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Preface

A main objective of these lectures, originally planned for Fall 2020, but ‘deliv-
ered’ in the difficult conditions of the Covid19 pandemic of Winter/Spring 2021, is
to answer the question:- Does the Dirac-Ramond operator exist and can we work
with it? I have thought about this question over a period of some years and I hope
to relate here what I know. My usual joke is that the Dirac-Ramond operator is
like the ‘Tasmanian Tiger’ () – there have been many claimed sightings but most
if these turn out to be dogs. I leave it to you, gentle reader, to come to your own
conclusion.

The answer to the first question is yes, although the definition is still ‘weak’ (in
a technical sense). The answer to the second is still a little unclear but my hope
is that these notes will shed a little light on that too. To define the Dirac-Ramond
operator – which is on the loop space of a string manifold – I need to go through a
rather substantial preparation which includes differential analysis (function spaces,
operators), differential topology (string structures, gerbes, transgression), repre-
sentation theory (loop and diffeomorphism groups), index theory (including the
Witten genus) and more.
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Introduction

Initially I will give a ‘colloquim style’ discussion of the background leading
to the definition of the (or really a) Dirac-Ramond operator. If you understand
everything here you should probably be giving the lectures. By the end of the
semester I hope everything will be adequately described.

The idea of a differential operator on an infinite-dimensional space arose quite
early in the development of string theory as an analogue of the spin Dirac operator;
in this case it is intended to describe ‘spinning strings.’ However there are substan-
tial mathematical difficulties which have obstructed the precise definition of this as
an operator, and some of these issues remain. I hope to convince you that some
progress has been made and that there is interesting Mathematics in what might
otherwise be thought of as a quixotic enterprise.

Let me start with a ‘topological description of geometric structures’, in par-
ticular spin structures. Consider the Whitehead (my erstwhile colleague George)
tower for the group O(n). Here n > 2 and it creeps up a bit below, take n ≥ 5
throughout if you want to be safe from low dimensional annoyances. At some point
n might be even as well. So the tower in question is

27.2.2020.127.2.2020.1 (1) Z2 Z2

��

K(Z, 2)

��
O(n)

det

OO

SO(n)oo Spin(n)oo String(n)oo . . .oo

The successive maps here ‘remove’ the lowest homotopy group while keeping
the higher ones unchanged. In the first step the map is injective but in higher steps
it is surjective. Thus O(n) has two components, ‘π0 = Z2,’ then π1 = Z2 as well
then π2 = {Id}, π3 = Z and I’m not going to talk about the higher groups (look
up ‘fivebrane’ if you want to know). All the spaces here are, or really can be taken
to be, topological groups but they are actually only determined up to homotopy
equivalence.

What is the relation of this to geometry? A smooth (finite-dimensional) man-
ifold, which is really what we am interested in throughout, has a tangent bundle
which, being a vector bundle, has a frame bundle – the elements Fp at each point
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8 INTRODUCTION

p ∈M, are just the bases of the tangent space TpM. Here F is a principal GL(n,R)-
bundle with the action being change of basis

27.2.2020.227.2.2020.2 (2) GL(n,R) F

��
M.

We can recover TM as the bundle associated to the standard representation of
GL(n,R) on Rn

27.2.2020.327.2.2020.3 (3) TM = FM ×GL(n,R) Rn.

Equipping M with a Riemann metric, as we always can, reduces the structure
group from GL(n,R) to O(n) by taking the orthonomal frames

27.2.2020.427.2.2020.4 (4) O(n) FO

��

� � // F

~~
M.

Thus we are at the bottom of the tower.
Now the first horizontal arrow in (

27.2.2020.1
1) corresponds to the existence, and choice,

of an orientation on the manifold. Let me spell this out explicitly in one way for
later reference. An orientation is a reduction of the structure group from O(n) to
SO(n), a subbundle of consistently oriented orthonormal frames

27.2.2020.527.2.2020.5 (5) SO(n)

��

FSO = o−1(1)

��
O(n) FO

��

o // Z2

M.

One way to specify an orientation is to give a continuous map o to Z2, as indicated,
with the property that it takes both values on each fibre. An orientation exists if
and only if the first Stieffel-Whitney class vanishes and then, assuming as I will,
that M is connected, there are two choices.

The next step in the Whitehead tower corresponds to a spin structure on the
manifold. Here Spin(n) is a double cover of SO(n) and is simply connected; it is
a compact Lie group. Let me pause to indicate one relevant construction of it.
Namely consider the path and loop groups of SO(n), these are major characters in
this story. For the moment we can take continuous ‘pointed’ paths and loops – and
we might as well consider a general (connected) Lie group

27.2.2020.627.2.2020.6 (6)
Ṗ(G)) = {χ : [0, π] −→ G, continuous and with χ(0) = Id}

L̇(G) = {λ : S −→ G, continuous and with λ(0) = Id}.

Here I am thinking of the circle as R/2πZ so the loops λ are 2π-periodic maps from
the line. The reason I take π to be the parameter length for paths will show up
below, it is simply a normalization.
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Now Ṗ(G) and L̇(G) are groups under pointwise composition and there is a
short exact sequence of groups

27.2.2020.727.2.2020.7 (7) L̇(G) // Ṗ(G)

��
G

where the last map is evaluation at the endpoint π. The kernel of this homorphism
is the subgroup of pointed paths with endpoint at Id; halving the parameter allows
this to be identified with L̇(G); so my choice of normalization is not for this reason!

The path space is contractible, through path shortening, and as a result (
27.2.2020.7
7) is

a classifiying sequence so

27.2.2020.2427.2.2020.24 (8) G = BL̇(G) and πj(L̇(G)) ' πj+1(G).

Returing to the orthogonal group, the statement that π1(SO(n)) = Z2 therefore

means that L̇(SO(n) has two components and then

27.2.2020.827.2.2020.8 (9) Spin(n) = Ṗ SO(n))/L̇Id(SO(n))

identifies paths if they are homotopic through paths with the same endpoint.
The question of the existence of a spin structure on M is the search for an

extension of the oriented frame bundle

27.2.2020.927.2.2020.9 (10) Spin(n)

��

FSpin

��
SO(n) FSO

��
M.

Such a principal bundle exists if and only if the second Stieffel-Whitney class van-
ishes.

Since the objective is generalize it, let me now remind you of the Spin Dirac
operator – let’s take the dimension to be even, n = 2m. The spin group has a funda-
mental representation of dimension 2m coming from the identification Spin(2m) ⊂
ClC(2m) 'M(2m) of the complexified Clifford algebra with the corresponding ma-
trix algebra. This induces a bundle, the spinor bundle, S = S+ ⊕ S− over M with
grading coming from the two irreducible parts of the spin representation.

Now the bundle Fspin is a double cover, so the Levi-Civita connection lifts from
FSO to a connection and induces a connection ∇ on S. The spin action corresponds
to an action of the bundle of Clifford algebras ClC(T ∗M) on S,

27.2.2020.1027.2.2020.10 (11) cl : T ∗M −→ GL(S)

and combining these leads to the definition of the spin Dirac operator

27.2.2020.1127.2.2020.11 (12) ðSpin =

(
0 ð−
ð+ 0

)
: C∞(M ;S) −→ C∞(M ;S), ðSpin = cl ◦∇.
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The spin Dirac operator is elliptic, hence Fredholm and its graded index, com-
puted as part of the Atiyah-Singer index theorem,

27.2.2020.1227.2.2020.12 (13) ind(ðSpin) = dim Nul(ð+)− dim Nul(ð−) =

∫
M

Â

is the Â genus of M. This was one of the early achievements of Atiyah and Singer,

explaining the integrality of the Â genus for spin manifolds (which was known
previously).

So, it is this we are trying to ‘emulate’ at the next step up, for string structures.
Before proceeding in this way, let me describe the ‘trangression’ of spin structures.

Consider now the free (rather than the pointed) loop and path spaces spaces
now for a general manifold M :

27.2.2020.1327.2.2020.13 (14)
P(M) = {χ : [0, π] −→M, continuous}
L(M) = {λ : S −→M, continuous}.

Each path has two endpoints and (M being assumed connected) and the loop space
has a similar map by evaluation at 1 and −1 ∈ S

AnLoSp.1AnLoSp.1 (15) P(M) −→M2, L(M) −→M2.

Both are fibre bundles; these are important later.
Loop and path spaces have functorial properties arising by pull-back along the

defining maps. For instance, if F is a principal G-bundle over M then there are
corresponding principal bundles arising from pull-back

27.2.2020.1427.2.2020.14 (16) P(G) // P(F )

��
P(M)

L(G) // L(F )

��
L(M).

Here the fibre at a path or loop consists of all the paths/loops into F which ‘cover’
the given map into M.

In particular for an oriented manifold, as was observed by Atiyah in the 1980s,

A spin structure on M induces an ‘orientation’ on L(M).

Note that the latter notion is not clearly defined (because whatever the tangent
space to the loop space is, it is infinite-dimensional) but we find a picture very
reminiscent of the finite dimensional case

27.2.2020.1527.2.2020.15 (17) L(Spin(n))

��

L(FSpin)

��
L(SO(n)) L(FSO)

oSpin //

��

Z2

L(M).

Here oSpin is ±1 on a given loop in FSO as it is, or is not, the image of a loop in
L(FSpin) – it is a continuous map which takes both values on each fibre.

Conversely, it was show by McLaughlin that ifM is 2-connected, connected with
π1(M) = {0}, then the converse is true, but not without some such restriction. The
relationship was finally clarified by Stolz and Teichner around 2005. They observed
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Figure 1. Joining paths to a loop F:Join

that the orientation in (
27.2.2020.15
17) induced by a spin structure has an additional property

corresponding to the endpoint maps (
AnLoSp.1
15). To see this, form the fibre products with

respect to this map
27.2.2020.1727.2.2020.17 (18)

P [k](M) = {(χ1, . . . , χk) ∈ (P(M))k;χ1(0) = · · · = χk(0), χ1(π) = · · · = χk(π)}.

These form a simplicial space where the ‘face’ maps are just the maps forgetting
one of the paths

27.2.2020.1827.2.2020.18 (19) P(M) P [2](M)oooo
OO

��

P [3](M)oo
f∗oooo . . .oooooo

oo

L(M).

So this consists of all the k-tuples of paths with the same initial and terminal
endpoints.

The vertical bijection here is by ‘joining’ paths. If two paths χ1, χ2 have the
same endpoints then traversing the first and then, in reverse and with parameter
renormalized, the second gives a loop

LC.4LC.4 (20) P [2]
C M 3 (χ1, χ2) 7−→ λ12 ∈ LC(M)

and conversely a loop can be divided into 2 paths with the same endpoints by
shifting and reversing the second half of a loop..

Applying this construction to LFSO gives three pull-back maps and hence the
simplicial differential

LC.5LC.5 (21)
C(LFSO;Z2) 3 oSpin 7−→ f∗i oSpin ∈ C(LFSpin;Z2)

δoSpin = f∗3 oSpin(f∗2 oSpin)−1f∗1 oSpin = oSpin(λ12)(oSpin(λ13))−1oSpin(λ23) = 1

(where in the case of a Z2-valued function inversion does nothing). Stolz and
Teichner showed that

Spin structures on M are in 1-1 correspondence with fusion ori-
entation structures on L(M), in the sense that δoSpin = 1 on
L(M).QSpin

Even though this is correct, it is a little misleading as regards subsequent develop-
ments because of the discreteness of Z2. The important point is that ‘objects’ on
M are often in 1-1 correspondence with ‘fusive’ objects on L(M).

So far I have considered continuous paths and loops but it is important to
consider other regularity, with

1.3.2020.11.3.2020.1 (22)
P∞(M) = {λ : [0, π] −→M ; infinitely differentiable}
L∞(M) = {λ : S −→M ; infinitely differentiable}
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Figure 2. Fusion of three paths to three loops F:figure

perhaps the most natural. In fact the Sobolev-regular, for s > 1
2 , and Lipschitz-

regular paths and loops are also significant. These are well-defined as spaces of maps
into a finite-dimesional manifold because the corresponding spaces of functions on
[0, π] or S are ‘C∞ algebras’. Not only are they closed under the product of functions
but if fi are n of these maps into R collectively taking values in an open set Ω ⊂ Rn
and F : Ω −→ R is a smooth function on Ω then the composite F ◦f∗ is in the space.
This allows one to define the varous path and loop spaces with dense inclusions

1.3.2020.21.3.2020.2 (23) Ps(M)
r�

%%
P∞(M)

s�

%%

+ �

99

PC(M)

PΛ(M)
, �

99

Then PC(M) and PΛ(M) are Banach manifolds, the Ps(M) are Hilbert man-
ifolds and P∞(M) is a Fréchet manifold. Assuming M to be smooth they are in
fact all C∞ manifolds in the appropriate sense. To see why this is so, take a metric
on M and, for any ε > 0 smaller than the injectivity radius, consider the covering
by these open metric balls. The exponential map at each p ∈ M identifies the
ball with the ball of the same radius around the origin in TpM and the composites
Fpq = exp−1

p expq give smooth transition maps.
Now for a given element χ ∈ PC(M) consider the paths

1.3.2020.31.3.2020.3 (24) N (χ) = {χ′ ∈ PC(M); dM (χ′(t), χ(t)) < ε ∀ t ∈ [0, π]}.

These are open subsets and pull-back along the base curve gives a bijection

1.3.2020.41.3.2020.4 (25) σ′ = exp∗χ(t) χ
′, Expχ : N (χ)←→ {σ′ ∈ C([0, π];χ∗TM); |σ′(t)|g < ε}

with the continuous sections of the pull-back of the tangent bundle under the curve
and similarly for the other regularities. Two of the N (χ) intersect if and only if for
the corresponding base curves d(χ1(t), χ2(t)) < ε for all t ∈ [0, π]. Then the induced
transition map

1.3.2020.51.3.2020.5 (26) Fχ2,χ1
: Expχ2

◦Exp−1
χ1

: Expχ1
(N (χ1)∩N (χ2)) −→ Expχ2

(N (χ1)∩N (χ2))

is a diffeomorphism, i.e. it is infinitely differentiable on these open subsets of Banach
spaces.

Indeed, the transition maps are non-linear bundle maps. The derivatives of the
transition maps on M are symmetric |α|-multilinear maps

LC.6LC.6 (27) Fαpq(m) : TqM × TqM × · · · × TqM −→ TpM
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depending smoothly on m in the intersection of the coordinate balls. From (
1.3.2020.5
26) the

corredponding (weak) derivatives exist for the transition maps on the path or loop
spaces given by pointwise action:

LC.7LC.7 (28) Fαλ2,λ1
: C∞(S;λ∗1TM)× · · · × C∞(S;λ∗1TM) 3 (σ′2, . . . , σ

′
|α|)

7−→ Fλ1(∗),λ2(∗)(σ
′
1(∗), . . . , σ′|α|)(∗)) ∈ C

∞(S;λ∗2TM)

This corresponds to the fact that the only differentiation which arises is of the
transition maps for exp on M. Note that χ∗TM is trivial as a bundle over the
interval. This carries over to the other regularities and to the loop spaces, with the
triviality statement for the pull-back under loops being orientability.

It is rather natural to think of these spaces being ‘thickenings’ of P∞(M) or
L∞(M) in which it is dense. In all cases the tangent space at a path or loop is
naturally the space of sections, of the corresponding regularity, of χ∗TM. In the
standard approach to manifolds the cotangent space would be defined as the dual of
the tangent space. Since it is rather natural to think of this as a space of sections of
the cotangent space on the manifold and the most natural pairing between sections
of TM and sections of T ∗M pulled back is

AnLoSp.1aAnLoSp.1a (29)

∫
S
λ∗(v(s) · w(s))ds

this would realize the cotangent space as the dual space of sections of λ∗T ∗M, i.e.
measures for LC(M) and distributions for L∞(M). Not only is this ‘handist’ but it
is unwisely prescriptive since in fact on Ls(M) all the spaces

AnLoSp.2AnLoSp.2 (30) Ht(S;λ∗TM), Ht(S;λ∗T ∗M) for − s < t < s

make invariant sense. Thus the pointwise value of a ‘vector field’ of a ‘1-form’ on
Ls(M) can be reasonably taken to lie in any one of these spaces. From this it is
already clear that there are many notions of regularity of objects over the loop
spaces. Note in particular that continuity of a function on Ls(M) is a stronger
statement than continuity on the dense subspace L∞(M).

One reason that the Lipshitz paths and loops are relevant is that (affine) ar-
clength (re-)parameterization of a curve (so the parameter length is still 2π) is
well-defined as a map

AnLoSp.3AnLoSp.3 (31) L1(M) −→ LΛ(M).

Let me make an apparent digression. As Mathematicians we can ask a question
that perhaps the Physists do not feel bound to ask themselve. Namely, what
precisely is a String? Clearly it is related to a loop, an element of the free loop
space, say smooth

27.2.2020.1927.2.2020.19 (32) L∞(M) = {λ : S −→M, C∞}.
The diffeomorphism group of the circle acts on this by reparameterization and one
(not quite ideal) definition of a String is that it is an element of the quotient space

27.2.2020.2027.2.2020.20 (33) L∞(M)/Dff+(S)

given as the orbits under the action of the orientation-preserving diffeomorphisms of
the circle. Thus a String is (perhaps) an ‘unparameterized’ loop. Of course taking
a quotient like this is dangerous since the diffeomorphism group does not act freely,
so the quotient is bound to be rather singular. Instead, as is done in many contexts,
we look for Dff+(S)-invariant or -equivariant objects on L(M) and think of them as
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objects on the quotient space. So, it is important for us to understand the action
of the reparameterization group.

All this suggests that we can ‘transgress’ things from M to L(M) without loss
of information if we are careful. One version of this is coholomogy. There is an
evaluation map

27.2.2020.2127.2.2020.21 (34) ev : S× L(M) 3 (θ, λ) 7−→ λ(θ) ∈M

which allows cohomology to be pulled back and then integrated over the circle to
define transgression from the upper left part of the diagram for each k ≥ 1

27.2.2020.2227.2.2020.22 (35) Hk(S× L̇(M);Z)

π∗

��

Hk(M ;Z)
ev∗

oo

τuu

OO

τfus

��
Hk−1(L̇(M);Z) Hk−1

fu (L̇(M),Z).
fgoo

However the diagonal trangression map loses information, in general it is neither
injective nor surjective. For this reason Chris Kottke and I introduced ‘fusive’
cohomology (in Čech cohomology) by imposing fusion and a second (figure-of-eight)
reuirements at the chain level. This makes the corresponding cohomology spaces
invariant under reparameterization and gives an isomorphism as indicated on the
right, with a forgetful map to ordinary cohomology.

So a general ‘principle’ here is that

Objects can be trangressed, without loss, to fusive objects on
the loop space.27.2.2020.23

One particular, and fundamental, case of this is the notion of a string structure.
This corresponds to the third step in the Whitehead tower (

27.2.2020.1
1); now we are getting

to the heart of the matter.
The question then is analogous to (

27.2.2020.9
10). Now we ask about the existence of a

lift of the spin frame bundle

28.2.2020.128.2.2020.1 (36) String(n)

��

FString

��
Spin(n) FSpin

��
M

to a principal bundle with structure group String(n).
This string group is not well-defined as a group, only up to homotopy equiv-

alence, but the existence of a string structure in the sense of (
28.2.2020.1
36) is independent

of any choice and the final word here (as always there is a lot of history I am
suppressing) is due to Redden:

A string structure exists if and only 1
2p1 = 0 and then the equiv-

alence classes are parameterized by H3(M ;Z).

The somewhat confusingly denoted obstruction, 1
2p1 ∈ H4(M ;Z), is the Pontryagin

class of the Spin principal bundle FSpin, it is an integral class and 2 × 1
2p1 is the

‘usual’ Pontryagin class of FSO.
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Whatever realization of String(n) one takes, it cannot be a finite-dimensional
Lie group, since it must have trivial π3. It is quite difficult to contemplate doing
analysis direcctly on FString or related spaces. However the principle in (

27.2.2020.23
) holds, as

was understood, with some caveats, in the 1980s and we should ‘trangress’ to the
loop space.

Since π3(Spin(n)) = Z, we know from (
27.2.2020.24
8) that π2(L̇(Spin)) = Z and that this

loop group is simply-connected. It follows that there is a circle bundle with Chern
class a generator of H2(L̇(Spin)). In fact this class is equivariant and the circle
bundle corresponds to a central extension

28.2.2020.228.2.2020.2 (37) U(1) −→ L̂(Spin) −→ L(Spin).

There is a Z of such extensions, but all may be obtained from the ‘basic’ one (
28.2.2020.2
37)

by covering. The corresponding element of H2(L̇(Spin)) is called the level of the
central extension.

So now we can see a corresponding lifting question over the loop space. The
principal spin bundle, the top part of (

27.2.2020.9
10), pulls back to a principal L(Spin) bundle

over the loop space, as in (
27.2.2020.14
16), and we can ask whether this has a ‘lift’ to a principal

bundle for the basic central extension

28.2.2020.328.2.2020.3 (38) L̂(Spin(n))

��

F

��
L(Spin(n)) L(FSpin)

��
L̇(M);

The projections from the top line here correspond to circle bundles.
The situation is very similar to the spin to orientation transgression already

discussed. Here the existence of a string structure implies the existence of a exten-
sion. One way of seeing this is to note that such a U(1) lifting problem corresponds
to the triviality of a ‘lifting bundle gerbe’ in the sense of Murray. Thinking more
abstractly of a principal bundle with a (possibly large but topological) group with

a central extension U(1) −→ Ĝ −→ G we can ask the same existence question – we
look for a diagram

28.2.2020.428.2.2020.4 (39) Ĝ

��

P̂

��

L

��

s : δL ' U(1)

��

δs = 1

��
G P

��

P [2]oo P [3]oo P [4]oo · · ·oo

M

Here P is the total space of the principal bundle and to the right are the various
fibre products over M forming a simplicial space (so there are k maps from P [k] to
P [k−1]). Then L is a circle bundle defined from the central extension of G. Namely
the fibre of P [2] over m is the set of pairs (f1, f2) ∈ Pm×Pm so the G action induces
a shift map P [2] −→ G mapping (f1, f2 = gf1) to g. Then L is the pull-back of the
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circle bundle given by the central extension. This circle bundle is simplicial (in the
sense of Brylinski), as indicated – the simplicial differential gives a line bundle over
P [3] as the tensor product of the three pull-backs of L. From its definition this has
a section, s trivializing it. Again the simplicial differential of a section is a section
of the simplicial differential of the new circle bundle, where now we are over P4].
Here the line bundle is canonically trivial and the pulled back section is given by
this canonical trivialization. This is Murray’s notion of a bundle gerbe.

A bundle gerbe induces a Dixmier-Douady class D(L) ∈ H3(M ;Z)
and for a lifting bundle gerbe the vanishing of this class is equiv-

alent to the existence of a lifted principal bundle P̂ such that as
a circle bundle over P its image under δ is L.28.2.2020.5

Now, the Dixier-Douady class of this bundle gerbe is the trangression of the
obstruction to the existence of a string structure.

28.2.2020.628.2.2020.6 (40) D(L̇FSpin = τ(
1

2
p1)

Thus again, the existence of a string structure implies the existence of a ‘spin
structure’ in the sense of a lift of the principal bundle as in (

28.2.2020.4
39). However, just as

before this transgressed spin structure has additional properties, fusion, figure-of-
eight and equivariance. We can these more refined structures ‘loop spin structures’.
To make real progress also need to consider regularity, continuous objects do not
suffice.

Ignoring these niceties, it is shown by Waldorf and in
K-M
[?] that

String structures on M are in 1-1 correspondence with loop spin
structures.

Of course the automorphisms of these objects need to be taken into account too.
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