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1 Lie groups

Definition 1.1. A set G is a Lie group if it is a group and a smooth manifold such that multipli-

cation and inversion maps are smooth.

Example 1.2. • (Rn,+), (R×,×), (S1,×),

• (Classical Lie groups) GL(n,K), SL(n,K), O(n,K), SO(n,K), U(n), SU(n), Sp(2n,K) where

K = R,C.

Note that a priori it is not straightforward that the classical Lie groups are Lie groups as we

defined. Let us begin with GL(n,R) and SU(2). The group GL(n,R) ⊂ Rn2
consists of n × n

matrices with nonzero determinant. Hence, GL(n,R) has a smooth structure induced from Rn2

and is of dimension n2. Also, it is well known that SU(2) = {A ∈ GL(2,C)|AA∗ = 1, detA = 1}
can be rewritten as

SU(2) =

{(
α β

−β α

)
: α, β ∈ C, |α|2 + |β|2 = 1

}
.

It tells you that SU(2) is diffeomorphic to S3, so SU(2) has a smooth structure as well. So GL(n,R)
and SU(2) are Lie groups.

Definition 1.3. If G and H are Lie groups, a map f : G → H is a homomorphism of Lie groups

if it is smooth and a group homomorphism.

Later we will see that for n ≥ 3, Spin(n) is a universal cover of SO(n). Then the following theorem

guarantees that Spin(n) also has a Lie group structure.

Theorem 1.4. Let G be a connected Lie group. Then its universal cover G̃ inherits a canonical

Lie group structure induced by G such that the covering map p : G̃ → G is a homomorphism of Lie

groups and ker p = π1(G) as a group. Moreover, ker p is a discrete central subgroup in G̃.
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2 Exponential map and Logarithmic map

Denote by gl(n,K) the set of n × n matrices over a field K = R,C. To motivate the notation, we

make a note here that it will be the tangent space of GL(n,K) at 1 ∈ GL(n,K). However, we have

not justified anything yet.

The exponential map for matrices is defined as

exp(x) =

∞∑
k=0

xk

k!

for each x ∈ gl(n,K). This power series converges well and defines an analytic map gl(n,K) →
gl(n,K). The logarithmic map for matrices is defined as

log(X) = −
∞∑
k=1

(1−X)k

k

for each X ∈ gl(n,K) close to 1. To be precise, this power series converges when the eigenvalues

of 1 − X have modulus less than 1. Hence, the logarithmic map defines an analytic map in a

neighborhood of 1 ∈ gl(n,K).

Theorem 2.1. 1. log(exp(x)) = x and exp(log(X)) = X whenever they are defined.

2. exp(0) = 1 and d exp(0) = id.

3. If xy = yx, then exp(x+ y) = exp(x) exp(y). If XY = Y X and both are sufficiently close to

1, then log(XY ) = log(X) + log(Y ).

4. The exponent map is conjugation-invariant: for anyA ∈ gl(n,K), exp(AxA−1) = A exp(x)A−1.

5. The exponent map is transpose-invariant: exp(xt) = exp(x)t.

In particular, since exp(x) exp(−x) = 1, exp(x) ∈ GL(n,K) for any x ∈ gl(n,K). Therefore, we

may think of the exponential map as a map gl(n,K) → GL(n,K).

Note that gl(n,K) is a vector space.

Theorem 2.2. For each classical group G ⊂ GL(n,K), there exists a vector space g ⊂ gl(n,K)

such that for some neighborhoods U of 1 ∈ GL(n,K) and u of 0 ∈ gl(n,K), the logarithmic map

and exponential map on U ∩G and u ∩ g are mutually inverse.

Corollary 2.3. Each classical Lie group G ⊂ GL(n,K) is a Lie group, its tangent space at 1 is

T1G = g, and dimG = dim g.

We first prove Corollary 2.3 assuming Theorem 2.2.
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proof of Corollary 2.3. We first prove that G has a smooth structure. Theorem 2.2 gives an identifi-

cation between a neighborhood U∩G of 1 ∈ G and an open set of a vector space g. Therefore, it gives

a smooth structure on the neighborhood of 1 ∈ G. Then for any g ∈ G, since (g ·U)∩G = g ·(U∩G),

it follows that G is smooth on a neighborhood of g. Therefore, G is smooth.

The exponential map exp: g → G induces exp∗ : T0g → T1G. Since g is a vector space, T0g

is identified to g. On the other hand, since exp(x) = 1 + x + · · · , its derivative is identity, so

g = T0g = T1G.

Now we prove Theorem 2.2 for each classical Lie group.

proof of Theorem 2.2. We proceed based on casework.

• GL(n,K) : Immediately follows from Theorem 2.1. We have g = gl(n,K) in this case.

• SL(n,K) : For each X ∈ SL(n,K) close to 1, X = exp(x) for some x ∈ gl(n,K). Then we

have

1 = detX = det exp(x) = exp(tr(x)).

where the last equality can be seen by noting that exp is conjugation-invariant and so we may

write x as an upper triangular matrix. Therefore, g = {x ∈ gl(n,K) : tr(x) = 0}.

• O(n,K) : For each X ∈ O(n,K) close to 1, X = exp(x) and Xt = exp(xt) for some x ∈
gl(n,K). Since XXt = I, X andXt are commute. In particular, x = log(X) and xt = log(Xt)

commute as well. Then 1 = exp(x) exp(xt) = exp(x+ xt), so g = {x ∈ gl(n,K) : x+ xt = 0}.

• SO(n,K) : Note that SO(n,K) is a connected component of O(n,K) containing 1. Therefore,

g = {x ∈ gl(n,K) : x+ xt = 0}.

• U(n) : A similar argument gives that g = {x ∈ gl(n,C) : x+ x∗ = 0}.

• SU(n) : Since SU(n) = U(n) ∩ SL(n,C), we have g = {x ∈ gl(n,C) : x+ x∗ = 0, tr(x) = 0}.

• Sp(2n,K) : A similar argument gives that g = {x ∈ gl(n,K) : x + JxtJ−1 = 0} where

J =

(
0 −In
In 0

)
.

Definition 2.4. The tangent space g = T1G is called Lie algebra.

Although we do not justify here, g has a canonical skew-symmetric bilinear map [ , ] : g × g → g

satisfying an identity called Jacobi identity: for any x, y, z ∈ g,

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0
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3 Topology of classical Lie groups

3.1 π0 and π1 of classical Lie groups

Here, we collect π0 and π1 of classical Lie groups without justification. The π0 and π1 of classical

Lie groups are as in Table 1.

G π0(G) π1(G)

GL(n,R) Z2 Z2 (n ≥ 3)

SL(n,R) {1} Z2 (n ≥ 3)

O(n,R) Z2 Z2 (n ≥ 3)

SO(n,R) {1} Z2 (n ≥ 3)

U(n) {1} Z
SU(n) {1} {1}

Sp(2n,R) {1} Z

G π0(G) π1(G)

GL(n,C) {1} Z
SL(n,C) {1} {1}
O(n,C) Z2 Z2

SO(n,C) {1} Z2

Table 1: π0 and π1 of classical Lie groups

One important fact is that π1(SO(n,R)) = Z2 because this implies that spin group Spin(n) is a

twofold cover. We roughly provide an outline of its proof.

Proposition 3.1. SO(3,R) ∼= RP3 and π1(SO(3,R)) = Z2.

proof sketch. Let V be a vector space

V = su(2) = {x ∈ gl(2,C) : x+ x∗, tr(x) = 0} = Span

{(
0 1

−1 0

)
,

(
0 i

i 0

)
,

(
i 0

0 −i

)}
with a bilinar form ( , ) : V × V → R given by (A,B) = tr(AB). Then SU(2) acts on V by

conjugation, and the bilinear form ( , ) is invariant under the action. This gives a homomorphism

ϕ : SU(2) → SO(3,R) which is a covering map since SO(3) and SU(2) are connected Lie groups.

Moreover, since SU(2) ∼= S3 is simply connected, ϕ is a universal covering map. By analyzing ϕ, we

get ker(ϕ) = {±1} and ±1 identify the antipodals. Therefore, SO(3,R) ∼= RP3 and π1(SO(3)) =

Z2.

The group SO(n,R) acts on the sphere Sn−1 ⊂ Rn. So we have a fiber bundle

SO(n− 1,R) SO(n,R)

Sn−1

Then we get an exact sequence

π2(S
n−1) → π1(SO(n− 1,R)) → π1(SO(n,R)) → π1(S

n−1) → {1}.
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In particular, we get π1(SO(n−1,R)) ∼= π1(SO(n,R)) for n ≥ 4, so π1(SO(n,R)) = Z2 for all n ≥ 3.

Proposition 3.2. LSpin(n) is the identity component of LSO(n).

Proof. Any loop in Spin(n) is uniquely projected down to SO(n) and any loop in SO(n) can be

lifted to a path in Spin(n). The path is loop if and only if the loop in SO(n) is contractible.

3.2 π2 and π3 of Lie groups

Here, we closely follow [Mil63].

Theorem 3.3. If G is a Lie group, then π2(G) = {1} and π3(G) = Z.

It is known that every connected Lie group deformation retracts onto its maximal compact sub-

group. Therefore, we may assume that G is compact.

Definition 3.4. Let G be a Lie group and let e be the identity of G. A piecewise smooth path

based at e is a map p : [0, 1] → G such that p(0) = e and there exists 0 = t0 < t1 < · · · < tk = 1

for some k so that p|[ti−1,ti] is smooth for all 1 ≤ i ≤ k. The pointed path space of G, denoted by

PG, is the space of all piecewise smooth paths based at e. If l is a piecewise smooth path based at

e such that l(1) = e, then l is called a piecewise smooth loop based at e. The pointed loop space of

G, denoted by ΩG, is the space of all piecewise smooth loops based at e.

Finally, define ΩG(x0) := {p ∈ PG : p(1) = x0} for x0 ∈ G. Note that ΩG(x0) and ΩG are

homotopically equivalent.

Then ΩG → PG → G where the first arrow is the natural inclusion and the second arrow is

p 7→ p(1) is a fibration. Since PG is contractible, it follows that π2(G) ≃ π1(ΩG).

Now we introduce three natural actions on Lie groups.

Definition 3.5. Let G be a Lie group. For g ∈ G, its Left action, Right action, and Adjoint action

are defined as follows: given g ∈ G,

• Left action Lg : G → G, h 7→ gh

• Right action Rg : G → G, h 7→ hg

• Adjoint action Adg : G → G, h 7→ ghg−1

Proposition 3.6. If G is a compact Lie group, then G admits a bi-invariant metric.

Proof. Let µe be a nonzero n-form at g. Then by defining µg := R∗
g−1µe, we get a right Haar

measure. Let (•, •) be an inner product of g. Then we get another inner product by averaging out:

for u, v ∈ Tg0G,

⟨u, v⟩ =
∫
G
(Adg(u), Adg(v))µ(dg).
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This is Ad-invariant. Since this is also right-invariant, it follows that it is left-invariant as well.

Proposition 3.7. Let G be a Lie group with a bi-invariant metric. If X,Y, Z,W are left invariant

vector fields on G, then

(1) ∇XX = 0

(2) ⟨[X,Y ], Z⟩ = ⟨X, [Y,Z]⟩

(3) R(X,Y )Z = 1
4 [[X,Y ], Z]

(4) ⟨R(X,Y )Z,W ⟩ = 1
4⟨[X,Y ], [Z,W ]⟩

Proof. (1) Since the geodesics are precisely the one-parameter subgroups of G and integral curves of

X are left translates of one-parameter group, the integral curve is geodesic. Therefore, ∇XX = 0.

(2) Applying (1) to X + Y , we get

0 = ∇X+Y (X + Y ) = ∇XX +∇XY +∇Y X +∇Y Y = ∇XY +∇Y X.

On the other hand, the torsion freeness gives

∇XY −∇Y X = [X,Y ].

Combining these two yields 2∇XY = [X,Y ]. By metric compatibility, we also have

0 = Y ⟨X,Z⟩ = ⟨∇Y X,Z⟩+ ⟨X,∇Y Z⟩.

Since Lie bracket is skew-symmetric, we get ⟨[X,Y ], Z⟩ = ⟨X, [Y,Z]⟩.

(3) The definition of Riemann curvature gives

R(X,Y )Z = ∇Y ∇XZ −∇X∇Y Z +∇[X,Y ]Z = −1

4
[X, [Y, Z]] +

1

4
[Y, [X,Z]] +

1

2
[[X,Y ], Z].

Using Jacobi identity, we get

R(X,Y )Z =
1

4
[[X,Y ], Z].

(4) It follows from (2) and (3).

Corollary 3.8. If G is a compact Lie group, then the sectional curvature is positive semi-definite.

Proof. By definition and the computations above, ⟨R(X,Y )X,Y ⟩ = 1
4⟨[X,Y ], [X,Y ]⟩ ≥ 0.

Definition 3.9. Let M be a smooth manifold and γ a geodesic on M . A vector field J along γ is

called a Jacobi field if it satisfies
D2J

dt2
+R(γ′, J)γ′ = 0.

Two points x, y ∈ M are conjugate if there exists a geodesic γ : [0, 1] → M with γ(0) = x and

γ(1) = y and a nonzero Jacobi field that vanishes at x and y.
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Theorem 3.10 (Fundamental Theorem of Morse Theory). Let G be a Lie group, and let x0 ∈ G be

a point not conjugate to e along any geodesic. Then ΩG(x0) has the homotopy type of a countable

CW-complex which contains a λ-cell for each geodesic from e to x0 of index λ.

Theorem 3.11 (Morse Index Theorem). The index of a geodesic γ is finite and equal to the

number of conjugate points γ(t), 0 < t < 1, counted with its multiplicity.

For u ∈ g, define a linear transformation Ku : g → g by Ku(v) = R(u, v)u.

Theorem 3.12. Let γ : R → G, γ(0) = e, be a geodesic. Then the conjugate points of e along γ

are the points γ(πk/
√
ei) where k is any nonzero integer and ei is any positive eigenvalue of Kγ′ .

Proof. Note that Ku is symmetric: for any v, w ∈ g,

⟨Ku(v), w⟩ = ⟨v,Ku(w)⟩

because this is equivalent to the symmetry relation

⟨R(u, v)u,w⟩ = ⟨R(u,w)u, v⟩.

Therefore, there exists an orthonormal basis v1, . . . , vn for g so that Kγ′(vi) = σivi where σi are

eigenvalues. Extend u and vi to vector fields U and Vi along γ by parallel transport. Then since

R(U, Vi)U are parallel as well, R(V,Ui)V = σiUi holds on γ. Therefore, any vector field W along

γ is uniquely written as

W (t) = w1(t)U1(t) + · · ·+ wn(t)Un(t)

and the Jacobi equation
∑

i

D2wi

dt2
Ui +

∑
i σiwiUi = 0 is equivalent to

d2wi

dt2
+ σiwi = 0

for all i. We are looking for solutions that vanish at t = 0. Therefore, if σi > 0, then the solution

is wi(t) = ci sin(
√
eit) for some constant ci. If σi = 0, then wi(t) = cit, and if σi < 0, then

wi(t) = ci sinh(
√
−eit). Therefore, the desired result follows.

proof of π2(G) = {1}. Let x0 ∈ G be a point not conjugate to e along any geodesics. By fun-

damental theorem of Morse Theory (Theorem 3.10), it is enough to show that each geodesic has

even index. By Morse Index Theorem (Theorem 3.11), we only need to show that the geodesics

have even number of conjugate points. Define adjoint homomorphism adu : g 7→ g for u ∈ g by

v 7→ [u, v]. The conjugate points of e on a geodesic γ are determined by eigenvalues of the linear

transformation Kγ′ : g → g defined by

Kγ′(v) = R(γ′, v)γ′ =
1

4
[[γ′, v], γ′] = −1

4
(ad γ′) ◦ (ad γ′)
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Note that ad γ′ is skew-symmetric: for any v, w ∈ g, ⟨(ad γ′).v, w⟩ = ⟨v, (ad γ′).w⟩ (This can be

seen by parallel transport and metric compatibility). Therefore, there exists an orthogonal basis

such that ad γ′ takes the form 
0 λ1

−λ1 0

0 λ2

−λ2 0
. . .


Then

(ad γ′) ◦ (ad γ′) =


−λ2

1

−λ2
1

−λ2
2

−λ2
2

. . .

 .

In particular, nonzero eigenvalues of Kγ′ are positive and come in pairs. Therefore, index λ of any

geodesic from e to x0 is even.

In addition, we get that H3(G) ≡ Zm for some m. Then Hurewicz theorem gives π3(G) ≡ Zm. In

fact, we need to work more to deduce that π3(G) ≡ Z. We refer the interested reader to [Bot56].
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