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Abstracts

Melrose, Richard

Hodge theory for the Weil-Petersson metric

Using the, rather protracted, project with Jesse Gell-Redman on the Hodge
theory for the Weil-Peterrson metric on the Riemann moduli spaces Mg,n as a
guide I will outline a notion of ‘iterated fibration’ structure on a manifold with
corners. The discussion here is restricted to codimension two and set in the general
context of the resolution/quantization of a Lie algebroid.

Consider first the case of a manifold with boundary, the case of codimension one.
Many examples have been extensively discussed in the literature – unfortunately
too many to list here. The example I concentrate on comes from a ‘real Weil-
Petersson’ metric on a compact manifold with boundary, X. This is arbitrary in
the interior and near the boundary takes the form

(1) g = dx2 + h(y, dy) + x6α2 + xe, x ≥ 0.

Here x is a defining function for the boundary, α is a connection form on a circle
bundle over (and extended off) the boundary, h is a metric on the base of the circle
bundle and e is an ‘error term’ which is smooth and bounded by the leading part.

Appropriately scaled this corresponds to a Lie algebroid, a Lie algebra of smooth
b-vector fields on X spanned locally near the boundary by

(2) x3 ×
(
x−3∂θ, x

−1(x∂x), ∂yj
)

where I have multiplied the vector fields of bounded length by x3 to make them
smooth; ∂θ is a generator of the circle action.

This is a ‘geometric’ Lie algebroid; in particular a C∞(X)-module of smooth
b-vector fields, V, on X (that is the geometric part), and as in this case, I will
assume in general that it is unrestricted in the interior (although this should be
replaced by tangency to a b-fibration). By assumption (as a Lie algebroid) it has a
local smooth basis near each point. The notion of a ‘boundary-fibration structure’
involves the boundary filtration

(3) Wk =
(
V ∩ ρkVb(X)

)
/ρk, Wk =Wk

∣∣
∂X
⊂ C∞(∂X; bT∂XX).

I will demand that the Wk are subbundles. The b-tangent bundle to X has a
canonical line subbundle over ∂X, spanned by x∂x, with the quotient being T∂X.
For each k I require that either Wk meets this b-normal bundle only at the 0 section
or else contains it. It follows that for some minimal l – the boundary depth – there
is a b-normal vector field (inducing the section x∂x at the boundary) N ∈ Wl.
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The space C∞(∂X; bT∂XX) is a Lie algebra. I will require four further condi-
tions on V for it to be an iterated boundary fibration structure:-

(4)

The Wk are Lie algebras,

The quotients Wk/
bN define fibrations of ∂X,

The Wk are exact

[N,Wk] ⊂ Wk ∀ k.

The Wk/
bN ⊂ C∞(∂X;T∂X), for k < l, then have local coordinate bases ∂yj and

these lift to elements ∂yj +ajx∂x ofWk; the exactness condition requires the closed
forms

∑
j ajdyj to be exact on the fibres. In fact the first three conditions can be

combined by requiring the action of Wk on the normal bundle to the boundary to
induce a fibration.

For such a Lie algebroid there is a ‘Frobenius’ basis analogous to (2). Most
significantly such a Lie algebroid can always be resolved by the construction of a
of generalized product, and in particular can be quantized to a calculus of pseudo-
differential operators. As noted above many cases included here are quite familiar:

l = 0 : b-calculus, (fibred) edge calculus
l = 1 : scattering calculus, fibred boundary calculus, Weil-Peterrson
l = 2 : a-calculus of Grieser and Hunsicker.

Note that, for brevity, I have excluded the ‘adiabatic calculi’ (where N is not in the
Lie algebroid). Ideally the definition should also be broadened further to include
the Θ-calculus. Such a generalization is even more relevant in higher codimension
to capture the compactifications of reductive Lie groups.

The main aim of this talk is to examine appropriate conditions for an iterated
boundary fibration in codimension two (and higher). So now let X be a compact
manifold with corners up to codimension 2 and let V ⊂ Vb(X) be a ‘geometric’
Lie algebroid. I will demand conditions as in (4) at the interior of the boundary
hypersurfaces. In fact, by generalizing the initial definition to allow non-trivial
interior fibrations and the extra normal direction one can proceed iteratively and
simply require that each of the spaces in (3), at each boundary hypersurface, define
an iterated boundary fibration structure.

Still we need further restrictions at each corner, F, of codimension two; for
simplicity I shall assume there is only one (connected) corner. There the boundary
filtration is parameterized by a multiorider κ :

(5) Uκ = (V ∩ ρκVb(M)) /ρκ, Uκ = Uκ
∣∣
F
⊂ C∞(F ; bTFX), ρ = (ρ1, ρ2).

Here the ρi are defining functions for the two local boundary hypersurfaces. These
space are automatically decreasing under the standard partial order κ′ ≥ κ. Again
we assume that

(6) Uκ = C∞(F ; bTFM) for some κ.

The space C∞(F ; bTFX) is again a Lie algebra (and Lie algebroid over F with
two abelian ‘fibre’ variables) and we demand that the Uκ be Lie subalgebroids.
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The additional requirement I wish to emphasize – it is automatic in codimension
1 – is

‘Strong iteration’ : There exists a sequence of distinct multiindices

(7) (0, 0) = κ(0) < κ(1) < · · · < κ(N)

forming a chain and such that for any κ ∈ N2
0

(8) Uκ = Uκ(j), j(κ) = max{k;κ(k) ≤ κ}.
Of course the Uj = Uκ(j) then determine all the Uκ.

Beyond this a generalization of ‘boundary depth’ above is required. The b-
normal bundle to F is a canonically trivial subbundle of bTFX with fixed basis
x1∂x1

, x2∂x2
corresponding to (but independent of) any local choice of defining

functions.

‘b-normality’ : For each k the intersection

(9) bUj = Uj ∩ bNF is a subbundle with basis p1x1∂x1
− p2x2∂x2

, pi ∈ N0.

By assumption bUN = bNF since we are assuming that UN = bTFX. So the
bUj are decreasing starting from full rank two (so containing both generators).
If the rank drops from two to one (it could drop from two to zero) then the
remaining element is required to be some p1x1∂x1

− p2x2∂x2
. The sign condition

on the integers corresponds to the fact that this should generate a b-fibration of
the inward-pointing normal bundle to F.

Finally we require the fibration condition itself, that the

‘Fibration’ : Uj(F )/bNF define fibrations of F

and that the induced 1-forms on F are exact on fibres. I also require homogeneity
with respect to the two normal vector fields.

Under these conditions an iterated fibration structure has a resolution by a
generalized product and hence quantization to a calculus of pseudodifferential
operators.

The Weil-Petersson case shows that the chain condition need not be trivial to
arrange. Namely in codimension two the metric assumes the ‘product’ form

(10) g = dx21 + dx22 + h(y, dy) + x61α
2
1 + x62α

2
2 + x1e1 + x2e2.

The conditions above, without the chain condition, are achieved on the single space
defined by blow-up of the corner. The chain condition holds on the space defined
by parabolic blow-up of the resulting two corners.

Is there a simpler way?
The Hodge theorem asserts that the L2 null space of the Laplacian for a Weil-

Petersson metric is isomorphic to the cohomology of the manifold without bound-
ary obtained by collapsing the circle bundles.

Reporter: Vito F. Zenobi


