 0. Since ¢’ is necessarily in the product of the indeals Js - ... Jy - Jp it
follows that ¢’ € @™ - Jp. Thus we may assume that J(¢) = 0 or 1 for all i. Since
the extra variables now play no réle we may assume that n = m is the degree of
homogeneity and each index ¢ occurs exactly once.

For convenience let us rotate the last k — 1 variables so the last is moved to the
first position. Polarizing ¢ in the first variable, it can be represented uniquely as
an n-multilinear function on R™ which is symmetric in the first n — k + 1 variables,
totally antisymmetric in the last k¥ — 1 and has no monomial with repeated index.
Let Myp_1(n) be the set of such multilinear funtions. The vanishing of bg now
corresponds to the vanishing of the symmetrization of ¢ in the first n—k+2 variables.
By the antisymmetry in the second group of variables this gives a complex

b bnfl b2

Mn(n) — n—l(n) — & b

Mi(n) My 0.

The remaining step is to show that this is exact.

Observe that dim(Mj,(n)) = (}) since there is a basis of Mj,(n) with elements
labelled by the subsets I C {1,...,n} with k elements. Indeed let w be a non-
trivial k-multilinear function of k variables and let w; be this function on RF ¢ R™
identified as the set of variables indexed by I. Then if a € My(n — k) is a basis of
this 1-dimensional space and a; is this function on the complementary R" % the
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tensor products ajwy give a basis. Thus there is an isomorphism

My >q= Z crar @ wy — Z cr @ wy € AF(R™),
I1C{1,...,n},|I|=k I1C{1,...,n},|I|=k

Transfered to the exterior algebra by this isomorphism the differential b is
just contraction with the vector e; + e + -+ + ¢, (in the first slot). A linear
transformation reducing this vector to e; shows immediately that this (Koszul)
complex is exact, with the null space of b, on A¥(R") being spanned by those w;
with 1 € T and the range of b1 spanned by those with 1 ¢ I. The exactness of
this complex completes the proof of the lemma. O

10.3. Hochschild homology of C*(X)

The first example of Hochschild homology that we shall examine is for the
commutative algebra C*°(X) where X is any C* manifold (compact or not). As
noted above we need to replace the tensor product by some completion. In the
present case observe that for any two manifolds X and Y

(10.15) C®(X)®C™(Y) C C¥(X x Y)

is dense in the C* topology. Thus we simply declare the space of k-chains for
Hochschild homology to be C*°(X**1), which can be viewed as a natural comple-
tion* of C>°(X)®(*+1), Notice that the product of two functions can be written in
terms of the tensor product as

(10.16) a-b=D*(a®b), a,b€C®(X), D: X > z+— (2,2) € X2

The variables in X**! will generally be denoted zg, 21, ...,2;. Consider the
‘diagonal’ submanifolds
(1017) DiJ = {(20, ARERE ,Zk); z; = Zj}, i,j = 07 ceeyMy 1 75 j

We shall use the same notation for the natural embedding of X* as each of these
submanifolds, at least for j =¢+ 1 and ¢ =0, j = m,

Di,H_l(xo, .. .,Zm_l) = (Z(), c ey iy iy Ry -,Zm—l) S Di7¢+1, 1= 0,. Lo, m— 1
Dino(205 -+ 2Zm—1) = (205 - - -, Zm—1, 20)-

Then the action of ¥’ and b on the tensor products, and hence on all chains, can be
written

m—1
(10.18) Yo=Y (-1)'D}, o, ba=ba+ (-1)"D}, ja.

i=0

40One way to justify this is to use results on smoothing operators. For finite dimensional
linear spaces V and W the tensor product can be realized as

V®W =hom(W' V)

the space of linear maps from the dual of W to V. Identifying the topological dual of C*°(X)
with Co °°(X; ), the space of distributions of compact support, with the weak topology, we can
identify the projective tensor product C*°(X)&C> (X) as the space of continuous linear maps from

Co 2 (X;Q) to C®(X). These are precisely the smoothing operators, corresponding to kernels in
C®(X x X).
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THEOREM 10.2. The differential b/ is acyclic and the homology® of the complex

(10.19) RNLUTD G LN LTS ' AN

is naturally isomorphic to C=°(X; A*).
Before proceeding to the proof proper we note two simple lemmas.

LEMMA 10.4. SFor any j = 0,...,m — 1, each function a € C®(X*+1) which
vanishes on D; ;11 for each i < j can be written uniquely in the form

o= + O/I, O/, = Coo(XkJrl)

where o vanishes on D; ;41 for alli < j+1 and o/ is independent of zj41.

PROOF. Set o/ =75, (D, ) where m; : X*+1 — X* is projection off the
jth factor. Thus, essentially by definition, o’ is independent of z;i. Moreover,
mj+1Dj 541 =1Id so D} ;10" = D . ;a and hence D, a” = 0. The decomposi-
tion is clearly unique, and for i < j,
(10.20) Djjy10mjt10Diiv1 = Diip10F
for a smooth map Fj j, so o vanishes on D; ;41 if « vanishes there. O

LEMMA 10.5. For any finite dimensional vector space, V, the k-fold exterior
power of the dual, A*V*, can be naturally identified with the space of functions

(10.21)
{uec®(V")u(sv) =sfv, s >0, u [ (VIx{0}xVF"1) =0 fori=0,...,k—1
andu | G =0, G:{(vl,...,vk)EVk;Ul—l—---—l—vk:O}}.

PROOF. The homogeneity of the smooth function, u, on V* implies that it is a
homogeneous polynomial of degree k. The fact that it vanishes at 0 in each variable
then implies that it is multlinear, i.e. is linear in each variable. The vanishing on
G implies that for any j and any v; € V, i # j,

(1022) Zu(vl,...,vj,l,vi,ijrl,...,Uk):0.

1#]
Since each of these terms is quadratic (and homogeneous) in the corresponding
variable v;, they must each vanish identically. Thus, u vanishes on v; = v; for each
i # j; it is therefore totally antisymmetric as a multlinear form, i.e. is an element
of A¥V*. The converse is immediate, so the lemma is proved. 0

HH. ciX
Proog, pr THEOREM [10.2. The H-unitality” of C>°(X) follows from the proof
of Lemma hD_GI which carries over verbatim to the larger chain spaces.
By definition the Hochschild homology in degree k is the quotient

(10.23) HH(C™ (X)) = {u € C®(X"1);bu = 0} /bC>(X*12).

The first stage in identifying this quotient is to apply Lemma [10.4 repeatedly. Let
us carry through the first step separately, and then do the general case.

5This homology is properly referred to as the continuous Hochschild homology of the topo-
logical algebra C*°(X).

6As pointed out to me by Maciej Zworski, this is a form of Hadamard’s lemma.

7Meaning here the continuous H-unitality, that is the acyclicity of ' on the chain spaces
Cco° ( Xk+1 ) .
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HL.ciX
For j = 0, consider the decomposition of u € C>°(X**1) given by Lemma l).ZIC:,L

thus

(10.24)

U = ug + U(1), Uo € WICOO(Xk), Uy € Jl(k) = {u S COO(XkJrl);u I Do,1 = 0}.

Now each of these subspaces of C>°(X**1) is mapped into the corresponding sub-
space of C*®(X¥) by b; i.e. they define subcomplexes. Indeed,

uemCe(XP) = Dg yu = D su so

k—1
u=mv=bu=mnBv, B'v=— Z(—l)iD;‘,H_lu + (—1)kDZ_170’U.
i=1
For the other term
k—1
7 )% * k—
(10.25) bU(l) = Z(—l) Di7i+1U(1) + (—1)ka’OU(1) - bU(l) € Jl( 1).
i=1

24.3
Thus, bu = 0 is equivalent to bug = 0 and bu(;y = 0. From ( l).3§, defining an
isomorphism by

(10.26)  Eg,_1y : C®(XF) — C=(XF), Eg_nyv(z1, ..., 26) = v(22, ..., 2k, 21),
it follows that

-1
(10.27) B=-B;l, b By

24.37
is conjugate to b’. Thus B is acyclic so in terms of (m)

(10.28) bu=0= u—u@) =bw, w=mv.

As already noted this is the &r'sécii‘tep in an inductive procedure, the induction
being over 1 < j < k in Lemma [M0.4. Thus we show inductively that
(10.29) bu= 0= u — ug; = bw,

ugy € I = {ue (X );u | Dijyr =0, 0<i<j—1}.
24.39
For j = 1 this is (hO_ZB) Proceeding indpctively we may suppose that u = u ;) and
take the decomposition of Lemma =)'.ZI, S0
k * k

(10.30) ugjy = u' +ugy1), UG € JJ(JF)I, u' =750 e JJ( ).

Then, as before, bu(;) = 0 implies that bu’ = 0. Furthermore, acting on the space
51 C(X*) NIl b is conjugate to b acting in k + 1 — j variables. Thus, it is
again acyclic, so u(;) and u(; 1) are homologous as Hochschild k-cycles.

The end point of this inductive procedure is that each k-cycle is homologous
to an element of

(10.31) J® = P = Ly e (X ) Dfyu=0, i <i<k—1}.

Acting on this space bu = (—l)kD,j’Ou, so we have shown that
(10.32)
HH;,(C*(X)) = M® /(M™ noc>=(xk)), M®) = {ue J®;D; ju=0}.
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Now consider the subspace
(10.33) M%) = {u e c>(xF);
u= > (f(z5) = f(zie1) upg, up; € MP), fec=(X).}.
finite, 0<j<k—1
If u=(f(zj) — f(zj+1))v, with v € M®) get
(1034) w(zo, Blyer3R55 %5415 25425+ - Zk+1)
= (=17 (f(2)) = f(z30))0(20, - - -+ 25, Zj 12, 2435 - - 2k)-

Then, using the assumed vanishing of v, bw = u.® Thus all the elements of M®*)
are exact. }

Let us next compute the quotient M (¥) /M (k)| Linearizing in each factor of X
around the submanifold zg = z; = - -- = 25, in V¥ defines a map
(10.35) p:M® sy —u eC®(X;TX® - @T*X).

The map is defined by taking the term of homogeneity £ in a normal expansion
around the submanifold. The range space is therefore precisely the space of sections
of the k-fold tensor product bundle which v: pysh.on the subbundle defined in each
fibre by vy + -+ - + v = 0. Thus, by Lemma 0.5, i actually defines a sequence

(10.36) 0— M®) — M®) £, coo(X AFX) — 0.
24.48
LEMMA 10.6. For any k, (m) is a short exact sequence.

PROOF. So far I have a rather nasty proof by induction of this result, there
should be a reasonably elementary argument. Any offers? O

From this the desired identification, induced by p,
(10.37) HH,(C* (X)) = C*°(X; A*X)

follows, once is is shown that no element u € M®) with pu(u) # 0 can be exact.
This follows by a similar argument. Namely if u € MIYE) dsyexact then write u = bw,
v € C®(X*) and apply the decomposition of Lemma hUTt‘o get v = vg+v(1). Since
u=0on Dy it follows that bvg = 0 and hence u = bvy). Proceeding inductively
we conculde that u = bv with v € M*+1. Now, u(bv) = 0 by inspection. O

10.4. Commutative formal symbol algebra

As a first step towards the computation of the Hochschild homology of the
algebra A = WZ(X)/¥~°°(X) we consider the formal algebra of symbols with
commutative product. Thus,

(10.38) A={(a;)2_;a; €C®(S*X; PY)), a; =0 for j >> 0}.

j:—()o?

Here P®*) is the line bundle over S*X with sections consisting of the homogeneous
functions of degree k on T*X \ 0. The multiplication is as functions on T7*X \ 0, so

(a5) - (b) = (¢s), 5= Y aj-iby

k=—o0

8Notice that v(20,--.,2j,%j42,..-,2k+1) vanishes on z;41 = z; for i < jand ¢ > j+ 1 and
also on zg + z1 + - -+ + 241 = 0 (since it is independent of zj 41 and bv = 0.
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using the fact that P @ P*) = PU+k) We take the completion of the tensor
product to be

(10.39) B® ={uec>(T*X\0)* M )iu= )" ur,
finite

uy € C®°(S*X; P @ P g ... @ PR || = k).

That is, an element of B*) is a finite sum of functions on the (k + 1)-fold product
of T*X \ 0 which are homogeneous of degree I; on the jth factor, with the sum
of the homogeneities being k. Then the Hochschild homology is the cohomology of
the subcomplex of the complex for C*°(T*X)

(10.40) b g b g b

24.54
THEOREM 10.3. The cohomology of the complex (m) for the commutative
product on A is

(10.41) HHy(A) = {a € C=(T*X \ 0; A*(T*X); a is homogeneous of degree k }.

10.5. Hochschild chains

The completion of the tensor product that we take to de’g&%c;}é?nlsth%hﬂd
homology of the ‘full symbol algebra’ is the same space as in ([L0. ut with the
non-commutative product derived from the quantization map for some Riemann
metric on X. Since the product is given as a formal sum of bilinear differential
operators it can be take to act on an pair of factors.

(10.42) A TR A TS DA

The next, and major, task of this chapter is to describe the cohomology of this
complex.

THEOREM 10.4. The Hochschild homolgy of the algebra, \I/Ehg(X)/\I/;}fg(X),
of formal symbols of pseudod;, _r%ntial operators of integral order, identified as the
cohomology of the complez ( , @8 naturally identified with two copies of the

cohomology of S*X°
(10.43) HH(A;0) = H™H(S*X) @ H* 7% (5" X).

10.6. Semi-classical limit and spectral sequence

The ‘classical limit’ in physics, especially quantuum mechanics, is the limit in
which physical variables become commutative, i.e. the non-commutative coupling
between position and momentum variables vanishes in the limit. Formally this
typically involves the replacement of Planck’s constant by a parameter h — 0. A
phenomenon is ‘semi-classical’ if it can be understood at least in Taylor series in

this parameter. In this sense the Hochschild homology of the full symbol algebra
{2 ) this 1s h

is semi-classical and (following ow we shall compute it.
The parameter h is introduced directly as an isomorphism of the space A
Lp: A— A, Lh(aj);:_m = (hjaj)}‘:_oo, h > 0.

9n particuljlfﬁt.lgﬂs Hoch(E%?;g,}&wmology vanishes for k > 2dim X. For a precise form of the

identification in ( see
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Clearly Ly, o Ly = Lpp. For h # 1, Ly, is not an algebra morphism, so induces a
1-parameter family of products

(10.44) axp B = (L") (Lyax LyB).

In terms of the differential operators, associated to quantization by a particular
choice of Riemann metric on X this product can be written
* *
(10.45) axn B= ()= nor ;=D > hFPulaj_ix.b).
k=0l=—x

It is important to note here that the Py, as differential operators on functions on
T*X, do only depend on k, which is the difference of homogeneity between the
product a;_;4b;, which has degree j + k and c;, which has degree j.

Since A with product ,, is a 1-parameter family of algebras, i.e. a deformation
of the algebra A with product x = %1, the Hochschild homology is ‘constant’ in h.
More precisely the map Ly, induces a canonical isomorphism

Lj : HHy (A; %) = HHy (A; *).

The dependence of the product on h is smooth, so it is reasonable to expect the
cycles to have smooth representatives as h — 0. To investigate the consider Taylor
series in h and define

Fop={ae€ B®: J a(h) € €=([0,1); BP) with a(0) = a and
bra € hPC>([0,1),; BF11,
Gpi = {a € B®; 3 8(h) € C>([0,1),; BEHY) with
brB(h) € hP~1C>([0,1); B® and (t7770,8)(0) = a}.

Here by, is the differential defined by the product xp.

Notice that the Fj,; decrease with increasing p, since the condition becomes
stronger, while Gy, . increases with p, the condition becoming weaker.'® We define
the ‘spectral sequence’ corresponding to this filtration by

Ep’k = Fp7k/Gp7k.

These can also be defined successively, in the sense that if

(10.46)

(10.47)

;’k = {u EE, 1 pu=[u], ue Fp7k}
;’k = {e €EE, 1 pu=[u]u € Gp,k}
then Ep7k: = F}’),k/G;,k'

The basic idea'! of a spectral sequence is that each E, = @, E, x, has defined
on it a differential such that the next spaces, forming E,;1, are the cohomology
space for the complex. This is easily seen from the definitions of F}, ;. as follows.
If @ € Fp let 5(t) be a 1-parameter family of chains as in the defintion. Then
consider

(10.48) ~(tPbB3)(0) € BEY.

01f o € Gp, and B(h) is the 1-parameter family of chains whose existence is required for
the definition then B/(h) = hB(h) satisfies the same condition with p increased to show that
o € Gp+1,k-

Hof Leray I suppose, but I am not really sure.
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This depends on the choice of 3, but only up to a term in Gy r—1. Indeed,
let §'(t) is another choice of extension of a sgfisfying the condition that bnf' €
hPC>=([0,1); B*~1 and let 4/ be defined by (jTDTB) with 3 replaced by 3’. Then
§(t) = t71(B(h) — B'(h)) satisfies the requirements in the definition of G, x_1, i.e.
the difference 4/ — v € G, x—1. Similarly, if « € G, then v € G, .'? The map so
defined is a differential

bp) : Bpk — Epi1, bf,) = 0.

This follows from the fact that if y = b(,ya then, by definition, u = (t77b53)(0),
where o« = ((0). Taking A(t) = t7Pb,0(t) as the extension of p it follows that
bh)\ = 07 SO b(p)p, =0.

Now, it follows directly from the definition that Fyr = Eoir = B*) gince
Go,x = {0}. Furthermore, the differential b(o) induced on Ej is just the Hochschild
differential for the limiti R oduct, xg, which is the commutative product on the
algebra. Thus, Theorem [T0.3 just states that

*

Eyp = @ {uec>(T*X\0; AF); u is homogeneous of degree k}.

b= 24.56
To complete the proof of Theorem 0.4 it therefore suffices to show that
(10.49) By = H*™F(S*X) @ H™ 17F(S*X),
(1050) Ep,k = EQ,k, v P Z 2, and
(10.51) HHj, (W, (X)/ (X)) = plin;o Ep k.

The second and third of these results are usually described, respectively, as the
‘degeneration’ of the spectral sequence (in this case at the ‘Es term’) and the
‘convergence’ of the spectral sequence to the desired cohomology space.

10.7. The E; term

As already noted, the Fj j term in the spectral sequence consists of the formal
sums of k-forms, on T* X \ 0, which are homogeneous under the R action. The Es
term is the cohomology of the complex formed by these spaces with the differential
b(1), which we proceed to compute. For simplicity of notation, consider the formal
tensor prodoct rather than its completion. As already noted, for any o € B®*) the
function by« is smooth in h and from the definition of b,

k—1
d )
(10.52) %bhoz(()) = Z(—l)zao @ - ®ai—1 @ Pi(ai41,0) @it @ @ a
=0
+(_1)kpl(a0;ak)®a1 R Rakp_1, x=0a0Q - R a.

The general case is only more difficult to write, not different.'®> This ce &?ig@y
determines by« if « is a superposition of such terms with bgar = 0. Although (IT0.52)
is explicit, it is not given directly in terms of the representation of «, assumed to
satisfy bpaw = 0 as a form on T*X \ 0.

12Indeed, « is then the value at h = 0 of B(t) = t=P+1b, ¢(t) which is by hypothesis smooth;
clearly b, 8 = 0.

13r¢ you feel it necessary to do so, resort to an argument by continuity towards the end of
this discussion.
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To get such an explicit formula we shall use the symplectic analogue of the
Hodge isomorphism. Recall that in any local coordinates on X, x;, ¢ = 1,...,n,
induce local coordinates x;, & in the part of T*X lying above the coordinate patch.
In these canonical coordinates the symplectic form (which determines the Poisson
bracket) is given by

n
(10.53) w=Y_d& Adzy.
k=1

This 2-form is non-degenerate, i.e. the n-fold wedge product w™ # 0. In fact this
volume form fixes an orientation on 7*X. The symplectic form can be viewed as
a non-degenerate antisymmetric bilinear form on T,(7*X) at each point ¢ € T*X,
and hence by duality as a bilineear form on 7,/(7*X). We denote this form in the
same way as the Poisson bracket, since with the convention

{a,b}(q) = {da, db},
they are indeed the same. As a non-degenerate bilinear form on T*Y, Y = T*X
this also induces a bilinear form on the tensor algebra, by setting

{61®"'®ek7f1®"'®fk7}:H{ejvfj}'
J

These bilinear forms are all antisymmetric and non-degenerate and restrict to be
non-degnerate on the antisymmetric part, A*Y, of the tensor algebra. Thus each of
the form bundles has a bilinear form defined on it, so there is a natural isomorhism

(10.54) Wy : ARY — AZFY, a AWLB = {a, B}w", o, B € C(Y,AFY),
for each k.

) ‘ . |24.73 ) ‘
LEMMA 10.7. In canonical coordinates, as in (I[0.53), consider the basis of k-
forms given by all increasing subsequences of length k,

I:{1,2,...,k} —{1,2,...,2n},
and setting

(10.55) oy = dzl(l) A dZI(Q) VANEERIVAN dzl(k),

(Zla 22y e vy Z2n) = (‘rlaé_la x27§27 e 7xn7§n)'
In terms of this ordering of the coordinates
(10.56) We(ar) = (1) Doy gy

where W (I) is obtained from I by considering each pair (2p—1,2p) forp=1,...,n,
erasing it if it occurs in the image of I, inserting it into I if neither 2p — 1 nor 2p
occurs in the range of I and if exactly one of 2p — 1 and 2p occurs then leaving it
unchanged; N(I) is the number of times 2p appears in the range of I without 2p—1.

PROOF. The Poisson bracket pairing gives, on 1-forms,
—{dxj, d&;} =1 = {d¢;, du;}
with all other pairings zero. Extending this to k-forms gives
{ar,as} =0 unless (I(4),J(j)) = (2p—1,2p) or (2p,2p—1) V j and
{ar,a;} = (=D, if (I(§),J(4)) = (2p — 1,2p) for N values of j
and (I(5),J(j)) = (2p — 1,2p) for N — k values of j.
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24.72 24.75
From this, and (f0°52), (F05) follows. 0

From this proof if also follows that N(W(I)) = N(I), so W2 = Id. We shall
let

(10.57) 0y =Wy,o0do W,
denote the differential operator obtained from d by conjugation,
60 1 C®(T*X \ 0;A%) — C>°(T* X \ 0, AR~ 1),

By construction §2 = 0. The exterior algebra of a symplectic manifold with this
differential is called the Koszul complex.'* All the a; are closed so

Oa

bwlaar) = Wy gdzj) A (—I)N(I)aW(I)
— 0zj
(10.58) oa ’
= 8—%(—1)N(1)Ww(d2’j A aw (),

Observe that!®
W (dzap—1 A aw (1)) = t9/920, Q1
W (dZQP N aW(I)) = 19/0z0p_1 O 5
where, 1, denotes contraction with the vector field v. We therefore deduce the

following formula for the action of the Koszul differential
2n
(1059) (5“,(0,041) = Z(Hzia)La/azia].
i=1
LEMMA 10.8. With E; identified with the formal sums of homogeneous forms
on T*X \ 0, the induced differential is

1
10.60 b1y = =0u-
(10.60) 0=1
PrROOF. We know that the bili (iagsdifferential operator 2iP; is the Poisson
bracket of functions on 7 X. Thus (%'0_52) can be written

k—1
(10.61) 2ibia = Z(—l)iao @ @a;i—1 @{0i41,0;} DAt @ D ay
i=0
+ (_l)k{aﬂaak}@al X "'®ak,1, a=ay® - Qag.
The form to which this maps under the identification of Fs is just

k—1
(1062) 21b10& = Z(—l)iao A dai_l A A d{aH_l, CL@} A dai_,_g A ag
=0
+ (=1)*{ag,ax} Adai A - Adag_y

14Up to various sign conventions of course!

15Check this case by case, as the range of I meets the pair {2p — 1,2p} in {2p — 1, 2p},
{2p — 1}, {2p} or 0. Both sides of the first equation are zero in the second and fourth case as are
both sides of the second equation in the third and fourth cases. In the remaining four individual
cases it is a matter of checking signs.
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Consider the basis elements aj for k-forms. These arise as the images of the
corresponding functions in local coordinates on X*+1

ar(zo, 21, ..., 2K) = Z(_l)sgng(zl,ol(l) — 20,01(1))

X 22,61(1) = #1,01(1)) - - - (21,01(m) = 20,01(m—1))-

Since these functions are defined in local coordinates they are not globally

defined on (7 X\ 0)**+1. Nevertheless they can be localized away from zg = - -+ = 2z,
and then, with a coefficient (a;(20))j-_, a; € C®(T"X \ 0) homogeneous of

degree j with support in the coordinate patch, unambiguously define elements of
E; which we can simply denote as a(zo)d; € FEj. These lements, superimposed
over a coordinate cover, span ;. Consider b(;)& given by ([0.62). In the sum, the
terms with P, contracting between indices other than 0,1 or m,0 must give zero
because the Poisson bracket is constant in the ‘middle’ variable. Futhermore, by
the antisymmetry of &, the two remaining terms are equal so

Zb(l) (ad[) = Z (Hzal(l)a) (—1)Sgn(a)d201(2) JANEERWAN dzo'[(k)

ocEPy
= Z(Hzia)ba/aia].

24.81
Since this is just (m) the lemma follows. O

With this lemma we have identified the differential on the E; term in the spec-
t 21 Sgquence with the exterior differential operator. To complete the identification
( %U.ZIQ) we need to compute the corresponding deRham groups.

ProroSITION 10.1. The cohomology of the complex

d - 0o * d - 00 * d
S Y G (TEXN O AR =5 Y ey (TPX N\ 0 AR 5
j=—o00 j=—o00
in dimension k is naturally isomorphic to H*(S*X) @ H*=1(S*X).

PROOF. Choose a metric on X and let R = |£| denote the corresponding length
function on T*X \ 0. Thus, identifying the quotient S*X = (T*X \ 0)/R* with
{R = 1} gives an isomorphism T*X \ 0 = S*X x (0,00). Under this map the
smooth forms on 7*X \ 0 which are homogeneous of degree j are identified as sums

Coomy) (T X\ 0,A%) 3 a;
(10.63) YN, n, AR ’ 00 ( Q* k " 00 [ @ k—1
:R(aj—kocj/\F), o € CT(S"X5AY), of € CZ(S"X;A).

The action of the exterior derivative is then easily computed

; dR
doj = B, B; = R (B; + B; =" /\E)’
B =daj, B =do] +j(—1)" "ol
Thus a k-form (a;)5__ is closed precisely if it satisfies
(10.64) joy = (—1)%daf/, da; =0V j.

It is exact if there exists a (k — 1)-form (7;)j__., such that

(10.65) o = dvj, off = dv] +j(—1)F].
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Since the differential preserves homogeneity it is only necessary topn Jyze these
equations for each jptegral j. For j # 0, the second equation in (hom) follows
from the first and (%_55) then holds with v} = %(—l)ka;’ and 7 = 0. Thus the
qgil%lzpology ]&g‘s 8%nly in the subcomplex of homogeneous forms of degree 0. Then
(T0-64) and ([T0.65) become

dog =0, dog =0 and af = dv), af = dvy)
respectively. This gives exactly the direct sum of H*(S*X) and H*~1(S*X) as the
cohomology in degree k. The resulting isomorphism is independent of the choice of
the radial function R, since another choice replaj’%%s._%% by Ra, where a is a smooth
positive function on S*X. In the decomposition ([L0.63), for j = 0, « is unchanged
whereas «f, is replaced by «af, + a A dlog a. Since the extra term is exact whenever
ag is closed it has no effect on the identification of the cohomology. O

24.82 24.67 24.63
Combining Proposition T0.T and Lemma [T0.8 completes the proof of (hm)
We make the identification a little more precise by locating the terms in FEs.

ProPOSITION 10.2. Under the identification of E1 with the sums of homoge-
neous forms on T*X \ 0, Es, identified as the cohomology of d., has a basis of
homogeneous forms with the homogeneity degree j and the form degree k confined
to

(10.66) k—j=dmX, —dimX < j <dimX, dimX > 2.

PrOOF. Provided dim X > 2, the cohomology of S*X is isomorphic to two
copies of the cohomology of X, one in the same degree and one shifted by dim X —
1.16 The classes in the first copy can be taken to be the lifts of deRham classes from
X, while the second is spanned by the wedge of these same classes with the Todd
class of S*X. This latter, n — 1, class restricts to each fibre to be non-vanishing.
Thus in local representations the first forms involve only the base variable and
in the second each terms has the maximu%i}#mben n — 1, of fibre forms. The
cohomology of the complex in Proposition [[0.T therefore consists of four copies of
H*(X) consisting of these forms and the same forms wedged with dR/R.

With this decomoposition of the cohomology consider the effect on it of the map
W,,. In each case the image forms are again homogeneous. A deRham class on X in
degree [ therefore has four images in E5. One is a form of degree k1 = 2n — [ which
is homogeneous of degree j; = n —[. The second is a form of degree ko =2n—1—1
which is homogeneous of degree jo = n — [ — 1. The third image is of form degree

ks = n—1[1+1 and homogeneous of degree j3 = —l+ 1 and the final image is of form
dogree ky = n — 1 and is homogeneous of degree j;, = —I[. This gives the relations
(10.66). O

10.8. Degeneration and convergence

Now that the Fs term in the spectral sequence has been explicitly computed,
consider the induced differential, by on it. Any homogeneous form representing a
class in FE5 can be represented by a Hochshild chain « of the same homogeneity.
Thus an element of Ey in degree k corresponds to a function on C*((T*X)\)*+1)
which is separately homogeneous in each variable and of total homogeneity k — n.
Furthermore it has an extension ((¢) as a function of the parameter h, of the same

16That is, just as though S*X = S"~! x X, where n = dim X.
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homogeneity, such that b;3(t) = t*y(t). Then by = [y(0)], the class of (0) in E.
Noting that the differential operator, P;, which is the jth term in the Taylor series
of the product %, reduces homogeneity by j and that b, depends multilinearly on
*p, it follows tha E[ﬁ). Jyust decrease homogeneity by 7. Thus if the class [y(0)] must
vanish in Ey by (T0.66). We have therefore shown that by = 0, so E3 = E». The
same argument applies to the higher differentials, deg%li% the F,. = Es for r > 2,
proving the ‘degeneration’ of the spectral seque %‘?eé 50).

The ‘convergence’ of the spectral sequence, (%U.B 1), follows from the same anal-
ysis of homogneities. Thus, we shall define a map from E5 to the Hochschild ho-
mology and show that it is an isomorphism.

10.9. Explicit cohomology maps
10.10. Hochschild holomology of ¥~>°(X)
10.11. Hochschild holomology of ¥%(X)

10.12. Morita equivalence
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The index formula
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APPENDIX A

Bounded operators on Hilbert space

Some of the main properties of bounded operators on a complex Hilbert space,

H, are recalled here; they are assumed at various points in the text.

(1) Boundedness equals continuity, B(H).
2) IIABII < Al 1Bl

3) (A— N1 e B(H) if [ > [|4].

1) lA* Al = | AA%] = | A%

5) Compact operators, defined by requiring the closure of the image of the
unit ball to be compact, form the norm closure of the operators of finite
rank.

6) Fredholm operators have parametrices up to compact errors.

7) Fredholm operators have generalized inverses.

8) Fredholm operators for an open subalgebra.

9)

0)

1)

/\/\/\/—\

Hilbert-Schmidt operators?
Operators of trace class?
General Schatten class?

(

(
(
(
(
1
(1
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