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Preface

This semester, Spring 2008, I am trying to get these lectures notes close to a
finished form. They represent accumulated notes from various different ‘Microlocal
Analysis’ courses and seminars at MIT. In particular in the seminar this semester,
which is a continuation of a course (also run as a seminar) last semester, we hope
to complete a proof of the families index theorem of Atiyah and Singer and some
version of Weyl asymptotics for self-adjoint elliptic pseudodifferential operators;
maybe we will also get to Fourier integral operators.

There are many people to thank, including recent participants and people who
have offered corrections and suggestions:

Jacob Bernstein
Benoit Charbonneau
Kaveh Fouladgar
Austin Ford

Sine Rikke Jensen
Mark Joshi
Nikola Kamburov
Jonathan Kaplan
Chris Kottke
Edith Mooers
Vedran Sohinger
Peter Speh

Raul Tataru
Andras Vasy
Fang Wang

Lu Wang

Zuoqin Wang
Raymond Wu
Arthur Huang






Introduction

I shall assume some familiarity with distribution theory, with basic analysis and
functional analysis and a passing knowledge of the theory of manifolds. Any one or
two of these prerequisites can be easily picked up along the way, but the prospective

student with none of them should perhaps do some preliminar rt%%%%&érz
Distributions: A good introduction is Friedlander’s W%%ka g .r2For a more ex-

haustive treatment see Volume I of Hormander’s treatise

alysis on manifolds: Most of .Wlﬁt we need can be picked up from Munkres’
unkresi iyal
book or Spivak’s little book .

11
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CHAPTER 1

Preliminaries: Distributions, the Fourier
transform and operators

Microlocal analysis is a geometric theory of distributions, or a theory of geomet-
ric distributions. Rather than study general distributions — which are like general
continuous functions but worse — we consider more specific types of distributions
which actually arise in the study of differential and integral equations. Distri-
butions are usually defined by duality, starting from very “good” test functions;
correspondingly a general distribution is everywhere “bad”. The conormal dis-
tributions we shall study implicitly for a long time, and eventually explicitly, are
usually good, but like (other) people have a few interesting faults, i.e. singulari-
ties. These singularities are our principal target of study. Nevertheless we need the
general framework of distribution theory to work in, so I will start with a brief in-
troduction. This is designed either to remind you of what you already know or else

38%%1:1&163&2“ off to work it out. (As noted above, I suggest Friedlander’s little book
% - there is also a newer edition with Joshi as co otkﬂlgg 428 good introduction to
distributions.) Volume 1 of Hérmander’s treatise}gf—mﬂ that you would need;
it is a good general reference. Proofs of some of the main theorems are outlined in
the problems at the end of the chapter.

1.1. Schwartz test functions

To fix matters at the beginning we shall work in the space of tempered distribu-
tions. These are defined by duality from the space of Schwartz functions, also called
the space of test functions of rapid decrease. We can think of analysis as starting
off from algebra, which gives us the polynomials. Thus in R™ we have the coordi-
nate functions, z1, ..., z, and the constant functions and then the polynomials are
obtained by taking (finite) sums and products:

(1.1) ¢(z) = Z Pax®, Do €C, a €Ny, a=(a1,...,qy),
lo| <k

n
where 2% = z{"* ... 20" = Ha:j” and Ng ={0,1,2,...}.
j=1
A general function ¢ : R® — C is differentiable at Z if there is a linear function
n

lz(xz) = c+ > (z; — T;)d; such that for every e > 0 there exists ¢ > 0 such that
j=1

(1.2) |p(x) — Lz (z)| < e€lz—2Z| V|r—2| <.

The coefficients d; are the partial derivative of ¢ at the point Z. Then, ¢ is said
to be differentiable on R™ if it is differentiable at each point T € R™; the partial

13
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derivatives are then also functions on R™ and ¢ is twice differentiable if the partial
derivatives are differentiable. In general it is k times differentiable if its partial
derivatives are k — 1 times differentiable.

If ¢ is k times differentiable then, for each £ € R", there is a polynomial of
degree k,

pi(z; ) = Z aeil®(z —2)%/al, o] = a1+ -+ ap,
lo| <k

(the factors of ¢ are inserted just because the have been put into D; = %a%j) such
that for each € > 0 there exists § > 0 such that

(1.3) |p(z) — pr(z,Z)| < €|z —z|*  if |z —Z| < 6.
Then we set
(1.4) D%¢(Z) = aq-

If ¢ is infinitely differentiable all the D%¢ are infinitely differentiable (hence con-
tinuous!) functions.

DEFINITION 1.1. The space of Schwartz test functions of rapid decrease consists
of those ¢ : R" — C such that for every o, B € N§

(1.5) sup 2P D%¢(z)| < oo;
zeR™

it is denoted S(R™).
1.6
From (h_5) we construct norms on S(R") :

1.6 Sl = max sup |[z*DPo(z)l.
(16) 6l = max | sup [a"D"o(a)

It is straightforward to check the conditions for a norm:

(1) [|¢llk =0, ¢k =0<=¢=0
(2) lItlle = [l ¢k, t € C
3) o+l < ollk + 1¢llk ¥V 6,9 € S(R™).

The topology on S(R™) is given by the metric
S
1.7 d(g, )=y 27k 12_TI%
(17 G0 =2 T g
31,1.2000.260
See Problem 4.

1.8
ProPoOSITION 1.1. With the distance function (h), S(R™) becomes a complete
metric space (in fact it is a Fréchet space).

Of course one needs to check that S(R™) is non-trivial; however one can easily
see that

(1.8) exp(—|z|*) € S(R™).
In fact there are lots of smooth functions of compact support and
(1.9) CPR") ={ueSMR");u=01in|z| > R=R(u)} C S(R") is dense.

The two elementary operations of differentiation and coordinate multiplication
give continuous linear operators:

(1.10)
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1.3. TEMPERED DISTRIBUTIONS 15

Other important operations we shall encounter include the exterior product,
S(R") x S(R™) > (¢,9) = ¢ K1) € S(R™™)
oW ip(z,y) = ¢(x)Y(y).

and pull-back or restriction. If R¥ ¢ R” is identified as the subspace z; =0,7>k,
then the restriction map

(1.12) 75 S(R") — S(RY), 7if(y) = f(y1,-- -, uk,0,...,0)

(1.11)

is continuous (and surjective).

1.2. Linear transformations

A linear transformation acts on R™ as a matrix (this is the standard action,
but it is potentially confusing since it means that for the basis elements e; € R",

mn
Lej = > Lyjey)
k=1

(1.13) L:R" —R", (Lz); = Y Ljpy.
k=1

The Lie group of invertible linear transformations, GL(n,R) is fixed by several
equivalent conditions

L € GL(n,R) <= det(L) # 0
(1.14) «— IL'st. (LHLe=2VzcR"
< Jc>0st. clz| <|La| <c x| Vo e R™
Pull-back of functions is defined by
L*¢(x) = ¢(Lx) = (¢ o L)(x).

The chain rule for differentiation shows that if ¢ is differentiable then

(L15) D;L*¢(x) = Dj¢(La) =Y Lij(Dig)(La) = L*((L.D;)é) (=),
k=1

L.D; = Li;Dy
k=1

(so D; transforms as a basis of R™ as it should, despite the factors of i.) From this
it follows that

(1.16) L* : S(R") — S(R™) is an isomorphism for L € GL(n,R).

1.3. Tempered distributions

1.10
As well as exterior multiplication (hI) there is the even more obvious multi-
plication operation

S(R") x S(R™) — S(R™)

(1.17) (6, 0) = ¢(2)Y(2)
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which turns S(R™) into a commutative algebra without identity. There is also
integration

(1.18) /: S(R™") — C.
Combining these gives a pairing, a bilinear map

(1.19) SR™) x S(R™) 5 (¢, 1) —> /¢(z)¢(x)dz ecC.
RW,

If we fix ¢ € S(R™) this defines a continuous linear map:

(1.20) T, S(RY) 5 o —s / () (x)dx.
Continuity becomes the condition:

We generalize this by denoting by S’(R™) the dual space, i.e. the space of all con-
tinuous linear functionals

ueS'R") <= u:SR") —C
3 k, Cy, such that |u(y)| < Cil||v|lx ¥V ¢ € S(R™).
LEMMA 1.1. The map
(1.22) S(R") 3 ¢ — Ty € S'(R™)
is an injection.
PROOF. For any ¢ € S(R™), Ty(¢) = [ |¢(z)|*dz, so T, = 0 implies p = 0. O
If we wish to consider a topology on S&’'(R™) it will normally be the weak topol-
ogy, that is the weakest topology with respect to which all the linear maps
(1.23) S'(R") >ur—u(p) € C, ¢ SR
are continuous. This just means that it is given by the seminorms
(1.24) S'(R™) 3 u v+ |u(d)| € R
where ¢ € S(R™) is fixed but arbitrary. The sets
(1.25) {ue SR u(g))] < ¢, &; € D}

form a basis of the neighbourhoods of 0 as ® C S(R™) runs over finite sets and the
€; are positive numbers.

1.15
PROPOSITION 1.2. The continuous injection S(R™) — S'(R™), given by (1.22),

has dense range in the weak topology.

P1.4 .
See Problem T.8 for the outline of a proof.
The maps x;, D; extend by continuity (and hence uniquely) to operators

(126) Zj, Dj ZS/(R”) — S,(Rn)
This is easily seen by defining them by duality. Thus if ¢ € S(R") set D;Ty = Tp, ¢,
then

(1.27) T,600) = [ Dyov =~ [oD0,
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the integration by parts formula. The definitions

(1.28) Dju(¥) = u(=Dj¥), ju(y) = u(z;1), u € S'(R"),1 € S(R")
1.18
satisfy all requirements, in that they give continuous maps (h—%) which extend the
standard definitions on S(R™).
To characterize the action of L € GL(n,R) on S'(R™) consider the distribution
associated to L*¢ :

(1.29) Tr-p(v) = [ ¢(La)(x)da

R™
= [ oLy det LI~ dy = Ty (|det LI~ (L)),

Since the operator |det L| =} (L~')* is an ismorphism of S(R") it follows that if we
take the definition by duality

(1.30)  L*u(y)) = u(|det LY (L™Y)*y), u € 8'(R"), v € S(R™), L € GL(n,R)
= L": §'(R") — S'(R")
.2.2000.27
is an isomorphism which extends (1l -+ 6 %Og?ﬁQ s%tisﬁes

(1.31)
D;L*u = L*((LD;)u), L* (z;u) = (L*z;)(L*u), u € S'(R™), L € GL(n,R),

. 1.2.2000.269
as in (I.15).

1.4. Two big theorems
The association, by (I[.22), of a distribution to a function can be extended
considerably. For example if v : R® — C is a bounded and continuous function

then
(1.32) Tu(¥) = /U(xw(x)dx

still defines a disfrihution which vanishes if and only if u vanishes identically. Using
the operations (I.26) we conclude that for any «, 5 € Nj

(1.33) D% € 8'(R") if u:R™ — C is bounded and continuous.
Conversely we have the Schwartz representation Theorem:

THEOREM 1.1. For any u € S§'(R™) there is a finite collection uq,g : R" — C
of bounded continuous functions, |a| + |8] < k, such that

(1.34) u = Z 2P D%ugp.
lal+]8|<k

Thus tempered distributions are just products of polynomials and derivatives of
bounded continuous functions. This is important because it says that distributions
are “not too bad”.

The second important result (long considered very difficult to prove, but there
is a relatively straightforward proof using the Fourier transform) is 1t1}8 Schwartz
kernel theorem. To show this we need to use the exterior product (hI) IftK e
S’(R™™) this allows us to define a linear map

(1.35) Ok : S(R™) — S'(R™)
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by
(1.36) O (1)(6) = / K- $R ¢ dedy.

THEOREM 1.2. There is a 1-1 correspondence between continuous linear oper-
ators

(1.37) A:SR™) —s S'(RY)
and S'(R"t™) given by A = Ok.

P2.4
£i%f outlines of the proofs of these two results can be found in Problems T.15
and [[.16.

1.5. Examples

Amongst tempered distributions we think of S(R™) as being the ‘trivial’ exam-
ples, since they are the test functions. One can say that the study of the singularities
of tempered distributions amounts to the study of the quotient

(1.38) S'(R™)/S(R™)

which could, reasonably, be called the space of tempered microfunctions.
The sort of distributions we are interested in are those like the Dirac delta
“function”

(1.39) i(z) € S'(R™), d(¢) = ¢(0).
The definition here shows that § is just the Schwartz kernel of the operator
(1.40) S(R") 3 ¢ — $(0) € C = S(R?).

This is precisely one reason it is interesting. More generally we can consider the
maps

(1.41) S(R™) 3 ¢ — D¢(0), «€Ng.
These have Schwartz kernels (—D)*§ since

(1.42) (~D)*8(6) = 6(D9) = D6 (0).
If we write the relationship A = Og +— K as

(1.43) (40)0) = [ K(z,0)o(a) i) dody
then (%) becomes

(1.44) D¢(0) = / (—D)*8(z)(x)dz.

More generally, if K(z,y) is the kernel of an operator A then the kernel of A - D
is (=D)y K (z,y) whereas the kernel of D% o A is DY K(z,y).
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1.6. Two little lemmas

Above, some of the basic properties of tempered distributions have been out-
lined. The main “raison d’étre” for S'(R™) is the Fourier transform which we
proceed to discuss. We shall use the Fourier transform as an almost indispensable
tool in the treatment of pseudodifferential operators. The description of differential
operators, via their Schwartz kernels, using the Fourier transform is an essential
motivation for the extension to pseudodifferential operators.

Partly as simple exercises in the theory of distributions, and more significantly
as preparation for the proof of the inversion formula for the Fourier transform we
consider two lemmas.

First recall that if u € S’(R™) then we have defined D,u € §’'(R") by

(1.45) Dju(¢) =u(—D;¢) ¥V ¢ € S(R").

In this sense it is a “weak derivative”. Let us consider the simple question of the
form of the solutions to

(1.46) Dju=0, ueSR").
Let I; be the integration operator:
I; : S(R™) — S(R™ )

1.47
(147 Li(o)(y1s -+ s Yn—1) :/¢(y1,~-'yj—hfﬂ,yj,u-ynq)df.

Then if m; : R® — R" ! is the map 7;(x) = (T1,...,%j-1,Tj41...,Tn), we define,
for v € §'(R"1),

(1.48) (@) = v(l;9) ¥V ¢ € S(R™).

2.2
It is clear from (h?) that I; : S(R") — S(R™') is continuous and hence 7¥v €
S’(R™) is well-defined for each v € &’(R™~1).

2.1
LEMMA 1.2. The equation (hG) holds if and only if w = w;v for some v €
S'(R*1).

Proor. If ¢ € S(R") and ¢ = D;9 with ¢ € S(R™) then ;¢ = I;(D,¢) = 0.
Thus if u = 7r.’;v then

(1.49) u(¢) = u(=D;v) = mjo(=Dji) = v(I;(=Djip)) = 0.

2.1
Thus u = 7jv does alwayg satisfy (h6)
Conversely suppose (T.26) holds. Choose p € S(R) with the property

(1.50) / p(w)dz = 1.
Then each ¢ € S(R™) can be decomposed as

(1.51) o(z) = p(zj) (@1, .., Tj—1, Tjg1, ... 2n) + Djo, ¢ € S(R™).
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Indeed this is just the statement

¢ e SR, I;¢ =0 = ¢(z) € S(R") where

Tj
’(/)((E): /C(.’L’l,...7$j,17t,$j+17...71'n)dt
—o00

Zj
= /C(ml,...,:I:j,l,t,ijrl,...,xn)dt.
o0

Using (%gl) and (%6) we have

(1.52) w(@) = u(p(z;)jo(T1,. .., Zj—1,Zj41,- - Zn))-

Thus if

(1.53) v(Y) = u(p(x;)V(z1,. .., Tj—1,Tjp1,...T5)) VO € S(R")

then v € §'(R"™!) and u = 7}v. This proves the lemma. O

Of course the notation u = ;v is much too heavy-handed. We just write
w(x) =v(xy,...,j—1,2j41,...,%y) and regard ‘u as being the distribution v but
in one additional variable’; just as you might for a function.

The second, related, lemma is just a special case of a general result of Schwartz
concerning the support of a distribution. The particular result is:

LEMMA 1.3. Suppose u € S'(R™) then from xju =0, j =1,...n it follows that
u=cd(x) for some constant c.

PROOF. Again we use the definition of multiplication and a dual result for
test functions. Namely, choose p € S(R™) with p(z) = 1 in |z| < 3, p(z) = 0 in
|z] > 3/4. Then any ¢ € S(R™) can be written

(1.54) ¢ = ¢(0) - p(x) + Zn:lfﬂjwj(ff), ¥; € S(R™).
=
This in turn can be proved using Taylor’s formula as I proceed to show. Thus
(1.55) o(z) = ¢(0) + ixjcj(x) in |z| <1, with {; € C*.
j=1
Then,
(1.56) p(x)d(x) = $(0)p(z) + Zn; ;G ()
=

2.6
and p(; € S(R™). Thus it suffices to check (h_54) for (1 — p)¢, which vanishes
identically near 0. Then ¢ = |z|7%(1 — p)¢ € S(R™) and so

(1.57) 1=p)p=2[*)¢ = zj(x;¢)
j=1
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2.6
finally gives (hél) with ¥, (x) = p(2){;(x) + z;¢(z). Having proved the existence
of such a decomposition we see that if x;u = 0 for all j then

(1.58) u(9) = u(@(0)p(x)) + D ulz;iy) = c4(0),  c=u(p(z)),

Jj=1

ie. u=co(x). O
1.7. Fourier transform

Our normalization of the Fourier transform will be

(1.59) Fo(&) = / e T p(x)dx.
As you all know the inverse Fourier transform is given by
(1.60) Gula) = (2m) " [ <)

Since it is so important here I will give a proof of this invertibility. First however,
let us note some of the basic properties.
Both F and G give continuous linear maps

(1.61) F,G:S[R") — S(R™).

2.7 2.8
To see this observe first that the integrals in (hQ) and (h_b'O) are absolutely con-
vergent:

(1L62)  |F() < / 6(x)|dz < / (1 Jaf?) ™o sup (14 Jo2)" o).

where we use the definition of S(R™). In fact this shows that sup |F¢| < oo if ¢ €
S(R™). Formal differentiation under the integral sign gives an absolutely convergent
integral:

D;Fo(€) = / D¢ e” ™ ¢(z)dx = / e T (—ap)da

since sup(1 + |z|?)"|x;¢| < co. Then it follows that D;F¢ is also bounded, i.e. F¢

z 2.10

is differentiable, and (h holds. This argument can be extended to show that F¢

is C*,

(1.63) l;‘;fcb(é) = F((-2)¢).

Similarly, starting from (ﬁQ), we can use integration by parts to show that

6700 = [ et godo = [ (Do) w)do

2.1{
ie. §;F¢ = F(D;¢). Combining this with (h_63) gives

(1.64) " DLF$ = F(D* - [(—2)7¢)).
Since DY ((—z)?¢) € S(R™) we conclude
(1.65) sup €2 D] F¢| < oo = F¢ € S(R).

This map is continuous since
sup ¢ D{Fo| < C -sup |(1+ [«]?)" D2 [(~) ¢]
= [Fllk < Crlldllkran, ¥ k.
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The identity (E_(%Zzl), written in the form

F(Dj¢) =& F¢
F(xj¢) = =D, Fo
is already the key to the proof of invertibility:

(1.66)

THEOREM 1.3. The Fourier transform gives an isomorphism F : S(R") +—
S(R™) with inverse G.

PrOOF. We shall use the idea of the Schwartz kernel theorem. It is important
not to use this theorem itself, since the Fourier transform is a key tool in the
(simplest) proof of the kernel theorem. Thus we consider the composite map

(1.67) GoF: S(R") — S(R")

and write down its kernel. Namely

K@) = @n) " [[[ e <oy, pdudsay
V¢ e SRy xRY) = K € S'(R™).

2.15
The integrals in (h_6‘8) are iterated, i.e. should be performed in the order indicated.
Notice that if ¢, € S(R™) then indeed

(169) (GoFWN©) = [ cwiem™ ( [ere ] e‘”'%(x)dmd£> dy
— K(®y)

(1.68)

so K is the Schwartz kerpe] of G o F.
The two identities (h_66) translate (with essentially the same proofs) to the
conditions on K :

D,. +D, )K(z,y) =0

(zj —yj)K(z,y) =0
Next we use the freedom to make linear changes of variables, setting

Ki(z,2) = K(z,z — 2), K1, € S'(R*")

ie. Ki(¢) = K(v), ¥(z,y) = ¢(z,z —y)
2.17

where the notation will be explained later. Then (ho) becomes
(1.72) D, Kp(x,z) =0 and z;Kp(2,2) =0 for j =1,...n.

This puts us in a position to apply the two little lemmas. The first says K (z,z) =
f(z) for some f € §'(R™) and then the second says f(z) = cd(z). Thus

(1.73) K(z,y) =cd(z —y) = GoF =cld.

It remains only to show that ¢ = 1. That ¢ # 0 is obvious (since F(§) = 1).
The easiest way to compute the constant is to use the integral identity

(1.71)

o0

(1.74) / e dy =7

— 00

to show that!

1 1.2.2000.278
See Problem T.9.
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Flem1#y = paelelF/4
(1.75) = G(e 1E*/4) = g5 Iof
= G- F=1Id.

Now (27)"G is actually the adjoint of F :

) [oFuG = () [(G6)-Tda ¥ 66 € SEY).

It follows that we can extend F to a map on tempered distributions
F:SR") — S'(R™)

(1.77) _ _

Fu(¢) = u((2m)"Go) V ¢ € S(R™)

Then we conclude

COROLLARY 1.1. The Fourier transform extends by continuity to an isomor-
phism

(1.78) F: SR «— S'(R™)
2.13
with inverse G, satisfying the identities (h_ﬁfi)

Although I have not discussed Lebesgue integrability I assume familiarity with
the basic Hilbert space

L*(R™) =
{u :R"™ — C; f is measurable and / |f(2)|?dx < oo} / ~,
R’n
f ~ g<= f =g almost everywhere.
. .. . i 1.2.2000.274
This also injects by the same integration map (I with S(R™) as a dense subset
S(R™) = L*(R") — S'(R™).

PROPOSITION 1.3. The Fourier transform extends by continuity from the dense
subspace S(R™) C L?(R™), to an isomorphism

F: L*(R™) < L*(R")
satisfying || Full > = (27) " ||ul| .

1 13ROOF. Given the density of S(R") in L?(R™), this is also a consequence of
( .76?, since setting ¢ = Fu, for u € S(R™), gives Parseval’s formula

Fu(¢)Fo(0) = (2m)" / w(z)o(z)d.

Setting v = u gives norm equality (which is Plancherel’s formula).
An outline of the proof of the density statement is given in the problems below.
O



S.Differential.operators

2.21

N
N
w

N
N
=

2.25

24 1. PRELIMINARIES: DISTRIBUTIONS, THE FOURIER TRANSFORM AND OPERATORS

1.8. Differential operators

The simplest examples of the F 2ur1i§r transform of distributions are immediate
consequences of the definition and (I.66). Thus

(1.79) F()=1

as already noted and hence, from (g_é%)7

(1.80) F(DY(x)) =& VYaeN].

Now, recall that the space of distributions with support the point 0 is just:

(1.81) {ue S'R");sup(u) C {0}} = {u= Z caD%6}.

finite

Thus we conclude that the Fourier transform gives an isomorphism
(1.82) F:{ue &' (R");supp(u) C {0}} «— C[¢] = {polynomials in £}.

Another way of looking at this same isomorphism is to consider partial differ-
ential operators with constant coefficients:

P(D): S(R") — S(R™)
(1.83) P(D) =Y c.D".

The identity becomes

(1.84) F(P(D)¢)(&) = P(E)F(9)(§) V ¢ € S(R")

and indeed the same formula holds for all ¢ € S'(R™). Using the simpler notation
(&) = Fu(€) this can be written

(1.85) P(D)u(é) = PE)a(é), P(E) =Y cal®™

The polynomial P is called the (full) characteristic polynomial of P(D); of course
it determines P (D) uniquely.

It is important for us 9 £xtend this formula to differential operators with
variable coefficients. Using (I.59) and the inverse Fourier transform we get

(1.86) P(D)u(z) = (27)" / / )€ P& u(y)dyde

where again this is an iterated integral. In particular the inversion formula is just
the case P(£) = 1. Consider the space

(1.87) CEX(R") = {u:R" — C; sup |[Du(z)| < 0o V a}

the space of C*° function with all derivatives bounded on R™. Of course

(1.88) S(R™) Cc CE(R™)

but C2(R™) is much bigger, in particular 1 € C2(R™). Now by Leibniz’ formula

(1.89) D(w) =Y (g) DPu- Doy

B<a

it follows that S(R™) is a module over C(R™). That is,
(1.90) ueCLR"),¢p e S(R") = up € S(R™).
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From this it follows that if

(1.91) P(z,D)= Y pa(z)D®, pa € CZ(R")
|a]<m
then P(z, D) : S(R") —s S(R™). The formula (F:88) extends to
227] (1.92) P(a.D)o = (2m)" [ €D<Lz, o(y)dyds

where again this is an iterated integral. Here
(1.93) P(z,6)= ) pa(2)g®
lor|<m

is the (full) characteristic polynomial of P.

.radial.compactification ‘ 1.9. Radial compactification

For later purposes, and general propaganda, consider the three standard com-
pactifications of of R™. They are the one-point, the quadratic and the radial com-
pactifications.

1.9.1. One-point compactification. This is most familiar in the case of R?
as C compactified to the Riemann sphere. However, it works in general by the
stereographic map

(1.94) R"S 2 s (

We will mainly consider this in the case of n = 1 when it gives an smooth map
from R into the unit circle. Rotating the axes so that the origin is mapped to the
point (1,0) (rather than ¢ = (0, 1)) in complex notation this is

4— |z 42

— -~ _ ). eS*cR"!
4+ |z|? 4+|z|2>

6.5.2008.784] (1.95) R >t e eScC, 0(t) = arctan( ).

4 42

1.9.2. Quadratic compactification. The smooth map

1.104| (1.96) QRC:R";:m—>L1 eR"”
(14 [zf?)z
is 1-1 and maps onto the interior of the unit ball, B" = {|z| < 1}. Consider the
subspace
1.105| (1.97) C®(B") = {u € S(R");supp(u) C B"}.

This is just the set of smooth functions on R™ which vanish outside the unit ball.
Then the composite (‘pull-back’) map

1.106] (1.98) QRC* : C>®°(B") 3 u — uo QRC € S(R")

is a topological isomorphism. A proof is indicated in the problems below.

The dual space of C>® (B™) is generally called the space of ‘extendible distri-
butions’ on B™ — because they are all given by restricting elements of S&’'(R™) to
C>(B"). Thus QRC also identifies the tempered distributions on R™ with the ex-
tendible distributions on B™. We shall see below that various spaces of functions on
R™ take interesting forms when pulled back to B™. I often find it useful to ‘bring
infinity in’ in this way.



1.2.2000.275

S.Problems.1

P1.1

P1.2

P1.3

31.1.2000.260

31.1.2000.261

26 1. PRELIMINARIES: DISTRIBUTIONS, THE FOURIER TRANSFORM AND OPERATORS

Why is this the ‘quadratic’ radial compactification, and not just the radial
compactification? There is a good reason which is discussed in the problems below.

1.9.3. Radial compactification. The actual radial compactification is a closely
related map which identifies Euclidean space, R™, with the interior of the upper
half of the n-sphere in R**+! :

1
(1.99) RCZR”BZ‘I—>< -, a 1)
(L [z?)z 1+ |xf?)2

€SM ={X = (Xo,X") e R""; X > 0, X5 + [X'|* = 1}
Since the half-sphere is diffeomorphic to the ball (as compact manifolds with bound-

ary) these two maps can be compared — they are not the same. However it is true
that RC also identifies S(R™) with C>°(S™1).

1.10. Problems

PROBLEM 1.1. Suppose ¢ : R® — C is a function such that for each point
Z € R™ and each k € Ny there exists a constant ¢, > 0 and a polynomial pg(x; T)
(in z) for which

1
(1.100) 6(@) — pr(w; D) < —fo =3 ¥ Iz — 7] < e
k

Does it follow that ¢ is infinitely differentiable — either prove this or give a counter-
example.

PROBLEM 1.2. Show that the function u(x) = exp(z) cos[e®] ‘is’ a tempered
distribution. Part of the question is making a precise statement as to what this
means!

PROBLEM 1.3. Write out a careful (but not necessarily long) proof of the ‘easy’
direction of the Schwartz kernel theorem, that any K € S'(R"*™) defines a con-
tinuous linear operator

(1.101) Ok : S(R™) — S'(R™)

[with respect to the weak topology on S&'(R™) and the metric topology on S(R™)]
by

(1.102) Ok () = K(y K o).

[Hint: Work out what the continuity estimate on the kernel, K, means when it is
paired with an exterior product 1 X ¢.]

1.8
PROBLEM 1.4. Show that d in (h’?) is a metric on S(R™). [Hint: If || - || is a
norm on a vector space show that
e toll Ml ol
T+ futof] = 1+ ull 1+ vll

]

PROBLEM 1.5. Show that a sequence ¢, I? § ( %g igseoCauchy, resp. converges

to ¢, with respect to the metric d in Problem T.4'if and only if ¢,, is Cauchy, resp.
converges to ¢, with respect to each of the norms || - ||x.
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PROBLEM 1.6. Show that a linear map F' : S(R7), 75 (R is continuous
with respect to the metric topology given in Problem [I.4if and only if for each k
there exists N(k) € N a constant Cj, such that

[F9[lk < Crllolng ¥V ¢ € S(R™).

Give similar equivalent conditions for continuity of a linear map f : S(R") — C
and for a bilinear map S(R") x S(R?) — C.

o 31.1.2000.264
PROBLEM 1.7. Check the continuity of (T.12).

ProBLEM 1.8. Prove Proposition H—% [Hint: It is only necessary to show that
if u € §’'(R™) is fixed then for any of the open sets in (1.25), B, (with all the ¢; > 0)
there is an element ¢ € S(R") such that u — Ty € B. First show that if ¢, ... ¢, is
a basis for ® then the set

(1.103) B' = {v e S'(R"); (v, ¢})| < d;

is contained in B if the J; > 0 are chosen small enough. Taking the basis to be
orthonormal, show that u — ¢ € B’ can be arranged for some 1) € ]

PROBLEM 1.9. Compute the Fourier transform of exp(—|z|?) € S(R™). [Hint:
The Fourier integral is a product of 1-dimensional integrals so it suffices to assume
x € R. Then

/e_’f’”e_lzdx = 6_52/4/6_(x+%£)2d$.

Interpret the integral as a contour integral and shift to the new contour where
x4 £ is real ]
1.13
ProBLEM 1.10. Show that (ho) makes sense for ¢ € L?(R") (the space of
(equivalence classes of) Lebesgue square-integrable functions and that the resulting

map L?(R") — S’(R") is an injection.
PROBLEM 1.11. Suppose u € L?(R") and that
DDy -+ Dpu € (14 |z]) "' L*(R™),

P1.5
where the derivatives are defined using Problem W Using repeated integration,
show that u is necessarily a bounded continuous function. Conclude further that
for u e S'(R™)
(1100 D € (1+ |z)) ™" 'LAR™") V |a| <k +n
' = D%u is bounded and continuous for |a| < k.
[This is a weak form of the Sobolev embedding theorem.]

PROBLEM 1.12. The support of a (tempered) distribution can be defined in
terms of the support of a test function. For ¢ € S(R™) the support, supp(¢), is the
closure of the set of points at which it takes a non-zero value. For u € §'(R™) we
define

(1.105)  supp(u) = O°%, O = U {O" C R™ open;supp(¢) C O = u(¢) =0}.

Show that the definitions for S(R™) and S’(R™) are consistent with the inclusion
S(R™) c §'(R™). Prove that supp(d) = {0}.
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PRrROBLEM 1.13. For simplicity in R, i.e. with n = 1, prove Schwartz theorem
concerning distributions with support the origin. Show that with respect to the
norm || - ||x the space

(1.106) {p € S(R);0(z) =01n |z| <€, e =€(¢) > 0}

is dense in

(1.107) {¢ € SR);p(z) = 2" y(z), v € SR)}.

Use this to show that

(1.108) u € S'(R), supp(u) C {0} = u = Z ceDES(z).
¢, finite

PROBLEM 1.14. Show that if P is a differential operator with coefficients in
C2(R™) then P is local in the sense that

(1.109) supp(Pu) C supp(u) VYV u € S'(R").

The converse of this, for an operator P : S(R") — S(R™) where (for simplicity)
we assume

(1.110) supp(Pu) C K C R"

for a fixed compact set K, is Peetre’s theorem. How would you try to prove this?
(No full proof required.)

PROBLEM 1.15. (Schwartz representation theorem) Show that, for any p € R
the map

(1.111) R,: S(R™) 3 ¢ — (1 + |z[2)"P2F (1 4 |€]2) P2 Fg] € S(R™)

is an isomorphism and, using Problem %f% or otherwise,

(1.112) pznt+l+k=|Rpolr < Cil¢lL2, V & € S(R).

ok 25 s oo et 1 ¢ SR siopen O She
(1.113) [u(@)| < Cllol|k, ¥V ¢ € S(R™)

then R;u € L12 R™),ifp>n+1 +P{c1, %n the sense that it is in the image of the map
in Problem FTIO Using Problem hI show that R,41(R! ,,,u) is bounded and
continuous and hence that

(1.114) u = > 2P D% g
la|+|B|<2n+24+k
for some bounded continuous functions u, g.

PROBLEM 1.16. (Schwartz kernel theorem.) Show that any continuous linear
operator
T:S[Ry) — S'(R?)
extends to a continuous linear operator
T:(1+[y") "2 HNRY) — (1+ [2f*) "2 HI(RY)
for some k and ¢. Deduce that the operator
T = (14D )"0 (14 [2) 72 0 To (14 |y*)*2(1 + D)™+
L*(R™) — Coo(R™)
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is continuous with values in the bounded continuous functions on R™. Fixing a point
z € R", u — (Tu)(x) defines a bounded linear functional on L?(R™) to which
Riesz’ representation theorem can be applied. It follows that T has Schwartz’
kernel a bounded continuous map from R” to L%(R™,) i.e. in Coo (R™; L2(R™)) C
S’(R™™) and hence that T itself has a tempered Schwartz kernel.

PrOBLEM 1.17. Radial compactification and symbols.

PRrROBLEM 1.18. Series of problems discussing double polyhomogeneous sym-
bols.
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CHAPTER 2

Pseudodifferential operators on Euclidean space

2.27
Formula (I.92) for the action of a differential operator (with coefficients in
C2(R™)) on S(R™) can be written

P(z,D)u = (27r)_"/ei(w_y)'gP(sc,E)u(y)dydé
(2.1)
— 20 [ <P e

where 4(§) = Fu(€) is the Fourier transform of u. We shall generalize this formula
by generalizing P(z, &) from a polynomial in £ to a symbol, which is to say a smooth
function satisfying certain uniformity conditions at infinity. In fact we shall also
allow the symbol, or rather the amplitude, in the integral ?ET) to depend in addition
on the ‘incoming’ variables, y :

(2.2) Az, D)u = (2m)™" / @V Eq(z,y, O)u(y)dydE, u € S(R™).

Of course it is not jmmediately clear that this integral is well-defined.

To interpret (b?) we first look into the definition and properties of symbols.
Then we show how this integral can be interpreted as an oscillatory integral and
that it thereby defines an operator on S(R™). We then investigate the properties of
these pseudodifferential operators at some length.

2.1. Symbols

A polynomial, p, in &, of degree at most m, satisfies a bound
(2.3) P < CL+ €)™ VEER™

Since successive derivatives, Dg'p(€), are polynomials of degree m — |af, for any
multiindex «, we get the family of estimates

(24) 1DgP(E)] < Ca(1+ €)1 VE€R", 0 € N.

Of course if |a] > m then Dgp = 0, so we can even take the constants C, to be
independent of «. If we consider the characteristic polynomial P(z,£) of a differ-
ential operator of order ith coefficients in CL(R™) (i.e. all derivatives of the
coefficients are bounded)%) is replaced by

(2.5) \D;D?P(x,g)\ < Copg(l+1E)™ 1BV (2,6) e R* x R", a,3 € NI

There is no particular reason to have the same number of x variables as of £ vari-
ables, so in general we define:

31
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32 2. PSEUDODIFFERENTIAL OPERATORS ON EUCLIDEAN SPACE
DEFINITION 2.1. The space S7%(RP; R™) of symbols of order m (with coefficients
in CZ(RP)) consists of those functions a € C°(RP x R™) satisfying all the estimates
(2.6)  |DgDla(z,€)] < Cap(1+ €)™ 1P on RP xR" ¥ o € Nj, B € Np.
For later reference we even define ST (€% R™) when Q,C RP and Q C clos(int(£2))
as consisting of those a € C*(int() x R™) satisfying (b?i) for (z,€) € int(Q) x R™.
3.7
The estimates (bﬁ) can be rewritten

2.7 1 —m+|8l| po pb <
( ) zEmt(Q) \@|£‘IT%\X<N( * |§|) { z 5&(2’75)‘ o0
EER™

lallym =

With these norms S(£2;R™) is a Fréchet space, rather similar in structure to
C22(R™). Thus the topology is given by the metric

_la—bllnm
(2.8) 2= N a,b € ST(QR™).
NZ:O Tt fla—bllvm’ <

The subscript ‘oo’ here is not standard notation. It refers to the assumption of
uniform boundedness of the derivatives of the ‘coefficients’. More standard notation
would be just S™(2 x R™), especially for Q@ = RP, but I think this is too confusing.

A more significant issue is: Why this class precisely? As we shall see below,
there are other choices which are not only possible but even profitable to make.
However, the present one has several virtues. It is large enough to cover most
of the straightforward things we want to do (at least initially) and small enough
to ‘work’ easily. It leads to what I shall refer to as the ‘traditional’ algebra of
pseudodifferential operators.

Now to some basic properties. First notice that

(2.9) (14N <CA+ €)™ VEER <= m < m'.
Thus we have an inclusion
(2.10) STHQ;R™) s ST (QR™) YV m/ > m.

3.8
Moreover this inclusion is continuous, since from (b?), lal|nm < ||lal|nm if a €
S™(Q;R™) and m/ > m. Since these spaces increase with m we think of them as a
filtration of the big space

(2.11) SR = S2(4RY).

Notice that the two ‘cos’ here are quite different. The subscript refers to the fact
that the ‘coefficients’ are bounded and stands for L°° whereas the superscript ‘oo’
stands really for R. The residual space of this filtration is

(2.12) SIO(URY) = () SZ(4R™).

3.10
In fact the inclusion (bTO) is never dense if m’ > m. Instead we have the following
rather technical, but nevertheless very useful, result.

LEMMA 2.1. For any m € R and any a € SZ(;R™) there is a sequence in
S°(Q;R™) which is bounded in ST (;R™) and converges to a in the topology
of SQ,(Q;R") for any m' > m; in particular S °°(Q;R™) is dense in the space
ST (Q;R™) in the topology of So";l (4 R™) for m’ > m.
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The reason one cannot take m’ = m here is essentially the same reason that un-
derlies the fact that S(R™) is not dense in CZ(R™). Namely any uniform limit
obtained from a converging Schwartz sequence must vanish at infinity. In particu-
lar the constant function 1 € SO (RP;R™) cannot be in the closure in this space of
S °(RP;R™) if n > 0.

PROOF. Choose ¢ € C°(R™) with 0 < (&) <1, ¢(§) = 11if |¢] < 1,0(§) =0 if
|€] > 2 and consider the sequence
(2.13) ar(z,€) = ¢(§/k)a(z,€), a € SZ(GRY).
We shall show that a;, € S5 .°(€Q2,R") is a bounded sequence in SZ(£2; R™) and that
ar, —> a in 87 (Q;R™) for any m’ > m. Certainly for each N
(2.14) Ja(z, )| < Cna(1+ €)™Y
since ¢ has compact support. Leibniz’ formula gives

/ ’
@15 Dol = X ()0 0 /mDDE ol 0)
B'<B

On the support of ¢(£/k), |€] < k so, using the symbol estimates on a, it follows
that ay, is bounded in S72(9; R™). We easily conclude that

(2.16) |DEDfan(z,6)] < Crnapr(1+ 16NN Vo, BN, k.
Thus ay € S (;R™).

So consider the difference
(2.17) (@ —ar)(z,8) = (1= 9)(§/k) a(z,9).
Now, [(1 — ¢)(&/k)] = 0 in || < k so we only need estimate the difference in
|€] > k where this factor is bounded by 1. In this region 1 + [¢] > 1 + k so, since
—-m' +m <0,
(218)  (1+[€) ™ [(a — a)(z,)] <

(L+ k)~ sup (L +1€) ™ a(z, ) < (L+ k)™ " [laflom — 0.

This is convergence with respect to the ﬁrﬁt symbol norm.
Next consider the & derivatives of (b 7). Using Leibniz’ formula

Bla—ap) = B\ ps-(1 — é Ta(z
Di(a—ay) K};(V)Dg (1-0)(%) - Dlaz.6)
— (- a)() - Dot - X () (07 0) (5 kDt .

v<B

In the first term, Dfa(z7 €) is a symbol of order m — |3], so by the same argument
as above

(219) sup(1 €)™+ 7(1 = 6)( ) Dfa(r, O] — 0

as k — oo if m’ > m. In all the other terms, (D?~7¢)(¢) has compact support, in
fact 1 < |¢| < 2 on the support. Thus for each term we get a bound

(2.20) sup (1+ [¢))~™ Bl =18 C (1 4 ¢)ym Pl < o'+,
k<|g|<2k
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The variables z play the role of parameters so we have in fact shown that
(2.21) 81618 (1+ ¢y~ +1ol |D§‘D?(a —ar)| — 0 as k — oco.
£ER™

Thi/s means ar — a in each of the symbol norms, and hence in the topology of
ST (RP;R™) as desired. O

In fact this proof suggests a couple of other ‘obvious’ results. Namely

3.17| (2.22) STHQ;R™) - ST (Q;R™) € ST (Q;R™).
This can be proved directly using Leibniz’ formula:
sup(1 + [¢]) " P D2 D¢ (a(=¢) - b( ©))|

< (0)(0) suwtr + b+ 02 Dtz €)

pla
Y<B

x sup(1 + [¢) ™™ 1871 D2=H DI b2, €)] < oo
3
We also note the action of differentiation:
D¢ ST R™) — ST2(Q;R™) and
D : ST R™) — ST 1Pl R™).
In fact, while we are thinking about these things we might as well show the impor-

tant consequence of ellipticity. A symbol a € SZ(2; R™) is said to be (globally)
elliptic if

3.18| (2.23)

(2.24) la(2,6)] = €1+ )™ — C(1+ €)™, € >0

or equivalently!
(2:25) la(z,6)] > e(1+[¢)™ in [¢] > Cc, > 0.
LEMMA 2.2. Ifa € S22 (2 R™) is elliptic there exists b € S ™ (Q;R™) such that
(2.26) a-b—1€ 8 °(Q;R™).

ProOOF. Using (%22%) choose ¢ as in the proof of Lemma gf_?and set
1—-¢(£/2C) [3=Xe;

(2.27) b(z,€) = {0 at=,6) e <C

Then b is C* since b =0 in C < [¢] < C' + ¢ for some § > 0. The symbol estimates

follow by noting that, in || > C,

(2.28) DeDIb=a 7118 G

where G is a symbol of order (|a|+|8[)m — |8l This may be proved by induction.
Ind ?‘31 it J§ e when o = B = 0. Assuming (2.28) for some « and 3, differentiation
of (%28; gives

Dz]-D?ng — Dzja—l—\al—lﬁl - Gop = a_2_|a‘_‘5‘G’,
G' = (-1—l|a| = |B)(D:,a)Gap + aD.,Gap.

INote it is required that € be chosen to be independent of z here, so this is a notion of uniform
ellipticity.
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By the inductive hypothesis, G’ is a symbol of order (|a|+1+|3])m —|B|. A similar
argument applies to derivatives with respect to the £ variables. ([

2.2. Pseudodifferential operators

3.2
Now we proceed to discuss the formula (b?) where we shall assume that, for
some w,m € R,
a(:C, Y, f) = (1 + |$ - y|2)w/2a(x7 Y, 5)

a e SRRy RE).

(2.29)

The extra ‘weight’ factor (which allows polynomial growth in the direction of z —y)

turns out, somewhat enigmatically, to both make no difference and be very useful!

Notice? that if a € C*°(R?*" x R") then a € (1 + |z — y|?)*/28™(R?*";R") if and

only if

(230)  [DgDyDYa(w,y,6)| < Capr(1+ & =y (1 + €)™V @, 8,7 € Ng.
3.2

If m < —n then, for each u € S(R™), the integral in (b?) is absolutely convergent,

locally uniformly in x, since

la(a,y, E)uly)] < C(L+ |z —y[)* (L + )™ (1 + |y~
SO+ )@+ )™M+ [yh)™, m < —n.
Here we have used the following simple consequence of the triangle inequality
(I+]z—y) <@+ 21+ y])
from which it follows that

(2.32) (I+]z—y)" < {

(2.31)

1+ z)*A+y)v  ifw>0
(I+]z)*A+ |y)~™ ifw<O0.
Thus we conclude that, provided m < —n,

(2.33) A: S(R™) — (14 |z|?)¥/2Co (R™).

To show that, for general m, A exists as an operator, we prove that its Schwartz
kernel exists.

PrOPOSITION 2.1. The map, defined for m < —n as a convergent integral,
(2.34)
(1+ |z —y[*)/2SZ(R*R™) 3 a— I(a) =

(om) [ Sty € (14 af? + )2, (B
extends by continuity to
(2.35) I:(1+ |z —y]?)*/28™(R*™R") — S'(R?")
for each w, m € R in the topology of ST (R2";R™) for any m' > m.
PROOF. Since we already have the density of S °(R?";R") in S (R?";R")

in the toplogy of ?”Q;ERZ”; R™) for any m’ > m, we only need to show the conti-

nuity of the map (2.34) on this residual subspace with respect to the topology of
Somo/ (R?"; R™) for any m’, which we may as well write as m. What we shall show

2 1.2.2000.276
See Problem b.5.
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is that, forg%ixch w,m & R, there are integers N,k € N such that, in terms of the
norms in (2.7) and (h_b')
(2.36) |I(a)(9)] < Cllallnmldlle V&€ SER™),
a=(1+|z—y>)*?a, ae SR R").

To see this we just use integration by parts.
Set ¢(z,y) = (14 | — y[?)“/%¢(x,y). Observe that

(14 & - Dy)e!@=8 = (1 4 |¢[>)ell=—)¢
(1= - Dy)e! =0 = (14 [g)ele— S,

Thus we can write, for @ € S, with a = (1 + |z — y|?)*/2a and for any ¢ € N

// (2m)~ /ei(:fvﬂ/)-é(l+ 1€[2)2

(2.37) (1—¢-Dy)4(1 +¢- D) a(x,y, &) d(x, y)| dedudy
i(o=1)€(a) L
7§q // / Y q (:ZZ,yvﬁ)dE)D(%y)qﬁ(x,y)dxdy.

Here the a(vq) arise by expanding the powers of the operator

(1—€- D)1 (1+& Do)=Y Cpuo &' DiDy
lual,lv|<q

and applying Leibniz’ formula. Thus aqu) arises from terms in which 2¢ — || deriva-

tives act on a so it is of the form

=1+ Y Cua&Dp
[l <Ivls1vI<2q
= llaylInm < Cmgnlallnt2gmiaq ¥V m, N,y g
So (for given m) if we take —2g + m < —n, e.g. ¢ > max(”+m,0) and use the
integrability of (1 + |z| + |y])~2"~! on R?", then

(2.38) |f(a)(¢)3| 2§70||d||2q,m||<5\\2q+2n+1 < Cllallagm | ll2q+wt2nta-
This is the estimate (b%), which proves the desired continuity. O

In showing the existence of the Schwartz’ kernel in this proof we do not really
need to integrate by parts in both x and y; either separately will do the trick.
We can use this observation to show that these pseudodifferential operator act on
S(R™).

LEMMA 2.3. If a € (1 + |z — y|>)*/2S7(R*™;R™) then the operator A, with
Schwartz kernel I(a), is a continuous linear map
(2.39) A:SR") — S(R™).
3.30
We shall denote by ¥ (R™) the linear space of operators (bzg), corresponding

to (1 + |z — y[>)~*/%a € S (R?";R™) for some w. I call them pseudodifferential
operators ‘of traditional type’ — or type ‘1,0°.3

3 1.2.2000.279
The meaning of which is explained in Problem
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3.28
PROOF. Proceeding as in (b.B?) but only integrating by parts in y we deduce
that, for ¢ large depending on m,

Auw) = - o) [[ [ 0%, @06 Djuty) g @)y

’v<2q
€ (1+ |z —y|?)*/28m 4R R") if a € (1 + |z — y|*)*/2S™(R?*"; R™).

The integration by parts is justified by continuity from S °°(R?";R"). Taking —q+
m < —n — |w|, this shows that Au is given by the convergent integral

(240) Au(w)= Y (@2m)" / / 0D (2,y,€) D] uly)dedy,

Iul

A:S[R") — (1+|z[*) = CL(R™)

o . B%% . 0 .
which is really just (2:33) again. Here C) (R™) is the Banach space of bounded
continuous functions on R”, with the supremum norm. The important point is
that the weight depends on w but not on m. Notice that

D, Au(z) > '@V E(g; + Dy )any - DYu(y)dydé
|7|<2q//

and

zjAu(z) = (2m)" Z // =y (=Dg, + y;)ay - DJu(y)dyds.

3.33 1.2.2000.282
Proceeding inductively (b?&)) fOHOWb from (E?S) or (b.l()% since we conclude that
2D Au e (1 + |x|2)%Cgo(R”), Vo, B €Ny
and this implies that Au € S(R™). O

2.3. Composition

There are two extreme cases of I(a), namely where a is independent of either
x or of y. Below we shall prove:

THEOREM 2.1 (Reduction). Each A € ¥Z(R™) can be written uniquely as
I(a") where a’ € SIE(RY;RE).

This is the main step in proving the fundamental result of this Chapter, which is
that two pseudodifferential operators can be composed to give a pseudodifferential
operator and that the orders are additive. Thus our aim is to demonstrate the
fundamental

THEOREM 2.2. [Composition] The space W (R™) is an order-filtered x-algebra
on S(R™).

330 Ve have already shown that each A € UZ(R™) defines a continuous linear map

(239). We now want to show that
(2.41) Ae U (R") = A" € UL (R")
(2.42) A€ U (R"), Be U™ (R") = Ao B e U (R"),

since this is what is Jugant by an order-filtered (the orders add on composition)
x-algebra (meaning (b.zll) holds). In fact we will pick up some more information
along the way.
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2.4. Reduction

3.31
We proceed to prove Theorem 2.1, which we can restate as:

3.26
PROPOSITION 2.2. The range of (bm) (for any w) is the same as the range
of I restricted to the image of the inclusion map

SRR™R") > a+ a(x,€) € Sm(R(m )i R™).

PROOF. Suppose a € (1 + |z — y|? )w/2 > (R2?"; R") for some w, then

(2.43) I((zj —yj)a) =I1(—D¢a) j=1,...,n
Indeed this is just the result of inserting the identity
D, TV = (g5 — y;)et@Y)E

into (B%ZGI) and integrating by parts. Since both sides of (67?3) are continuous on
(1+|z— y\Q)w/QSgg(RQ”;R”) the identjfy holds in general. Notice that if a is of
order m then D¢, a is of order m —1, so ( 43) shows that even though the operator
with amplitude (x; — y;)a(z,y,§) appears to have order m, it actually has order
- 1.
To exploit ( b7[3 consider the Taylor series (with Legendre’s remainder) for
a(z,y,§) around z =y :

—i)le
0a1) aeyo= Y 0@y (Da)(ee.0

la|<N -1
Py C

Ia\

y)oz : RN,a(xv:%g)'

la|=N
Here,
1
(2.45) Ry o(z,y,6) :/ t)yN-1 Da (@, (1 —t)z + ty, &)dt
0
Now,
(246) (- ) (D) (@y.6) € (L+ [z —yl?) 2 STRR™).

4.5
Applying (b7[3) repeatedly we see that if A is the operator with kernel I(a) then
N-1 A
(2.47) A=>"Aj+Ry, AjcULI(R"), Ry WL V(R
=0

where the A; have kernels
jlal
(2.48) 1(Y . — (DgDga)(x,2,8)).

al
la|=3

To proceed further we need somehow to sum this series. Of course we cannot really
do this, but we can come close!
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2.5. Asymptotic summation

Suppose a; € ST (RP;R™). The fact that the orders are decreasing means
that these symbols are getting very small, for |¢| large. The infinite series

(2.49) Z a;(2,€)

need not converge. However we shall say that it converges asymptotically, or since
it is a series we say it is ‘asymptotically summable,’ if there exists a € ST (RP; R™)
such that,

N1
(2.50) for every N, a — Z aj € STN(RP;R™).
3=0

We write this relation as
o0
(2.51) an~ Z a;.
i=0

PROPOSITIOW4 28 Any series a; € Sm=J(RP;R™) is asymptotically summable,
in the sense of (2.50), and the asymptotic sum is well defined up to an additive
term in S >°(RP; R™).

4.10
PROOF. The uniqueness part is easy. Suppose a and a’ both satisfy (b.SU).
Taking the difference

N-1 N—
(2.52) a—ad = Z a;) a;) € STN(RP;R").
7=0 j=0

._.

Since S °°(RP;R"™) is just the intersection of the SV (RP;R™) over N it follows
that a — a’ € S >°(RP;R™), proving the uniqueness.

So to the existence of an asymptotic sum. To construct this (by Borel’s method)
we cut off each term ‘near infinity in £’. Thus fix ¢ € C*(R™) with ¢(§) = 0 in
€] <1, ¢(§) =11in [£] > 2, 0 < ¢(§) < 1. Consider a decreasing sequence

(253) 60>€1>"'>6j\LO.

We shall set
(2.54) (2,6) =Y _ d(e;€)a;(z,€).
=0

Since ¢(e;€) = 01in [£| < 1/e; — oo as j — oo, only finitely many of these terms
are non-zero in any ball |£] < R. Thus a(z,§) is a well-defined C*° function. Of
course we need to consider the seminorms, in S (RP; R™), of each term.

The first of these is

(2.55) supsgp( + &)~ ‘(b €;€) | ‘aj 2,€) ‘
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Now [¢] > é on the support of ¢(€;€)a;(z,€) and since a; is a symbol of order

m — j this allows us to estimate (2.55) by

sup sup (1 J€) - [(1+1e) ™"y (= )]

<(1+2)7 24
J

where the C}’s are fized constants, independent of ;.
Let us look at the higher symbol estimates. As usual we can apply Leibniz’
formula:
supsup(1 -+ [€) 717 D2 DY (ej6)ay (.8)|

< 3 supsup(L+ [¢) AT (DO rg) ()|
u<p * §
x(1+ (€)™ DE DY ay(2,€)).
The term with u = 8 we estimate as before and the others, with u # 3 are supported
in - < |¢] < 2. Then we find that for all j

(2.56) |6(e€)a; (2.6l wam < Cnv e

where C'y ; is independent of ¢;.
So we see that for each given N we can arrange that, for instance,

1
lo(e;€)a; (2 Ollwm < Cn =

by choosing the €; to satify
i 1 L
Cnje; < 7 vV j > j(N).

No Z'lctf_{the crucial point here, we can arrange that for each N the sequence of norms
in (2-56) is dominated by Cyj~2 by fixing €; < €; n for large j. Thus we can arrange
convergence of all the sums

Z l6(e;€)a;(z,)lInm

by diagonalization, for example s thing €; = %ej’j. Thus by choosing €; | 0 rapidly
enough we ensure that the series (%54) converges. In fact the same argument allows
us to ensure that for every N

(2.57) Z p(ej€)aj(z, &) converges in STV (RP;R™).
JjzN
4.10 4.15
This certainly gives (bSU) with a defined by (bﬂ) O

2.6. Residual terms

4.12 4.9
Now we can apply Proposition b.B to the series in (b.7[8), that is we can find
b e SRy RY) satisfying
ilal

(2.58) b(x, &) ~ Z — (Dga)(z,z,8).

al
«
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Let B = be the operator defined by this amplitude (which is independent of
. Now ( 7 ) says that
N—1
A-B=> Aj+Ry-B
j=0
4.10 4.19
and from (bjSU) applied to (2.58)
N—-1
B=)Y_ Aj+Ry, Ryec¥ NR"
7=0
Thus
(2.59) A-Be U >R") =TI (R

Notice that, at this stage, we do not know that A — B has kernel I(c) with
c € S7°°(R?™ R"), just that it has kernel I(cy) with cy € SY (R?";R") for each
N.

However:

PROPOSITION 2.4. An operator A : S(R™) — S'(R™) is an element of the
space W °(R™) if and only if its Schwartz kernel is C*>° and satisfies the estimates

(2.60) |DDYK (2.9)] < Crvap(+ e —y)) N ¥ 0,8, N.

PROOF. Suppose first that A € W >°(R"), which means that 4 € U (R") for
every N. The Schwartz kernel, K4, of A is therefore given by (EEZ[) with the am-
plitude ay € SN (R?";R"™). For N << —n — 1 — p the integral converges absolutely
and we can integrate by parts to show that

(2 — y)*DE DY K a(z, )
— (2m)V / @D D)N(D, + i) (Dy — i€) an (@, y, €)dE

which converges absolutely, and uniformly in z,y, provided |8]+|v|+ N —|a| < —n.
Thus

Sup| O‘DﬂDVK|<ooVa,6'y
2
which is another way of writing (2.60) i.e.
sup(1 + |z — y|2)N|D£DZK’ <oV B,y N
4.22
Conversely suppose that (bm) holds. Define

(2.61) g(z,2) = K(z,x — 2).
4.22
The estimates (m) become
(2.62) sup |D2‘27ng(x,z)’ < ooV a,B,7.

That is, g is rapidly decreasing with all its derivatives in z. Taking the Fourier
transform,

(2.63) b(x,&) = /e_”fg(x,z)dz
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4.24
the estimate (bm) translates to

sup | D3P DIb(x, )| < oo V a, B,
4.26| (2.64) .8
= be SO RE;RE).

4.25 4.23
Now the inverse Fourier transform in (bm), combined with (bﬂ) gives

s27] (269) K(ay) = gla,z =) = (2m) " [ & b(z, )de
i.e. K = I(b). This certainly proves the proposition and actually gives the stronger
result.
(2.66) Ae U X(R") < A=1I(c), c € S;°(RERY).
O
. . . % . . JA.19 14.20
This also finishes the proof of Proposition 2.2 since in (2.58), (2.59) we have
shown that
4.28| (2.67) A=B+R, B=1(b), Rec¥_>*R")
so in fact
4.29| (2.68) A=1I(e), e € ST(RY;RE), eNZJ(Dsta)(x,x,f).
O
f,of,CompositiOD_Theorem‘ 2.7. Proof of Composition Theorem
First consider the adjoint formula. If
A:S(R") — S(R™)
the adjoint is the operator
A S'(R™) — S'(R™)
defined by duality:
4.30] (2.69) A*u(¢) = u(Ad) ¥ ¢ € S(R™).
Certainly A*u € §'(R™) if u € S'(R™) since
4.31] (2.70) A*u(eh) = u(AY) and S(R™) 3 ¢ — Ap € S(R™)

is clearly continuous. In terms of Schwartz kernels,

Ad(x) = / Ka(z,9)é(y)dy, ¢ € SR)
4.32| (2.71)

Au@) = [ Ko p)uty)dy, we SE).
We then see that

/ K 4 (2, y)u(y) d(@)dydz = / Roalz, 9) o) dyu(x)dz

= Ka-(z,y) = Ka(y, x)

4.33| (2.72)

where we are using the uniqueness of Schwartz’ kernels.
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4.35
This proves (b@"[) since

—_ 1 )
Kaly,z) = | —— [ etv—2)€q(y, z, £)d
- ) [(?)n / (v, €)de]
— ei(w—y)'fa T

3.26
ie. A* = I(a(y,=,€)). Thus one advantage of allowing general operators (2.34) is

that closure under the passage to adjoint is immediate.
.. - - B .
For the composition formula we need to apply Proposition b? twice. First to
A € U7 (R™), to write it with symbol a(z, &)

Ad(z) = (2m)" / D Ea (e, €)g(y)dyde
— 20 [ e tatw a6y

4.4
Then we also apply Proposition b? to B*,
Bru(e) = (2m) " [ e Ga. a(e)de,

Integrating this against a test function ¢ € S(R™) gives

(Bou) = (6,8%) = (2n) " [ [ = So(0)h(o, alEdedo

(2.74) N |
— Ba(e) = / e~ Eb(y, €)g(y)dy.

Inserting this into the formula for A¢ shows that
= AB(u) = (2m)™" / e a(z, )by, )uly)dydg.

Since a(x,&)b(y,&) € Sowoler/(RQn

(ry) RE) this shows that AB € grtm (R7) as

claimed.
2.8. Quantization and symbols

So, we have now shown that there is an ‘oscillatory integral’ interpretation of

(2.75) K(w,y) = (21)" / @D Ea (e, y, €)de = I(a)

which defines, for any w € R, a continuous linear map

w

I:(1+]z—y?)zSZ(R*™RY) — S'(R*™)
the range of which is the space of pseudodifferential operators on R"™;

A€V (R") < A:S(R") — S'(R") and
2.76 w
(2.76) Jwst. Ka(z,y) =I(a), a€ (1+ |z —y[*)2 52 (R*;R").

4.4
Furthermore, we have shown in Proposition h that the special case, w = 0 and
Oya = 0, gives an isomorphism

(2.77) U7 (R™) < ST (R™;R™).
qrL
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The map here, g, = I on symbols independent of y, is the left quantization map and
its inverse o, is the left full symbol map. Next we consider some more consequences
of this reduction theorem. c 3

As well as the left quantization map leading t(%c?e isomorphism (b??) there is
a right quantization map, similarly derived from (2.75):

(2.78) qr(a) = (277)_”/ei(”_y)'ga(y,é)dﬁ, ae ST (R™R").

In fact using the adjoint operator, %, on operators and writing as well * for complex
conjugation of symbols shows that

(2.79) gr = * - qr, - *

is also an isomorphism, with inverse op*

(2.80) P (RY) 2 ST (R™R™) .
dr

Using the proof of the reduction theorem we find:

LEMMA 2.4. For any a € ST (R™;R"),

ol }
(2.81) o1 (gr(a)) (&) ~ Y %D:Dga(x,g) ~ i<PDe> g

[e3%

For the moment the last asymptotic equality is just to help in remembering the
formula, which is the same as given by the formal Taylor series expansion at the
origin of the exponential.

4.29
PrROOF. This follows from the general formula (bm) O

2.9. Principal symbol
. . E;g .
One important thing to note from (2.81) is that
(2.82) D¢ Dga(z,€) € Smlel (R R™)
so that for any pseudodifferential operator
(2.83) Ac U™ (R") = or(A) — or(A) € ST (R™;R"™).
For this reason we consider the general quotient spaces
(2.84) ol (R7; R = S (R RY) /S (RYRY)
and, for a € ST (RP; R™), write [a] for its image, i.e. equivalence class, in the quotient
space ST~ (RP; R") . The ‘principal symbol map’
O 2 U (R™) — S (R R™)
is defined by 0, (A) = [oL(A)] = [or(4)].

As distinct from o, or og, 0, depends on m, i.e. one needs to know that the order
is at most m before it is. defined.

The isomorphism (2.77) is replaced by a weaker (but very useful) exact se-
quence.

(2.85)

P5.1
4This involves the left and right symbols, see Problem 5.T for another the more centrist ‘Weyl’
quantization.
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LEMMA 2.5. For every m € R
0 — U LR — ¥7 (R") I g7 (R™; R™) — 0
is a short exact sequence (the ‘principal symbol sequence’ or simply the ‘symbol

sequence’).

PROOF. This is just the statement that the range of e ghamap is the null space
of the next i.e. that o, is surjective, which foll from 777), and that the null
space of o, is just U~1(R™) and this is again ( 7 and the deﬁmtlon of . O

The fundamental result proved above is that
(2.86) U (R™) - U (RY) € U (R,
In fact we showed that if A = qr(a), a € SZ(R™R") and B = qr(b), b €
Sgg/ (R™; R™) then the composite operator has Schwartz kernel
KA<B(:E7 y) =1 (a(xa g)b(y, E))
4.29
Using the formula (bTTS) again we see that

ilal
(2.87) or(A-B) ~ > —-D¢[a(x,6)Db(x, )]

¢ 5.12
Of course b = or(B) so we really want to rewrite (b@?) in terms of o, (B).
LEMMA 2.6. If A€ U™ (R") and B € U7 (R™) then Ao B € W™ (R™) and
(2.88) Omim (Ao B) = opn(A) - o (B),

(2.89) op(AoB)~>" QDE So(A)- D% (B).

«

5.14 5.12
PRrROOF. The simple formula (m) is already immediate from (b.Si) since all
terms with [af > 1 are of qrdey m+m’ —|af < gd-m'—1. To get the ‘full’ formula
(2.89) we can insert into (|2 87) the inverse of b? ), namely

—i)lel .
onle.&) ~ Y CO De Do (0,€) ~ <P 0 0, 6).

(03

This gives the double sum (still asymptotically convergent)

(Ao B) Zzzl " Dg‘ﬁ'lDﬁDﬂaL(B)]

Setting v = o + [ this becomes

(Ao B) Z

Then Leibniz’ formula shows that this sum over « can be rewritten as

il )Iv af Yoy
0<a<ly

1l
o1(A0B) ~ S o DYoy(4) - DYoL (B)
7!

~ PP G () (@, oL (B) g0,
This is just (ETS%) O
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5.14 5.15
The simplicity of (EFB) over (m) is achieved at the gxpense of enormous loss
of information. Still, many problems can be solved using (b@s) which we can think
of as saying that the principal symbol maps give a homomorphism, for instance
from the filtered algebra W9 (R™) to the commutative algebra So (R™;R™).

2.10. Ellipticity

We say that an element of U7 (R™) is elliptic if it is invertible modulo an error

in U_°(R™) with the approximate inverse of order —m i.e.
A€ U2 (R™) is elliptic

(2.90) B B
<3 BeVU "R")st. AoB—1Ide ¥Y_*R").
Thus ellipticity, here by definition, is invertibility in U7 (R™) / U_>(R™), so the
inverse lies in W '™(R™) /W > (R™). The point about ellipticity is that it is a phe-
nomenon of the principal symbol.

THEOREM 2.3. The following conditions on A € W (R™) are equivalent

(2.91) A is elliptic
(2.92) 3] € S (RYRY) s.t. om(A)-[0] =1 in ST (R™R™)
(2.93) 3be ST (R™R™) s.t. op(A)-b—1¢€ SZ® (R™;R")
1
(2.94 Fe>0 st |oL(A)(2,&)] > e+ €)™ in [¢] > e
ProOF. We shall show
5.18 5.19 5.20 5.21 5.18
(2.95) E9t) — E92) — ER) — &) — E99).

3.21 5.20 5.21
Tn fact Lemma B3 shows the equiyalence of (}79‘3) and (W) Since we knaw that
oo(Id) = 1 applying the identity (b:88) to the definition of ellipticity in (m) gives

(2.96) om(A)-0_m(B) =1 in SR R™),

5.18 5.19
ie.that G90) = G0, . .
Now assuming (2.96) (i.e. (b@?)), and recalling that 0,,(A) = [oL(A)] we find
that a representative by of the class [b] must satisfy

(297) O'L(A) -by=1+e¢;, e € So_ol(Rn;Rn),

this being the meaning of the equality of residue classes. Now for the remainder,
e1 € SZHR™;R™), the Neumann series

(2.98) fre D (=1

is asymptotically convergent, so f € S !(R";R") exists, and

(2.99) 14+ - 14+e)=14exn, ex€SIRYRY).
Then multiplying (Bﬁ%) by (1 + f) gives
(2.100) oL(A) - {bi(1+ f)} =1+ e

5.20
which proves (bgg), since b = b1 (1 + f) € S.(R™;R™). Of course
(2.101) sup(1 + |€)V |ess| <00 ¥ N
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$0
(2.102) 3 C st |ewo(, )] <3 L in |£] > C.
From (B_%BO) this means
(2.103) lon(A)(z,8)| - |b(z,&)| = % 1€l > C.
5.26
Since |b(z,&)| < C(1+ [£])~™ (being a symbol of order —m), (bTU?») implies
(2.104) 4t oL (A) (2, &)1+ |g))™™ = C > 0.

5.20 5.21
which shows that (m) implies (W) 5 o1 5 20
Conversely, as alyeady remarked, (IZTM) implies (ETB) c 14
Now suppose (bgz) holds. Set By = qr(b) then from (b?‘?B) again

(2.105) o0(A o By) = [gm(A)] - [b] = 1.
That is,
(2.106) AoB; —1d = E; € U }(R").
Consider the Neumann series of operators
(2.107) > (-1 E].

jz1

The corresponding series of (left-reduced) symbols is asymptotically summable so
we can choose F' € U (R™) with

(2.108) oL (F) ~ Y (1oL (EY).
i>1
Then
(2.109) (Id+E1)Id+F) = Id +Ew, Fa € U °(R™).
Thus B = Bi(Id+F) € ¥ " (R"™) satisfies (53%8) and it follows that A is elliptic.

O

5.16
In the definition of ellipticity in (Lrgo) we have taken B to be a ‘right paramet-
rix’, i.e. a right inverse modulo ¥ *°(R™). We can just as well take it to be a left
parametrix.

LEMMA 2.7. A € U (R™) is elliptic if and only if there exists B’ € U™ (R"™)
such that
(2.110) B'oA=1d+E, E' € U(R")
5
and then if B satisfies (bgo) B — B’ € U_>°(R").
32
PRrROOF. Certainly (%0) implies 00—, (B’)-om(A4) = 1, and the multiplication
here is commuteg yg S0 ( ) holds and A is elliptic. Conversely if A is elliptic we
get in place of (2.106)
BioA—1d=E| € U (R").

Then defining F’ as in bTUS with Ef in placeof F'1 we get (Id+F)(Id+E}) =
Ig 40 and then B' = (Id +F ) o By satisfies bTI s ‘left’ ellipticity as in

oo

0) is equivalent to right ellipticity. Applylng B to hIO ) gives
(2.111) B'o(ld+E)=B'o(AoB)= (Id+E')o B
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which shows that B — B’ € ¥_>°(R"). O

Thus a left parametrix of an elliptic element of U7 (R™) is always a right, hence
two-sided, parametrix and such a parametrix is unique up to an additive term in
U °(R™).

2.11. Elliptic regularity and the Laplacian

One of the main reasons that the ‘residual’ terms are residual is that they are
smoothing operators.

LEMMA 2.8. If E € U_>°(R"™) then
(2.112) E:S8'R") — S'(R") NC=(R™).

4.21
PRrROOF. This follows from Proposition b.zl since we can regard the kernel as a
C* function of x taking values in S(RY). O

Directly from the existence of parametrices for elliptic operators we can deduce
the regularity of solutions to elliptic (pseudodifferential) equations.

PROPOSITION 2.5. If A € U (R"™) is elliptic and u € S'(R™) satifies Au =0
then u € C*(R™).

PrOOF. Let B € U_™(R") be a parametrix for A. Then Bo A = Id+E,
E € U_>°(R™). Thus,

(2.113) u=(BA—-E)u=—Eu
5.42
and the conclusion follows from Lemma b.& O

Suppose that g;;(z) are the components of an ‘co-metric’ on R™, i.e.
gij(fﬂ) € C;.S(Rn)7lv] =1,...,n

2.114 -
( ) | Zgij(x)§¢§j| >elé]? VaxeR"EER", €>0.

ij=1

The Laplacian of the metric is the second order differential operator

n

1 3
(2.115) Ay= > —D,.g” /gD,
=R

where

g(x) = det g" (x), g (x) = (g5(x)) "

The Laplacian is determined by the integration by parts formula

(2.116) / > 9" (2)Da,¢ - Do, vhdg = / Ago-Pdg ¥V ¢, € S(R™)
B B

where

(2.117) dg = \/gdz.

5.34
Our assumption in (ETM) shows that A = A, € Diff2 (R") C U2 (R") is in
fact elliptic, since

(2.118) o3(A) =Y g7,

4,j=1
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Thus A has a two-sided parametrix B € ¥ 2(R")
(2.119) AoB=BoA=1d mod U_>*(R").
. .. [20.2.1998.103 L
In particular we see from Proposition 2. at Au = 0, u € §'(R™) implies u €
C>(R™).
2.12. L? boundedness

So far we have thought of pseudodifferential operators, the elements of ¥ (R™)
for some m, as defining continuous linear operators on S(R™) and, by duality, on
S’'(R™). Now that we have proved the composition formula we can use it to prove
other ‘finite order’ regularity results. The basic one of these is L? boundedness:

PROPOSITION 2.6. [Boundedness] If A € WY (R") then, by continuity from
S(R™), A defines a bounded linear operator

(2.120) A L*(R™) — L*(R").

Our proof will be in two stages, the first part is by direct estimation. Namely,
Schur’s lemma gives a useful criterion for an integral operator to be bounded on

L2
LEMMA 2.9 (Schur). If K(z,y) is locally integrable on R*"™ and is such that

(2.121) swp [ K Gldy. s [ K(zplds < oo
reR™ n yERn n

then the operator K : ¢ — [o,, K(x,y)¢(y)dy is bounded on L*(R™).

PROOF. Since S(R") is dense® in L?(R™) we only need to show the existence
of a constant, C, such that

(2.122) /|K¢>(m)y2dx < C/ 8> V¢ e SRM).

Writing out the integral on the left
(2.123)

is certainly absolutely convergent and

/ |K¢(z)| da

- </// | K (z,9) K (x, Z)’¢)(l/)|2dydagdz>é

x (// ’K(gc,y)K(x7z)|¢(z)|2dzdxdy)% .

These two factors are the same. Since

/’K(x,y)HK(x,szmdzg sup /’K(a:,z)’dz- sup /|K(m,y‘dm
z€Rn yER®

6.4 5.51 6.4
(bﬁ22) follows. Thus (bTZl) gives (b.TQQ). O

5 1.2.2000.280
See Problem b 8
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This standard lemma immediately implies the L? bo pdgdness of the ‘residual
terms.” Thus, if K € U_>°(R") then its kernel satisfies 132750) This in particular
implies
K (@, y)| <C(L+|z—y)
5.51
and hence that K satisfies (h?l) Thus

(2.124) each K € W >°(R") is bounded on L*(R™).

2.13. Square root and boundedness

6.2
To prove the general result, (b.T2O)7 we shall use the clever idea, due to Hor-
mander, of using the (approximate) square root of an operator. We shall say that

an element [a] € s (R™;R™) is positive if there is some 0 < a € S™(R™; R™) in
the equivalence class.

PROPOSITION 2.7. Suppose A € U7 (R™), m > 0, is self-adjoint, A = A*, and
elliptic with a positive principal symbol, then there exists B € \112/2 (R™), B = B*,
such that

(2.125) A=DB?’+G, GecI >R").

Proor. This is a good exercise in the use of the symbol calculus. Let a €
ST (R™;R™), a > 0, be a positive representative of the principal symbol of A. Now®

(2.126) by = a? € S™/2(R™;R™).
Let By € \Ilg/ 2 (R™) have principal symbol by. We can assume that By = B, since

if not we just replace By by %(Bo + B{) which has the same principal symbol.
The symbol calculus shows that B € ¥ (R") and

Tm(B2) = (04n2(Bo))” = b2 = ap mod ST
Thus
(2.127) A— B3 =E; € VYR,
Then we proceed inductively. Suppose we have chosen B; € \I/Z:/ 2=J (R™), with
B} = Bj, for j < N such that

2

N
(2.128) A=Y Bj| =Enp ¥ VIR,
j=0

Of course we have done this for N = 0. Then see the effect of adding Byy1 €
g2 N L Rey

N+1 N
(2129) A— | > B;| =Enq1—|Y_Bj| Byn
j=0 j=0

N
— Bn1 ZBJ _Blzv+1~
=0

6 1.2.2000.281
See Problem - or an outline of the proof
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On the right side all terms are of order m — N — 2, except for

(2.130) Eny1— BoBny1 — Byi1Bo € 97V HR™).
The principal symbol, of order m — N — 1, of this is just
(2131) O'm—N—l(EN+1) -2 bo . U%—N—I(BN-&-I)-
Thus if we choose Byy1 € \IIO%_N_l(R") with
11
Omj2—-N—-1(Bny1) = 200 “Om-N-1(ENn1)

and replace By by %(Bg Nt t+ By 1), we get the inductive hypothesis for N + 1.
Thus we have arranged (2:128) for every N. Now define B = (B’ + (B')*) where

§=0
6.14 6.10
Since all the B; are self-adjoint B also satisfies (hB2) and from (bTZS)
N 2
(2133) A—B2=A_— Z B;j + B(N+1) c \I/gnofol(Rn)
§=0

N
for every N, since By 11y = B— Y. B; € W%/*" V"1 (R"). Thus A— B2 € W3 °(R")
6.7 7=0 6.6
and we have proved (b._[25), and so Proposition b? (]
6.1
Here is Hérmander’s argument to prove Proposition bY)' We want to show that

(2.134) [Agl < Cligll V¥ ¢ € S(R™)
where A € W9 (R™). The square of the left side can be written

/A¢-A75dx=/¢-mdx.
So it suffices to show that
(2.135) (¢, A*Ad) < Cll9|>.
Now A*A € WY (R") with 0¢(A*A) = 0¢(A)oo(A) € R. If C > 0is a large constant,
C > s;lg) ‘UL(A*A)(x,§)|

then C'— A* A has Positive representative of its principal symbol. We can therefore
apply Proposition 2.7 to it:

(2.136) C—-A*"A=B*B+G, GecV_*R").

This gives

(¢, A" Ag) =C(¢, ¢) — (¢, B*Bg) — (¢, G )
=C|l¢|> — |1 Bg|I” — (¢, Go).

The second term on the right is negative and, since G € W >*(R"), we can use the
residual case in (2.124) to conclude that

‘s (¢, Go)| < C'Ilcbl\s2 = 146]* < Cllo|I* + C"llglI*,
S0 (b:T20) holds and Proposition b?)' is proved.

(2.137)
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2.14. Sobolev boundedness

Using the basic boundedness result, Proposition %, and the calculus of pseu-
dodifferential operators we can prove more general results on the action of pseudo-
differential operators on Sobolev spaces.

Recall that for any positive integer, k,

(2.138) H*R™) = {u e L*R"); D€ L*(R") Y |a| < k}.
Using the Fourier transform we find
(2.139) u € HFR™) = ¢*a(¢) € L*(R™)  V |a] < k.
Now these finitely many conditions can be written as just the one condition
(2.140) (1+ 1P ae) e L2®R™).
Notice that a(&) = (1 + [£]2)*/? = (¢)F € S& (R™). Here we use the notation
(2.141) (© = (1+1¢eP)?
for a smooth (symbol) of the size of 1 + ||, thus (Bﬁzﬁlﬂ) just says
(2.142) u € H*(R™) <= u € §'(R") and (D)*u € L*(R").
For negative integers

(2.143)  HYR") ={uecS'R");u= Y Dlus, usc L*(R")}, -k eN.
|BI<—k

The same sort of discussion applies, showing that

(2.144) u € H¥(R") <= u € S'(R") and (D)*u € L*(R"), k € Z.
In view of this we define the Sobolev space H™(R"), for any real order, by
(2.145) u € H™(R") <= u € S'(R") and (D)™u € L*(R™).

It is a Hilbert space with

(2.146) lull?, = (D)™ ullZ. = /(1 + €)™ a(€)[*dg.

Clearly we have

(2.147) H™R™) 2 H™ (R") if m' > m.

Notice that it is rather unfortunate that these spaces get smaller as m gets bigger,
as opposed to the spaces ¥ (R™) which get bigger with m. Anyway that’s life and
we have to think of

H>*R™) =N H™R") as the residual space

2.148 m

( ) H=>°R") =JH™(R™) as the big space.

It is important to note that
(2.149) S(R™) ¢ H*(R™) ¢ H *(R") ¢ S'(R™).

In particular we do not capture all the tempered distributions in H~>°(R"™). We
therefore consider weighted versions of these Sobolev spaces:

(2.150) (@) H™(R") = {u € §'(R"); (z) %u e H™(R")}.
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THEOREM 2.4. For each ¢,m, M € R each A € WM (R") defines a continuous
linear map

(2.151) A () TH™(R™) — (x)TH™ M(R™).
PROOF. Let us start off with ¢ = 0, so we want to show that
(2.152) A:H™R™) — H™MR™), Ae WX (R").
Now from (%5) we see that
(2.153) w € H™R") <= (D)™u € L*(R")
= (D)""M(DYMy € L2(R") <= (D)Muc H™M[R") Vm, M.

That is,
(2.154) (DYM . H™(R™) «— H™ M@R") V¥V m, M.
6.34
To prove (bTSQ) it suffices to show that
(2.155) B=(D)"M*m. A (D)™™ [*(R") — L*(R")

since then A = (D)=™*M . B. (D)™ maps H™(R") to H™ M (R") :

(2.156) H™(R") —2> H™=M(R")

<D>’"l lw)mM

L*(R") ———= L*(R").

Since B € W2 (R™), by the gogilposmlon theorem, we already kng 5
Thus we have proved 2). To prove the general case, ?b—ﬁl), we proceed

in the same spirit. Tj )2 is an isomorphism from HW(R") to (x)2H™(R"™), by

definition. So to get ( 1 ) we need to show that

(2.157) Q= (x)"7-A-(x)7: H™(R") — H™ MR"),

6.34
i.e. satisfies (b.l52). Consider the Schwartz kernel of (). Writing A in left-reduced
form, with symbol a,

(2.158) Kolay) = (2m) ™" [ =€) ta(z, - )"
Now if we check that
(2.159) (@) 9y)a(z,€) € (1+ | — y?) F SM (R R")

then we know that Q € UM (R") and we get (bﬁ? from b.TSQ . Thus we want
to show that

(2.160) (z — y>_|Q|§z§Z“(x’€) € SM(R2".R")

assuming of course that a(z,&) € SM(R";R"). By interchanging the variables z
and y if necessary we can assume that ¢ < 0. Consider separately the two regions

{(z,y); |z —yl < (|x|+\y|} o

{(z,y); |z —yl > (Il’lﬂyl} Qs.

(2.161)
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In Qq, x is “close” to y, in the sense that

1 4 5
(2.162) el < o =yl +lyl < Z (el +1yD) + |yl = lal < 5 - 7lvl < 2Jyl.
Thus
—q

(2.163) (x—y)7- g;_q <C inQ.
On the other hand in s,
(2.164) lz| + y| < 8|z — y| = |z| < 8|z — y|
SO again

O
2.165 x—y) 4 < C.
(2.165) =
In fact we easily conclude that

—¢ 39" poo
(2.166) @ ccz®) Vo
6.42

singe differentjagion by x or y makeg a]l terms “smaller”. This proves (WO), hence
(2:159) and (2:157) and therefore (2:151), i.e. the theorem is proved. O

We can capture any tempered distribution in a weighted Sobolev space; this is
really Schwartz’ representation theorem which says that any v € S'(R™) is of the
form

(2.167) u= Z 2“DPuys, uap bounded and continuous.
finite

6.32
Clearly C (R™) C (z)**"L?(R™). Thus as a special case of Theorem b7f,
Dg  (2) LR — <x>1+nH*|5|(]R”)
S0

LEMMA 2.10.

(2.168) S'®R") = J@)MHM®R").

The elliptic regularity result we found before can now be refined:
PROPOSITION 2.8. If A € U (R™) is elliptic then

(2.169) ;4u f (x)PHI(R"), u € (x)? HT (R™)

= u € ()P H* (R"), p” = max(p,p’), ¢" = max(q+m,q).
PROOF. The existence of a left parametrix for A, B € U ™ (R"),

B-A=1d+G, G € ¥ >*(R")
means that
(2.170) w = B(Au) + Gu € (x)P HT™(R™) + (2)? H®(R™) C (z)?" HIT™(R").
O
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S.Polyhomogeneity 2.15. Polyhomogeneity

%(izfar we have been considering operators A € ¥ (R™) which correspond,
via (2.2), to amplitudes satisfying the symbol estimates ?%73), i.e. in ST(R?";R™).
As already remarked, there are many variants of these estimates and corresponding

spaces of pseudodifferential operators. Some wigkf@g% (ﬁflghe estimates is discussed

in the problems below, starting with Problem 2.16. Here we consider a restriction
of the spaces, in that we define

eq:P.1| (2.171) on(RP;R) € STE(RP;R™).
eq:P.
The definition of the subspace (b /1) is straightforward. First we note that if
a € C*(RP;R™) is homogeneous of degree m € C in || > 1, then
eq:P.2| (2.172) a(z,t€) =t"a(z,€), |t], ¢ >1

where for complex m we always mean the principal branch of ¢ for t > 0. If it also
satisfies the uniform regularity estimates

eq:P.3| (2.173) sup |D§D§a(z,£)| <ooVa,p,
zeR™, |€]<2

then in fact
eq:P.4| (2.174) a € ST (RP;R™).

:P.
Indeed, (be.l 73] is exactly the restriction of the symbol estimates to z € R, €] < 2.
On the other hand, in |£] > 1, a(z, ) is homogeneous so

\D?Dga(z,fﬂ = |§‘m7‘BI\D?Dga(z,g)|, £ = G

from which the symbol estimates follow.

DEFINITION 2.2. For any ee:g:. the subspace of (one-step)” polyhomogeneous
symbols is defined as a subset (2. by the requirement that a € SI’J'}I(RP;R") if
and only if there exist elements a,,—;(z,&) € SE™(RP;R™) which are homogeneous
of degree m — j in || > 1, for j € Ny, such that

eq:P.5| (2.175) a~ Y amj.
J
Clearly
eq:P.6| (2.176) ™ (RP;R™) - ST (R R™) € Smt™ (RP;R™),

since the asymptotic expansion of the product is given by the formal product of the
asymtotic expansion. In fact there is equality here, because

eq:P.7| (2.177) (1 +1¢)%)™/? € Sm(RP;R™)

and multiplication by (1 + [£[?)™/2 is an isomorphism of the space SO (RP;R™)
onto ngl(Rp;R"). Furthermore differentiation with respect to z; or & preserves
asymptotic homogeneity so

Dy, - Spi(RP;R™) — ST} (RP;R™)
Vi=1,...,n.
De, : STL(R%;RY) — ST (R7RY)

Brob:MM
"For a somewhat more general class of polyhomogeneous symbols, see problem 2.8:
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It is therefore no great surprise that the polyhomogeneous operators form a subal-
gebra.

PROPOSITION 2.9. The spaces W} (R") C WIL(R™) defined by the condition
that the kernel of A € W (R™) should be of the form I(a) for some

(2.178) a€ (1+z—y*)"/2SH(R™R"),
are such that
(2.179) ph(R™) 0 WHL (R™) = @™ (R™), (Wp(R™))" = UL (R™)

or all m,m’ € C.
[

PRrROOF. Since the definition shows that
ph(R") C UE™(R™)
we know already that
P(R™) - Wi (R™) € WE™HTO(R™). . .
To see that products are polyhomogeneous it suffices to use (E.”G i and (be [78 i

which together show that the asymptotic formulee describing the left symbols of
A€ Un(R") and B € U7 (R™), e.g.

jlel .
UL(A) ~ Z ?Dg Dy a(xvyué-)'y:z

[0
imply that o1,(A) € ST} (R™;R"), or(B) € Sii (R";R™). Then the asymptotic for-
mula for the product shows that o,(A- B) € ngfm/(R"; R™).
The proof of -covariance is similarly elementary, since if A = I(a) then A* =
1(b) with b(z,y,2) = a(y, z,€) € I’,’}’l(Rz”;R”). O

In case m is real this subspace is usually denoted simply ¥ (R"™) and its el-
ements are often said to be ‘classical’ pseudodifferential operators. As a small
exercise in the use of the principal symbol map we shall show that

A e Vi (R"), A (uniformly) elliptic = 3 a parametrix

2.180
(2.180) BeW ™(R"), A-B-1d, B-A—1d € U;(R").

In fact we already know that B € U (R"™) exists with these properties, and even
that it is unique modulo WS >°(R™). To show that B € W " (R"™) we can use the
principal symbol map.

For elements A € W7 (R™) the principal symbol o,,(A) € Sm={1] (R™;R™) has
a preferred class of representatives, namely the leading term in the expansion of
or(4)

om(A) = o(&)am(z,§)  mod SHHR™;R™)

where o|¢| = 11in |¢| > 1, 0l¢] = 0 in [¢] < 1/2. It is even natural to identify the
principal symbol with a,,(x, &) as a homogeneous function. Then we can see that

(2.181) A € UE™(R™), oy, (A) homogeneous of degree m

= U (R") + TR 1(R™).
Indeed, we just subtract from A an element A; € \Ifgfl(R”) with opm(41) =
oxm(A), then og, (A — A1) =0s0 A— A € ¥ HR"),
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So, returning to the proof of (ng%@lfonote straight away that
0_5m(B) = oxm(A)
has a homogeneous representative, namely a,,(z,&)~!. Thus we have shown that
forj=1
(2.182) Be U ™(R")+ ¥ "/ (R").

eq:P.12
We take (b [82) as an inductive hypthesis for ge, eral j. Writing this decomposition
B = B’ + B; it follows from the identity (2. that

A-B=A-B +AB; =1d mod U7®(R")
A-Bj=1d—AB' € V) (R") N J(R") = U_J(R").

Now applying B on the left, or using the principal symbol map, it fo Low; t%mt
Bj € W " (R") + ¥/~ (R") which gives the inductive hypothesis (2. [82) for
Jj+1

It is usually the case that a construction in ¥*_(R™), applied to an element of
WL (R™) will yield an element of WF) (R™) and when this is the case it can generally
be confirmed by an inductive argument like that used above to check (2-18(

2.16. Topologies and continuity of the product

As a subspace®
on (RP;R™) C SZ(RP;R™)
is not closed. Indeed, since it contains S_>°(RP;R™), its closure contains all of
Sgl (RP;R™) for m’ < m. In fact it is a dense subspace.® To capture its properties
we can strengthen the topology ST} (RP; R™) i]@l}grits from ST2(RP;R™).
As well as the symbal norms || - [[N,m in (2.7) we can add norms on the terms
in the expansions in (2.
(2.183) 1DE D i (2, €) || 1w (), G =RP x {1 < [¢] <2},
We can further add the symbol norms ensuring (e. frt , i.e.,
k
(2.184) la =" am—jlm-k-1nx VEN.
§=0
Together these give a countable number of norms on S&(RP ; R™). With respect to
the metric topology defined as in (B%) the spaces Spj (RP; R™) are then complete.*C.
Since we have shown that the left symbol map is a linear isomorphism ¥ (R™) —
ST (R™;R™) we give ¥ (R™) a topology by declaring this to be a topological iso-
morphism. Similarly we declare
(2.185) or YL (R™) «— SO (R™R™)
to be a topological isomorphism.

Having given the spaces U7 (R™) and ¥ (R™) topologies it is natural to ask
about the continuity of the operations on them.

8Polyhomogeneous symbols may seem to be quite sophiétliggéﬁﬁz qlﬁifects but they are really
smooth functions o rr(r)]g_rBf)olds with boundary; see Problems 27 .

9See Problem I,

Bfob:CC
10gee Problem 2:10.
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7.12.2007.445 PropPOSITION 2.10. The adjoint and product maps are continuous

UR(R") == UL(R™Y),
7.12.2007.446 | (2.186) , ,
VI (R") x U (R") — UL (R

and similarly for the polyhomogeneous spaces.

PRrOOF. Note that we have put metric topologies on these spaces so it suffices
to check sequential continuity. Now the commutative product is continuous, as
follows from direct estimation,

(2.187) S (RP;R™) x ST (RP;R™) — ST (RP; R™)

as is the ‘commutative adjoint’, a(z,y, &) — a(y, z§) on S™. The same is true for
the polyhomogeneous spaces. From this it follows that it is only necessary to show
the continuity of the reduction map

(2.188) See(R*™;R") 5 a— o (I(a)) € ST (R™R™).
Recall that this map is accomplished in two steps, first taking the Taylor series
at y = x, integrating by parts and taking an asymptotic sum. This constructs
b € ST(R™R™) so that qr(b) — I(a) € U_>°(R™). Then the case m = —oo is
done directly by estimation. Given a convergent sequence in S™(R?"; R"), each of
the terms in the Taylor series converges and it follows that the asymptotic sums
can be arranged to converge, that is if a, — a in S™(R?>";R") then there exists
b, — b € S™(R™;R") such that qr(b,) — I(an) — qr(b) — I(a) € Y > (R").
Combined with the case m = —oo this shows that reduction to the left symbol is
continuous. [

A result which will be useful later follows from the same argument.
[15.12.2007.466 LEMMA 2.11. Suppose ¢; € C°(R™), i = 1,2, and ¢1 = 1 on supp(¢2) then
[15.12.2007.467] (2.189) ST(R™R™) 3 ar—— or(p1qr(a)(1 — ¢2)) € SL°(R™;R™)

15 continuous.

Since we have given topologies to the spaces of pseudodifferential operators the
notion of continuous dependence on parameters is well defined. Indeed the same
is true of smooth dependence on parameters, since a map a : [0,1] — P2 (R")
is Ct if it is continuous, the difference quotients (a(t + s) — a(t))/s are continu-
ous down to s = 0, and the resulting derivative is smooth. Then smoothness is
just iterative regularity in this sense. Essentially by definition this means that A €
C>([0,1]¢; T (R™)) is the left-reduced symbol a = o,(A(€)) € C*([0, 1]; SZ(R™; R™)).

S.Linear.invariance ‘ 2.17. Linear invariance

It is rather straightforward to see that the algebra U2 (R™) is invariant under
affine transformations of R™. In particular if T,x = x + a, for a € R™, is translation
by a and

T, f(z) = f(z +a), T, : S(R") — S(R")
is the isomorphism on functions then a new operator is defined by
TrA.f = AT f and A € U2 (R") = A, € U (R").
In fact the left-reduced symbols satisfy
oL (Aa)(xa 5) =0L (A)(iC +a, 5), Aa = TjaAT;'
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1.10.2007.93
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Similarly if T € GL(n) is an invertible linear transformation of R™ and Arf =
T*A(T*)~'f then

Arf(z) = (2m) " / S TEV €T, € F (T~ y)dedy
(2.190)

= (2 [ T T ST, ) ()| det(T) dedy

so changing dual variable to (T%)~1¢ shows that

(2.191) A€V (R") = Ar € VI (R")

and o (Ar)(x,€) = o (A)(Tz, (T') 7€)

where T" is the transpose of T (so Tz - & = x - T€) and the determinant factors
cancel. Thus it suffices to check that

(2.192) ST (RYGR™) 3 a— a' = a(Tz, AE) € S™(R%;R™)

for any linear tranformation 7" on R? and invertible linear tranformation A on R™.
Clearly the derivatives of @’ are linear combinations of derivatives of a at the image
point so it the symbol estimates for a’ follow from those for a and the invertibility
of A which implies that

(2.193) clé| < |Ag| < Cle], e,C > 0.

This invariance means that we can define the spaces Wi (V) and W1 (V) for
any vector space V' (or even affine space) as operators on S(V).

2.18. Local coordinate invariance

To transfer the definition of pseudodifferential operators to manifolds we need
to show not only invariance under linear transformations but also under a diffemor-
phism F : Q — Q' between open subsets of R™. For this to make sense we need to
consider an operator on R™ which acts on functions defined in €’. Thus, consider

(2.194) () ={A € U2 (R"™) has kernel satisfying supp(4) € Q' x Q'}.

There are plenty of such operators if Q' # () sipce,if ¢.qb € C2°(Q') and B € ¥ (R")
then A = ¢Bvy € U'(Q) since it satisfies (b 192%. It follows that if a € S™(R™;R"™)

has support in K x R™ for some K & €’ then there exists A € ¥7*(Q') such that
or(A) = a modulo S~ (R™;R") — simply take some B with this symbol and then
set A = B¢ where ¢ € C°()') but ¢ =1 in a neighbourhood of K.

ProOPOSITION 2.11. If F: Q — Q' is a diffeomorphism then for A € ¥ (),
(2.195) Apu= F*A(Ffl)*(u|9) defines an isomorphism ¥ () — U (Q).

PROOF. Since A € U7 (R"),
(2.196) Ka(z,y) = (2m)™ / TV L (, €)de

for some a € ST(R™;R"™). Now choose 1h e C2°(€2) such that ¢ (z)y(y) = 1 on
b 921%. Then

supp(K 4), which is possible by (2.
(2.197) Ka=1(x)¢(y)a(z,§)).



\l
S

\1
N
N

3

7.44

7.45

7.46

7.47

Euclidean-scl

28.11.2007.387 |

60 2. PSEUDODIFFERENTIAL OPERATORS ON EUCLIDEAN SPACE

In fact suppose pic(z,y) € C°(R?*) and u=1in |r — y| < € for € > 0, p(z,y) =0
in | —y| > 2e. Then if

(2.198) Ka, = I(pe(z, y)(x)d(y)a(z,§))
we know that if
(2.199) A, =A— A. then Ky = (1 — pe(w,y)) Ka € U 2°(R").
Then AL € U (') and
(2.200) (A € U°(R™).
7.42
So we only need to consider A, defined by (bTQS) Now
RN K (o) = 2n)" [ OO -CDG),6ly), )|

where b(x,y, &) = pe(z — y)(x)Y(y)a(z, §). Applying Taylor’s formula,
(2.202) G(z) = Gy) = (z —y) - T(z,y)

where T'(z,y) is an invertible C*> matrix on K x K N {|z —y| < €} for € < €(K),
where €(K) > 0 depends on the compact set K € . Thus we can set

(2.203) n="T(zy) ¢
7.4
and rewrite (b?%l) as

K, (2.y) = (20) / @Vl . m)dn
(2.204)

(. y.m) = b(G(x), Gy), (T) Mz, y)n) |§)—§| |det T(a,y)| "

So it only remains to show that ¢ € S (R?";R") and the proof is complete. We
can drop all the C* factors, given by |8G / 8y| etc. and proceed to show that

(2.205) |DgDYDIa(G(z),G(y),S(z,y)¢)| <CA+[E)™ M on K x K xR"

where K CC ' and S is C*° with | det S| > e. The estimates with o = 3 = 0 follow
easily and the general case by induction:

DgDyD{a(G(x),G(y), S(z,y)€)

= > M@y (DYDY Dra) (Ga), Gly), 5¢)
[l <lal+]B]+]v]
lo|<]al,|B|<|A]
[v[+1vI<Ipl

where the coeflicients are C* and the main point is that |v| < |ul. O

2.19. Semiclassical limit

Let us at least pretend to go back to the beginning once more in order to
understand the following ‘problem’. From the origins of quantum mechanics the
relationship between the quantum and related classical system has always been a
primary interest. In classical Hamiltonian mechanics the ‘energy’ (I will keep to
one dimension for the moment in the interest only of simplicity) is the sum of the
kinetic and potential energies,

(2.206) B(x,€) = $hE* + V(2)
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Here 7 is a ‘small parameter’ which represents either a coupling constant (the fine
structure constant relating the energy change in an atom to the frequence of the
light emitted) or else a small ‘mass’. The ‘corresponding’ (one has to be careful
about this, the process of quantization does not really work this way) quantum
system is

1
2.207 E)=—h— + V().
(2:207) au(B) = —3h-s + V()
For h > 0 — which is really the case — this is a perfectly good elliptic (at least
locally) differential operator. However something singular clearly happens as i | 0
(although you might ask how a constant is supposed to go to zero; fortunately we

have other less frivolous reasons for looking at t 5%) 11.9007.388
If we simply set h = €2 then we can rewrite (2. in the form

1, d
2.208 \%
(2208) (e V().

. . . ]28.11,2007.389. )
This sug gts 1tl}g&7t98generahze the structure in (b.?()Si to “arbitrary symbols’ in
place of (E.?UG) we should simply consider operators of the form

Acula) = (m) " [ e ale . c€)uly)dyde
(2.209) Rz

= (2me) ™" /Rz e VN q e, z,y, m)u(y)dydy

where the second version follows from the first by changing variable to n = €€ and
a € C>([0,1]¢; S (R?™;R") is a symbol in the usual sense which may also depend
smoothly on e.

DEFINITION 2.3. Let U7 __(R™) C C*=((0, 1]; W22 (R™) (resp. W (R™)) C C>=((0,
bg t{Lie z%%l;sg%e consisting of those 1-parameter families which are of the form
(b 209) for some a € C>([0,1]; SZ(R**; R™)) (resp. a € C=([0,1]; S (R*™;R™)).

There is no question about the form of the kernels of these operators. Namely,
directly from the second form of the definition

x—y)

(2.210) A, has kernel of the form e~ " K,(z,
€

where K (x,x — y) is the kernel of a smooth family of pseudodifferential operators
in the usual sense, namely

(2.211) K (x,x — y) is the kernel of I(a.).

So, as € | 0 the kernel very much ‘bunches up’ around the diagonal. This rather
explicit description does not tell us directly about the composition properties of
these 1-parameter families of operators. However we can work this out fairly easily.
First check what happens for the operators of order —oco.

PROPOSITION 2.12. The space W (R™) = W % (R™) is closed under compo-

sl-oco
sitton and adjoints and there is a short exact multiplicative sequence

(2.212) U™ (R™) — T;®(R™) =5 S>°(R™;R™).

1); Wi (R™))
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28.11,2007,390 . . .
ProOF. Already from (b.ZUQ} 1t follows directly that the residual algebra is
given by symbols of order —oo, that is

(2.213) A €[ VR (R") <=
" 28.11.2007 . 390
A is of the form (b.?l)gi with a € C*([0, 1]; S.>°(R*"; R™))

since the kernel K (z,x — y) is uniquely determined by A.. This also shows that
the ‘residual space’ is the same for the classical and non-classical cases.
Thus if Ac € U °°(R™) then there exists K. € CZ([0, 1] x R™; S(R™)) such that

x—y)'

So the composite — really only for € > 0 — of tyo gpch (families of) operators A
& 214) for a d

and B., where the kernel of B is given by (2. ifferent function L., has
kernel

(2.214) A has kernel e " K (e, x,

r—z

Iz, Yy = | K(a,
(2.215) ¢ R

— e | K@tz —et, 2—Y + tyat
Rn €

VLe(z, 2= Y)dz
€

where ¢ = (x — z)/e. Thus changing independent variable to Z = (x — y)/e the
kernel of the product (for e > 0) becomes

(2.216) Je(x,Z) = K (x,t)Le(x — €t, Z + t)dt.

R’ﬂ
Now, it is easy to see that J.(z, Z) € CX([0,1]c x R™; S(R™)). The rapid decay in
t in the first factor in the integrand gives rapid convergence of the integral and
overall boundness of J.. Rapid decay in Z follows from the estimate

(2.217) |Z| < |t| +1Z + ¢
and differentiating with respect to any of the independent variables gives a similar

integral with similar bounds.
This shows that the composite is also in W °°(R™). Notice that at € = 0,

(2.218) Jo(x,Z) = Koz, t)Lo(z, Z + t)dt = ¢(0,2,&) = a(0,z,£)b(0, z,£).
. . R i 28.11.2007.395
by taking the Fourier transform in Z. Thus (b.212) is satisfied by the map
(2.219) os1(Ae) = a(0,2,£) € S°(R™;R™) = CL(R™; S(R™)).
O

It is important to contrast the behaviour of this ‘semiclassical symbol’ with the
usual symbol — with which it is closely related of course. Namely the semiclassical
symbol describes in rather complete detail the leading behaviour of the operator
at € = 0 and is multiplicative. What this really shows is the basic property of the
semiclassical limit, namely that these operators ‘become commutative’ at € = 0
(where they also fail to exist in the usual sense).!’ As with the principal symbol
rather fine results can be proved by iteration. Thus

(2.220) A, € U;®(R") and 0g(A) =0 = A, = AV AD ¢ v =(R").

11 28.11.2007.403
See Problem 2.22.
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Then if one can arrange repeatedly that 051(/1&1)) = 0 and so on, one may finally
conclude that!?

— 00 n s} —00 n dk
(2.221) A, € QGN\I/SI (R™) <= A, € C>([0,1]; ¥;>°(R")) and @AEL:O

Now we proceed to show that this result extends directly to the operators of
finite order.

THEOREM 2.5. The semiclassical families in U _(R™) (or U (R™)) form an
order-filtered x-algebra with two multiplicative symbol maps, one a uniform (perhaps
better to say ‘rescaled’) version of the ysugl %67;11)4%1 and the second a finite order

version of the semiclassical symbol in (b.?lgi

(2.222)
Gm 2 VT (R™) — C([0,1] x xR™ X (R"\ 0)), Gm(Ae)(x,n) = om(Ac)(z,n/€),
os: UT(R") — ST (R™ x R™);
they are separately surjective and are jointly subject only to the compatibility con-
dition
(2.223) oa(Ad) = Gm(Ad)| _, in SR R™).

PRrROOF. By definition A, € U7} (R™) means precisely that there is a smooth

family a. € C°°(£ Q] 1, §m7@%92Rn ) such that if K (x,z —y) is the family of kernels

of gr.(a.) then (2. olds. Thus the two maps in the statement of the theorem,
with

T (Ae J e c>(0,1]; s7~ (R R™)) and
o) Fm(A0) = [a] € (0, 1]; SR RY)) an

oa(Ae) = ap € SZ(R™;R"™)

are certainly well-defined and subject only to the stated compatibility condition.
Thus the main issue is multiplicativity. Since a. can be smoothly approximated

by sy Qoll§ 8&)9@85 —o0 we can use continuity in the symbol topology and start
f %216) F

rom or € —

J(x,Z) = K(x,t)L(x —t, Z + t)dt,
Rn

K(2,1) = (27)" / ¢it€h(z, €)de,
Liz,t) = (27)" / ¢t a(z, €)de,
c(x,§) :/eﬂz'éJ(z,Z)dZ

reproduces the usual composition formula. Thus we know that this formula extends
by continuity to define the jointly continuous product map

(2.225)

(2.226) STHR™R") x ST (R™;R") —s ST+ (R™; R™).

Now, we can simplify this by assuming that a is constant-coefficient, i.e. is inde-
pendent of the base variable. The to evaluate ¢(0, &) we only need to know J(0, Z)

12 15.12.2007.470
See Problem or an outline of the proof.
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which is given by the (extension by continuity of) the simplified formula, which
therefore, by restriction, defines a continuous map

15.12.2007.475| (2.227)

JaxZ>=u/ K(t)L(~t, Z + t)dt, ST(R™) x ST (R™;R") — ST (R™).

RTI,
15.12,2007.473
Now, from (b.ZZS)
15.12.2007.476] (2.228) L(~t,Z) = (27r)‘”/eiz'fa(—t,§)d§

so in the corresponding formula with e varying

15.12.2007.477| (2.229) J(0,2)= | K(t)L(—et,Z + t)dt

R™

L(—et,Z +t) corresponds to the symbol a(—et,§) € C>([Q, 1]; g’” n-R™))
follows easily by direct differentiation. Thus if we fix x in b?ﬂ}j—atainypomt in
R™ this shows that the product extends by continuity to the finite order symbol
spaces. Then, using the bilinearity, the smooth dependence on z as a parameter
can be restored. Thus in fact the same results on composition follow as in the
smoothing case, that

G (AcBe) = G (A)Gm (B) and

15.12.2007.478 | (2.230)

Osl-00 (AEBE) = Ogl-0c0 (Ae>0sl—oo (Be)
O

Of course the uniform symbol &,,(A) is not quite the usual symbol precisely
because of rescaling but is equivalent to it for e > 0. Namely

(2.231) Om(A)(x, &) = m(Ac) (€, x, €€).

Maybe you like to have things written out explicitly as short exact sequences.
There are in fact three such (or more if you allow polyhomogeneous/oco variants),
all of which are also multiplicative. Thus

(228
VTR — W) 7 ([0, 1) S (R RY)),
U (R™) — WI(R™) =5 ST3(R™;R™),
e\I/;Tl“l(R") —
m mpny (Fm,Ts)
sl (R ) —>1
{@a) € SRR @ C=((0,1]; Sl V(R R™));a = a| _, in Spy P(R™R™)}.
We also want to check coordinate invariance. Note that the semiclassical alge-
bras are mapped into themselves by multiplication of the kernel by an element of
cx (Ri"y) In particular we may freely localize on the left or the right by a smooth

function of compact support and stay in the algebra. The coordinate invariance of
the semiclassical algebra then follows from that of the usual algebra.

28.11.2007.411 ‘ PRrROPOSITION 2.13. If A, € U} _(R™) has kernel with compact support in 2 x

Q for some open Q@ C R™ and F : Q — Q' is a diffeomorphism then Ap. =
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(F~Y)*A F* € ¥ __(R™) and

sl-co
om(Are) = (F*) om(Ae
28.11.2007.412| (2.233) (Are) = (F")Fm(4e)

os1(Ar,e) = (F) oa(Al).

Note that F™ is linear on the fibres so commutes with the rescaling map.
We will also need some boundedness properties of semiclassical families. The
following will suffice for our purposes.

PROPOSITION 2.14. For A, € ¥9___(R™),
(2.234) sup || Ae|lL2@mn) < oo.

0<e<1
7.12.2007.442
PrROOF. It is only the uniformity in (EZBZL%Th—at—ls at issue, since we know the
boundedness for 1 > € > § for any 6 > 0. The argument we give is essentially
the same as for boundedness. Namely for C > 0 large enough we can extract an
approximate square-root

(2.235) C—A*A. = B? + E., BecU%(R"), Ece®C>®([0,1; T°(R")).

This can be seen using essentially the same symbolic computation as before but
now for both symbols. Thus if C' > 0¢(A4)*0o(A4) and C > 04 (A)*oq(A) (and note
that the second can well be larger than the first) then be can choose B € WY (R™)
with B* = B, 0(B)? = C — 0¢(A)*00(A), 0a(B)? = Cog(A)*os(A) (because the
consistency condition is satisfied) and hence

(2.236) C—A*A=B’+E, Ei €V (R").
1.12.2007.439

Then the construction can be iterated as before to construct a solution to (b.ZBS%
The uniform boundedness of E. is clear — in fact its norm vanishes rapidly as € | 0
so the uniform boundedness follows. O

2.20. Adiabatic and semiclassical families

In the preceeding section semiclassical families of smoothing operators were
discussed. Later we need to consider similar families with two parameters. So, here
the local case is analysed. Consider a decomposition of Euclidean space into two
factors,

(2.237) R™" =R" x R™.

It is straightforward to consider an ‘adiabatic’ analogue of the semiclassical calcu-
lus above. Namely if consider smooth families of kernels of smoothing operators
in W >°(R"*" as before. Now however then ‘compress’ them as for the semiclas-
sical calculus, but only in the second set of variables and consider the families of
smoothing operators for § > 0,

B : S(R™™) — €*((0,1]; S(R™),

s _ s
(2238)  Bf(5,z%)=0" / B(5,2,2 = 2, “—) (<, #)d/dZ,

Rn+7

B(&Z,Z — 21,272 — 2/) c Coo([o’ 1]’\IJ;OOO(Rn+ﬁ))
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giving a multiplicative short exact sequence

. . 21.2.2008.2
PRrROPOSITION 2.15. The collection of families of operators of the form (b.238
forms an algebra, denoted V_°°,(R™; R™) under composition with adiabatic symbol
map
(2.239) B+ 0aa(B) (2,2 — 2',2,¢) = / e B2,z — 2 ,2,7)dZ,
R?

21.2.2008.4] (2.240)  6U % (R™R™)——=W_ > (R"; R?) — 5 (R R™; UL (R"))

Of course the algebra depends on set of variables in which the ‘adiabatic limit’
is taken. The semiclassical calculus corresponds to n = 0, meaning no ‘non-
commutative’ variables survive.

PRrROOF. Following the discussion above of the semiclassical limit, simply change
variables in the composition formula which holds in § > 0 defining the left side
2 _ 2//

5 )
s 5
:5_%/ A(é;z,z—z’,é,z 52 )B(é;z’,z’—z”j’,z
R™ xXR7™

21.2.2008.6| (2.241) 6 "C(0;2,2— 2", %,

by introducing Z = (2 — 2")/8 and Z' = (2 — 2')/d so that
21.2.2008.7| (2.242)

C(0;2,2—2",2,7Z) = / A(O;2,2—2',2,Z)B(8; 2, 7' =2 5=0Z', Z—Z")d~'dZ'.
R™ xR7™

In this form the same argument as in the semiclassical case shows that the composite
is of the same type. Moreover, when & = 0 the composite kernel is given just by
convolution in the second variables, with Z just a parameter, and still by operator

composition in the gll" boyayiables. Thus gives the multiplicativity of the adiabatic
symbol map in (2. ; O

As well as this adiabatic calculus we need to consider a two parameter calculus
in which both the overall semiclassical limit and the adiabatic limit just consid-
ered occur. Thus, still starting with the same types of kernels, but now with two

parameters,
(2.243) A€ C>([0,1]c x [0, 1]5; T (R™H7)
we consider the families of operators with kernels
_ s _ 3
(2.244) TR TB(z T2 5 T,
€ €
ProprosITION 2.16. The PCE %Sogemtors two-parameter familes of opera-
tors with kernels of the form (2.244) forms an algebra under composition, denoted

U (R™;R™) which has two multiplicative ‘symbol’ maps

coslad
0¥ 5 a (R R™) — C([0, 155 S0 (R R™)),

ocoslad

oa(B) = /e*iZC*iZEB(o,(s,z7z,z72),
(2.245) o

Uad\:[loo slad

(R™;R™") — SR R™; U5 (R™))
!

0aa(B) = e—ﬁ/e-iffB(e,a ey}
€
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The proof of this is easy, as before, the main problem is to take in what it actually
means! Passing to § = 0 we get a family depending on e which is just on R", the
first variables, and is undergoing an adiabatic limit as € | 0. Passing to ¢ = 0 for
0 > 0 we are simply doing a semiclassical limit in which ¢ appears as a parameter
and in an appropriate sense is uniform down to 6 = 0. Of course the limits at
€ = 0 = 0 should match up independently of the order in which the variables go to
zero. This is encapsulated in the identity

(220 oa(B)],_y = ou(za(B))

ProoOF. Writing down the composition formula for C' = Ao B as before, when
e > 0 and § > 0 and changing variables we find that

Cle,6,2,2,%,2) =

21.2.2008.13

(2.247) o L
/ Ale,6;2,2' 2, Z"\B(e,6;2 —eZ', Z — 7' 2 — €62, Z — Z')dZdZ'.
R” xR™

Again it if straightforward to check that C is a family of kernels of smo thing o 15
operators. Moreover setting § = 0 gives the adiabatic symbol, which from (%.247;

undergoes the composition law for the the semiclassical composition in the first
variables under composition of operators. On the other hand, setting ¢ = 0 gives the
same semiclassical composition formula as before, although the scaling of variables
involved in the definitions is different. O

The definitions of the symbols show that there are two short exact sequences

2.218)

OU 55 aa (R RY) —— W75 (R RT)—5 % (R R W5 (R"))

oo slad oo slad eS] oo sl

U5 (R RY) —— W25 (R R™) ——C ([0, 1] 53 S5 (R R™H7))

oo slad oo slad

Moreover, the combined symbol map oy @ 0,q has null space ed¥_7 ad(R”;}Rﬁ)

£Jld2r 8¢ g}%e direct sum of the ranges, subject just to the compatibility condition

2.21. Smooth and holomorphic families

I have gone through the description of ‘classical’ pseudodifferential operators of
complex order here, even though it might seem rather strange — I want to emphasize
that these really do arise in practice. In particular we will want to consider the
notion of a holomorphic family of complex order f(z) where f is holomorphic.

First consider the issue of continuous or smooth dependence on parameters.
Since we have at least implicitly given WZ(R") and W[} (R™) topologies, this is
already defined. In fact of course it is just the continuous or smooth dependence of
the left-reduced symbol on the parameters, say in some open or smoothly-bounded
subset of RP. Tracking back through the arguments above, it can be seen that the
product theorem actually gives continuous dependence of the symbol of a product
on the symbols of the factors, although a little ‘qulﬁg}i&}%gﬁgded here because of
the asymptotic summation involved see Problem 2.25 for a little more on this point.
It is important that the product is unique. For homolormophy say of an element of
P (R™) in terms of a complex variable s € U C C open the discussion is essentially
the same. Namely a (strongly) holomorphic function into a fixed topological vector
space is just a continuous function which satisfies Cauchy criterion, that it integrates



1.10.2007.97

1.10.2007.98

1.10.2007.99

1.10.2007.100

S.Chapter.2.Problems

P3.1

P3.2

68 2. PSEUDODIFFERENTIAL OPERATORS ON EUCLIDEAN SPACE

to zero around any closed contour. This is actually equivalent to smoothness in s
and

(2.249) 0A(s) = 0.

So, there is nothing very interesting going on here. For polyhomogeneous op-
erators of a fixed order the story is the same, with the spaces of operators and
symbols altered appropriately. However if the order itself is allowed to vary then a
different notion of ‘holomorphy’ arises. Namely if F': U — C is itself a holomor-
phic function, we may consider polyhomogeneous symbols which are of order f(s).
As noted above this can be simplified by writing the (left-reduced) symbol in the
form

(2.250) a(s,z,&) =< € >7) b(s, z,€)

where b € S0 (R";R"). Then by holomorphy in this new sense we mean holomorphy
of b in the usual sense, as a polyhomogeneous symbol of order 0. We can write
\I!{ZOI(R”) for this linear space of operators. Note that we drop the ‘ph’ since this
does not make much sense without it!

PROPOSITION 2.17. If A(s) € \III{OI(R") and B € U] | (R™) for two holomorphic
functions f, g : U — C,

(2.251) Ao B e Ult9R").
PROOF. I suppose I should write one! [
Why bother with such operators? Globally in this sense on R™ it is difficult
to come up with sensible examples but on a compact manifold or for the better
‘global’ calculi on R™ discussed below there are natural examples. For instance,
getting very much ahead of myself here, if A € \Ilpl)h(M ) is self-adjoint and elliptic
on a compact manifold M then the complex powers A% for an entire family, so

complex in the sense above for z € C. This was first proved byIS le_'% cgaitis the
starting point for many interesting developments, see Chapters h, % and % below.

2.22. Problems

PROBLEM 2.1. Show, in detail, that for each m € R
(2.252) (1+[€[%) 2™ € ST (RP; R™)
for any p. Use this to show that
Sw(RP;R") - ST (RPR™) = S (RP; R™).
PROBLEM 2.2. Consider w = 0 and n = 2 in the definition of symbols and

show that if a € SL (R?) is elliptic then for » > 0 sufficiently large the integral
2m

1 1 d " 1 (> d "
— —— — )dl = — — 1 *)do
/ 27 a(ret?) daa(re ) 27 Jo dO og a(re”)dd,

0
exists and is an integer independent of r, where z = &; +i£> is the complex variable
in R? = C. Conclude that there is an elliptic symbol, @ on R?, such that there does
not exist b, a symbol with

(2.253) b# 0 on R? and a(¢) = b(¢) for ¢ > r

for any 7.
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PROBLEM 2.3. Show that a symbol a € ST (RE; Rg) which satisfies an estimate
(2.254) la(z, &) < CA+ €)™, m' <m
is necessarily in the space S +¢(R; RE) for all € > 0.

PROBLEM 2.4. Show that if ¢ € C°(R2 x R™) and ¢ € C°(R™) with ¢(§) =1
in |¢] < 1 then

£
"¢l

If a € ST (R?; Rg) define the cone support of a in terms of its complement

(2.255) co(2,€) = ¢z, 1) (1 = ¥)(€) € S°(RL;RY).

(2.256) conesupp(a)® = {(2,€) € R x (RE \ {0});3
¢ € CX(RE;R™), o(%,€) # 0, such that cga € S 7°(RP; R™)}.
Show that if @ € ST (RZ; RZ) and b € 7' (RZ; RE) then
(2.257) cone supp(ab) C cone supp(a) N cone supp(d).
If a € ST(RZ;RE) and cone supp(a)l does it follow that a € ST (RZ; RE)?

3.32
PROBLEM 2.5. Prove that (b.SU) is a characterization of functions a € (1 +
lx — y|?)*/25™(R?";R™). [Hint: Use Liebniz’ formula to show instead that the
equivalent estimates

D2 Dy DYa(z,y,6)| < Capn(l+ |z —y)2 (1 + €)™V a, 8,7 € Ng
characterize this space.]

PROBLEM 2.6. Show that A € ¥_°°(R") if and only if its Schwartz kernel is
C*° and satisfies all the estimates

(2.258) |D§‘D5a(m, Y)| < Copn(1+|z—y)™N

for multiindices o, 8 € Njj and N € Np.
PROBLEM 2.7. Polyhomogeneous symbols as smooth functions.
PROBLEM 2.8. General polyhomogeneous symbols and operators.

PRrROBLEM 2.9. Density of polyhomogeneous symbols in L*>° symbols of the
same order.

PROBLEM 2.10. Completeness of the spaces of polyhomogeneous symbols.
PROBLEM 2.11. Fourier transform??

PROBLEM 2.12. Show that the kernel of any element of W2 (R™) is C*° away
from the diagonal. Hint: Prove that (x — y)*K (z,y) becomes increasingly smooth
as |a| increases.

PROBLEM 2.13. Show that for any m > 0 the unit ball in H™(R") C L*(R")
is not precompact, i.e. there is a sequence f; € H™(R™) which has || f;]|,» <1 and
has no subsequence convergent in L?(R"™).
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21.2.1998.118 PROBLEM 2.14. Show that for any R > 0 there exists N > 0 such that the
Hilbert subspace of HY (R")

21.2.1998.119] (2.259) {u e HY(R");u(z) =0 in |z| > R}
is compactly includeg, ig 29QR1TL1)J i.e. the intersection of the unit ball in H™(R")
with the subspace (2 is precompact in L?(R"). Hint: This is true for any

N > 0, taking N >> 0 will allow you to use the Sobolev embedding theorem and
Arzela-Ascoli.

. 21.2.1998.118
21.2.1998.120 ProBLEM 2.15. Using Problem b [4 (or otherwise) show that for any € > 0
(1+ [2)*H (R") = L*(R™)
is a compact inclusion, i.e. any infinite sequence f,, such that (1+|z|?)~¢ is bounded
in H¢(R™) has a subsequence convergent in L?(R"). Hint: Choose ¢ € C°(R"™)
with ¢(z) = 1 in |z| < 1 and, for each k, consider the sequence ¢(x/k)f;. Show
that the Fourier transform converts this into a sequence which is bounded in (1 +
\§|2)*%EHN(R’§) for any N. Deduce that it has a convergent subsequence in L?(R™).

By diagonalization (and using the rest of the assumption) show that f; itself has a
convergent subsequence.

1.2.2000.279 PROBLEM 2.16. About p and 6.

21.2.1998.104
PROBLEM 2.17. Prove the formula (b 91) for the left-reduced symbol of the
operator A obtained from the pseudodifferential operator A by linear change of
variables. How does the right-reduced symbol transform?

1.2.2000.280 PROBLEM 2.18. Density of S(R™) in L?(R"™).
1.2.2000.281 PROBLEM 2.19. Square-root of a positive elliptic symbol is a symbol.

21.2.1998.107
21.2.1998.108 PROBLEM 2.20. Write out a proof to Proposition %[.2. Hint (just to do 'btl 621_1998 119
egantly, it is straightforward enough): Write A in right-reduced form as in (b 1)

and apply it to u; this gives a formula for Au.

21.2.1998.110 PrOBLEM 2.21. Show that any continuous linear operator
S'(R") — S(R™)
has Schwartz kernel in S(R?").
28.11.2007.394

28.11.2007.403‘ PRrROBLEM 2.22. Show that if ?P%@F g as in Proposition 2. en they
(22097 witl

have unique representations as in eft-reduced symbols, respectively a,
b and for the composite ¢ all in C2([0,1] x R™; S(R™)) and where in the sense of
Taylor series at € = 0,

e

€

[28.11.2007.404] (2.260) cle,x,m) =~ Z Jﬁs‘a(e, x, &) - O5b(e, z,m).

(03

[28.11.2007.409 | PROBLEM 2.23. Give the details of the reduction argument in the semiclassical
setting. Here are some suggestions. First use integration by parts based on the
identity

[28.11.2007.410] (2.261) A, e e — g y|2eil@y)m/e

to show that the kernel of a semiclassical family A, is smooth in |z —y| > d > 0 in
all variables, including ¢, as a funtion of x and x —y, with all z derivatives bounded
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[28.11.2007.413 |
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and rapidly decaying in x — y — that is smoothly cut off in |z —y > § > 0 it is
in C*([0,1]¢; ¥ >°(R™) and vanishes with all its derivatives at e = 0. Next use the
left reduction argument and asymptotic summation to treat the part of the kernel
supported in |z — y| < 4.

15.12,2007.469
PROBLEM 2.24. Proof of (b.ZZ ).

PROBLEM 2.25. Asymptotic summation of holomorphic families of symbols.






23.2.2003.31

23.2.2003.32

CHAPTER 3

Schwartz and smoothing algebras

The standard algebra of operators discussed in the previous chapter is not really
representative, in its global behaviour, of the algebra of pseudodifferential operators
on a compact manifold. Of course this can be attributed to the non-compactness
of R™. However, as we shall see below in the discussion of the isotropic algebra, and
then again in the later discussion of the scattering algebra, there are closely related
global algebras of pseudodifferential operators on R™ which behave much more as
in the compact case.

The ‘non-compactness’ of the algebra WS(R™) is evidenced by the fact the
the elements of the ‘residual’ algebra W, >°(R™) are not all compact as operators
on L?(R™), or any other interesting space on which they act. In this chapter we
consider a smaller algebra of operators in place of ¥ *°(R™). Namely
(3.1) A€V _*°R") < A:SR") — S(R"),

180

Ade) = | Aw.y)o(y)dy, A€ S(R*™).
The notation here, as the residual part of the isotropic algebra — which has not yet
been defined — is rather arbitrary but it seems better than introducing a notation
which will be retired later; it might be better to think of ¥, >°(R") as the ‘Schwartz
algebra.’

After discussing this ‘Schwartz algebra’ at some length we will turn to the
corresponding algebra of smoothing operators on a compact manifold (even with
corners). This requires a brief introduction to manifolds, with which however I will
assume some familiarity, including integration of densities. Then essentially all the
results discussed here for operators on R™ are extended to the more general case, and
indeed the Schwartz algebra itself is realized as one version of this generalization.

By definition then, ¥._°°(R") is the algebra which corresponds to the non-

1SO
commutative product on S(R?") given by

(3.2) Ao B(z,y) = Az, 2)B(z,y)dz.
R‘n.

The properties we discuss here have little direct relation to the ‘microlocal’ concepts
which are discussed in the preceeding chapter. Rather they are more elementary, or
at least familiar, results which are needed (and in parti ular are .%%neralized) later
in the discussion of global properties. This formula, (%Tz?ﬁms to smoothing
operators on manifolds and gives C>°(M?), where M is a compact manifold, the
structure of a non-commutative algebra.

In the discussion of the semiclassical limit of smoothing operators at the end
of this chapter the relationship between this non-commutative product and the
commutative product on T*M is discussed. This is used extensively later.

73
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3.1. The residual algebra

The residual algebra in both the isotropic and scattering calculi, discussed
below, has two important properties not shared by the residual algebra ¥ *°(R"™),
of which it is a subalgebra (and in fact in which it is an ideal). The first is that as
operators on L?(R™) the residual isotropic operators are compact.

oo

PROPOSITION 3.1. Elements of U, .°(R™) are characterized amongst continu-
ous operators on S(R™) by the fact that they extend by continuity to define contin-

uous linear maps
(3.3) A: S (R") — S(R™).

In particular the image of a bounded subset of L*(R™) under an element of ¥;_>°(R™)
is contained in a compact subset.

Proog. The kerpels of elements of W, 7°(R") are in S (R?") so the mapping
property (E.S follows.

The norm supj,<; |(z)" 1 D%u(z)| is continuous on S(R™). Thus if S C L?(R"™)
is bounded and A € U_>°(R™) the continuity of A : L?(R") — S(R") implies that
A(S) is bounded with respect to this norm. The theorem of Arzela-Ascoli shows
that any sequence in A(S) has a strongly convergent subsequence in (z)"C% (R")
and such a sequence converges in L*(R™). Thus A(S) has compact closure in L*(R")

which means that A is compact. ([

The second important property of the residual algebra is that it is ‘bi-ideal’ or
a ‘corner’ in the bounded operators on L?(R™). Note that it is not an ideal.

LEMMA 3.1. If Ay, Ay € U 2°(R™) and B is a bounded operator on L*(R™)
then A1 BAy € U °°(R™).

180

PROOF. The kernel of the composite C' = A1 BAs can be written as a distri-
butional pairing
(3.4)
C(JZ, y) = / B(x/, y/)Al (Jf, xl)AQ(y/7 y)d‘r/dy/ = (Bv Al (xa ')AQ('7 y)) € S(R2n)
R2n

Thus the result follows from the continuity of the exterior product, S(R?") x
S(R?") — S(R4™). O

In fact the same conclusion, with essentially the same proof, holds for any
continuous linear operator B from S(R™) to S'(R™).

3.2. The augmented residual algebra

Recall that a bounded operator is said to have finite rank if its range is finite
dimensional. If we consider a bounded operator B on L?(R™) which is of finite rank
then we may choose an orthonormal basis f;, j = 1,..., N of the range BL*(R").
The functionals u — (Bu, f;) are continuous and so define non-vanishing elements
gj € L*>(R™). It follows that the Schwartz kernel of B is

N
(3.5) B=>_fi(x)g;).
j=1
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If B € U_°(R™) then the range must lie in S(R™) and similarly for the range of
the adjoint, so the functions f; are linearly dependent on some finite collection of
functions fj’ € S(R™) and similarly for the g;. Thus it can be arranged that the f;
and g; are in S(R™).

PROPOSITION 3.2. If A € U_>°(R™) then Id +A has, as an operator on L*(R™),
finite dimensional null space and closed range which is the orthocomplement of the

null space of Id +A*. There is an element B € W_>°(R™) such that

(3.6) (Id+A4)(Id+B) =1d —1I;, (Id+B)(Id+A) = Id —Ip

where Iy, II; € W, _°(R™) are the orthogonal projections onto the null spaces of

Id+A and Id+A* and furthermore, there is an element A" € W._°(R™) of rank

equal to the dimension of the null space such that Id+A + sA’ is an invertible
operator on L2(R™) for all s # 0.

PROOF. Most of these properties are a direct consequence of the fact that A
is compact as an operator on L? R")y 5 2000.309

We have shown, in Proposition &3. that each A € ¥, (R") is compact. It
follows that

(3.7) No = Nul(Id +A4) C L*(R™)

has compact unit ball. Indeed the unit ball, B = {u € Nul(Id+A)} satisfies
B = A(B), since u = —Au on B. Thus B is closed (as the null space of a continuous
operator) and precompact, hence compact. Any Hilbert space with a compact unit
ball is finite dimensional, so Nul(Id +A) is finite dimensional.

Now, let Ry = Ran(Id +A) be the range of Id +A; we wish to show that this is a
closed subspace of L?(R"). Let fi — f be a sequence in Ry, converging in L?(R").
For each k there exists a unique ug € L?(R™) with us, 1. No and (Id +A)ug = fir. We
wish to show that uy — u. First we show that ||ug|| is bounded. If not, then along
a subsequent v; = uy(;), ||vj|| = oo. Set w; = v;/|lv;||. Using the compactness
of A, wj = —Aw; + fi)/llvjll must have a convergent subsequence, w; — w.
Then (Id4+A)w = 0 but w L Ny and ||w|| = 1 which are contradictory. Thus the
sequence uy, is bounded in L?(R™). Then again uy = —Auy, + fr has a convergent
subsequence with limit « which is a solution of (Id +A)u = f; hence R; is closed.
The orthocomplement of the range of a bounded operator is always the null space
of its adjoint, so Ry has a finite-dimensional complement N7 = Nul(Id +A*). The
same argument applies to Id +A* so gives the orthogonal decompositions

L3(R"™) = Ny @ Ry, Ny = Nul(Id+A4), Ry = Ran(Id+A*)

3.8
(3:8) L*(R™) = N; @ Ry, N; = Nul(Id +A*), R; = Ran(Id +A).

Thus we have shown that Id +A induces a continuous bijection A : Ry — R;.
From the closed graph theorem the inverse is a bounded operator B: Ry — Ry.
In this case continuity also follows from the argument above.! T 15.?00%3. e
generalized inverse of Id +A in the sense that B = B — Id safisfies (%.6). It only
remains to show that B € ¥. >°(R™). This follows from (E’J)’)Tﬁheﬁénﬁties in which

1S0

IWe need to show that ||Bf| is bounded when f € Ry and ||f|| = 1. This is just the
boundedness of u € Ry when f = (Id+A)u is bounded in R;.
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show that

(39) B=-A—-AB-1I;, -B= A+ BA+1],

— B=-A+ A*>+ ABA — I, + All,.

1.2.2000.310
All terms here are in ¥._>°(R"); for ABA this follows from Proposition L’S. L.
It remains to show the existence of the finite rank perturbation A’. This is
equivalent to the vanishing of the index, that is

(3.10) Ind(Id +A) = dim Nul(Id +4) — dim Nul(Id +4*) = 0

Indeed, let f; and g;, j = 1,..., N, be respective bases of the two finite dimensional
spaces Nul(Id +A4) and Nul(Id +A*). Then

N
(3.11) A= g5(@) f5(y)
j=1

is an isomorphism of Ny onto N; which vanishes on Rg. Thus Id +A + sA’ is the
direct sum of Id + A4 as an operator from Ry to R; and sA’ as an operator from N
to Ny, invertible when s # 0.

There is a very simple |B,T-P%f3e§),fr£?fd§ﬁuahty (%f%(ﬁg%(%use the trace func-
tional discussed in Section 3.5 below; this however is logically suspect as we use
(although not crucially) approximation by finite rank operators in the discussion of
the trace and this in turn might appear to use the present result via the discussion
of ellipticity and the harmonic oscillator. Even though this is not really the case
we give a clearly independent, but less elegant proof.

Consider the one-parameter family of operators Id +tA, A € ¥_>°(R"). We
shall see that the index, the difference in dimension between Nul(Id+tA) and
Nul(Id +tA*) is locally constant. To see this it is enough to consider a general
A near the point ¢ = 1. Consider the pieces of A with respect to the decompositions
L?(R") = N; ® R;, i = 0,1, of domain and range. Thus A is the sum of four terms
which we write as a 2 X 2 matrix

Ago Aot
A= .
|:A10 A11]

Since Id +A has only one term in such a decomposition, A in the lower right, the
solution of the equation (Id +tA)u = f can be written

(3.12) (t—1)Aoouo + (t=1)Aprur = fi, (t—1)Arouo + (A + (t = 1A )ur = f1

Since A is invertible, for ¢ — 1 small enough the second equation can be solved
uniquely for u, . Inserted into the first equation this gives

(3.13) G(tuo = fi + H(1)[1,
G(t) = (t - 1)"400 - (t - 1)21401(14/ + (t - I)All)ilAlo’
H(t)=—(t—1)Ap (A + (t—1)A;) "

2Namely the trace of a finite rank projection, such as either Iy or IIj, is its rank, hence
the dimension of the space onto which it projects. From the identity satisfied by the generalized
inverse we see that

Ind(Id +A) = Tr(Iy) — Tr(Il;) = Tr (Id +B)(Id +A) — (Id+A)(Id +B)) = Tr([B, 4]) = 0

from the basic property of the trace.



1.2.2000.330

1.2.2000.333

1.2.2000.350

1.2.2000.351

1.2.2000.352

sec:TG

TG.1

3.4. THE RESIDUAL GROUP s

The null space is therefore isomorphic to the null space of G(t) and a complement
to the range is isomorphic to a complement to the range of G(t). Since G(t) is
a finite rank operator acting from Ny to Nj the difference of these dimensions is
constant in ¢, namely equal to dim Ny — dim Ny, near t = 1 where it is defined.

This argument can be applied to tA so the index is actually constant in ¢ € [0, 1]
and since it certainly vanishes at ¢ = 0 it vanishes for all ¢. In fact, as we shall note
below, Id +tA is invertible outside a discrete set of ¢t € C. O

COROLLARY 3.1. IfId+A, A € U, *(R") is injective or surjective on L*(R™),
in particular if it is invertible as a bounded operator, then it has an inverse of the
form Id +¥._>°(R™).

1S0

COROLLARY 3.2. If A € ¥_>°(R") then as an operator on S(R™) or §'(R™),
Id +A is Fredholm in the sense that its null space is finite dimensional and its range

is closed with a finite dimensional complement.

PRrOOF. This follows from the existence of the generalized inverse of the form
Id+B, B € ¥_>*(R"). O

1S0

3.3. Exponential and logarithm

ProrosIiTION 3.3. The exponential

1 .
(3.14) exp(A) = = AT U (RY) — Td+T . (R")

— 4!

J
is a globally defined, entire, function with range containing a neighbourhood of the
identity and with inverse on such a neighbourhood given by the analytic function

—1)y
(3.15) log(Id +4) = > uAJ, Ae ¥ SR, ||Al2 <1

- 180

; J

3.4. The residual group
By definition, G._°°(R™) is the set (if you want to be concrete you can think of

iso

them as operators on L?(R™)) of invertible operators in Id +W__ > ( 1)y Howe identify
this topologically with U;_>°(R™) then, as follows from Corollary %: I, Q’isos'e; R"™) is
open. We will think of it as an infinite-dimensional manifold modeled, of course, on
the linear space ¥_>°(R™) ~ S(R?*"). Since I have no desire to get too deeply into
the general theory of such Fréchet manifolds I will keep the discussion as elementary
as possible.

The dual space of S(R?) is §’(RP). If we want to think of S(R?) as a manifold
we need to consider smooth functions and forms on it. In the finite-dimensional
case, the exterior bundles are the antisymmetric parts of the tensor powers of the
dual. Since we are in infinite dimensions the tensor power needs to be completed
and the usual choice is the ‘projective’ tensor product. In our case this is something
quite simple, namely the k-fold completed tensor power of S’(RP) is just S'(R*P).

Thus we set

(3.16) AFS(RP) = {u € S'(R*?); for any permutation

€, u(Te(1)s - - - Ten)) = sgn(e)u(@s, ... zx)}.
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In view of this it is enough for us to consider smooth functions on open sets
F c S(R?P) with values in §’(RP) for general p. Thus

(3.17) v:F — §'(RP), F C S(R") open
is continuously differentiable on F' if there exists a continuous map

v 1 F — S§’'(R™*P) and each u € F has a neighbourhood U
such that for each N 3 M with

llo(u+ ') —v(u) — v (wu)||n < Cl|3, ¥ u,utu' €U.

Then, as usual we define smoothness as infinite differentiability by iterating this
definition. The smoothness of v in this sense certainly implies that if f : X —
S(R™) is a smooth from a finite dimensional manifold then v o F' is smooth.

Thus we define the notion of a smooth form on F C S(R™), an open set, as a
smooth map

(3.18) a: F — AFS(RP) C S'(RFP).

In particular we know what smooth forms are on G,_>°(R").

The de Rham differential acts on forms as usual. If v : I — C is a function
then its differential at f € F is dv : F — S’(R") = A’S(R"), just the derivative.
As in the finite-dimensional case d extends to forms by enforcing the condition that

dv = 0 for constant forms and the distribution identity over exterior products
(3.19) d(a A B) = (da) A B+ (=1)38%a A dB.

3.5. Traces on the residual algebra

The algebras we are studying are topological algebras, so it makes sense to
consider continuous linear functionals on them. The most important of these is the
trace. To remind you what it is we consider first its properties for matrix algebras.

Let M(N;C) denote the algebra of N x N complex matrices. We can simply
define

N
(3.20) Tr: M(N;C) - C, Tr(A)=> Ay

i=1
as the sum of the diagonal entries. The fundamental property of this functional is
that

(3.21) Tr([A,B]) =0V A, B € M(N;C).

To check this it is only necessary to write down the definition of the composition
in the algebra. Thus

N
(AB)ij = > AuBy;.

k=1
It follows that
N N
Tr(AB) = Y (AB)ii= Y AyB
1=1 i,k=1

N

N
= Z BriAir = Z(BA)kk = Tr(BA)
k=1 i=1 k=1
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eq:2
which is just (bgﬂ) 0q:2
Of course any multiple of Tr has the same property (bgﬂ) but the normalization
condition

(3.22) Tr(ld) = N

eq:2 eq:3
distinguishes it from its multiples. In fact (bgﬂ) and (bQZ‘Z) together distinguish
Tr € M(N;C)’ as a point in the N? dimensional linear space which is the dual of
M(N;C).
eq:2
LEMMA 3.2. If F': M(N;C) — C is a linear functional satisfying (bSZT) and
B € M(N;C) is any matriz such that F(B) # 0 then F(A) = % Tr(A).

ProoF. Consider the basis of M (NN;C) given by the elementary matrices Ejy,
where F/;;, has jk-th entry 1 and all others zero. Thus

EjiEpg = OrpEijg-

If j # k it follows that

EjjEjx = Ejk, EjpEjj = 0.
Thus

F([Ejj, Ejk]) = F(Ejr) = 0if j # k.

On the other hand, for any ¢ and j

Ejilij = Ejj, EijEji = By
SO

F(Ej;) = F(En) Y j.

Since the Ej;, are a basis,

F(A) = F()_ AyEy;)

N
F(En) ) Aj; = F(En) Te(A).
j=1

This proves the lemma. O

For the isotropic smoothing algebra we have a similar result.

PROPOSITION 3.4. If F : U °(R") ~ S(R*) — C is a continuous linear
functional satisfying

(3.23) F([A,B]) =0V A, B € U_>(R")

180

then F is a constant multiple of the functional

(3.24) Tr(A) = Az, z)dx.
RTL
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PRrROOF. Recall that ¥ °(R") C U2 (R™) is an ideal so A € U_>°(R") and

180 1S0 1S0
B € U2 (R™) implies that AB, BA € ¥._>°(R™) and it follows that the equality

150

F(AB) = F(BA), or F([A,B]) = 0, is meaningful. To see that it holds we just
use the continuity of F. We know that if B € W2 (R™) then there is a sequence
B,, — B in the topology of ¥ (R™) for some m. Since this implies AB,, — AB,

1S0

B,A — BA in U, °(R"™) we see that
F([A,B]) = lim F([A,B,]) =0.

:5
We use this identity to prove (EQZZ) Take B = z; or Dj, j =1,...,n. Thus
for any A € U (R")

180

F([A,5]) = F([A, D;]) = 0.

Now consider F as a distribution acting on the kernel A € S(R?"). Since the kernel
of [A,z;] is A(z,y)(y; — x;) and the kernel of (A, D;) is —(Dy, + Dqy,)A(z,y) we
conclude that, as an element of &’(R?"), F satisfies
(xj - yj)F(x>y) =0, (Dzj + Dyj)F(‘%y) =0.
Tityi
2

If we make the linear change of variables to p;, = , ¢ = x; —y; and set

F(p,q) = F(x,y) these conditions become
D, F=0, pF=0,i=1,...,N.
As we know from Lemmas %S and %E'?, this implies that F' = ¢§(p) so
F(z,y) = co(z —y)

:5
as a distribution. Clearly §(z — y) gives the functional Tr defined by (ESZZI), so the
proposition is proved. (I

We still need to justify the use of the same notation, Tr, for these two func-
tionals. However, if L C S(R™) is any finite dimensional subspace we may choose
an orthonal basis o, € Lyt =1,...,,

/n pi(2)[Pdz = 0, /n oi(z)gj(z)dx =0, i # j.

Then if a;; is an [ x [ matrix,

4
A= aiypi(@)e;(y) € U (RY).
i,j=1

:5
From (Egﬂ) we see that
TT(A) = Z aij Tr(aplgéj)

Z aij /R i vi(z)p;(z)dx

Z Qi = ’Iﬁr(a)

Thus the two notions of trace coincide. ’?ema;clyagease this already follows, up to a
constant, from the uniqueness in Lemma 3.2.
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3.6. Fredholm determinant

For N x N matrices, the determinant is a multiplicative polynomial map

(3.25) det : M(N;C) — C, det(AB) = det(A)det(B), det(Id) =

It is not quite determined by these conditions, since det(A)* also satisfies then. The
fundamental property of the determinant is that it defines the group of invertible
elements

(3.26) GL(N,C) = {A € M(N;C); det(A) # 0}.
1.2.2000.406
A reminder of a direct definition is given in Problem h 7.
The Fredholm determinant is an extension of this definition to a function on

the ring Id +¥, >°(R™). This can be dﬁpez ip sevegal ways using the density of finite

rank operators, as shown in Corollary e proceed by generalizing the formula
relating the determinant to the trace. Thus, for any smooth curve with values in

GL(N;C) for any N,
d A

321 L get(A,) = det(A) (A1),
S S

. . J1.2.2000.404 o -
In particular if (£3.25% is augmented by the normalization condition

(3.28) dis det(d +s4)| _, = tr(4) ¥ A € M(N;C)
then it is determined.

A branch of the log%}%%_ggg be introduced along any curve, smoothly in the

parameter, and then (3.27) can be rewritten

(3.29) dlog det(A) = tr(A™'dA).

Here GL(N;C) is regarded as a subset of the linear space M(N;C) and dA is
the canonical identification, at the point A, of the tangent space to M (N, C) with
M(N,C) itself. This just arises from the fact that M(N,C) is a linear spage, . o
Thus dA( (A + sB)| _o = B. This allows the expression on the right in (@29%7
to be mterpreted as a smooth 1-form on the manifold GL(N;C). Note that it is
independent of the local choice of logarithm.
To define the Fredholm determinant we shall extend the 1-form

(3.30) a=Tr(A"'dA)
to the group G.°(R™) — Id+¥._>°

as before, given that Id is fixed. Thus at any point A =1d+B € Id +V;_
is the identification of the tangent space with ¥:_

(R™). Here d A has essentially the same meaning

150 (Rn)

o  (R™) using the linear structure:

d
dA(-(Id+B + sE)|,_,) = B, E € 1, °(R").

1S0

iml
Since dA takes values in ¥, >°(R™), the trace functional in (%EBU% is well deﬁEeg 000.409

-he J-form « is closed. In the finite-dimensional case this follows from (8.
For ( we can compute directly. Since d(dA) = 0, essentially by definition, and

(3.31) dA™ = —A71dAAT!

we see that

(3.32) do = —Tr(A7H(dA) AT (dA)) =
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Here we have d the trace identity, and the antisymmetry of the implicit wedge
product in (3. » 19,cQ nlcude that da = 0. For a more detailed discussion of this
point see Problem

From the fact that da = 0 we can be confident that there is, locally near any
point of G;.>°(R™), a function f such that df = «; then we will define the Fredholm
determinant by detg(A) = exp(f). To define detg, globally we need to see that this
is well defined.

LEMMA 3.3. For any smooth closed curve vy : S' —s G_>°(R™) the integral

(3.33) / a= / Vo€ 2mil.
v St

That is, o defines an integral cohomology class, [5%] € HY (G2 (R"); Z).

10

PRrROOF. This is where we use the approximability by finite rank operators.
If wx is the orthogonal projection onto the span of the eigenspaces of t g ﬁg%%(lmlc oscillator
est N eigenvalues of the harmonic oscillator then we know from Section 4.3 thaf
avEry — E in W °(R™) for any element. In fact it follows that for the smooth
curve that y(s) = Id +E(s) and En(s) = nnE(s)mny converges uniformly with all
s derivatives. Thus, for some Ny and all N > Ny, Id +Ey(s) is a smooth curve in

G >°(R™) and hence vy (s) = Idy +En(s) is a smooth curve in GL(N; C). Clearly

150

(3.34) /a—>/aasN—>oo,
N 8!

and for nIiteCé\é it follows from the identity of the trace with the matrix trace (see

Sectio 13.5)) ~ n @ is the variation of arglogdet(vyy) around the curve. This

gives (3.33). O
iml.10

Now, once we have (%mSZZ% and the connectedness of G;,;°(R™) we may define

(3:35)  detr(4) = exp( [ @), 7: 0,1] — GLFRY), 2(0) =1d, 7(1) = 4,

iml.9 !
Indeed, Lemma &TThows that this is independent of the path chosen from the
identity to A. Notice that the connectedness of G;.;°(R"™) follows from the connect-
edness of the GL(N,C) and the density argument above.
The same arguments and results apply to G_"_¢(R"™) using the fact that the

co—iso

trace functional extends continuously to W_2"_¢(R") for any € > 0.

iml.
PROPOSITION 3.5. The Fredholm determinant, defined by (FSmSS% on Gi.5° (R™)
(or G2 ~(R™) for € > 0) and to be zero on the complement in Id +W_2°(R™) (or

1S0

Id+U_2""¢(R™)) is an entire function satisfying

150

(3.36) detg,(AB) = detp,(A) det,(B), A, B € Id+¥,_°(R")
(or Id+¥_2""¢(R")), detp(Id) = 1.

180

180

PrROOF. We start with the multiplicative property of detg, on G ,5°(R™). Thus
is y1(s) is a smooth curve from Id to A; and ~2(s) is a smooth curve from Id to A
then v(s) = v1(s)y2(s) is a smooth curve from Id to A; As. Consider the differential
on this curve. Since
d(A1(s)Az(s)) _ dAi(s)
ds ds

dAQ(S)
ds

Az(s) + Ai(s)
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the 1-form becomes

dAs(s dAs(s
(3.37)  Y'(s)a(s) = Tr(AQ(s)*l%) - Tr(A2(s)*1A1(s)*1%AQ(S)).
In the second term on the right we can use the trage identity, since Tr(GA) =
Tr(AG) if G € VZ (R") and A € U_>°(R"). Thus ({3.3 7) becomes

1SO
Y (s)a(s) = via+ya.

iml.14
Inserting this into the definition of detp, gives (bﬁ{b’%when both factors are in
G2 (R™). Of course if either factor is not invertible, then so is the product and
ence both detp (AB) and at least one of detp(A) and detp(B) vanishes. Thus
(8. holds in general when dety, is extended to be zero on the non-invertible
elements.

Thus it remains to establish the smoothness. That detg,(A) is smooth in any
real parameters in which A € G _J°(R"™) depends, or indeed is holomorphic in holo-
morphic parameters, follows from the definition since a clearly depends smoothly,
or holomorphically, on parameters. In fact the same follows if holomorphy is exam-
ined as a function of £, A =Id+FE, for E € ¥__>°(R"). Thus it is only smoothness
across the non-invertibles that is at issue. To prove this we use the multiplicativity
just established.

If A=1d+F is not jpvertible, B € U, (R") then it has a generalized inverse
Id +F’ as in Proposition E.S. Since A has index zero, we may actually replace E’ by
E'+E"”, where E” is an invertible linear map from the orthocomplement of the range
of A to its null space. Then Id +E'+E"” € G..>°(R") and (Id+E'+E")A = 1d —Il,.
To prove the smoothness of detg, on a neighbourhood of A it is enough to prove the
smoothness on a neighbourhood of Id —IIj since Id +FE’+ E” maps a neighbourhood
of the first to a neighbourhood of the second and detg, is multiplicative. Thus
consider detg, on a set Id —IIp + E where F is near 0 in ¥._>°(R"), in particular

we may assume that Id+E € G_>°(R™). Thus

detpy (I +E — TIy) = det(Id +E) det(Id —TIy + (G — Id)TI)

were G = (Id +E)~! depends holomorphically on E. Thus it suffices to prove the
smoothness of detp, (Id —IIp + HIIy) where H € ¥; >°(R")

Consider the deformation Hs = ITo HIIy+ s(Id —IIy) HIIp, s € [0,1]. If Id =TTy +
H, is invertible for one value of s it is invertible for all, since its range is always
the range of Id —IIj plus the range of IIo HIIy. It follows that detg (Id —IIy + Hy)
is smooth in s; in fact it is constant. If the family is not invertible this follows

immediately and if it is invertible then

d dety, (Id —TIo + H,)
ds
= dety, (Id —IIo + H,) Tr ((Id — Iy + H,) "' (Id —Pig) HIlp)) = 0

since the argument of the trace is finite rank and off-diagonal with respect to the
decomposition by Ilj.

Thus finally it is enough to consider the smoothness of detg, (Id —IIy + 1o HIlp)
as a function of H € ¥ (R™). Since this is just det(IIpHIIy), interpreted as a
finite rank map on the range of Iy the result follows from the finite dimensional

case. O
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3.7. Fredholm alternative

Since we have shown that detg, : Id +¥_°(R™) — C is an entire function,
we see that G_>°(R™) is the complement of a (singular) holomorphic hypersurface,
namely the surface {Id +F;detg,(Id +F) = 0}. This has the following consequence,
which is sometimes call the ‘Fredholm alternative’ and also part of ‘analytic Fred-

holm theory’.

LEMMA 3.4. If Q C C is an open, connected set and A : Q — W _*(R"™) is a
holomorphic function then either Id +A(z) is invertible on all but a discrete subset
of Q and (Id+A(z)) is meromorphic on Q with all residues of finite rank, or else

it is invertible at no point of Q).

PrOOF. Of course the point here is that detp (Id +A(z)) is a holomorphic
function on Q. Thus, either detg(A(2)) = 0 is a discrete set, D C  or else
detp (Id +A(2)) = 0 on ; this uses the connectedness of €. Since this corresponds
exactly to the invertibility of Id +A(z) the main part of the lemma is proved. It
remains only to show that, in the former case, (Id +A(z))~! is meromorphic. Thus
consider a point p € D. Thus the claim is that near p

150

N
(3.38)  (Id+A(2)) "' =1d+E(2) + Y 27 Ej, E; € U .2°(R") of finite rank
j=1

and where E(z) is locally holomorphic with values in ¥:_ >°(R").
If N is sufficiently large and Il is the projection onto the first IV eigenspaces
of the harmonic oscillator then B(z) = Id+FE(z) — [Iy E(z)y is invertible near p

with the inverse being of the form Id +F'(z) with F(z) locally holomorphic. Now
(Id+F(2))(Id+E(z)) = Id +(Id +F(2)) Iy E(2)In
= (Id —HN) + HNM(Z)HN + (Id —HN)M/(Z)HN.

It follows that this is invertible if and only if M (z) is invertible as a matrix on
the range of IIy. Since it must be invertible near, but not at, p, its inverse is a
meromorphic matrix K (z). It follows that the inverse of the product above can be
written

(3.39) Id-Ty + OyK )y — (Id —TIy)M'(2) N K (2)Ly.
This is meromorphic and has finite rank residues, so it follows that the same is true
of A(z)~% O

3.8. Manifolds and functions

Here is a version of the standard definition of a manifold (with corners). First
let M be a Hausdorff topological space. That is, we already have the ‘topology’ of
open subsets of M, closed under arbitrary intersections and finite unions. We then
know which real-functions on M are continuous — namely those f : M — R such
that f~1(a,b) C M is open for every a < b. The Hausdorff condition is that these
continuous functions separate points, so if p; # po are two points in M then there
is a continuous function f on M such that f(p1) # f(p2). We also assume that M
is second countable, that the topology has a countable basis — there is a countable
collection of open subsets such that every open subset is a union of these particular
open subsets.
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A C®° structure on M can be taken to be a subset C>°(M) C CY(M) of the space
of continuous functions which has the following properties. First, it is a subalgebra.
Second it generates (product) coordinate systems. That is there is a countable open
cover of M by subsets Uj; for each of which there are n elements f; ; € C>(M) such
that F; = (f1,1,--., fi,n) restricts to U; to give a topological isomorphism

(3.40) El, Ui —[0,)" x (-1,1)" " cR"
and such that if g € C2°(R™) has support in (—1,1)" then

, {Fi*g on U;

3.41 = € C™(M),
(3.41) I=10 e, SCTD

and that these functions form an ideal in C°°(M). Thirdly we require that C*° (M)
is maximal in the sense that if g : M —— R and for each i, g‘Ui = Fh; for some
h; € C*((—1)") then g € C*>°(M).

In fact T would call a manifold as defined in the preceeding paragraph a t-
manifold. It has various problems. One is that I have not insisted that the local
dimension n is not fixed. This is not a serious problem, but it means that M
may be up to even a countable union of compoents, each of which is a connected
manifold, in the same sense, and hence has fixed dimension. Often this is required
anyway, at at least it is how most people think — that a manifold is connected.
Apart from that there are more serious problems with the boundary when k&, which
is the local boundary codimension, takes the value 2 or greater. This is not really
imortant here but I usually insist on an additional condition, that the boundary
faces be embedded. This is actually a combinatorial condition and means that
each boundary hypersurface, defined as the closure of a component of the set of
boundary points of ‘codimension one’ (meaning the union of the the inverse images
of the subsets, in the coordinate patches, of [0,1)% x (—1,1)"~* where exactly one
of the first k variables vanishes), is embedded. One way of thinking about this is
that some neighbourhood of each point in the closure of such a boundary point
meets the component of the codimension one boundary in a connected set.

A map between manifolds, f : M — N is smooth if and only if the composite
uo f € C®(M) for every y € C>°(N). It is usual to write this as a pull-back map

(3.42) friC®(N) — C®(M), ffu=uof.

The discussion above is not a good way to learn about manifolds — I am as-
suming you will look things up somewhere if you don’t know about them. The only
real virtue of this definition is that it is short. 3

3.9. Tangent and cotangent bundles

From one manifold we can make others. The most basic examples of this is
the passage to a boundary face of a manifold with corners and taking products
of manifolds. A more sophisticated example, blow up, is discussed briefly below
and we have already described to compactification of Euclidean space to a ball.
However the most frequently encountered ‘derived’ manifold below is the cotangent

3In case you, gentle reader, really want to learn the elementary theory of manifolds for yourself
and are unable to pick up an appropriate book I have added (or will add) lots of ‘problems’ to
guide, or remind, you a little.
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bundle. Once again the approach I give here is not really introductory, its main
virtue is brevity.

On Euclidean space of a smooth function near a point, z, can always be de-
composed in terms of coordinate functions

(3.43) f2)=FE)+ D ()= — %)
j=1

where the coeflicient functions f; are smooth near z. The f; are not determined
by this Taylor expansion but their values at z, namely the derivatives of f at Z,
are determined. We can capture these derivatives, collectively, as elements of the
vector space

(3.44)

J(2)/T (%)% T(2) ={f €C*R"); f(2) =0}, T(2)* ={)_, figi fir 9 € T(D)}.
finite

Thus f(z) — f(2) € J(2) and J(2)/J(Z)? is an n-dimensional vector space. In fact
it is only necessary for f to be defined and smooth in some neighbourhood of z for
this to be well defined since if ¢ is a cutoff, supported sufficiently close to z and
equal to 1 in some neighbourhood, then the class of f¢ — f(z) in J(2)/J(2)? is
independent of the choice of ¢. Of course this is the deRham differential. Moreover
the discussion extends immediately to smooth manifold and defines

(3.45) df (p) € T;M = T (p)/ T (p)?,

the cotangent space at each point p € M. This is a vector space of dimension n
which is spanned by the differentials of any coordinate system in a neighbourhood
of p.

The union of the cotangent fibres has a natural structure as a manifold

(3.46) T°M = | T;M = M.
peEM

Namely a coordinate system on an open set U C M gives a global coordinate system
on the open subset 7= 1(U) identifying it (by definition smoothly) with U x R™.

The tangent bundle can be defined as the dual of T*M or directly in terms of
vector fields; taking the first approach

(3.47) T,M = {v:TyM — R, linear}, TM = | J T,M — M.
peEM

Coordinate systems on M again give coordinate systems on T'M.

3.10. Integration and densities

There is no natural notion equivalent to the Lebesgue integral on a manifold,
the problem being that the ‘measure’ part is changes by a positive smooth multi-
ple under coordinate transformations, namely by the Jacobian determinant. It is
therefore necessary either to make a choice of ‘density’ or else to include the density
in the integrand, and integrate only densities. The latter approach is taken here
and this requires the introduction of the density bundle, which is a simple example
of a trivial line bundle which is not canonically trivial.
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PROBLEM 3.1. Show that the smooth functions on R™ \ {0} which are ‘posi-
tively’ homogeneous of some complex degree s, meaning the satify
7.2.2008.487 | (3.48) f(rz) =r°f(2), Yr >0, ze R"\ {0}

(where r? is the standard branch) is a trivial, but not canonically trivial, line bundle
over S"~! except in the case s = 0 when it is canonically trivial.

At each point of a manifold consider the 1-dimensional, real, vector space of
totally antisymmetric absolutely homogeneous n-multilinear functions
7.2.2008.488 | (3.49)
QM ={v: T,Mx---xTyM — R, v(ve(1), ..., Ven)) = sgnev(vy,...,vn), v(tvi,...,v,) = [tv(vy,...,vn), t €

where v; € T,M, i =1,...,n are arbitrary and e is any permutation. It is straight-
forward to check that this is a linear space (it seems a little strange if view of the
absolute value of ¢ in the last identity but it is true). If z; are local coordinates in
a neighbourhood of p then the differentials dz; define a density

(3.50) v, vn) = |detdzi(v;)].

This is the local coordinate representative of Lebesgue measure at the point.
As for the tangent bundle above, the union of the fibres €2, form a manifold,

7.2.2008.490| (3.51) oM = ) QM " M.
pEM

A section of QM, meaning a smooth map v : M — QM such that 7v = Idy,, is
by definition a smooth density on M. The linear space of such sections is denoted
C*>®(M; Q) and the behaviour of integrals under coordinate transformation reduces
directly to the existence of a well defined integral:

7.2.2008.491 | (3.52) /:C”(M;Q)—HR.
M

Checking that this is well-defined reduces to the usual change-of-variable formula
fo Lebesgue (or Riemann) integral in local coordinates.

3.11. Smoothing operators

Now, we come to the point of interest in this chapter. If M is a compact mani-
fold then the algebra of smoothing operators on M behaves in very much the same
was as the Schwartz algebra on R™. In fact it is isomorphic to it as an algebra (if the
dimension of M is positive) although there is no natural isomorphism. As we shall
see later, the smoothing operators form the residual part of the pseudodifferential
algebra on a manifold and are important for that reason. However they also play a
crucial role in the index theorem as presented here.

By definition we can take a smoothing operator to be an integral operator with
smooth kernel:-

7.2.2008.493| (3.53) A:C®(M) — C*(M), Au(z) = / Az, 2)u(2), A€ C®(M?;m50).
M

Here 7 :g M? > (2,2') — 2’ € M is the ‘right’ projection. Thus A, the kernel
(where we use the same letter for kernel and operator because they determine each
other and so to use a separate notation is rather wasteful) is just a smooth function
on M? which ‘carries along with it’ a smooth denisty on the right factor of M. If
one prefers to do so, one can simply choose a positive denisty 0 < v € C*(M;)
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and then the kernel becomes A = A'v(z") where A’ € C°°(M?). I prefer the more
invariant approach of hiding the density in the kernel.

7.2.2008.494 PROPOSITION 3.6. The smoothing operators on a compact manifold form an
algebra, denoted ¥—°°(M), under operator composition.

PROOF. Indeed if A and B are smoothing operators on M with kernels having
the same names then, by Fubini’s theorem,
7.2.2008.495 | (3.54)

(AB)u(x) = A(Bu)(z) = /M A(z,2")(Bu)(2") = /M A(z,2") /M B(2", 2 Yu(z")M so

(AB)(z,7') = / A(z,2"YB(z",2").
M
Thus this formula defines an associative algebra structure (because composition of
operators is associative) on W~°(M) = C®(M?;75) as claimed. O

A moments thought will show that this argument, and the composition law ,
carry over perfectly well to any compact manifold with corners. This more general

case is interesting in part because of the subalgebras (but not ideals) that then arise
in U—°(M).

7.2.2008.496 PROPOSITION 3.7. If M is a compact manifold with corners and H C M is a

boundary face then the subspace of W~°(M) consisting of kernels which vanish to
order k at H x M and M x H is a subalgebra.

The case of k = 0o and H = JB" for a ball is of particular interest since if the ball
is interpreted as the radial compactification R” of R™, then

7.2.2008.497 | (3.55) V_®(R") ={A € U *([R"); A=0 at (OR" x R*) U (R™ x dR").}

Here = stands for equality in Taylor series.

7.2.2008.498 PROBLEM 3.2. Prove the equality in (%e use the notation
C®(M) = {ueC®(M);u=0at dIM} C C®°(M)

for the space of smooth functions on a manifold with corpers Jghich vanish to infinite
order at each boundary point. Then the identity (3. ecomes

C®(R™ x R") = S(R" x R") = S(R?")
under radial compactification. First check the single space version
7.2.2008.501] (3.56) C®(R") = S(R™)
and then generalize (or use a clever argument) to pass to (%%jw

We remark on some related simple properties of smoothing operators. If U C M
is a coordinate neighbourhood, with coordinate map F : U — U’ € R™ and ),
' € C°°(M) has supp(v) Usupp(¢)’) C U then
Ayt SRY) 3 fre—r (1" (YAF(FH)"Y' - f))) € SR")

is an element of ¥;_°(R"™).

7.2.2008.505| (3.57)

Indeed, the kernel of Ay  is
7.2.2008.506 | (3.58)
(P () ((F) < (F) A) (2, ) (F~) Y () = Bld2'|, B € CZ(R™) C S(R™).
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kokskokok

Extension of the results above for the residual isotropic algebra on Euclidean

space to smoothing operators on compact manifolds.
*oHk kK

3.12. Semiclassical limit algebra

Now we next want fo extend the discussion of semiclassical smoothing operators
on R™, in §mothing operators on compact manifolds; later we will extend
this to pseudodifferential operators. Initially at least let M be a compact manifold
without boundary. Let A C M? be the diagonal,

(3.59) A ={(z,2) € M* z € M}.
DEFINITION 3.1. An element of W (M), the space of semiclassical families

of smoothing operators on a compact manifold (without boundary) M, is a smooth
family of smoothing operators A. € C>((0,1] x M?;7;8) such that as € | 0 the
kernel satisfies the two conditions:
Az 2') € C%([0,1) x M% Q) if 6 € C®(M?), supp(6) N A = 0.
For a covering of M by coordinate systems F; : U; — UJ’-
and any elements ;,4; € C*°(M), supp(y) Usupp(y;) C Uy,
(A5)¢j7w},pj S \Ij;w(Rn)

This is just supposed to say that A, € W °°(M) reduces to a semiclassical family on
R™ in local coordinates. We do not really need quite as much as in the second part
of the defintion, which involves all pairs of smooth functions v;, 7,[1} with compact
support in a covering by coordinate patches. There is an equivalent and more
geometric characterizations of the kernels of these semiclassical families below.

For the moment we note the following more useful description of the local
behaviour of these operators.

PROPOSITION 3.8. On a compact manifold M,
(3.61) {A€C™([0,1)e x M%7Q); A= 0 at {e = 0}} C W;%(M).

If F: U — U € R" is a coordinate patch on M and A € U *(R") has kernel
with support in [0,1]. x K x K, K C U’ compact then

Ap € W (M) where
562

(Ap)e : C®°(M) — C®(M), (Apu) = F*(A(F~1)*u).
Moreover any element of W °°(M) is the sum of a family of the first IBE BB G
S

finite sum, over any covering by coordinate patches, of operators as in

PROOF. For the moment, see %h@opzr&%‘% p%beo;pstéresponding theorem for pseu-
and b.

dodifferential operators, Lemmas 6. . e present result is is a bit easier;
I will move the proof here and change it a bit. [

(3.0

We can capture the ‘semiclassical symbol’ by oscillatory testing.

LEMMA 3.5. If Ac € W °°(M) then there exists a function oq(Ac) € S(T*M)
such that whenever f: M — R and ¢ € C*°(M) are such that df # 0 on supp(¢))

then

(363) A/ =e /b be ™ ([0,1] x M), b _, = oa(A) o df.
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I need to define S(T* M) first!

PROOF. Do the local, Euclidean, and then patch. ([
PROPOSITIQN, 3.9.  The semiclassical symbol of an element of V4> (M) is de-
termined by (3:63' ; and gives a short exact, multiplicative, sequence
(3.64) 0——eV *(M)——V_ " (M)——S(T"M)——0

Later, after discussing pseudodifferential operators on manifolds, we will also
discuss semiclassical families of pseudodifferential operators, generalizing the discus-
sion here. However there is one case which is very elementary. Namely the identity
operator can be considered as a semiclassical family, even though it is independent
of the parameter €. By fiat its semiclassical symbol is declared to be the constant
function 1 on the cotangent bundle. This is consistent with the multiplicativity of
the semiclassical symbol, since of course for any family A. € ¥ (M),

(3.65) os1(Ae) = og(IdoA,) = 1 x g (A).
We can also immediately allow the algebra W_°° (M) to be ‘valued in matrices’,
just by taking matrices of operators; we will denote this algebra as ¥_ > (M; CcM)

since the act on N-vectors of smooth functions on M. The symbol is then also
valued in matrices.

PRrROPOSITION 3.10. Ifa € S(T*M; M(N,C)) is such that Idyxn —a is invert-
ible at every point of T*M then any semiclassical family Ac € V_°°(M; CN) with
os1(Ae) = a is such that Id —A¢ is invertible for small € > 0 with inverse of the
form Id — B, for some B, € W *°(M;CN).

3.13. Submanifolds and blow up

A brief description of blow up of a submanifold, enough to introduce the semi-
classical resolution of [0,1] x M? in the next section.

3.14. Resolution of semiclassical kernels
3.15. Quantization of projections

ProrosITION 3.11. Ifa € S(T*M; M(N,C)) is such that for a constant projec-
tion mg € M(N,C), i.e. such that 73 = 7o, 7o +a is a smooth family of projections,
(mo +a)? = mo + a then there exists a semiclassical family A € W;°°(M;CN) such
that 04 (Ae) = a and such that

(3.66) (mo + Ac)? = mo + A
is a semiclassical family of projections.
PROOF. Just ‘quantizing’ a by choosing a semiclassical family A, € W_ > (M;C")
with og(AL) = a ensures that
(3.67) (mo + AL)? — (1, + AL) = eEX, ED € w1 (M;CV).

We proceed to show, inductively, that there is a series of ‘correction terms’ AU)
W %°(M;CN) such that for all [,

(3.68)
l

l
(mo+ AL+ ) AW — (m, + ALY b AW) = T ED ] BD e wi(M;CN).
k=1 k=1
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!
Composing on the left and on the right with =, + A, > #A®) and using the
k=1
associativity of the product it follows that

(3.69) Toos (B = o (B D) mg.
This in turn means that if A € U (M;CN) satisfies
(3.70) oa(A) = (219 — Id)og(EITY)

. . 10.2.2008.519 ‘
then the next identity, (&3.68), for [ + 1, holds.

Now, if A” is an asymptotic sum of the series then
(3.71) (mo+ A”)2 —mg + A € {A € C>([0,1]; U —°°(M;CN); A= 0 at {e = 0}}.

To correct this family of ‘projections to infinite order’ P! = my + A to a true
projection we may use the holomorphic calculus of smoothing operators. Thus, the

family

(3.72) Q(s) =sHId—P)+ (s —1)"'P', s C\{0,1}
satisfies the ‘resolvent identity’ to infinite order in € :
(3.73)

(sId=P)Q(s) = (s(Id—P') — (1 = 5)P") (Q(s) =
(Id =P+ (P + 5 Ys—1)(Id=P")P' + (s — 1) 'sP'(Id —P') = Id +R(s)

where R.(s) is a family of smoothing operators vanishing to infinite order at € = 0
and depending holomorphically on s € C\ {0,1}. Thus in any region |s| > ,
|1 — s| > 4, that is away from s = 0 and s = 1, R(s) has uniformly small norm as
€ — 0. It follows that (Id +R(s)) ™! = Id +M (s) exists in this region, for ¢ > 0 small,
and M (s) is a holomorphic family of smoothing operators vanishing to infinite order
at e = 0.

Thus the resolvent exists in this region and

(3.74) (sId—P")~' = Q(s) + M'(s)

where M’(s) is another holomorphic family of smoothing operators vanishing to
infinite order at € = 0.
To ‘correct’ P’ to a family of projections we simply define

1
_27TZ ‘1_5‘:1

2

. 20.2.2008.506 .2 2008.523 .
From the decomposition (3. an . we see immediately that

1
(3.76) P=P 4+ M, M= *f{ M(s)ds € U5 (M).
[1—s|=

211 1

(3.75) (s — P'(s)) " ds.

2

) 20.2.2008.527 L . .
Moreover it follows from (k3.75) that P is a projection. First, using Cauchy’s the-
orem, we can shift the contour away from s = 1 a little, to |s — 1] = v for some
~v > 0, small. Then

1 1
(3.77) PZ=

= — P tfp/t 715*P’$ 71d$dt,
ot fay 2w gy, )5 )

The resolvent identity
(378) (t—P't) ' (s—P(s) T =(s—t) ((t—=P'(t)" —(s—P'(s)7)
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allows the integral to be split into two. In the first double integral there are no
singularities in s within |1 — s| < 1 since |1 —¢| = 1 + ~, so by Cauchy’s theorem
this evaluates to zero. In the remaining term the ¢ integral can be evaluated by
residues, with the only singular point being at ¢t = s so

1 1
P2:—7, P (s_t)_l(s_P/(s))_ldsdt
(3.79) 270 Jj1—sj=4 270 Jjit=1 4y
1
=5 s— P'(s) lds = P.
27 |1_s|:%( (s))

Thus P is a semiclassical quantization of the projection-valued symbol to a family
of projections. O

We will show below that this same argument works in other contexts.
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CHAPTER 4

Isotropic calculus

The algebra of ‘isotropic’ pseudodifferential operators on R™ has global proper-
ties very similar to the algebra of pseudodifferential operators on a compact man-
ifold discussed below. There are several reasons for the extensive discussion here.
First it is pretty! Second it is useful in the sense that it embeds the harmonic
oscillator in a broader context. Thirdly, many of the global constructions here
carry over almost unchanged to the case of compact manifolds and it may help to
see them in a somewhat simpler setting. Finally, it is useful in a geometric and
topological sense as may become clearer below in the discussion of K-theory.

4.1. Isotropic operators

As noted in the discussion in Chapter E,‘jf%e other sensible choices of the
class of amplitudes which can be admitted in the definition of a space of pseudo-
differential operators rather than the basic case of S™(R?*";R") discussed there.
One of the smallest such choices is the class which is completely symmetric in the
variables x and £ and consists of the symbols on R?". Thus, a € S™ (Rinf) satisfies
the estimates

(4.1) D Da(x,€)| < Cap(1+ || + [y 1*1-17

for all multiindices a and . Recall that there is a subspace of ‘classical’ or poly-
homogeneous symbols

(4.2) (R € SR

defined by the condition that its elements are asymptotic sums of terms a; €
S™(R?") with a; positively homogeneous of degree m — j in |(z,£)| > 1.
If m <0, it follows that a € ST (RZ; R?); if m > 0 this is not true, however,

LEMMA 4.1. For any p and n

N (1+[2?)/2Sm-"(RE;RE) m <0
(43) Sm(Rern) C 0>r>m
(1+ |z?)™/2 S5 (RE; RE), m > 0.
1.2.2000.304
Proor. This follows from (m inequalities

L+ 2] + €] < (1 + [2)(1 + [€]),
L+ ||+ 1€l > A+ =)' (1+ )" 0<t < 1.

In view of these estimates the following definition makes sense.

93
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1.2.2000.313 DEFINITION 4.1. For any m € R we define

1.2.2000.314| (4.4) Uit (R™) C U2 o (R™) C ()™ P2 (R™)

as the subspaces determined by
A€ UL (R") <= oL(A) € i (R*™)

AeTm_. (R") < o7 (A) € S™(R™).

oco—iso

1.2.2000.315| (4.5)

Note however that the notation has been switched here. The space with the absence

of any subscript corresponds to classical s Hib%%b vggfreas the ‘oo — iso’ subscript
refers to the symbols with ‘bounds’ a: ci]%u(c%:ll .e.an
As in the discussion in Chapter 2 the ‘residual’ algebra consists just of the

intersection

iso co—iso

26.10.2007.202| (4.6) L (RY) = U= (R™) = [ W2, (R™).

From the discussion above, an element of either space on the left has left-reduced

symbol in ST (R") = S(R?") so its kernel is also in S(R?") and conversely. This . cidual

justifies the apparently different sense in which this notation is ecd Ciiligggmpter ;
As in the discussion of the traditional algebra in Chapter g we show the -

invariance and composition properties of these spaces of operators by proving an
appropriate ‘reduction’ theorem. However there is a small difficulty here. Namely it
might be supposed that it is enough to analyse I(a) for a € S™(R®"). This however
is not the case. Indeed the definition above is in terms of left-reduced symbols.
If a € S™(R?") is regarded as a function on R3" which is independent of one of
the variables then it is in general not an element of S™(R3") (it is an element of
SZ(Ry; R®™) since it is constant in the first variables). For this reason we need to
consider some more ‘hybrid’ estimates.
Consider a subdivision of R3" into two closed regions:

Ri(e) = {(z,4,€) € R*; |z — y| < e(1+ [a)* + |yl + [¢2)}
Ro(e) = {(2,4,6) € R*™; |z — y| > e(1 + || + [y> + ¢*)2}.

If a € C>°(R3") consider the estimates

(4.7)

((,y,)m1o1PI=RTin Ra(g)
(@, )+ (g)m =" in Ry(5)-

The choice ¢ = % here is rather arbitrary. However if € is decreased, but kept
positive the same estimates continue to hold for the new subdivision, since the
estimates in Ry are stronger than those in Ry (which is increasing at the expense
of R; as e decreases). Notice too that these estimates do in fact imply that a €
{(x)™+ (y)m+ ST (R2™; R™) and hence they do define operators in the weighted spaces
— in princip 8.%&7&2 P (R™) although actually (z)™+WZL (R™) - that were analysed
in Chapter [2.

3 , , 1.2.2000.317
1.2.2000.318 PROPOSITION 4.1. If,a € C™(R™™) satisfies the estimates (1. en A =

I(a) e U7 _. (R™) and (m) holds for o (A).

oco—iso

00|~ ool

1.2.2000.317 | (4.8) |DS D) Dla(x,y,&)| < Capy {

PROOF. We separate a into two pieces. Choose x € C°(R) with 0 < x < 1,
with support in [fé, %] and with y = 1 on [fé, %] Then consider the cutoff function
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on R3"

(4.9) U(z,y,8) = X <<(|§;y§)>> :

Clearly, v has support in Rl(%) and 1 € S% (R3"). It follows then that a’ = va €
Sm (R3"). On the other hand, a” = (1 — t)a has support in Ra(5). In this region

|z — yl, ((z,y)) and {(x,y,§)) are bounded by constant multiples of each other.
Thus a” satisfies the estimates

(4.10) [DYDYDIa" (2,y,8)| < Capyla —y[m+ (™1

< Gl (@, )™ (€1, supp(a”) € Ral)

First we check that I(a”) € S(R*"). On R(§) it is certainly the case that
z —y| > 1{((x,y)) and by integration by parts
9

|z — y|* DDEI(d") = I(|D¢|** DX DSa").

For all sufficiently large p it follows from (Eﬁ%f)%_otg%t@tghis is the product of {(z,y))™+
and a bounded continuous function. Thus, I(a”) € S(R?*") is the kernel of an
operator in ¥, >°(R™).

So it remains only to show that A" = I(a’) € ¥ _; (R™). Certainly this is
an element of (z)™+WZ(R"). The left-reduced symbol of A has an asymptotic
expansion, as £ — 0o, given by the usual formula, namely (bss) Each of the terms

in this expansion
ilal
i
ar(A’) ~ Z o Dy Dealz, ,€)
o
is in the space Sm’2|"“(R2”). Thus we can actually choose an asymptotic sum in
the stronger sense that

ilal
b/ cgm R2n —p _ ¢ o m—2N (p2n .
(R*™), by =b' — > —rDiDga(x,€) € (R*™)V N
la|<N
4.8 4.6 4.7
Consider the remainder term in (b?[?), given by (b7[4) and (b7[5) Integrating by
parts in £ to remove the factors of (z — y)® the remainder, Ry, can be written as
a pseudodifferential operator with amplitude

ilal
i
(z,y,& Z / dt(1 — )N (DgDga)((1 — t)z + ty, £).
loe|=N
1.2.2000.317
This satisfies the estimates (&I.S) with m replaced by m — 2N. Indeed from the
symbol estimates on a’ the integrand satisfies the bounds

|DED)DIDEDYA/ (1 — t)x + ty, &)
< C(+ |(z + tx—y)| + [g)ym 2N 1AI=hI=lol,

In Ri(g), lo —yl < §{(x,9.9) so |z +t(x — y)| + €] = 3((2,y,€)) and these
estimates imply the Eu],é] EX&}bé)l estimates there. On Rs we 1mmed1ately get the

weaker estimates in (

Thus, for large N, the remainder term gives an operator in <x>7*N\I/§o_ (R™).
The difference between A’ and the operator B’ € ¥ . (R"™), which is Ry plus an

(R") Thus A € ¥ (R™). O

operator in U ~2V(R™) for any N is therefore in W m

co—iso 150
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This is a perfectly adequate replacement in this context for our previous reduc-
tion theorem, so now we can show the basic result.

THEOREM 4.1. The spaces W7 _;  (R™) (resp. WL, (R™)) of isotropic (resp., .o . ¢
polyhomogeneous isotropic) pseudodifferential operators on R™, defined by (&5)7
form an order-filtered x-algebra with residual space U >°(R™) = S(RQ") (resp. the
same) as spaces of kernels.

180

PRrROOF. The condition that a continuous linear operator A on S(R™) be an
element of ¥ . (R™) is that it be an element of (1 + |z|?)™/2¥™ (R") if m > 0

co—iso

or W2 (R™) if m < 0 with left-reduced symbol an element of S™(R3") :

(4.11) 1 SR «— U (R™).
1.2.2000.317
Thus A* has right-reduced symbol in S7( lﬁzng Shdys,gatisties the estimates (h 8) as
shows

a function of z,y and £. Thus Proposition at A* € U7 _.  (R™), since
its left-reduced symbol is in S™(R?"), proving the *-invariance. Moreover it also
follows that any B € \I/OO 1SO( ") has right-reduced symbol in $™ (R2"). Thus if
Aecwm . (R") and B € U™, (R") then using this result to right-reduce B we

see that the comp051te operator has kernel I(ar(z,£)br(y,€)) where aj, € ST (R?")

P(L %og §1 RQ” Now it again follows that this product §a51§]‘388 El}g estimates

of order m + m’. Hence, again applying Proposition #.1, we conclude that

A oBe \IIZZ)J“EO(R") This proves the theorem for W7 _ lbo(]R”)
The proof for the polyhomogeneous space U (R™) follows immediately, since
the symbol expansions all preserve polyhomogeneity. (Il

One further property of the isotropic calculus that distinguishes it strongly
from the traditional calculus is that it is invariant under Fourier transformation.

PROPOSITION 4.2. If A € UL (R") (resp. UL, (R™)) then Aewm . (R™)

(resp. W (R™)) where Au = At with 4 being the Fourier transform of u € S(R™).

o . . 21.2.1998.108
The proof of this is outlined in Problem b.Z().
Also note that asymptotic completeness then carries over from the symbol

spaces. If B; € U777 (R") then there exists
N-1
[26.10.2007.205] (4.12) B e WX ,(R"), B~ Bjthatis B— Y B; € VI I (R")V N
J 7=0
’ S.Fredholm.property ‘ 4.2. Fredholm property

An element A € U7 _, (R™) is said to be elliptic (of order m in the isotropic

calculus) if its left-reduced symbol is elliptic in S™(R?").

THEOREM 4.2. Each elliptic element A € U7 _, (R™) has a two-sided para-

metrizc B € O_ ™. (R™) in the sense that

o0 —1S0

(4.13) AoB—1d, BoA—1Id € U (R

which is unique up to an element of . >°(R™) and it follows that any u € S’'(R™)
satisfying Au € S(R™) is an element of S(R”), if A e U (R™) is elliptic then its
parametriz is in U (R™).

lSO(

1S0
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21.3.1998.169

21.3.1998.170

1.2.2000.331

1.2.2000.332
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ProoF. This is just the inductive argument used to prove Lemma B%l Never-
theless we repeat it here.

The ellipticity of 0,,(A) means that it has a two-sided inverse b € S~™(R?*")
modulo S~°(R?") = S(R?"). This in turn means that the equation o(A)c = d
always has a solution ¢ € S—™m+m'~[](R2n) for given d € S ~[1(R2") namely
¢ = bd. This in turn means that given C; € ¥/ R™) there always exists B; €

o0 — ISO(

@I-™ (R™) such that AB; — C; € W/7 llbo( ™). Choosing By € ¥ ™, (R") to
have o_,,(By) = b we can define C; = Id —ABy € ¥, (R"). Then, proceeding

inductively we may assume that B; for j < [ have been chosen such that A(By +
4 By)—ld=-C e U 1SO(}R”) Then using the solvability we may choose
By so that AB; — C; = —Cj41 € \IIOo lbO(R") which completes the induction, since
A(By+---+B;)—1Id = AB; — C; = —C)41. Finally by the asymptotic completeness
we may choose B ~ By + B1 + ... which is a right parametrix.
The existence of a left parametrix follows from the ellipticity of A* and the
argument showing that s%lrlight parametrix is a two-sided parametrix is essentially
the same as in Lemma h O

Combining the earlier symbolic discussion and these analytic results we can see
that elliptic operators are Fredholm as an operator

(4.14) A: SR™) — S(R™) or A: S'(R") — S'(R™).

ProposITION 4.3. If A € U
verse B € W_™. (R™) satisfying

co—iso

7 _so(R™) s elliptic then it has a generalized in-

(4.15) AB—1d =1I;, BA—1d =1I, € U >(R")

where I1; and Iy are the finite rank orthogonal (in L?>(R™)) projections onto the
null spaces of A* and A.

PROOF As discussed above, A has a parametrix B’ € ¥
°°(R™). Thus

"(R™) modulo

1S0

ISO

AB' =1d—Eg, Eg € U (R"),
B'A=1d—Ey, Ej, € U_°(R").

Using Proposition &%ﬁ%%%)ﬂ%gs that the null space of A is contained in the null space
of B’A = Id —Fy, hence is finite dimensional. Similarly, the range of A contains
the range of AB’ = Id —ER so is closed with a finite codimensional complement.
Defining B as the linear map which vanishes gn Nyl(4~), and inverts A on Ran(4)
with values in Ran(A*) = Nul(A4)~* gives (&I I5). Fu fﬁermore these identities show
that B € ¥_ ™. (R"™) since applying B’ gives

0o0—1is0

180

(4.16) B—E,B=B'AB=B - B'll}, B— BER = BAB'= B - 1[)B' =
B=B —-B I + ELB/ + ELBER — ELH()BI ey " (Rn>

co—iso

where we use the fact that EBE’ € U_°°(R") for any continuous linear operator

180
B on S(R™) and elements E € U >°(R™). O

180
COROLLARY 4.1. If A€ ¥
v T(R™).

150

™ (R™) is elliptic then its generalized inverse lies in
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S.Harmonic.oscillator‘ 4.3. The harmonic oscillator

The harmonic oscillator is the differential operator on R™

H=> (Dj+2})=A+ x|,
j=1

This is an elliptic element of ¥2_(R™). The main immediate interest is in the spec-
tral decomposition of H. The ellipticity of H — A, A € C, shows that

eq:HO.1| (4.17) (H-XMNu=0, ue SR") = ue SR").

Since H is (formally) self-adjoint, i.e., H* = H, there are no non-trivial tempered
solutions of (H — A)u =0, A € R. Indeed if (H — \)u =0,

eq:HO.2| (4.18) 0= (Hu,u) — (u, Hu) = (A — A\){u,u) = u = 0.

As we shall see below in more generality, the spectrum of H is a discrete subset of
R. In this case we can compute it explicitly.

The direct computation of eigenvalues and eigenfunctions is based on the prop-
erties of the creation and annihilation operators

eq:HO.3 (419) Cj:Dj+i$j7 C;:Aj:Dj—Z'{,Cj, j=1,...,n.
These satisfy the elementary identities
(420) [C],Ck} = [A]aAk] = 07 [Ajack] = 26jk7 ja k= ]-v ey n
eq:HO.4| (4.21) H =Y CjA;+n, [C;,H| = —2C;, [A;, H] = 24;.
j=1

Now, if A is an eigenvalue, Hu = Au, then
H(Ciu)=C;(Hu+ 2u) = (A+2)C;u,
eq:HO.5| (4.22) (Cyu) i )= €
H(Aju) =A;(Hu—2u) = (A —2)Au.
prop:HO.6 PROPOSITION 4.4. The eigenvalues of H are
eq:HO.7| (4.23) oH)={n,n+2,n+4,...}.

Proor. We elrga % know that eigenvalues must be real and from the decom-

position of H in (4.2T) it follows that, for u € S(R"),

eq:H0.9| (4.24) (Hu,u) = Z [Ajull® + nllu?.
J

w
o
=
o
N
o
o
]
N
S
w

Thus if A € o(H) is an eigenvalue then A > n.

By direct computation we see that n is an eigenvalue with a 1-dimensional
eigenspace. Indeed, from (4.24), Hu = nu iff Aju = 0 for j = 1,...,n. In each
variable separately

2
Aju(z;) =0 u(xj) = cexp (—2] .
Thus the only tempered solutions of Aju = 0,¢ = 1,...,n are the constant multiples
of
|z
(4.25) uo = exp | ——- |,

which is often called the ground state.
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lem:HO.17
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eq:HO.5

Now, if A is an eigenvalue with eigenfunction u € S(R™) it follows from (h’qﬂ%
that A —2 is an eigenvalue with eigenfunction A;u. Since all the A;u cannot vanish
unless 1 is t.h,e ground state, it follows that the eigenvalues are contained in the
set in (E—(.]ZBS.—WQ can use the same argument to show that if v is an eigenfunction
with eigenvalue A then Cju is an eigenfunction with eigenvalue A 4+ 2. Moreover,
Cju = 0 would imply u = 0 since C;v = 0 has no non-trivial tempered solutions,
the solution in each variable being exp(z3/2). O

Using the creation operators we can parameterize the eigenspaces quite explic-
itly.

PROPOSITION 4.5. For each k € Ny there is an isomorphism

(4.26)  {Polynomials, homogeneous of degree k on R"} > p
jz/?

— p(C') exp (—2) € Ey

where Ey is the eigenspace of H with eigenvalue n + 2k.

PRrooOF. Notice that the Cj, j = 1....,n are commuting operators, so p(C) is
well-defined. By iteration from (4.22),
(4.27) HC%p = C*(H + 2|a|)ug = (n + 2|a|)C%up.

eq:HO.12 . . . . .
Thus (&IEB; isal Lear map 1n’to the elgenspace as 1ndlcated.. o
To see that (4. s am isomorphism consider the action of the annihilation
operators. Again from (h;g;

0 B # «

2elgluy B =a.

(4.28) 18| = |a| = APCuy = {

:HD.12
This allows us to recover the coefficients of p from p(C)ug, so (E.ZG 1S injective.
Conversely if v € Ey, C S(R™) is orthogonal to all the C%ug then

(4.29) (A%, up) = (v,C%pg) =0V |a| = k.

:HO.5 :HQ.15
From (E.ZZ f, the A%v are all eigenfunctions of H with eigenvalue n, so (E.ZQ; implies
that A%v = 0 for all |a| = k. Proceeding inductively in k we see that A% Aju = 0
for all |o/| =k —1and Ajv € Ex_q im ggs:r_ﬁ}jj{l: 0,7=1,...,n. Since v € FEj,
k > 0, this implies v = 0 so Proposition %.5 is proved. (Il
:HD.12

Thus H has eigenspaces as described in (E.?G . The same argument shows that
for any integer p, positive or negative, the eigenvalues of HP are precisely (n+ 2k)P
with the same eigenspaces Ej. For p < 0, H? is a compact operator on L?(R");
this is obvious for large negative p. For example, if p < —n — 1 then

(4.30) o DYH € W (R™), o] <n+1,|8| <n+1

180
are all bounded on L2. If S C L?*(R™) is bounded this implies that H~"71(S) is
bounded in (z)"*1CL (R™), so compact in (x)"C% (R™) and hence in L*(R"). It is
a general fact that for compact self-adjoint operators, such as H~ "2, the eigen-
functions span L2(R™). We give a brief proof of this for the sake of ‘completeness’.

LEMMA 4.2. The eigenfunction of H, ug, = 71 (21%lal)=12C%uq form an or-
thonormal basis of L*(R™).
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ProOOF. Let V C L%(R") be the closed subspace consisting of the orthocom-
plements of all the u,’s. Certainly H~""2 acts on it as a compact self-adjoint
operator. Since we have found all the eigenvalues of H, and hence of H~"~!, it has
no eigenvalue in V. We wish to conclude that V = {0}. Set

T=|H "y =sup{[|[H " "olip € V.ol = 1}.

Then there is a weakly convergent sequence ¢; — ¢, ||¢;|l = 1, so |l¢|| < 1, with
|H=""1p;|| — 7. The compactness of H "2 allows a subsequence to be chosen
such that H=""1¢; — 1 in L?(R™). So, by the continuity of H="~1, H=""lp =)
and [[H " toll =1, ol = L. If ¢ € V, ' Lo, [[¢|| =1 then

t /

el (“”% +“;) 2 = 72+ 26(H 220, /) + 0(¢?)
— <H72n72¢7<p/> =0 = H72n7280 _ 7_2@.

This contradicts the fact that H~2"~2 has no eigenvalues in V, so V = {0} and the

eigenbasis is complete. O

Thus, if u € L?(R")

(431) u = Z Cqla, Co = <u7u(x>

«
with convergence in L2,

:HO.18
LEMMA 4.3. If u € S(R™) the convergence in (E.Sl 15 rapid, i.e., |co| <
Cn(1+|a))™ for all N and the series converges in S(R™).

PROOF. Since u € S(R™) implies H¥u € L?(R") we see that
Cn > [(HNu,uo)| = [(u, HNug)| = (n + 2|a))N|ca| ¥ a.

Furthermore, 2iz; = C; — A; and 2D; = C; + A; so the polynomial derivatives of
the u, can be estimated (using the Sobolev embedding theorem) by polynomials
in «; this implies that the series converges in S(R™). O

COROLLARY 4.2. Finite rank elements are dense in U, .J°(R™) in the topology
of S(R?M).

:HO.18
ProoF. Consider the approximation (E.E}I % to the kernel A of an element of
U *°(R") as an element of S(R?"). In this case the ground state is

_ > yl*Y _ |z ly?
Uy = exp < 5 5 ) = exp 5 exp 5

and so has rank one as an operator. The higher eigenfunctions
CUp = Qalr,y)Uo

are products of Uy and a polynomial, so are also of finite rank. [
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30.10.2007.244 |

1.2.2000.363

1.2.2000.364

1.2.2000.359

1.2.2000.360

1.2.2000.362
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4.4. L? boundedness and compactness

The results above have obvious extension to the case of N x N matrices of
operators, which we denote by ¥9__. (R™;C¥) since they act on CV valued func-
tions. Recall that U9 . (R™) C ¥ (R™) so, by Proposition bﬁi these operators
are bounded on L?(R™). Using the same argument the bound on the L? norm can
be related to the norm of the principal symbol as an N x N matrix.

PROPOSITION 4.6. If A € ¥ (R";CN) has homogeneous principal symbol

a=0p(A)|g., €C(S* T M(N,C))
then

(4.32) _inf A+ Ellpr2@ricvy = sup  [la(p)]]-
Bew, = (RnCY) pegan—1

iso

A similar result is true without the assumption that the principal symbol is homo-
geneous. It is simply necessary to replace the supremum on the right by

(4.33) lim  sup [or(A4)(z, 9]
R=00|(2,6)|>R

where the norm on the symbol is the Euclidean norm on N x N matrices.

1.2.2000.358
Proor. It suffices to prove (h.132§ for all single operators A € Y. (R"). Indeed

1S0

if j,(z) = zv is the linear map from C to CV defined by v € C then
(4.34) Al gL2ricny) = sup JwAdollB(L2®))-
{v,weC;|lv||=]lw|=1}
1.2.2000.358
Since the symbol of j* Aj, is just jXo(A)j,, (&ISZ; follows from the corresponding
equality for a single operator:

(4.35) inf A+ Ellgreen < sup |a(p)], a=o0L(A)|gn .-
Ec¥ 7 (R") pes2n—1

iso

6.6

The construction of the approximate square-root of C — A* A in Proposition b?

only depends on the existence of a positive smooth square-root for C' — |al?, so can
be carried out for any

(4.36) C> sup |a(p)*

p682n—1
Thus we conclude that with such a value of C
| Aul?* < Cllul® + [(Gu,u)| ¥V u € L*(R"),

where G € . >°(R™). Since G is an isotropic smoothing operator, for any § > 0

1S0

there is a finite dimensional subspace W C S(R™) such that
(4.37) I{Gu, u)|| < §||ul|* ¥V ue W.
Thus if we replace A by A(Id —IlIy) = A+ E where F is a (finite rank) smoothing
operator we see that
I(A+ E)ul” < (C+0)|Gul* V u € L*(R") = [[(A+ E)|| < (C + ).
This proves half of the desired estimate (%ﬁ%ly

(4.38) inf  [|[A+ E|lpre@e) < sup la(p)|-
EeV_>°(R") pES?

—1
iso §2n
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1.2.2000.358
To prove the opposite inequality, leading to (h.SZ%, it 1S enough to arrive at
a contradiction by supposing to the contrary that there is some A € W9 (R")
satisfying the strict inequality

up a(p)|.

||A||B(L2(]Rn)) < s
peS2n—1

From this it follows that we may choose ¢ > 0 such that ¢ = |a(p)|? for some p €
S?7=1 and yet A’ = A* A—c has a bounded inverse, B. By making an arbitrariy small

perturbation i:)f2t?go(§ug%2$ymb01 of A’ we may assume that it vanishes identically

near p. By (4. we may choose G € W9 (R") with arbitrariy small L? such
that A = A’ + B has left symbol rapidly vanishing near p. When the norm of the
perturbation is small enough, A will still be invertible, with inverse B € B(L?(R™)).
Now choose an element G € P, _(R™) with left symbol supported sufficiently near

p, so that Go A € U >(R™) but yet the principal symbol of G should not vanish
at p. Thus

G=GoAoB:L*R") — S(R"),
Gx =G =DB*0A" o G* : §'(R") — L*(R").
It follows that G*G : 8'(R™) — S(R™) is an isotropic smoothing operator. This
is the expected contradiction, since GG, and hence G*G, ma)é _la.e 8£§%66§ to have

non-vanishing principal symbol at p. Thus we have proved ( ence the
Proposition. ([l

It is then easy to characterize the compact operators amongst the polyhomo-
geneous isotropic operators as those of negative.

LEMMA 4.4. If A € U9 _(R™;CN) then, as an operator on L?(R™;CN), A is

150

compact if and only if it has negative order.

PROOF. The necessity of Elheé g%ggsgggg of the principal symbol for compact-
an

ness follows from Proposition 4. e sufficiency follows from the density of

1
U 2R, CN) in ¥} (R™;CN) in the topology of ¥_*. (R";CY) and hence in
the topology of bounded operators. Thus, such an operator is the norm limit of

compact operators so itself is compact. (I

. [1.2.2000.357 )
Also as a consequence of Propos%iog ?‘;gsvg%gcan see the necessity of the as-

sumption of ellipticity in Proposition 4.3

COROLLARY 4.3. If A € W) _(R";CN) then A is Fredholm as an operator on

150

L2(R™; CN) if and only if it is elliptic.
4.5. Sobolev spaces

The space of square-integrable functions plays a basic role in the theory of
distributions; one reason for this is that it is associated with the embedding of
S(R™) in &’'(R™). We know that pseudodifferential operators of order 0 are bounded
on L%(R™). There is also a natural collection of Sobolev spaces associated to the
isotropic calculus. The isotropic Sobolev space of order m may be defined as the
collection of distributions mapped into L?(R™) by any one elliptic operator of order
—m.
Note that a differential operator P(x,D,) on R™ is an isotropic pseudodif-
ferential operator if and only if its coefficients are polynomials. The fundamental
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symmetry between coefficients and differentiation suggest that the isotropic Sobolev

spaces of non-negative integral order be defined by
1.2.2000.337| (4.39)  HE (R™) = {u € L*(R");2*DPu € L*(R") if |a| + |B| < k}, k € N.

180

The norms

1.2.2000.339]| (4.40) ullf o = D / 2% D8 u)|?dx

lal+18]<k 7 K"
turn these into Hilbert spaces. For negative integral orders we identify the isotropic
Sobolev spaces with the duals of these spaces

1.2.2000.340| (4.41) HF (R™) = (H_F(R")) — S§'(R"), k € —N.

iso iso
The (continuous) injection into tempered distributions here arises from the density
of the image of the inclusion S(R") — HE_(R™).

180

1.2.2000.338 LEMMA 4.5. For any k € Z,

1.2.2000.341] (4.42) HE (R") = {ue S'(R");Auec L*R") VY Ac Tk

180 1S0

={ue S (R");3 Ae Uk elliptic and such that Au € L*(R™)}

and S(R™) < HE_(R™) is dense for each k € Z.

PrOOF. ! For k € N, the functions z%¢? for |a| + |3| = k are ‘collectively
elliptic’ in the sense that

1.2.2000.344]| (4.43) a(@,8) = Y (@) = c(jaf + [¢)F, ¢> 0.
lal+[B8]=Fk
Thus Qx = Y. (DPx*2*DP) € U2k (R™), which has principal reduced symbol

lee|+181<k
qk, has a left parameterix Ay € \I/._%(R"). This gives the identity

180

1.2.2000.345 ]| (4.44) Z Rea 32D’ = A,Qp, = 1d +E, where
ol +]8|<k

Rap = ApDP2> € 9 Mt Bl Ry | e wooRm),

180

Thus if A € UF

180

(R™)
Au=—AFu + Z ARa,BxO‘Dﬁu.

laf+IBI<k
If u € HE_(R™) then by definition 2*D?u € L?(R™). By the boundedness of oper-

ators of order 0 on L2, all terms on the right are in L?(R") a, d, wg faye shown the
inclusion of HF_(R™) in the first space space on, the Jight.in (EZI; ; T'he converse is
immediatif'aqi%gs. proves the first equality in (h.‘ZIZ' % for k£ > 0. Certainly the third

space in (4. confains in the second. The existence of an elliptic parametrix B
for the ellipic operator A proves the converse since any isotropic pseudodifferential

operator of order A’ of order k can be effectively factorized as
A=A (BA+E)=BA+FE, B eV’ _, (R"), E' € U_2(R").

co—iso iso

Thus, Au € L*(R") implies that A'u € L?(R™).

I This is an essentially microlocal proof.
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It also follows from second identification that S(R™) is dense in HF _(R™). Thus,
if Au € L%(R") and we choose f,, € S(R") with f,, — Au in L?(R") then, with B a
parametrix for A, u,, = Bf, - BAu = u+ Fu. Thus u,, = u,, — Fu € S(R”) —u
in L?(R") and Au,, — u in L?(R") proving the density.

The Riesz representation theorem shows that v € S'(R™) is in the dual space,

H_F(R™), if and only if there exists v’ € HF_ (R™) such that

150 1S0

(4.45)  w(u) = (U, )k iso = (U, Qapt’) 12, ¥V u € S(R™) — HE (R™)

with Qe = Y DFa*DP.
la|+]BI<k

This shows that Qgy, is an isomorphism of HE_(R™) onto H_*(R™) as subspaces of

S’'(R™). Notice that Qo € W2k (R™) is elliptic, self-adjoint pnd, inyertible, since it
is strictly positive. This now gives the same identification (&I.l?; for £ < 0.
The case k = 0 follows directly from the L? boundedness of operators of order

0 so the proof is complete. ([

In view of this identification we define the isotropic Sobolev spaces or any real
order the same way

(4.46) Hi (R") = {ueS'(R");Aue L*(R") VA U S}, seR.

ISO

These are Hilbertable spaces, with the Hilbert norm being given by ||Au|| 2@~ for
any A € U2 (R™) which is elliptic and invertible.

150

PROPOSITION 4.7. Any element A € U7
linear operator

(4.47) A:H (R") — HS™(R"), V s € R.

1S0 180

(R™), m € R, defines a bounded

co—iso

This operator is Fredholm if and only if A is elliptic. For any s € R, S(R") —
HZ (R™) is dense and H_J(R™) may be identified as the dual of lqo( ™) with

1S0
respect to the continuous extension of the L? pairing.

PROOF. A straightforward application of the calculus, with the exception of the
necessity of ellipticity for an isotropic pseudodifferential operakor o be Fredholm
This is discussed in the problems beginning at Problem &I [0.

4.6. Representations

|[Sect.radial.compactification
In §T.9 the compactification of Euclidean space to a ball, or half-sphere, is

described. We make the following definition, recalling that p € C®(S™7) is a
boundary defining function.

DEFINITION 4.2. The space of of ‘Laurent functions’ on the half-sphere is

(4.48) L™= | pFCe(sm),
keNy
p~RC®(S™T) = {u € C®(int(S™T)); pFu € C°(S™T).

More generally if m € R we denote by p™C®(S™T) the space of functions which
can be written as products u = p™v, with v € C®(S™); again it can be identified
with a subspace of the space of C*° functions on the open half-sphere.
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1.104 1.10
PROPOSITION 4.8. The compactification map (L.96) extends from (II.98) to
gwe, for each m € R, an identification of p~™C>(S™) and ST (R™).

Thus, the fact that the UZ (R") form an order-filtered -algebra means that
pLC>=(S?™+) has a non-commutative product defined on it, with C>°(S?™*) a sub-
algebra, using the left symbol isomorphism, followed by compactification.

4.7. Symplectic invariance of the isotropic product

The composition law for the isotropic calculus, and in particular for it smooth-
ing part, is derived from its identification as a subalgebra of the (weighted) spaces
of pseudodifferential operator on R™. There is a much more invariant formulation
of the product which puts into evidence more of the invariance properties.

Let W be a real symplectic vector space. Thus, W is a vector space equipped
with a real, antisymmetic and non-degenerate bilinear form

(449) w: W xW — R, w(wy,ws) +w(we,wy) =0V wy,ws € W,
ww,w)=0YweW = w; =0.

A Lagrangian subspace of W is a vector space V' C W such that w vanishes when
restricted to V' and such that 2dim V' = dim W.

LEMMA 4.6. Every symplectic vector space has a Lagrangian subspace and for
any choice of Lagrangian subspace Uy there is a second Lagrangian subspace Us
such that W = Uy @ Us s a Lagrangian decomposition.

ProOF. First we show that there is a Lagrangian subspace. If dim W > 0 then
the antisymmetry of w shows that any 1-dimensional vector subspace is isotropic,
that is w vanishes when restricted to it. Let V be a maximal isotropic subspace,
that is an isotropic subspace of maximal dimension amongst isotropic subspaces.
Let U be a complement to V in W. Then

(4.50) w:VxU—R

is a non-degenerate pairing. Indeed u € U and w(v,u) = 0 for all v € V then
V + R{u} is also isotropic, so u = 0 by the assumed maximality. Similarly if v € V'
and w(v,u) = 0 for all u € U then, regalline that w vanishes on V, w(v,w) = 0 for
all w € W so v = 0. The pairing (%@)Theﬁfﬁre identifies U with V’, the dual of
V. In particular dimw = 2dim V.

Now, choose any Lagrangian subspace U;. We proceed to show that there is a
complementary Lagrangian subspace. Certainly there is a 1-dimensional subspace
which does not meet U;. Let V' be an isotropic subspace which does not meet U; and
is of maximal dimension amongst such subspaces. Suppose that dimV < dim U;.
Choose w € W with w ¢ V @ U;. Then V 3 v — w(w,v) is a linear functional
on Uj. Since U; can be completed to a complement, any such linear functional
can be written w(u,v) for some u; € Uy. It follows that w(w — uy,v) = 0 for all
v € V. Thus V@ R{w —u; } a non-trivial isotropic extension of V, contradicting the
assumed maximality. Thus V = U, is a complement of Uj. (]

Given such a Lagrangian decomposition of the symplectic vector space W, let

Xi,... X, be a basi gog th)%gh}% of Uy, and let =1, ...,=, be the dual basis, of U
(h 50) with U =

itself. The pairing = Uy and V = U, identifies Uy = U] so the =;
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can also be regarded as a basis of the dual of Us. Thus X;...X,,=Z1,...,=, gives
a basis of W/ = U] @ Uj. The symplectic form can then be written

n

(451) w(wl,wg) = Z(EZ(UM)XI(’U)Q) — Ei(wg)Xi(wl)).

=1

This is the Darbouzr form of w. If the X;, =; are thought of as linear functions

i, & EE g/lgb(gwi%)nsidered as a manifold then these are Darboux coordinates in

which (4. ecomes

(4.52) w=Y_d& Adz;.

i=1

The symplectic form w defines a volume form on W, namely the n-fold wedge
product w™. In Darboux coordinates this is just, up to sign, the Lebesgue form
dédzx.

PROPOSITION 4.9. On any symplectic vector space, W, the bilinear map on

S(W),
(4.53)
a#b(w) = (27) 7" /W2 e W12) g (1 4 w1 )b(w 4 wo )w™ (w1 )w? (ws), dim W = 2n

defines an associative product isomorphic to the composition of ¥, >°(Uy) for any
Lagrangian decomposition W = U; @ Us.

o 23.3.1998.181
COROLLARY 4.4. Extended by continuity in the symbol space (h.53 defines a
filtered product on S (W) which is isomorphic to the isotropic algebra on R*" and
is invariant under symplectic linear transformation of W.

. . 23.3.1998.181 o . L .
PROOF. Written in the form (h.53) the symplectic invariance is immediate.
That is, if F'is a linear transformation of W which preserves the symplectic form,
w(Fwy, Fws) = w(wy, ws) then

(4.54) F*(a#tb) = (F*a)#(F*b) ¥V a,b € S(W).

The same result holds for general symbols once the continuity is established.

Let us start from the Weyl quatization of the isotropic algebra. As usual
for computations we may assume that the amplitudes are of order —oo. Thus,
A € U_*°(R™) may be written

180

@55)  Au(o) = [ Ale.g)uly) = )" [ @D @+ ), ulw)dyd.

Both the kergel A y) and the amplitude a(z,{) are elements of S(R?"). The
%.55) and 1t

relationship ( its inverse may be written

A(s + %,8 - %) = (QW)in/eitfa(s,f)dfv

(4.56)

a(;&&) — /e_it'fA(x =+ %,SIJ — %)dt
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If A has Weyl symbol a d.B has Weyl symbal b let ¢ be the Weyl symbol of
the composite A o B. Using (4.56] and (4.55) '

s,¢) :/ O A(s + %,Z)B(Z s — %)dt

(2m)~ ///dtdzdfdne a( + - +;,§)( 777)
(

t
where<I>:—t-C+(s+§—
Changing variables of integration to X = £ +
H = n — ( this becomes

c(s,¢) = (2m) 724" / / / dY dXd=dH

eQi(X'ny'E)a(X +35,24+Qa(Y +s,H+Q).

. 23.3.1998.181 i .
This reduces to (h.SBi, written out in Darboux coordinates, after the change of
variable H' = 2H, =/ = 22 and ¢’ = 2(. Thus the precise isomorphism with the
product in Weyl form is given by

Y=%2-1-2E=¢(—-(and

; 1
(4.57) A(z,y) = (277)_"/6“"”‘”)'5%(5(% +y), 28)uly)dyds
23.3.1998.181
so that composition of kernels reduces to (h 537. ]

4.8. Metaplectic group

The discussion of the metaplectic group in this section might, or might not,
be relevant for later material. For the moment you can freely ignore it, but it is
amusing enough. The operators constructed here are ‘Fourier integral operators’
in the isotropic sense — but by no means all such Fourier integral operator. In
particular they correspond to linear symplectic transformations of the underlying
space, rather than more general homogeneous symplectic diffeomorphisms.

As we shall see below the discussion of the metaplectic group reduces to the
computation of some constants, these are bound up with the standard formula for
the Fourier transform of ‘Gaussians’. Namely, if z € C has positive real part then

m 1
(458) Flesp(—20%) = YT exp(- €
where the square-root is the standard branch, having positive real part for z in
this half-plane. One can carry out the integrals directly. In fact both sides are
holomorphic in £z > 0 so it suffices to check the formula on the positive real axis
in z where it is easy.

Now, recall that the symplectic group on R?", denoted Sp(2n), is the group
of linear transformations preserving a given non-degenerate antisymmetric bilinear
form. We will take the standard (well, standard up to sign and maybe constants)
Darboux form

(459) OJD(({E,f),({E/,fl)) :gl -x—ﬁ-m’.

Recall that this is not a restriction in the sense that
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2.11.2007.248

[27.10.2007.210 |

[27.10.2007.211]
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LEMMA 4.7 (Linear Darboux Theorem). Ifw is a non-degenerate antisymetric
real bilinear form on a (necessarily even-dimensional) real vector, SSRpcsybheg, dhere
is a linear isomorphism to R2" reducing w to the Darbouz form (h.SQi

BRIEF PROOF. Construct a basis by induction. First choose a non-zero element
e1; and then a second element es such that w(ej,es) = 1, which is possible by
the assumed non-degeneracy. Then look at the subspace spanned by those vector
satisfying w(eq, f) = w(eq, f) = 0. This is complementary to the span of e;, es and
w is the direct sum of wp for n = 1 on the Spanzo.fﬁ.lzoeo?r aﬂg w on this complement.
After a finite number of steps one arrives at (Me 2’s corresponding to
the odd basis elements and the &’s to the even ones. ([

We will need properties of the symplectic group below, but I will just work
them out as the need arises.
Let me define a group of operators on L?(R™) which also map S(R") to itself,
by the crude method of taking products of some obvious invertible operators. The
basic list is:-
(F.1) Multiplication by constants.
(F.2) Multiplication by functions ¢’(*) where q is a real quadratic form,
(F.3) The Fourier transforms in each variable

(4.60)

Fiu(z',r,2") = /efhu(a:’,t,x”)dt, o= (x1,...,25), " = (Tjt1,...,Tp).

(F.4) Pull-back under any linear isomorphism
(4.61) T*u(z) = u(Tz), T € GL(n,R).
Obviously the multiples of the identity in (F.1) commute with the other operators.
Moreover
(4.62) ela(@)x — T*eiq/(m), d(z) = q((T") 'z)

so (F.2) and (F.4) may be interchanged.
In fact it is convenient to reorganize the products of these elements. Observe
that conjugation by the Fourier transform (in all variables) of an operator (F.2)

(4.63) F1640 Fu(z) = (20) " / ()€ 190 y () dyde.

gives a convolution operator which we can, and will, denote ¢(”). Then the oper-
ators in this list which are ‘close to the identity’ are
(S.1) Multiplication by constants near 1
(S.2) Multiplication by functions e'4(*) where ¢ is a small real quadratic form,
(S.3) Application of ¢4(P) where ¢ is a small real quadratic form and
(S.4) Pull-back under any linear isomorphism close to the identity.

For definiteness sake:-

DEFINITION 4.3. Let M(2n) denote the space of operators on S(R™) which are
finite products of elements of the form
(4.64) M = ce' L3 Fre' Fr L}
where Fr denotes the product of the Fourier transforms in the variables correspond-
ing to i € I for some subset I C {1,...,n}.
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As we shall see, these operators form a Lie group; it contains but is not equal to the
metaplectic group. The products of elements in (S.1) — (S.4) give a neighbourhood
of the identity in this group.

First we need to see how these operators are related to the symplectic group.

27.10.2007.211

[27.10.2007.212 | LEMMA 4.8. If M is of the form (h.Bﬁ) then

u) = (Z Aijk + ZBijk)Mu
i k

M(Dju) = (Y iChjzx + Y DyjDi)Mu
k

i

[27.10.2007.213] (4.65)

where A, B, C' and D are real n X n matrices and

27.10.2007.214| (4.66) S(M) = (é g) € Sp(2n).

Furthermore all symplectic matrices arise this way and all symplectic matrices close
to the identity arise from products operators in (S.1) — (S.4) (one of each of type).

27.10.2007.214 . )
o7, H)R%Q'F 110 prog; {%{ 007, W V1 I check that it holds for each of the factors in

(4.64). Then from (4 65)

(4.67) S(MyMy) = S(M:)S(Mz),
p.e. this will be %gf&%obg%f@%b%
For (F.1), ( are obvious, with the matrix being the identity. For

M asin (F.2), A=1d, B=0, D =1d and Cx = —¢'(z) is given by the derivative
of ¢ and

Id C
0 Id

27.10.2007.215| (4.68) S(M) = < ) € Sp(2n) for any symmetric C.

The matrix for F; is the identity outside the 2 x 2 block corresponding to x; and
D; where it is just

27.10.2007.216| (4.69) (—OId I(()i)
which is certainly symplectic. Finally the matrix for L* is just
L 0
27.10.2007.217 | (4.70) <0 (Ll)f) :

So this gives a group homomorphism, we 1}0&‘86903;? %beck the surjectiv'&y ?é 2007.211
this map to Sp(2n). By the conjugation result (%.6.2 ) an operator of the form (&1.6'4)' '
remains so under conguation by some L*. This in particular conjugates the upper

left block A in S to L=t AL. The rank of the matrix is a complete invariant under
conjugation by GL(n,R) so we may arrange that

[27.10.2007.219| (4.71) A = 7y, projection onto the first k components

without affecting the overall problem. The symplectic condition then implies that

B D

/
[27.10.2007.218| (4.72) S = (m ¢ ) , mB'(Id —m,) =0
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and where (Id —7,) B’(Id —7%) must be an isomorphism on the range of Id —m, to
preserve invertibility. Thus a further choice of L1, not affecting the special form of
A allows us to arrange that

!
27.10.2007.220| (4.73) S = <—(Id _7;’;) LB g,) . B"m, = B".

Again from the symplectic condition it follows that B” is symmetric. Now choosing
I to be the first k elements arranges that A = Id. For the new matrix, B must be

symmetric. ([l
. 27.10.2007.211
To proceed further consider the operators of the form (4. or which S(M) =
Id.
27.10.2007.211
]27. 10.2007.223 \ PROPOSITION 4.10. The space of operators M defined by (h.fizl 1S a group with

a multiplicative short exact sequence

[27.10.2007.224 | (4.74) C* — M — Sp(2n).

PrOOF. Consider the elements of M such that S(M) = Id. By definition of
S(M) these have the property that they commute with x, and D, for all j. Recalling
the proof of the invertibility of the Fourier transform, this shows that the kernel of
M satisfies the differential equations

[27.10.2007.221 | (4.75) (z; —y;)M(x,y) =0, (Da, + Dy, )M (2,y) =0 = M(x,y) = c6(x,y)

for some constant c. Thus

[27.10.2007.222| (4.76) ker(S : M — Sp(2n)) = C*1d.
27.10.2007.212

Now Lemma 4.8 com g .W}'.tgb(gl.@ﬁrgument shows that M actually consists

of the operators of the form ( , without having to take further products. I d/e%l’Qom 219
given a finite product M; My ... M,, of elements of M we can use Lemma E.S to

find a single element M € M such that S(M) = S(My)...S(M,). Composing on
the right with M gives a product M ~'M; ... M, which commutes with z; and D;
§7a}fé)\§%o§oziis1a multiple of the identity, which proves that M; ... M, is of the form

. The inverse of an element of M(2n), as an operator is not quite of the same

form directly, but the same argument applies. ([l
Thus M is two regl dimgnsiopy larger than Sp(2n). Notice that all the ele-
ments in the products (%.621) are unitary up to positive constant multiples — and all
multiples occur. So we can kill one dimension by looking at the unitary elements
27.10.2007.225| (4.77) S — (M(2n) NU(L*(R™)) — Sp(2n) is exact.

In fact we can do more than this, namely we can define in a reasonably natural
way a lift of a neighbourhood of the identity in Sp(2n) into M N U(L?*(R"). If
S € Sp(2n) is close to the identity then it has a ‘generating function’. Namely if
we write

o' (x,&) . . .

27.10.2007.227 | (4.78) S(z, &) = (2/,¢) then fézf) is invertible

since it is close to the identity. So, the corresponding linear map is invertible, and
z and £ may be introduced as linear coordinates on the graph

27.10.2007.228 | (4.79) =ZE(x, &), ' = X'(x,¢') on the graph of S.
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Now the symplectic condition can be rewritten as
(4.80) —d¢' Ndx' +déNdz = d(E-de+X'-d¢') =0 = Z-do+ X' -d = dP(z,¢')

where ® is a quadratic form (since there is no 1-dimensional cohomolgy in R?" such
a smooth function exists but by homogeneity we may replace it by its quadratic
part at the origin) such that

—_ no_ 8@($7£I / no_ aé(x7§/ ’
(4.81) E(x, &) = o X'(z,¢) = g defines S".
So now we ‘lift’ S to the element
(4.82) M(S)u(z) = ¢(S) / @M g (n)dn

defined by the construction of the generating function above.

PROPOSITION 4.11. For S in a sma [ nesabbesvfigod of the identity in Sp(2n)
LISZ such th

here is a unique choice of ¢(S) > 0 in (4. at M € MNU(L*R") and
this choice is smooth in S, the subgroup of Mp(2n) C M(2n) generated by the finite
products of these elements is a Lie group giving a 2-fold cover

(4.83) Zy — Mp(2n) — Sp(2n).
This is either the metaplectic group or else is a faithful representation of it, de-

pending on your attitude; I will call it the metaplectic group!

PrOOF. For S close to the identity the discussion above shows that & is close
to x - n as a quadratic form, meaning that

(4.84) bg(x,n) = go(x) + Lz -n+ q¢1(n), L € GL(n,R).

. . . . . 27.10.2007.231
In fact L is close to the identity. The definition of M (S) in (4.82) can therefore be

rewritten
(4.85) M(S) = c(S)e" = L* Flen F.

The desired unitarity then fixes ¢(S) > 0 and in fact

(4.86) c(S) =+/|detT|

and it follows that M (S) depends smoothly on S € Sp(2n), near Id.
The next important thing to check is that this lift is multiplicative near the
identity, i.e. gives a local Lie group. From the discussion above we know that

(4.87) M(S,)M(Sy) = e M(S1S5), S1, So € Sp(2n) near Id

up to the possibility of factor of absolute value 1 — we proceed to show that there
is no such factor locally, although as we shall see there is one globally.

LEMMA 4.9. If q;, i = 1,2, are real quadratic forms which are sufficiently small
and L € GL(n,R) is sufficiently close to the identity then there exist unique small
quadratic forms g}, i = 1,2 and L' € GL(n,R) close to the identity such that

(4.88) '01(2) [6142(D) — g7l (D)gidi(#) [/ 5 > (.
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PROOF. We can move the linear transformations to the left, so it suffices to
show the existence of ¢; and L’ such that

(4.89) M = (@) eie(D) — seiax(D)gidi@) 1/ 65 ()

under the same hypotheses. By making an overal orthogonal transformation, we
may suppose that ¢s is a non-degenerate quadratic form in the duals of the first
variables in a splitting z = (2,2”) and is trivial in the second variables. Since
' is a product of terms in each of the variables, it suffices (by renumbering the
coordinates) to consider the case that gz = £2. Then, after another orthogonal
transformation close to the identity, we may suppose that ¢; = ax? + bxy where a,
b and c are all small and we are reduced to two variables which we denote =z and y
with ¢ = ¢£2. Now we will show directly that

(490) eibry+cb2y2 ei(:D?D _ ei(:D?D eibmyT*7 Ty = ¢ — Qbe7 T*y =y
where, up to a constant of absolute value one, this come( 4f1iqr.gogl}'e32ggmputation
%.9”) nsert t

of the corresponding symplectic transformations. To see he Fourier
transform on the right and change variables

(ei(:Di eibryT*)u(aj, y)

= (2n)7 ! /eiC£2+i(’”_’”/)§eibx/yu(sc’ — 2cby, y)dx'd¢

_ eibmy (27’(’)_1 /eic§2+1'(r—.'t”—2cby)§+1’b(m”+2cby)y)u(x//’ y)dm”d§
(4.91)
— eibzy+cb2y2 (271,)71 /eic(gfby)eri(mf:c”)(Efby)u(xl/7 y)dﬂ?”df

_ eibzy+cb2y2 (27‘()71 /eic(g’)2+i(a:fz”)§’u(x//,y)dx//dfl

_ eib;cy+cb2yeicD§ .
where 2/ = 2’ — 2¢by and £ = £ — by. Whilst these are really oscillatory integrals,
the formal P%{liy&blﬁtjggl is easily justified by regularization, as usual.
Since (&I.Q(H can be rewritten
(4.92)

. 2.2 . 2 . 2 2 2
ezbzercb Y GZCD“‘ — eZbe‘/eme ecb Y

.2 . . N2 . N2 .12 2
_ SZCDI 67,bzyT* ; ezb:}cyechJc _ eZCDz 6'Lb:ryfzcb yox
we are reduced to the case g1 = ax?, go = c£2 which is purely one-dimensional. By

a similar computation it can be checked that

. 2 . 2 I 2
(493) elaw €wD1' = DT*elc D ela'x

ifa = , ¢ =c(1 —4ac), Tz = (1 — 4ac)z, D =1 — 4ac
where again the basic formula comes from comparing the symplectic transforma-
tions, namely under the operator on the left

(4.94) z+— (1 —4ac)x + 22D, D, — D, — 2ax

and on the right, before the application of T,
(4.95) x+— 1+ 2c¢Dy, Dy— (1 —4d'd)D, — 2d .

. 4.11.2007.259 .
Comparing these leads to (h.93). Thus we know that the sides are equal up to a
multiplicative constant and this can be computed by applying the operators to one
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4.11.2007.263

2 .
*" and using (4.58],

non-trivial function. For example applying the operators to e~
the right side gives

(496) e expl(—( g — i0)(1 — dac)r?)

2D
= exp(—Bz?),
V= TaeyT =i P75
1 1 —4ic
ince A= ————— — ¢! = (1 — dac)——C_
since 0 =) ic' = ( otc)4(1 i)

and on the left

_ 1 —4ac —ia

2
(a.07) S (B, B = S

which gives the formula for D and shows most significantly that it is positive. [

Returning to the proof of the Propostion, we have now checked that the lift is
well-defined near the identity and defines a local group. In fact it follows from this
discussion that all the operators of the form

(4.98) M = @) Leio(D) det I > 0,

where we no longer assume that the quadratic forms are small, are products of
elements from a neighbo ihﬂqgo(éu; tglée} identity, and hence are in Mp(2n) and have
a unique representation IJIW(L we can certainly connect such an element
to the identity by connecting L to the identity by a curve L; € GL(n,R) and
replacing ¢; and ¢ by tq; and ¢gs. The corresponding element My € Mp(2n) for
small ¢ and by continuity it follows that it is in Mp(2n) for all ¢ € [0,1]. Indeed, let
T be the supremum of those t for which it remains in the group, and is therefore
a finite product of elements in a fixed small neighbourhood of the identity for each
t < T. Counsider the image curve S(M;) in Sp(2n). For 0 < s < e for some € > 0,
S(M;) = RsS(Mi_cys) where [0,€] 5 s — R is a curve starting at the identit Ao 2007239
Sp(2n). Thus, from the discussion above, Ry has a unique lift Ny as in Lemma %.9.
The uniqueness of the representation shows that M;_., s = NsM;_, for s < € and
since M;_. has a finite product representation, so does M; for ¢ < e and so this
is true of My. Thus, M; € Mp(2n) and the unqueness follows from the earlier
discussion.

In fact we can now check that the metaplectic group, defined by iterated com-
position of the elements near the identity just discussed, consists precisely of the
unitary operators of the form

(4.99) D exp (i (1 = sgndet(T) — |1])) e PIT* Fp, D >0,

Notice that if I = 0, so no explicit partial Fourier transforms are present, then the
complex factor is 44 if detT < 0 and +1 if detT > 0 which shows that M is a
double cover of Sp(2n). O

THEOREM 4.3. The metaplectic group of operators on S(R™) acts by conjuga-

tion on WE_(R™) and gives an action of Sp(2n) as a group of outer automorphisms

of the algebra.
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1.2.2000.334

1.2.2000.335

1.2.2000.336
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4.9. Complex order

The identification of polyhomogeneous symbols of order zero on R2" with the
smooth functions on the radial compactification allows us to define the isotropic
operators of a given complex order z € C. Namely, we use the left quantization
map to identify

(4.100) T2 (R™) = p=2C>(S*™1) c v, (R™).

150 co—iso

Here, p € C*°(S?™!) is a boundary defining function. Any other boundary defining
function is of the form ap with 0 < a € C>°(S?™1). It follows that the definition is
independent of the choice of p since a* € C*(S?™1) for any z € Z.

In fact it is even more useful to consider holomorphic families. Thus if Q C C
is an open set and h : 2 — C is holomorphic then we may consider holomorphic
families of order & as elements of
(4.101) WHI(R?) = {A:Q — UZ

1S0

oo — ISO(Rzn);
03z p"BA(z) e (S is holomorphic. }

Note that a map from Q C C into C°°(S*"!") is said to be holomorphic it is defines
an element of C°° (€ x S?™1) which satisies the Cauchy-Riemann equation in the
first variable.

PROPOSITION 4.12. If h and g are holomorphic functions on an open set 2 C C
and A(z), B(z) are holomorphic familes of isotropic operators of orders h(z) and
g(z) then the composite family A(z) o B(z) is holomorphic of order h(z) + g(z).

Proor. It suffices to consider an arbitrary open subset ' C  with com-
pact closure inside Q. Then h and g have bounded real parts, so A(z), B(z) €
wM . (R2) for 2 € Q) for some fixed M. It follows that the composite A(z)oB(z) €

oco—iso
2M
\Iloo iso

(R?"). The symbol is given by the usual formula. Furthermore d

4.10. Resolvent and spectrum

One direct application of analytic Fredholm theory is to the resolvent of an
elliptic operator of positive order. For simplicity we assume that A € U (R"; CV)
with m € N, although the case of non-integral positive order is only slightly more

complicated.

PROPOSITION 4.13. If A € U™ (R*;CN), m € N, and there exists one point

1S0

X € C such that A — X' and A* — X both have trivial null space, then
(4.102) (A=N"tew ™R, CN)

is a meromorphic family with all residues finite rank smoothing operators; the span
of the ranges of the residues at any X is the linear space of generalized eigenvalues,
the solutions of

(4.103) (A= X)Pu =0 for some p € N.

1S0

PROOF. Since A is elliptic and of positive integral order, m, A — X € U7 (R™)
is and entire elliptic_family. By hypothesis, its inverse exists for some X € C. Thus,
by PI‘OpOSlthnw A)~! e U (R™) is a meromorphic family in the complex
plane, with all residues finite rank smoothing operators.
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Let A be a pole of A — . Since we can replace A by A — A we may suppose
without loss of generality that A = 0. Thus, for some k the product A*(A4 — \)~! is
holomorphic near A = 0. Differentiating the identities

(A= X A=XN)T=MTd = [\FA - N4 -\
up to k times gives the relations
(4.104) AoRy_j=Rj_joA=Ry_ju1, j=0,- k-1,
Ao Ry=RyoA=I1d+R;, where
(A—)\)_l :Rk)\_k‘i‘Rk;fl)\_kJrl+'”+R0+”. , Rk+l =0.

Thus AP o Rg—pt1 = 0 = Rp_pt1 0 AP for 0 < p < k, which shows that all the
residues, R;, 1 < j < k, have ranges in the generalized eigenfunctions. O

. iml.2 . . .
Notice also from (&FTUZS that the range of Ry_;41 is contained in the range of
Ryj_; for each j =0,...,k — 1, and conversely for the null spaces

Ran(Ry) C Ran(Ri_1) C --- C Ran(R;)
Nul(Rk) D Nul(Rk_l) IDERED] Nul(Rl).

Thus,
(4.105) u € Ran(R,), p>1<= Ju; € Ran(Ry) s.t. AP luy = u.
S.Residue.trace‘ 4.11. Residue trace

. . isotropic trace . A
We have shown, in Proposition &3.21, the existonce of a unique trace functlon%1 oFe .
)

the residual algebra W, >°( ﬁ") %elgé?nvyngollow ideas griginating with Seeley, I3

and developed by Guillemin [7], 8] and Wodzicki : o investigate the traces

on the full algebra WZ (R") of polyhomogeneous operators of integral order. We

will prove the existence of a trace but defer until later the proof of its uniqueness.
Observe that for A € U;_>°(R™) the kernel can be written

1S0

Al,y) = (2m) / Va2, €)de

eq:5
and hence the trace, from (bSZI), becomes

Feb.17.2000.eq:1| (4.106) Tr(A) = (27r)‘”/ ar(x,&)dzde,

]RZW,
just the integral of the left-reduced symbol. In fact this is true for any amplitude
(of order —o0) representing A :

Feb.17.2000.eq:2| (4.107) A= (277)7"/ei(rfy)a(a:,y,§)d§ = Tr(4) = (27?)7”/ a(z,x,&)dxdE.
R2n

_ . JFeb.17.2000.eq:1 o ) _
The integral in (&KTUG%H’ce—r&s_by continuity to ay, € SZ(R*") provided m <
—2n. Thus, as a functional,

Feb.17.2000.eq:3| (4.108) Tr: W 21 ¢(R") — C, for any € > 0.
To Kten 'togblr;ch_eir we need somehow to regularize the resultant divergent integral
in (4. and to pay the price in terms of properties). Q]&gmeﬁ%agl;cdgay to do

this is to use a holomorphic family as dis Bsse 1510§§cet19§1 h.g. Riotice that we are
a ' gz) .eq:

passing from the algebra-with-bounds in 0 polyhomogeneous operators.
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Feb.17.2000.eq:5|

Feb.17.2000.eq:6‘
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Lemma 410, [f A(2) € W5 (R") is @ holomorphic family then f(z) = Tr(A(z)),
h I()?i when %E((

defined by ( z) < —2n, extends to a meromorphic function of z with
at most simple poles on the divisor

{-2n,-2n+1,...,-1,0,1,...} Cc C.

ProOF. We know that A(z) € ¥ (R™) is a holomorphic family if and only if
its left-reduced symbol is of the form

o1 (A(2) = (L+ |2’ + |21)a(z;2,€)

where a(z;x,y) is an entire function with values in S% _(R"). For Rz < —2n the

phg
trace of A(z) is
£ = ry ™ [ (U lof? 4 16 ales, dud,
R2n
Consider the part of this integral on the ball
A =Ea [ (1 o o+ [ 0z, ) dade,
|2 +]€12<1

This is clearly an entire function of z, since the integrand is entire and the domain
compact.

To analyze the remaining part fo(z) = f(2) — f1(2) let us introduce polar
coordinates

x7€ n—
= (af? + 122, 0= B8 c g,

The integral, convergent in Rz < —2n, becomes

fa(z) = (2m)™" /100 /§2n71(1 +72)*2a(z;r, 0)dor®Ldr.

Let us now pass to the radical compactification of R?" or more prosaically, introduce
t =1/r € [0,1] as variable of integration, so

Fal2) = (27) // (14 £2)2 2z = 0)d0t 2”‘?
SQTIl

Now the definition of S°

ong (R?") reduces to the statement that

(4.109) b5t 0) = (1 + 12)/2a(z; % 0) € C(C x [0, 1] x S2°1)

is holomorphic in z.
If we replace b by its Taylor series at t = 0 to high order,

k
(4.110) b(zit,0) =)

j=0

A [Feb.17.2000.eq: .
where b (2;t,0) has the same regularity (h UQ%, then %giz) is decomposed as

(4.111)  fo(z) = (27) Z/ /S%lt—z'ﬂ 0)t—2n rIOr

J
1l

~+

b;(2;0) + t" by (2, 0),

.
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Feb.17.2000.e
The presence of this factor t* in the remainder in (h 0) shows %Eat f(k)( ) is

hol %ﬂorgh%o%l ERZ < —2n + k. On the other hand the individual terms in the sum

in ( can be computed (for Rz < —2n) as

o [, o e

. 1 ; df
= (2m) (z—j+2n) /Sgn 1 iz e)j'

Each of these terms extends to be meromorphic in the entire complex plane, with
a simple pole (at most) at z = —2n + j. This shows that f(z) has a meromorphic
continuation as claimed. (]

By this argument we have actually computed the residues of the analytic con-
tinuation of Tr(A(z)) as

[1.2.2000.283] (4.112) hm}&—ﬂ&@ﬂ@@»:@ﬂﬂ/) a;(0)do
S2n—1

z——2n+j

when a;() € C>°(S?"1) is the function occurring in the asymptotic expansion of
the left symbol of A(z):

oo

Feb.17.2000.eq:7| (4.113) o1(A(2)) ~ > (lz]> + [¢1*)*/*a,(z,0)

7=0
o+ 16 = 00, 0 = T 05(6) = dy(~2n+.6).

More generally, if m € Z and A(z) € U“"*(R™) is a holomorphic family then

Tr(A(z)) is meromorphic with at most
simple poles at — 2n — m + Ng.
Indeed this just follows by considering the family A(z —m).

We are especially interested in the behavior at z = 0. Since the residue there
is an integral of the term of order —2n, we know that

A(z) € UF#(R™) holomorphic with A(0) = 0

180

Feb.24.2000.eq:2| (4.114)

= Tr(A(z)) is regular at z = 0.
This allows us to make the following definition:
Trpes (A) = lim 2 Tr(A(2)) if
A(z) € UP*(R™) is holomorphic with A(0) = A.

150

S.Complex.order
We know that such a holomorphic family exists, since we showed in Section h.g the
existence of a holomorphic family F'(z) € ¥Z_(R") with F(0) = Id; A(z) = AF(2)

1S0
is therefore an example. Similarly we know tha gr gé{))o is igdependent of the
choice of holomorphic family A(z) because of (K. applie to the difference,
which vanishes at zero.

LEMMA 4.11. The residue functional Trres(A), A € WZ_(R™), is a trace:

Feb.24.2000.eq:4| (4.115) Trres([4, B]) =0V A, B € VZ_(R™)




118 4. ISOTROPIC CALCULUS

which vanishes on W,2"~H(R™) and is given explicitly by

Feb.24.2000.eq:5| (4.116) Trres(A4) = (27r)‘"/ a_on(0)d0
S2n 1

where a_op (0) is the term of order —2n in the expansion of the left (or right) symbol

of a.
Feb.24.2000.eq:5

PROOF£1 We lgswgggxlready shown that Trres(A) is well-defined and (4. ol-

lows from (K. a_9,(0) the term of order —2n in the left-reduced symbol
of A= A(0). On the other hand, the same argument applies for the right-reduced
symbol

: Feb.24.2000.
To see (he I5) just relofe that if A(z) and B(z) are holomorphic families with
A(0) = A, and B(0) = B then C(z) = [A(z), B(#)] is a holomorphic family with

C(0) = [A, B]. On the other hand, Tr(C(z)) = 0 yhep Kz > 0, so the analytic
i l%i follows.

continuation of Tr(C(z)) vanishes identically and ( O
As we shall see below, Trges is the unique trace (up to a multiple of course) on
UL, (R™).
4.12. Exterior derivation
(R™) be a holomorphic family with A(0) = Id. Then
G(2) = A(2) - A(—2) € Ui, (R")
is a holomorphic family of fixed order with G(0) = Id . By analytic Fredholm theory

(4.117) G71(z) € ¥ (R™) is a meromorphic family with finite rank poles.

It follows that A=1(2) = A(—2)G~!(z) is a meromorphic family of order —z with
at most finite rank poles and regular near 0. Set

(4.118) U (R") 2 B+ A(z)BA™'(2) = B(z).

Thus B(z) is a meromorphic family of order m with B(0) = B. The derivative gives
a linear map.

d
@19) LR 3 B DaB = - AG)BA(2)]m € VLR,

PROPOSITION 4.14. For any holgmorphic fqmz'ly of order z, with A(O) =1d, the
map (4. , defined through (4. ;18 a derivation and for two choices of A(z)

the derivations differ by an inner derivation.

Let A(z) € Wz

1s0

PRrROOF. Since
A(2)B1BoA™ Y (2) = A(2) Bi1A™ 1 (2) A(2) B2 A7 (2)
it follows that
d
Ak 2)B1BoA™Y(2)|.=0 = (DaB1) 0 By + By o (DaBo).
If A;(z) and Az(z) are two holomorphic families of order z with A;(0) = A3(0) =1d
then
Az(2) = A1(2)G(2)

when G(z) € U2 (R™) is a meromorphic family, with finite rank poles. Thus

180

As(2)BAS N (2) = Ai1(2)G(2)BG(2)A['(2)
= A1(2)BATY(2) + 2A1(2)H(2) AT (2).
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Feb.24.2000.eq:E|

Feb.24.2000.eq:F|
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Here H(z) = (G(2)BG~1(2) — B)/z is a holomorphic family of degree m with
H(0) = G'(0)B — BG'(0). Thus

L A()BAT (2)]m0 = - A(:)BAT ()]0 + [G'(0), B]

which shows that the two derivations differ by an inner derivation, which is to say

commutation with an element of W9 _(R™). O

Note that in fact
Dy 0"

1S0

(R™) — U HR"™) V m

180
since the symbol of A(z)BA~1(z) is equal to the principal symbol of B for all z.
For the specific choice of A(z) = H(z) given by

oL(H(2)) = (1 +[af® + [¢*)*/?
we shall set
DsB =DgB.
Observe that +log(1 + [z]? + [¢[?) € S (R®™) V € > 0. Thus log(1 + |z|? + [¢[?),
defined by Weyl quantization, is an element of ¥_¢ . (R") for all € > 0. By differ-
entiation the symbols satisfy

1
DB =[5 log(1 + |a[* + |D[?), B] + [G, B]

where G € W, }(R™). Thus Dy is not itself an interior derivation. It is therefore

an exterior derivation.

4.13. Regularized trace

S.Residue.trace
In Section h [ we defined the residue trace of B as the residue at z = 0 of the
analytic continuation of Tr(BA(z)), where A(z) is a holomorphic family of order z
with A(0) = Id. Next we consider the functional

_ 1
(4.120) Tra(B) = lim(Tr(BA(2)) = ~ Trres(B))-
In contrast to the residue trace, Tra(z) does depend on the choice of analytic
family A(z).

LEMMA 4.12. If A;(2), i = 1,2, are two holomorphic families of order z with
A;(0) =1d and G'(0) = L A5(2) A7 (2)|2=0 then

(4.121) Tra,(B) — Tra, (B) = Trres(BG'(0)).
PROOF. Writing G(z) = Ay(2)A7'(2), which is a meromorphic family of order
0 with G(0) =Id,
Tr(BAz(2)) = Tr(BG(2)A1(2))
= Tr(BA(2)) + 2 Tr(BG'(0) A1 (2)) + 2° Tr(H(2) A1 (2))
where H(z) = £(G(z) — Id—2G’(0)) is then meromorphic with only finite rank

poles and is regular near z = (), Thys the analytic continuation of 2> Tr(H (2)A(2))
o1 ; follows.

vanishes at zero from which ( O

This regularized trace Tra (B) therefore only depends on the first order, in z,
term in A(z) at z = 0. It is important to note that it is not itself a trace.



|Feb.24.2000.eq:G|

|Feb.24.2000.eq:H|

Feb.24.2000.eq:H1 |
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1.2.2000.369

1.2.2000.370

1.2.2000.371

1.2.2000.372

1.2.2000.375
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LEMMA 4.13. If By, By € VZ_(R") then
(4122) ﬁA([Bl, BQ]) = TI‘ReS(BQDABl).

PROOF. Since Tra([B1, Ba]) is the regularized value at 0 of the analytic con-
tinuation of the trace of

(4123) BlBgA(Z) — BQBlA(Z) = BQ[A(Z), Bl] + [Bl, BQA(Z)]
= By([A(), BIA™ () A1 (2) + [Bi By A(2)).

... [Feb.24.2000.eq:H . .
The second term on the right in (h 23) has zero trace before analytic contin-

uation. Thus Tra([B1, Bs]) is the regularized value of the analytic continuation of
the trace of Q(z)A(z) where

Q(2) = Ba[A(2), Bi]JA™!(2) = 2DaB1 + 2°L(2)
[Feb.24.2000.eq9:G

with L(z) meromorphic of fixed order and regular at z = 0. Thus (4. ollows.
O
Note that
(4.124) Trres(DaB) =0V B € ¥Z (R™)

and any family A. Indeed the residue trace is the residue of z = 0 of the analytic
continuation of Tr(H (z)A(z)) when A(z) is any meromorphic family of fixed order
with H(0) = D4 B. In particular we can take

H(z) = L(A(z)BA™'(2) — B).
Then H(z)A(z) = 1[A(z), B] so the trace vanishes before analytic continuation.
4.14. Projections
4.15. Complex powers
4.16. Index and invertibility

We have already seen that the elliptic elements

(4.125) Ego(R™;CY) € Wi, (R CY) — B(L*(R™;CY))

define Fredholm operators. The index of such an operator

(4.126) Ind(A) = dim Nul(A) — dim Nul(A4*)

is a measure of its non-invertibility. Set

(4.127) EL, ,(R"CN) ={A € E) (R*;CV);Ind(A) =k}, k € Z.

PROPOSITION 4.15. If A € E2 (R";CN) and Ind(A) = 0 then there exists

10

E € U_°(R™;C") such that A+ E is invertible in B(L*(R™;C"™)) and the inverse

180

then lies in WO _(R™; CN).

1S0

PROOF. Let B be the generalized inverse of A, assumed to be elliptic. The
assumption that Ind(A) = 0 means that Nul(A) and Nul(A*) have the same di-
mension. Let eq,---,e, € S(R*;CY) and f1,---,f, € S(R*;CY) be bases of
Nul(A) and Nul(A*). Then consider

(4.128) E =Y fi(z)e;(y) € T X (R™CV).
=1
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By construction E is an isomorphism (in fact an arbitrary one) between Nul(A) and
Nul(A*). Thus A+ E is continuous, injective and surjective, hence has an inverse in
B(L?(R™; CN)). Indeed this inverse is B + E~! where E~! is the inverse of F as a
map from Nul(A) to Nul(A*). This shows that A can be perturbed by a smoothing

operator to be invertible. O
Let
1.2.2000.374] (4.129) G (R™CN) C B, o(R™;CN) € EL,(R™;CY) C W0 (R™; CY)

denote the group of the invertible elements (invertibility being either in B(L?(R; CY)
or in ¥ (R™;CM)) in the ring of elliptic elements of index 0.

150

1.2.2000.374
1.2.2000.373 COROLLARY 4.5. The first inclusion in (h.l?g 15 dense in the topology of
q:l?SO(IRTL’ (CN)'
1.2.2000.372
PrOOF. This follows from the proof of Proposition h.lB, since A + sFE is in-
vertible for all s # 0. O

We next derive some simple formule for the index of an element of E2_(R"; CV).
First observe that the trace of a finite dimensional projection is its rank, the di-
mension of its range. Thus

1.2.2000.376 | (4.130) Ind(A) = Tr(Hyu(a)) — Tr(Mxucar))
where the LACS Ipay 1]::,8 reinterpreted as the trace on smoothing operators. The
identities, (&[ i5, satisfied by the generalized inverse of A shows that this can be
rewritten

1.2.2000.377| (4.131) Ind(A) = — Tr(BA —1d) + Tr(AB — Id) = Tr([4, B]).

Here [A, B] = IIxui(a) — IINui(a~) is a smoothing operator, even though both A and
B are elliptic of order 0.

1.2.2000.377
1.2.2000.378 LeEMMA 4.14. If A € B2 (R™;CN) the identity (h.li} , which may be rewritten
1.2.2000.379| (4.132) Ind(A) = Tr([A, B)),

holds for any parametriz B.

PrOOF. If B’ is a parametrix and B is the generalized inverse then B’ — B =
E € U_°(R™";CY). Thus

1S0

[A,B']=[A,B]+[A, E].

1.2.2000.379
Since Tr([A, E] = 0, one of the argument? l%e?zryggoaﬁ.;noothing operator, (h.lBZ;

follows in general from the particular case (K. ]

1.2.2000.379
Note that it follows from (h.IBZ; that Ind(A) = Ind(A + E) if E is smoothing.
In fact the index is even more stable than this as we shall see, since it is locally

constant on E2_(R™;CY). In any case this shows that

(4.133) Ind: &2 (R™;CN) — Z, Ind(a) = Ind(A) if a = [4],
Edo(R™ CY) = B (R™ CY) /913 (R™; C)
C Ao (R™; CY) = Wi, (R™; CY) /0. 2° (R C™)
is well-defined.
1.2.2000.379
The argument of the trace functional in (kﬂﬂ%ﬁsmoothing operator, but

we may still rewrite the formula in terms of the regularized trace, with respect to
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the standard regularizer H(z) with left symbol (1 + |z|? + |ﬁﬁﬁ2%%goe}gv%1tage

of doing so is that we can then use the trace defect formula (4. . us for any
elliptic isotropic operator of order 0

1.2.2000.380 | (4.134) Ind(A) = Trres(BDH A).
Here B is a parametrix for A. The residue trace is actually a functional
TrRes : AL (R™;CY) — C,

so if we write a~! for the inverse of a in the ring £2 (R™; CV) then

1.2.2000.382] (4.135) Ind(a) = Trres(a™*Dya), Dy : A% (R™;CN) — A (R™;CN)

being the induced derivation (since Dy clearly preserves the ideal ¥y >°(R™; CY).
From this simple formula we can easily deduce two elementary properties of
elliptic operators. These actually hold in general for Fredholm operators, although

the proofs here are not valid in that generality. Namely
1.2.2000.383| (4.136) Ind : 2, (R™; CY) — Z is locally constant and
1.2.2000.384| (4.137) Ind(ajas) = Ind(ay) + Ind(az) ¥V a1, as € X (R™;CN).

10

1.2.2000.382
The first of these follows the continuity of the formula (&I [35) since under deforma-
tion of a in &2 (R™; C™) the inverse a~! varies continuously, so Ind is continuous

and integer-valued, hence locally constant. Similarly the second, logarithmic addi-
tivity, property follows from the fact that Dy is a derivation, so

DH(a1a2) = (DHal)ag +a1Dygas

and the the trace property of Trres which shows that

1.2.2000.385| (4.138)
Ind(ajas) = TrRes((amg)_lDH(alag) = Tr(a;lafl ((Dgay)as + a1Dpas)
= Tr(ay 'a;  (Dgai)ag) + Tr(ay ' Dyas) = Ind(a;) + Ind(as).

4.17. Variation 1-form

In the previous section we have seen that the index
1.2.2000.386 | (4.139) Ind : B (R";CY) — Z

1sO
is a multiplicative map which is the obstruction to perturbative invertibility. In the
next two sections we will derive a closely related obstruction to the perturbative
invertibility of a family of elliptic operators. Thus, suppose

1.2.2000.387 | (4.140) Y 3y A, € E), o(R%;CY)
is a family of elliptic operators depending smoothly on a parameter in the compact

manifold Y. We are interested in the families perturbative invertibility question.
That is, does there exist a smooth family

1.2.2000.388] (4.141) Y 3> y+— E, € ¥ _2(R";C") such that (4, + E,) € G}

1SO 180

R™CN) V y.

We have assumed that the operators have index zero since this is necessary (and
sufficient) for E, to exist for any one y € Y. Thus the issue is the smoothness (really
just the continuity) of the perturbation E,,.

We shall start by essentially writing down such a putative obstruction directly
and then subsequently we shall investigate its topological origins.
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1.2.2000.391

1.2.2000.392
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1.2.2000.387
PROPOSITION 4.16. If a smooth family (h lZIU;, parameterized by a compact
ma zfglg }50 Uy gerturbatwely invariant in the sense that there is a smooth family as
(& 14 ; th

n en the closed 2-form on'Y

(4.142) B = TrRes( Ydyay A ay dyay - ay ' Dpay) € C°(Y;A?),
ay [ ] € glso O(Rn;CN)a
s exact.

PrOOF. Note first that 8 is indeed a smooth form, since the full symbolic
inverse dependb bmoothly on parameters. Next we show that 3 is always closed.
The 1-forms a, ld,a,a ; and da, are exact so differentiating directly gives

1
dfB =  Trres(a, day/\a day/\d( 'Dyay))

2
1
—iTrRes(agldyay/\a dyay N\ a, da 'Dpay))

(4.143) )
+§ TrRCS(agldyay A a;ldyay A a;lDH(day))

1 _ _ _
=3 Trres(a, Ydya, A a, Ydya, A Dy (a, Yda,)).

Using the trace property and the commutativity of a 2-form with other forms the
last expression can be written

1
(4.144) 6 TrReS(DH(azjldyay A ay_ldyay A ay_lday)) =0
Feb.24.2000.eq:H1
by property (4. of the residue trace.

Now, suppose that a smooth perturbation as in (Efl%ﬁ%%% exist. We can
replace A, by A, + E, without affecting , since the residue trace vanishes on the
ideal of smoothing operators. Thus we can assume that A, itself is invertible. Then
consider the 1-form defined using the regularized trace

(4.145) a =Tru(A, 'dyAy).

This is an extension of the 1-form dlog detr on G;.>°(R"; CIV). The extension is not
in general closed, because the regularized trace does not satisfy the trace condition.

Using the stanadard formula for the variation of the inverse, dA, 1 — —A, 1dAyA; L
the exterior derivative is the 2-form
(4.146) doi = — Tru (A, N (dyA) A, dy Ay).

The 2-form argument is a commutator. Indeed, in terms of local coordinates we
can write

_ DA
ALY (dyA) A A, Z A, A, (ay )dy; A dys,
7,k=1
1y L, 0A A 9A
_ -1 " _A—l el A
1 & L1 0A
=5 Z A5 (5, Ny Ay

7,k=1
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[Feb.24.2000.eq:G

Applying the trace defect formula (4. shows that
1
1.2.2000.395| (4.147) da = -5 Trres (4, 'dyAy A D (A, dyAy))

locally and hence globally.
Expanding the action of the derivation Dy gives

1
1.2.2000.396] (4.148) da =B — 7 Trres (A, 'dyA, N ANy (D Ay)) = B — dvy, where

1
1=5 Trres (4, 'dyAy A A D Ay) .

We conclude that if A, has an invertible lift then 3 is exact. O
1.2.2000.396
Note that the form v in (h.lZIB; 15 well-defined as a form on SgO,O(R";(CN),

and is independent of the perturbation. Thus the cohomology class which we have
constructed as the obstruction to perturbative invertibility can be written

1.2.2000.397 | (4.149) (8] = [B—dy] € H*(E2, o(R™;CM)).

is0,0

4.18. Determinant bundle

1.2.2000.397
To better explain the topological origin of the cohomology class (h 12[9; we con-
struct the determina 113 %glie. This was originally introduced for families of Dirac
operators by Quillen . Recall that the Fredholm determinant is a character

(4.150)  detp : Id+¥. 2" (R CY) — C,

detp (AB) = detg, (A) dety (B)Y A, B € Id +¥ 2" 1(R™;CM).

As we shall see, it is not possible to extend the Fredholm determinant as a mul-
tiplicative function to G2, (R™; C"), essentially because of the non-extendibility of
the trace.

However in trying to extend the determinant we can consider the possible values
it would take on a point A € G _(R";C") as the set of pairs (4, z), z € C. Thus
we simple consider the product

(4151 D=

where from now on we simplify the notation and write G = Gjs(R"; CV) etc.
Although it is not reasonable to expect full multiplicative of the determinant, it is
more reasonable to expect the determinant of A(Id +B), B € ¥~2"~! to0 be related
to the product of determinants. Thus it is natural to identify pairs in D°,

(A,2) ~p (A",2)) if
asy ,
AA eG”, A= A(1d+B), 2’ =detr(Id+B)z, B € 97, p < —2n.
The equivalence relations here are slightly different, depending on p. In all cases
the action of the determinant is linear, so the quotient is a line bundle.
1.2.2000.401 LEMMA 4.15. For any integer p < —2n, and also p = —oo, the quotient
1.2.2000.402| (4.153) D) =D/ ~,

is a smooth line bundle over gg =GY/GP.
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21.2.1998.121
21.2.1998.122

21.2.1998.123

21.2.1998.124

21.2.1998.126

21.2.1998.125

21.2.1998.127

21.2.1998.128
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PROOF. The projection is just the quotient in the first factor and this clearly
defines a commutative square

(4.154) po 7L po

l/ P
/ar i

a g,

4.19. Index bundle
4.20. Index formula
4.21. Isotropic essential support
4.22. Isotropic wavefront set
4.23. Isotropic FBI transform
4.24. Problems
PROBLEM 4.1. Define the isotropic Sobolev spaces of integral order by
(4.155)
{ue L*(R");2*Dlu € L*(R") Y |of + 8| < k} keN
HE

iso

R") =

(R") {u ES'R;u= Y. 2°Dfuyp, uap € LQ(R”)} ke —N.
la|+]B|<—k

Show that if A € ¥?_(R™) with p an integer, then A : HE_(R™) —s HF"P(R™) for

any integral k. Deduce (using the properties of elliptic isotropic operators) that the
general definition

(4.156)  HZ(R") ={ue S'(R");Auec L*(R"), VA€ V. "(R")}, meR
21.2.1998.122
is consistent with (h [55) and has the properties

(4.157) Ac UM (R") = A: HZ(R") — H M(R"),
(4.158) ﬂHiZL(R”) = S(R"), UHQ’B(R") =S'(R")

(R™), ueS'(R"), Auec H™ (R") = u € H™ ~™(R"),
PROBLEM 4.2. Show that if € > 0 then
Hio(R™) © (1+ |2])~°L*(R™) N H*(R™)
Deduce that HE (R™) < L?(R") is a compact inclusion.

. 21.2.1998.127
PROBLEM 4.3. Using Problem 4.2 or otherwise, show that each element of
U ¢(R"), € > 0, defines a compact operator on L?(R™).

PROBLEM 4.4. Show that if E € ¥; >°(R") then there exists F' € ¥, *(R")
such that

(4159)  AecUl

1S0

(Id+E)(Id+F) =Idg with G € ¥, _>°(R") of finite rank,
that is, G - S(R™) is finite dimensional.
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21.2.1998.111

21.2.1998.131

21.2.1998.132

21.2.1998.133

21.2.1998.134

1.2.2000.406

iml.6

iml.7

iml.8

21.2.1998.137

1.2.2000.349
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. 21.2.1998.129 Lo
PROBLEM 4.5. Using Problem 4.4 show that an elliptic element A € I (R™)

180

has a parametrix B € ¥ '"(R") up to finite rank error; that is, such that Ao B—1Id

and B o A —Id are finite rank elements of ¥; >°(R™). Deduce that such an elliptic
A defines a Fredholm operator

A: HM

iso

(Rn) N H~M_m(Rn)

150

for any M. [The requirements for an operator A between Hilbert spaces to be
Fredholm are that it be bounded, have finite-dimensional null space and closed
range with a finite-dimensional complement.|

PROBLEM 4.6. [The harmonic oscillator] Show that the ‘harmonic oscillator’

H = |D* +|z|?, Hu= ZDJQu + |z |u,
j=1

2

is an elliptic element of Wz

tors
(4160) Cj :Dj+i£L'j, Aj :Dj 7Z‘l'j :C;,
and show that

(R™). Consider the ‘creation’ and ‘annihilation’ opera-

(4.161) H=) CjAj+n=>Y_ A;C;—n,
j=1 j=1

[A;, H] =2A4;, [C;,H] = —-2Cj, [C},C;] =0, [A,A;] =0, [A4,C;] =26, 1d,
where [A, B] = Ao B — Bo A is the commutator bracket and d;; is the Kronecker
symbol. Knowing that (H — A)u =0, for A € C and u € S’'(R"™) implies u € S(R™)
(why?) show that

(4.162) Ex={ueSR");(H—-Nu=0}+# {0} < )\ €n+2Ny
(4.163) and E_, 4o = Z caC%exp(—|z]?/2), ca € C ¢, k € Ny.
la|=k

PROBLEM 4.7. [Definition of determinant of matrices.]

PROBLEM 4.8. [Proof that da = 0 in (%EI:{L‘Z%] To prove that the 1-form is
closed it suffices to show that it is closed when restricted to any 2-dimensional
submanifold. Thus we may suppose that A = A(s,t) depends on 2 parameters. In
terms of these parameters

A A
(4.164) o =Tr(A(s,t)7! dA(s,t) )ds 4+ Tr(A(s, t) 7! d ((; ‘) )d.
Show that the exterior derivative can be written
(4.165) do = Te([A(s, ) dAC(l‘;’ D (s, dAC(ZS’ D1vds A dt

and hence that it vanishes.

PROBLEM 4.9. If E and F' are vector spaces, show that the space of operators
v (R™ B, F) from S'(R™; E) to S'(R™; F) is well-defined as the matrices with

entries in I (R™) for any choice of bases of E and F.

PROBLEM 4.10. Necessity of ellipticity for a psuedodifferential operator to be
Fredholm on the isotropic Sobolev spaces.
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(1) Reduce to the case of operators of order 0.
(2) Construct a sequence in L? such that |ju,| = 1, u, — 0 weakly and
Au,, — 0 strongly in L.

PROBLEM 4.11. [Koszul complex] Consider the form bundles over R™. That is
AFR™ is the vector space of dimension (Z) consisting of the totally antisymmetric
k-linear forms on R™. If ey, eg, ..., e, is the standard basis for R™ then for a k-tuple
a e” defined on basis elements by

k

[0}

€ (eil,...,eik) = H(Sljaj
Jj=1

extends uniquely to a k-linear map. Elements dz® € AFR™ are defined by the total
antisymmetrization of the e®. Explicitly,

dz®(vy,...,v05) = ngnﬂeo‘(vm, ceeyUn,)
T

where the sum is over permutations 7 of {1,...,n} and sgnr is the parity of =.
The dz® for strictly increasing k-tuples « of elements of {1,...,n} give a basis for
AFR™. The wedge product is defined by dz® A da? = dz™P.

Now let S’(R"™; A¥) be the tensor product, that is u € S'(R"™; A¥) is a finite sum

(4.166) u=Y ugda".
«
e . [21.2.1998.131
The annihilation operators in (m an operator, for each k,

D:S'(R"A%) — SR AN, Du =" Ajugda’ Adz®.
j=1
Show that D? = 0. Define inner products on the A*R™ by declaring the basis

introduced above to be orthonormal. Show that the adjoint of D, defined with
respect to these inner products and the L? pairing is

D*: 8'(R™; AF) — S'(R™; AFY), D*u= ZCjuaLjda:O‘.

Jj=1

Here, ¢; is ‘contraction with e;;’ it is the adjoint of dxjﬁ .28113%%{ that D+ D™ is an
elliptic element of Ul (R™; A*). Maybe using Problem &1.6. show that the null space

of D+ D* on §'(R™; A*R™) is 1-dimensional. Deduce that

(4.167) {u € S'(R™); Du = 0} = Cexp(—|z|*/2),
{u € 8'(R";A"); Du =0} = (S'(R"; A* 1), k> 1.

Observe that, as an operator from S’'(R™; A°dd) to S'(R™; A®V*"), D + D* is an
elliptic element of Ul (R™; A°dd Acven) and has index 1.

1s0

PROBLEM 4.12. [Isotropic essential support] For an element of S™(R™) define

(isotropic) essential support, or operator wavefront set, of A € U7 (R™) by

(4.168) WFis(A) = conesupp(or(A)) C R*™\ {0}.
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Show that WFs,(A) = cone supp(or(4)) and check the following
(4.169) WF, (A + B) UWF, (Ao B) C WF._(A) NWF_(B),

150 150 150

(4.170) WF (A) =0 < A€ U_>R").

180 150

PROBLEM 4.13. [Isotropic partition of unity] Show that if U; C S*~! is an open
cover of the unit sphere and U; = {Z € R?" \ {0}; % € U;} is the corresponding

conic open cover of R\ {0} then there exist (finitely many) operators A; €
¥ (R™) with WFi (A;) C U;, such that

150 150

(4.171) Id—Y " A; € U0 (R

PROBLEM 4.14. Suppose A € ¥ (R"), is elliptic and has index zero as an

operator on §’(R™). Show that there exists E € U;_>°(R"™) such that A+ F is an
isomorphism of &’(R™).

PRrROBLEM 4.15. [Isotropic wave front set] For u € S'(R™) define

(4.172) WFiso (1) = () {WFis(A); A € T (R"), Au € S(R™)}.

1S0 180
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CHAPTER 5

Microlocalization

5.1. Calculus of supports

Recall that we have already defined the support of a tempered distribution in
the slightly round-about way:

(5.1)  ifueS'(R"), supp(u) = {z € R"; 3 ¢ € S(R™), p(x) # 0, pu = 0}C.

Now if A : S(R") — S’(R™) is any continuous linear operator we can consider the
support of the kernel:

(5.2) supp(A) = supp(K4) C R" x R" = R*".

We write out the space as a product here to point to the fact that any subset of

the product defines (is) a relation i.e. a map on subsets:

GCR"xR", SCR'=—
5.3
(5:3) GoS={zeR"; JyeSst (z,y) € G}.

One can write this much more geometrically in terms of the two projection maps
(5.4) R2"
N
R™ R™.
7.3 . . .
Thus 7r(z,y) =y, 7r(z,y) = z. Then (%3) can be written in terms of the action
of maps on sets as
(5.5) GoS=m (13" (S)NG).

From this it follows that if S is compact and G is closed, then G o S is closed,
since its intersection with any compact set is the image of a compact set under a
continuous map, hence compact. Now, by the calculus of supports we mean the
‘trivial’ result.

PROPOSITION 5.1. If A: S(R") — S§'(R™) is a continuous linear map then
(5.6) supp(A¢) C supp(A) o supp(¢) V ¢ € C°(R™).

7.1
PROOF. Since we want to bound supp(A¢) we can use (%l) directly, i.e. show
that

(5.7) x ¢ supp(A) o supp(¢) = = ¢ supp(A¢).

Since we know supp(A) o supp(¢) to be closed, the assumption that z is outside
this set means that there exists ¢ € C3°(R™) with

Y(x) # 0 and supp(y) Nsupp(A) o supp(¢) = 0.

129



7.10

Diff ops.

7.12

Examples

7.14

7.15

~
(2]

1

1

~ ~
o ~

1

7.19

130 5. MICROLOCALIZATION

7.3 7.5
From (%3) or (%5) this means
(5.8) supp(A4) N (supp(v) x supp(¢)) = 0 in R*",
But this certainly implies that

Ka(z,y)¢(z)d(y) =0
o — 6A©) = [ Kate.)o(@)ot)dy = 0.
Thus we have proved (%TZ) and the lemma. O

5.2. Singular supports

As well as the support of a tempered distribution we can consider the singular
support:

(5.10) singsupp(u) = {z € R";3 ¢ € S(R™), ¢(x) # 0, pu € S(R")}E.

Again this is a closed set since z ¢ sing supp(u) = 3 ¢ € S(R™) with ¢u € S(R™)
and ¢(z) # 0 so ¢(z') # 0 for |z — 2’| < ¢, some € > 0 and hence 2’ ¢ sing supp(u)
i.e. the complement of singsupp(u) is open.

Directly from the definition we have

(5.11) sing supp(u) C supp(u) V u € S'(R"™) and
(5.12) singsupp(u) = ) <= u € C*°(R").

5.3. Pseudolocality

7.7
We would like to have a result like (bﬁ) for singular support, and indeed we can
get one for pseudodifferential operators. First let us work out the singular support
of the kernels of pseudodifferential operators.

PROPOSITION 5.2. If A € U2 (R™) then
(5.13) sing supp(A4) = singsupp(K4) C {(x, y) € R g = y}.
PROOF. The kernel is defined by an oscillatory integral

(5.14) I(a) = (2m)7" / 'Y S, y, £)dE.
If the order m is < —n we can show by integration by parts that
(5.15) (z —y)*1(a) = I ((—D¢)a),

and then this must hold by continuity for all orders. If @ is of order m and || >
m + n then (—D¢)%a is of order less than —n, so

(5.16) (x —y)*I(a) € CO(R™), |a| > m + n.

In fact we can also differentiate under the integral sign:

(5.17) DED)(x —y)*I(a) = I (DL D}(—D¢)*a)
so generalizing (%_11'(73) to

(5.18) (x —y)*I(a) € CE (R if |a| > m+n+ k.

This impligs that I(A) is C* on the complement of the diagonal, {x = y}. This
proves (@B’) O
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An operator is said to be pseudolocal if it satisfies the condition
(5.19) sing supp(Au) C singsupp(u) V u € C~°(R").
PROPOSITION 5.3. Pseudodifferential operators are pseudolocal.

PROOF. Suppose u € §'(R™) has compact support and T ¢ sing supp(u). Then
we can choose ¢ € S(R™) with ¢ = 1 near T and ¢u € S(R™) (by definition). Thus

(5.20) u=u; +ug, up = (1 —du, uz e SER").
Since A : S(R™) — S(R™), Auz € S(R™) so

(5.21) sing supp(Au) = sing supp(Au;) and T ¢ supp(uq).
Choose ¢ € S(R™) with compact support, ¥(Z) = 1 and

(5.22) supp(¢) Nsupp(l — ¢) = 0.

Thus

(5.23) VAU = Al — p)u = Au

where

(5.24) Kji(2,y) = (@) Ka(z,y)(1 - ¢(y)).

Combining (5:22) and (5:13) shows that K ; € W5 (R") so, by Lemma B8, Au
C>*(R™) and T ¢ singsupp(Au) by (%IS)O) This proves the proposition. O

5.4. Coordinate invariance
If Q C R™ is an open set, put
(5.25) C(Q) = {u € S(R™); supp(u) € O}
C.°() = {u e §'(R™);supp(u) € Q}

respectively the space of C*° functions of compact support in Q and of distributions
of compact support in €2. Here K € 2 indicates that K is a compact subset of €.
Notice that if u € C;°°(€) then u defines a continuous linear functional

(5.26) () 3 ¢ — u(d) = u(p) € C

7.27
where if ¢ € C°(2) is chosen to be identically one near supp(u) then (5.26) is

independent of . [Think about what continuity means herel]
Now suppose

(5.27) F:Q—¢
is a diffeomorphism between open sets of R™. The pull-back operation is
(5.28) F*: CX(Q)«+—C (), F*¢ =¢oF.

7.28
LEMMA 5.1. If F is a diffeomorphgsyy, (%.27), between open sets of R™ then
there is an extension by continuity of (5.28) to

(5.29) F*: Co®(Q) +— C°(Q).
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PRrOOF. The depsity of C2°(Q2) in C;°°(€2), in the weak topology given by the

seminorms from (5. 1),702{11 be proved in the same way as the density pf.S (R™) in
S’(R™) (see Problem 5.5). Thus, we only need to show continuity of (bzg) in this

sense. Suppose u € C°(¥') and ¢ € C°(£2) then
(@) = [ u(F(@)o(e)ds
~ [uwe(Gw)lawldy

7.29
where Jg(y) = (8%7;@) is the Jacobian of G, the inverse of F. Thus (%.28) can be

written

(5.30)

(5.31) Fru(g) = (|Jglu) (G*¢)
and since G* : C*(Q) — C>() is continuous (!) we conclude that F* is contin-
uous as desired. ]

Now suppose that
A:S(R") — S'(R™)

has
(5.32) supp(4) € Q x Q C R*".
Then
(5.33) A1 CR(Q) — CI2(Q)
7.6 7.28
by Proposition %I Applying a diffeomorphism, F) as in (%27) set
(5.34) Ap :CX () — C. (), Ap =G" o Ao F*.
7.34 7.28

LEMMA 5.2. If A satisfies (bzz) and F' is a diffeomorphism (%27) then
(5.35) Ka,(z,y) = (G xG)'K - |Jg(y)| on Q' x
has compact support in Q' x .

7.32
PROOF. Essentially the same as that of (%30) O

7.34
PROPOSITION 5.4. .éuggose A€ U7 (R™) has /E?r%el satisfying (%3‘2) and F is
a diffeomorphism as in (5.27) then Ar, defined by (5.34), is an element of ¥ (R™).

.. [1.10.2007.94
PROOF. See Proposition 2.1T. (I

5.5. Problems

PROBLEM 5.1. Show that Weyl quantization

(5.36) S(R™R™Y) 3 a —s qu(a) = (2m) " / 0oL gie
is well-defined by continuity from S >°(R™; R™) and induces an isomorphism
W
(5.37) ST(R™R™) «— Y2 (R") VmeR.

qw

Find an asymptotic formula relating qw (A) to qr(A) for any A € 72 (R").

PROBLEM 5.2. Show that if A € U7 (R™) then A* = A if and only if o (A) is
real-valued.
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PROBLEM 5.3. Is it true that every F € U_°(R"™) defines a map from S’(R™)
to S(R™)?

PROBLEM 5.4. Show that S(R") is dense in L*(R™) by proving that if ¢ €
C*>(R™) has compact support and is identically equal to 1 near the origin then

(638 unle) = (2m) o) / eS¢ /n)i(€)dE € S(R™) if u € LA(R™)

and u,, — u in L?(R™). Can you see any relation to pseudodifferential operators
here?

PROBLEM 5.5. Check carefully that with the definition

(5.39) HFYR") =queSR");u= Y D%, us € L*(R")
o <—k

for —k € N one does have

(5.40) u € H¥(R") <= (D)*u € L*(R")

as claimed in the text.

PROBLEM 5.6. Suppose that a(z) € C2(R™) and that a(z) > 0. Show that the
operator

(5.41) A= zn: D2+ a(x)

can have no solution which is in L?(R").

PROBLEM 5.7. Show that for any open set @ C R™, C2°(2) is dense in C; *° ()
in the weak topology.

7.47
PROBLEM 5.8. Use formula (bzm) to find the principal symbol of Ap; more
precisely show that if F™* : T*( — T*w is the (co)-differential of F' then

om(AF) = om(A) o F*.

We have now studied special distributions, the Schwartz kernels of pseudodif-
ferential operators. We shall now apply this knowledge to the study of general
distributions. In particular we shall examine the wavefront set, a refinement of sin-
gular support, of general distributions. This notion is fundamental to the general
idea of ‘microlocalization.’

5.6. Characteristic variety

If A€ U™ (R"), the left-reduced symbol is elliptic at (Z,£) € R x (R™\{0}) if

there exists € > 0 such that
lor(A)(z, )] > el¢I™  in

&
&l 1el

Directly from the definition, ellipticity at (Z,&) is actually a property of the
principal symbol, o,,,(A) and if A is elliptic at (7, ) then it is elliptic at (%, t£) for
any t > 0. Clearly

(5.42)

{@.6) R x R\(0})3fo—7] < e, <otz 1)

{(z,&) e R™ x (R"\{0}); A is elliptic (of order m) at (z,€)}
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is an open cone in R™ x (R™\{0}). The complement
(5.43) Sp(A) = {(z,£) € R" x (R"\{0}); A is not elliptic of order m at (z,¢)}

is therefore a closed conic subset of R™ x (R™\{0}); it is the characteristic set (or
variety) of A. Since the product of two symbols is only elliptic at (%, ) if they are
both elliptic there, if follows from the composition properties of pseudodifferential
operators that

(5.44) S (A0 B) = S (A) U Sy (B).

5.7. Wavefront set
We adopt the following bald definition:
If ueC,(R") = {ueS'(R"); supp(u) € R"} then

(5.45) () = {So(4): A€ VL(R) and Au € C*(R")}.

Thus WF(u) C R™ x (R™\{0}) is always a closed conic set, being the intersection
of such sets. The first thing we wish to show is that WF(u) is a refinement of
sing supp(u). Let

(5.46) m: R" x (R™\{0}) > (z,§) —> 2 € R"
be projection onto the first factor.

PROPOSITION 5.5. Ifu € C;*>°(R"™) then
(5.47) m(WF(u)) = sing supp(u).

PRrROOF. The inclusion 7(WF(u)) C singsupp(w) is straightforward. Indeed,
if T ¢ singsupp(u) then there exists ¢ € C°(R™) with ¢(Z) # 0 such that ¢u €
C>°(R™). Of course as a multiplic fipn operator, ¢ € ¥o (R™) and Xo(4) # (7, &)
for any € # 0. Thus the definition (%7{ 5) shows that (Z,£) ¢ WF(u) for all £ € R™\0
proving the inclusion.

Using the calculus of pseudodifferential operators, the opposite inclusion,

(5.48) 7(WF(u)) D singsupp(u)

is only a little more complicated. Thus we have to show that if (z,£) ¢ WF(u) for
all € € R™\0 then T ¢ sing supp(u). The hypothesis is that for each (7, ), & € R™\0,
there exists A € W9 (R") such that A is elliptic at (Z,£) and Au € C>(R"™). The
set of elliptic points is open so there exists € = ¢(£) > 0 such that A is elliptic on

(5.49) {(z,{)ER”X(R"\O);x—x|<e,{é|—é| <€}

Let Bj, j =1,..., N be a finjte set of such operators associated to § and such that
the corresponding sets in (5.49) cover {Z} x (R™~\.0); the finiteness follows from the
compactness of the sphere. Then consider

N
B =) BjB;=> BuecC®R").
j=1
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This operator B is elliptic at (%, €), for all £ # 0. Thus if ¢ € C3°(R™), 0 < ¢(x) < 1,
has support sufficiently close to Z, ¢(x) = 1 in |z — T| < €/2 then, since B has non-
negative principal symbol

(5.50) B+ (1—¢)ec ¥ (R")

is globally elliptic. Thus, by Lemma 2.7, there exists G € W% (R") which is a
parametrix for B + (1 — ¢) :

(5.51) Id=GoB+G(1—¢) mod U ®(R").

Let ¢ € C°(R™) be such that supp(y)) C {¢ = 1} and (%) # 0. Then, from the
reduction formula

YpoGo(l—¢)e U *R").
8.9

Thus from (%51) we find

Yu = PG o Bu+ YG(1 — ¢)u € CZ(R").
Thus 7 ¢ sing supp(u) and the proposition is proved. ([l

We extend the definition to general tempered distributions by setting
(5.52) WF(u)= ) WF(¢u), ueS'R").
peCe (R™)
8.7

Then (%7[7) holds for every u € S'(R™).

5.8. Essential support

Next we shall consider the notion of the essential support of a pseudodifferential
operator. If a € S™(RY;R") we define the cone support of a by
cone supp(a) :{(E,E) e RN x (R"\0);3e>0andV M € R,3 Cjy s.t.

(5.53) , £ c
0@, )] < Ol ™M if lo—7] <o | & - [ < ).
€l 1€l
This is clearly a closed conic set in RY x (R™~\.0). By definition the symbol decays
rapidly outside this cone, in fact even more is true.

LEMMA 5.3. If a € SZ(RN;R"™) then
(Z,7) ¢ conesupp(a) =

(5.54) de>0s.t.V Ma,p 3 Cy with

|D§‘D§a(x,n)} < Culn) M ifle -7 <e

l — 2‘ < €.
Il 7l
8.15 . .
ProoF. To prove (5.54) it suffices to show it to be valid for D, a, D¢, a and
then use an inductive argument, i.e. to show that
(5.55) conesupp(D;;a), conesupp(Dg,a) C conesupp(a).

Arguing by contradiction suppose that D,,a does not decay to order M in any cone

around (T, ) ¢ conesupp. Then there exists a sequence (z;,&;) with
. z | & _ & ,
(5.56) {IJ — % gl — 0 &l —e0

and {Dma(aﬁj,fj)’ > j{E)M.
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We can assume that M < m, since a € ST (R™;RY). Applying Taylor’s formula
with remainder, and using the symbol bounds on Dfﬁja7 gives

(5.57)  a(w; +tes, &) = alx;,&5) + it(Dxya) (x5, &5) + O (F(E)™) , (en); = 645

providing [t| < 1, Taking ¢t = (&YM=m — 0 as j — oo, the first and third terms
on the right in (| ) are small compared to the second, so

M—m _
(5.58) o (2 + (€)=, ) | > &)V,
contradicting the assumption that (7, &) ¢ conesupp(a). A similar argument applies
to D¢,a so (%.54), and hence the lemma, is proved. O

For a pseudodifferential operator we define the essential support by

(5.59) WTF'(A) = conesupp (o1,(A)) C R™ x (R"~\0).
LEMMA 5.4. For every A € U7 (R™)
(5.60) WF'(A) = conesupp(cgr(A)).

8.15
PRrOOF. Using (m) and the formula relating og(A) to or(A) we conclude
that

(5.61) conesupp(or(A)) = conesupp(cr(A)),
8.14
from which (%_60) follows. O

A similar argument shows that
(5.62) WF'(Ao B) C WF'(A) N WF'(B).

Indeed the asymptotic formula for o, (A o B) in terms of or,(A) and o (B) shows
that

(5.63) conesupp(or (Ao B)) C conesupp (or,(A)) N conesupp (o, (B))

which is the same thing.

5.9. Microlocal parametrices

The concept of essential support allows us to refine the notion of a parametrix
for an elliptic operator to that of a microlocal parametriz.

LEMMA 5.5. If A € UZ2(R™) and z ¢ %,,(A) then there exists a microlocal
parametriz at z, B € ¥ " (R™) such that

(5.64) 2 ¢ WF/(Id —AB) and = ¢ WF'(Id —BA).
PROOF. If z = (7, £), € # 0, consider the symbol
(5.65) (o) = (20 ) (- aneero (G - 2)/e)

where as usual ¢ € C(R™), ¢(¢() = 1in [¢| < %, ¢(¢) = 0in [¢| > 1. Thus
7. € 8% (R™;R™) has support in

_ e €
(5.66) T <l > o ||§|— £

‘SE
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and is identically equal to one, and hence elliptic, on a similar smaller set

€
(5.67) RN "g
& 1ell 2
Define L, € ¥Y_(R"™) by o1(L¢) = 7. Thus, for any € > 0,
(5.68) z¢ WF'(Id—L.), WF'(L.) C {(sc,f); |z —Z|] <€ and é| - él < }
Let Ga,, € U2 (R™) be a globally elliptic operator with positive principal
symbol. For example take o7 (Gam) = (1 + [£]2)™, so G, 0 Gy = G4y for any s,
t € R. Now consider the operator

(5.69) J = (Id—L.) o Gop, + A*A € U2™(R™).

The principal symbol of J is (1 —7¢)(1+[£]?)™ + |om (A)|? whigh,is globally elliptic
ife>0 g;mall enough (so that ¢,,(A) is elliptic on the set (5.66)). According to
Lemma 2.75, J has a global parametrix H € 2" (R"). Then

(5.70) B=HoA* € U™(R")

is a microlocal right parametrix for A in the sense that B o A — Id = Rg with
z ¢ WF'(RR) since

(5.71) Rp=BoA-Id=HoA"0oA-1d
=(HoJ—-1Id)+ Ho(Id—L.)Gamo A

and the first term on the right is in W >°(R™) whilst z is not in the operator
wavefront set of (Id —L.) and hence not in the operator wavefront set of the second
term.

By a completely analogous construction we can find a left microlocal paramet-
rix. Namely (Id —L.) o Ga,,, + A o A* is also globally elliptic with parametrix H’
and then B’ = A* o H' satisfies

(5.72) B'oA-1d=Ry, » ¢ WF'(Ry).

Then, as usual,

(5.73) B=(B'oA—R,)B=DB (AoB)—R.,B=B+B'Rp— R.B

so z ¢ WF'(B — B’), which implies that B is both a left and right microlocal
parametrix. O

In fact this argument shows that such a left parametrix is essentially unique. See
Problem 5.28

5.10. Microlocality

Now we can consider the relationship between these two notions of wavefront
set.

PROPOSITION 5.6. Pseudodifferential operators are microlocal in the sense that

(5.74) WF(Au) € WF'(A) N WF(u) V¥ A€ U2(R?), ueC R
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PROOF. We need to show that
(5.75) WF(Au) C WF'(A) and WF(Au) C WF(u).
the second being the usual definition of microlocality. The first inclusion is easy.
Suppose (T, £) ¢ conesupp oy, (A). If we choose B € ¥Y_(R™) with o, (B) supported
in a small cone around (7, ) then we can arrange
(5.76) (7,€) ¢ $o(B), WF'(B) N WF'(A) = 0.

8.20
Then from (}176’2), WF'(BA) = () so BA € Y >°(R") and BAu € C®(R"). Thus
(7, &) ¢ WF(Au). _

Similarly suppose (%,&) ¢ WF(u). Then there exists G € W9 (R") which is
elliptic at (z, &) wi h Gu € C>®(R™). Let B be a microlocal parametrix for G at
(z,€) as in Lemma b.5. Thus
(5.77) u= BGu+ Su, (z,£) ¢ WF'(S).

Now apply A to this identity. Since, by assumption, Gu € C>°(R") the first term
on the right in

(5.78) Au = ABGu + ASu

8.20 -
is smooth. Since, by (%6‘2)7 (7,€) ¢ WF'(AS) it follows from the first part of the
argument above that (%, &) ¢ WF(ASu) and hence (7, £) ¢ WF(Au). O

We can deduce from the existence of microlocal parametrices at elliptic points
a partial converse of (8.24).

PROPOSITION 5.7. For any u € C~°(R"™) and any A € ¥ (R™)
(5.79) WF(u) C WF(Au) U X, (A).

Progr. 1If (7, ) ¢ %,,(A) then, by definition, A is elliptic at (Z,&). Thus, by
Lemma 5.5, A has a microlocal parametrix B, so
(5.80) u= BAu+ Su, (z,§) ¢ WF'(9).
It follows that (Z,&) ¢ WF(Au) implies that (z,€) ¢ WF(u) proving the Proposi-
tion. O

5.11. Explicit formulations

From this discussion of WF’(A) we can easily find a ‘local coordinate’ formu-
lations of WF(u) in general.

LEMMA 5.6. If (Z,£) € R® x (R"\0) and u € S'(R™) then (%, €) ¢ WF(u) if
and only if there exists ¢ € C°(R™) with ¢(T) # 0 such that for some € > 0, and
for all M there exists Cpy with

(5.81) |6u(©)] < Crr (&M in \é—' - é\ <e
PROOF. If ¢ € C*(R), ((£) =1 in [¢| < § and supp(¢) C [=2, 2] then
(5.5 16 = (1= 06 (i — o) € S (™)

is elliptic at £ and from (%%%)
(5.83) 7(€) - pu(€) € S(R™).
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Thus if or(A) = ¢1(z)7(§) then A(gou) € C*° where ¢p1d2 = ¢, ¢1(Z), p2(T) # 0,

¢1,02 € C(R™). Thus (7,€) ¢ WF(u). Conversegggh(f, €) ¢ WF(u) and A is

chosen as above then A(¢1u) € S(R™) and Lemma 5.6 holds. O
5.12. Wavefront set of K4

At this stage, a natural thing to look at is the wavefront set of the kernel of a
pseudodifferential operator, since these kernels are certainly an interesting class of
distributions.

PROPOSITION 5.8. If A € U7 (R™) then
(5.84) WF(Ka) = { (z,9,6,7) € R*" x (R*"\0);;

' v=y, +n=0and (z,§) € WF'(A)}.

In particular this shows that WF'(A) determines WF(K 4) and conversely.
8.6
Proor. Using Proposition ﬁaﬁ5 we know that 7 (WF(K)) C {(z,2)} so
WF(Ka) C {(z,2:§,0)}.

To find the wave front set more precisely consider the kernel

Kale,) = (2m) " [ e, e)de
where we can assume |z — y| < 1 on supp(K 4). Thus is ¢ € C°(X) then
9(x,y) = Ka(z,y) € C.7(R")

and

9(¢,m) = (2m)" / e eIl (gh) (z, £)d(dwdy

:/ —i({+n)-z (b)) (z, —n)dz

The fact that ¢b is a symbol of compact support in z means that for every M

|6b(C +nm, —m)| < Cur ((C+m)) ™ ()™
This is rapidly decreasing if ¢ # —n, so
WF(K4) C {(z,z,m,—n)} as claimed.

Moreover if (7,m) ¢ WEF'(A) then choosing ¢ to have small support near T makes
gbb rapidly decreasing near —7 for all {. This proves Proposition O

5.13. Hypersurfaces and Hamilton vector fields

In the Hamiltonian formulation of classical mechanics the dynamical behaviour
of a ‘particle’ is fixed by the choice of an energy function (‘the Hamiltonian’) h(x, &)
depending on the position and momentum vectors (both in R? you might think,
but maybe in R3" because there are really N particles). In fact one can think
of a system confined to a surface in which case the variables are in the cotangent
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bundle of a manifold. However, in the local coordinate description the motion of
the particle is given by Hamilton’s equations:-

dxi 8h/ d£i<_ 3h
This means that the trajectory (z(t),£(t)) of a particle is an integral curve of the
vector field

oh 0 oh 0

5.86 H = — —_— = — — .
(5.56) 0.0 =3 (G097 - g5 (@)
This, of course, is called the Hamilton vector field of . The most important basic
fact is that h itself is constant along integral curves of Hj, namely

0 oh oh oh
.87 Hph = —_— - - i h —0.
51 =3 (g e 0.0~ e O G OH0) ) =0
More generally the action of Hj, on any other function defines the Poisson bracket
between h and g and

(5.88) Hpg ={h,g} = —{g,h} = —Hgh

. 24.10.2007.186 24.10.2007.190
from which (5.87) again follows. See Problem %.18.

More invariantly the Hamilton vector can be constructed using the symplectic
form

(5.89) w=Y d& Ndr; =da, a = &da;.

i

Here « is the ‘tautological’ 1-form. If we think of Ry x RY = (z,&)" as the pull back
under 7 : (x,€) — x of 8 as a 1-covector on R™. In this sense the tautological form
« is well defined on the cotangent bundle of any manifold and has the property
that if one introduces local coordinates in the manifold x and the canonically dual
coordinates in the cota engy .l%léqﬂliesg(by identifying a 1-covector as £ - dz) then it
takes the form of a in Z@Snglm—s%e symplectic form, as da, is well-defined on
T*X for any manifold X. 04.10.9007 . 185
Returning to the local discussion it follows directly from (5. a

(5.90) w(-, Hp) = dh(:)

i . 24.10.2007.192
and conversely this determines Hj,. See Problem % I9.
Now, we wish to apply this discussion of ‘Hamiltonian mechanics’ to the case

that h = p(z,€) is the principal symbol of some pseudodifferential operator. We
shall in fact take p to be homogeneous of degree m (later normalized to 1) in |£| > 1.
That is,

(5.91) p(x,s8) =s"p(x, ) Ve e R", || >1,5/¢] > 1, s> 0.

The effect of this is to ensure that

(5.92) H, is homogeneous of degree m — 1 under (z,§) — (x, s§)
in the same region. One consequence of this is that

(5.93) H,: SM(R™;R") — SM-1(R";R").

(where the subscript ‘c’ just means supports are compact in the first variable). To
see this it is convenient to again rewrite the definition of symbol spaces. Since
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supports are compact in z we are just requiring uniform smoothness in those vari-
ables. Thus, we are first requiring that symbols be smooth. Now, consider any
point £ # 0. Thus Ej # 0 for some j and we can consider a conic region around &
of the form

(5.94) §i/&5 € (0,00), 1€k/& —&/65] <€
where € > 0 is small. Then the symbolic conditions on a € SM(R"; R") imply

b(z,t,7r) = a(z,rtq, ... mtj,hrsgngjmtj, ceeyTtp—1)

satisfies| D D) D¥b(2,t,7)| < Coypr™ % in r > 1.

24.10.2007.200
See Problem %.2”.

For the case of a homogeneous function (away from £ = 0) such as p the surface
Y (P) = {p = 0} has already been called the ‘characteristic variety’ above. Corre-
spondingly the integral curves of H,, on ¥, (p) (so the ones on which p vanishes) are
called null bicharacteristics, or sometimes just bicharacteristics. Note that ¥, (P)
may well have singularities, since dp may vanish somewhere. However this is not a
problem with the general discussion, since H,, vanishes at such points — and it is
only singular in this sense of vanishing. The integral curves through such a point
are necessarily constant.

Now we are in a position to state at least a local form of the propagation
theorem for operators of ‘real principal type’. This means dp # 0, and in fact even
more, that dp and « are linearly independent. The theorems below in fact apply
in general when p is real even if there are points where dp is a multiple of o — they
just give no information in those cases.

(5.95)

THEOREM 5.1 (Hormander’s propagation theorem, local version). Suppose P €
U (M) has real principal symbol homogeneous of degree m, that ¢ : (a,b) —
Sm(P) is an interval of a null bicharacteristic curve (meaning c.(%) = H,) and
that u € 8’ (R™) satisfies

(5.96) c(a,b) NWF(Pu) =0

then

(5.97) {ez’ther c(a,b) "WF(u) =0

or c(a,b) C WF(u).

5.14. Relative wavefront set

Although we could proceed directly by mCE!ctllé)I&O%geb (Sobolev) order of
1

regularity to prove a result such as Theorem s probably better to divide
up the proof a little. To do this we can introduce a refinement of the notion of
wavefront set, which is actually the wavefront set relative Jo,a Sobolev space. So,
fixing s € R we can simply define by direct analogy with (5.45)

(5.98)  WF,(u) =[] {Z0(A); A € ¥ (R"); Au € H*(R")}, u € C;®(R").

Notice that this would not be a very good definition if extended directly to u €
S'(R™) if we want to think of it as only involving local regularity (because growth
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of u might stop Au from being in H*(R™) even if it is smooth). So we will just
localize the definition in general

22.10.2007.130] (5.99) WF,(u) =) {Z0(A); A € WO (R"); A(u) € H*(R") V ¢ € C°(R™)},
u e (R,

In this sense the regularity is with respect to Hy} (R™) — is purely local.

22.10.2007.131 | LEMMA 5.7. Ifu € C~>°(R") then WF(u) = 0 if and only if u € H (R").

PROOF. The same proof as in the case of the original wavefront set works,
only now we need to use Sobolev boundedness as well. Certainly if u € H (R™)

loc
then yu € H*(R™) for each ¢ € C°(R™) and hence A(yu) € H*(R™) for every
A € W9 (R™). Thus WF(u) = 0.

Conversely if u € C;°°(R™) and WF,(u) = 0 then for each point (z,¢) with
z € supp(u) and [¢| =1 there exists A, ¢ € ¥ (R™) such that Au € H*(R") with
(7,8) ¢ Yo(Aze). That is A, ¢ is elliptic at (z,&). By compactness (given the
conic property of the elliptic set) a finite collection A; = A(,, ¢,) have the property
that the union of their elliptic sets cover some set K x (R™\ 0) where K is compact
and supp(u) is contained in the interior of K. We can then choose ¢ € C°(R™) with
0<¢ <1, supp(¢) C K and ¢ =1 on supp(u) and

B=(1-¢)+ > A;A, € U (R")

is globally elliptic in ¥ (R™) and Bu € H*(R™) by construction (since (1 — ¢)u =
0). Thus v € H*(R™). Applying this argument to @u for each ¢ € C(R™) for
u € CT°(R™) we see that WF,(u) = 0 implies yyu € H*(R™) and hence u €
He (R™). O

loc
Of course if u € C;°(R"™) then WF(u) = 0 is equivalent to u € H*(R"™).
It also follows directly from this definition that pseudodifferential operators are
‘appropriately’ microlocal given their order.

[22.10.2007.135] LEMMA 5.8. If u € C~°°(R") then
[22.10.2007.136] (5.100) WF(u) D UWF

and coversely if v C R™ x (R™\ 0) is an open cone then
[22.10.2007.137| (5.101) YN WFg(u) =0V s = yNWF(u) = 0.

The combination of these two statements is that

[15.11.2007.326] (5.102) WF(u) = | JWF,(u)

S
. . .. ]22.10.2007.136
Note that there is not in general equality in (W

PrOOF. If (7,€) € WFg(u) for some s then by definition there exists ¢ €
C°(R™) with ¥(z) # 0 and A € WY (R") which is elliptic at (7, &) and |

5 sieh hat a6
A(pu) ¢ H*(R™). This certainly implies that (z,€&) € WF(u) proving (% 00).
To prove the partial converse if ?bfﬁl%esz(g&a%?}me that u € C_°°(R™) and to fix

a point (7, &) € v and deduce from ( at (z,&) ¢ WF(u). S{nce 7 is an open
cone we may choose € > 0 such that G = {(z,&); |z —Z| <, |% — %| <€} Cv. Now
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for each s the covering argument in the proof of Lemma %727%%‘5 we may
find Ay € U9 (R") such that As(u) € H*(R") and G N Xg(As) = . Now choose
one A € WY (R") which is elliptic at (Z,€) and has WF'(A) C {(z,&); |z — 7| <
€, |% - %—| < €}, which is the interior of G. Since A has a microlocal parametrix in
a neighbourhood of G, BsA, = Id +E,, WF'(Es) NG = 0 it follows that

22.10.2007.138| (5.103) Au = A(BsAs — E)u = (ABs)Asu — AE;u € H*(R™) V s,

since AE; € U . >°(R"). Thus Au € 5(RY) Qg%gl(ig_/u is assumed to have compact
(2

support) so (Z, f) ¢ WF(u), proving O
[22.10.2007.133] LEMMA 5.9. Ifu € S'(R") and A € V7 (R") then
[22.10.2007.134| (5.104) WF_n(Au) € WF'(A) N WF4(u) V s € R.

PROOF. See the proof of the absolute version, Proposition E%Q This shows
that if (7,€) ¢ WEF'(A) then (7,€) ¢ WF(Au), so certainly (7,€) ¢ WF,_,,(Au).
Similarly, if (%, £) ¢ WF(u) then there exists B € WY_(R™) which is elliptic at (z, £)
and such that Bu € H*(R"). If G € VY (R") is a microlocal parametrix for B at

(z,€) then (z,£) ¢ WF'(GB—1d) so by the first peg& (% §o}o§rt Vé/fs m(A(GB-1d)u D)

and on the other hand, AGBu € H*~™(R"), so (
. . 22.10.2007.126
Now, we can state a relative version of Theorem b5.T:-

]22.10.2007.139\ THEOREM 5.2 (Hérmander’s propagation theorem, L?, local version). Suppose
P € WL (M) has real principal symbol, that ¢ : [a,b] — X,,,(P) is an interval of a
null bicharacteristic curve (meaning c.(%) = Hy) and that u € C;*(R"™) satisfies

| 22.10.2007. 128p| (5.105) c(la, b)) "WF 1 (Pu) = 0 (eventually c([a, b)) N WFo(Pu) = ()

then

[22.10.2007.127p| (5.106)

{either c([a,b]) " WFq(u) =0
or ¢([a,b]) C WFo(u).

22.10.2007.126 22.10.2007.139
PROOEQ'T%A”QFOEHIE;QREM 5.1 FOLLOWS FROM THEOREM 5.2. The Ba?g 1%3%%7 136

to apply (b. remembering that there is not equality (in general) in (5.
the necessary uniformity here comes from the geometry so let us check that first.

22.10.2007.146\ LEMMA 5.10. First, we can act on P on the left with some elliptic operator
with positive principal symbol, such as (D)~™T which changes the order of P to
1. This does not change X.(P) as the principal symbol changes from p to ap where
a > 0, and only scales the Hamilton vector field on 3(P) since

15.11.2007.327] (5.107) H,, =aH, +pH,

and the second term vanishes on X(P). Thus it suffices to consider the case m = 1.

If p is real and homogeneous of degree 1, I is an open conic neighbourhood of a
bicharacteristic segment c([a,b]) such that dp and the canonical 1-form o = £-dx are
independent at c(a) and v is an open conic neighbourhood of c(t) for some t € [a, D]
then there is an open conic neighbourhood G of ¢([a,b]), G C T such that GNX(P)
is a union of (null) bicharacteristic intervals ¢?(aq,bq)) which intersect .

PROOF. If dp and « are linearly dependent at a some point (Z,¢) € X(P) then
Hy = c§ - ¢ is a multiple of the radial vector field at that point. By homogeneity
the same must be true at (z, s§) for all s > 0 so the integral curve of H, through
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(%,€) must be contained in the ray through that point. Thus the condition that
dp and ¢ - dx are linearly independent at c¢(a) implies that this must be true on all
points of ¢([a,b]) and hence in a neighbourhood of this interval.

Thus it follows that H,, and &-0g are linearly independent near ¢([a, b]). Since p
is homogeneous of degree 1, H,, is homogeneous of degree 0. It follows that there are
local coordinates = # 0 homogeneous of degree 1 and y, homogeneous of degree 0,
in a neighbourhood of ¢([a, b]) in terms of which H, = d,,. These can be obtained
by integrating along H), to solve

31.10.2007.245| (5.108) Hyyn =1, Hyyy =0, k>1, HE=0

with appropriate initial conditions on a conic hypersurface transversal to H,. Then
the integral curves, including c¢([a, b]) must just be the y; lines for which the con-
clusion is obvious, noting that 9,, must be tangent to X(P). O

. . 22.10.2007.139
Now, returning to the proof note that we are assuming that Theorem %.2 has
been proved for all first order pseudodifferential operators with real principal sym-
bol. Suppose we have the same set up but assume that

22.10.2007.140| (5.109) c([a, b)) N"WF 1 (Pu) = 0 (eventually c([a, b]) N WF,(Pu) = 0)

. 22.10.2007.128 . . . L
in place of (%.96 ). Then we can simply choose a globally invertible elliptic operator
of order s, say Qs = (D)® and rewrite the equation as

[22.10.2007.141| (5.110) Pow=Q.f, P,=Q:PQ_,, v=Qsu
22.10,2007. 140
Then (% 09) implies that
[22.10.2007.142] (5.111) c([a,b]) "WF 1 (Pyv) =0
and P, € U9 (R") i 0{51921”06?911"23[501“ with real principal symbol — in fact the same
as before, so we get (% 9?) which means that for each s we have the alternatives

22.10.2007.143| (5.112)

or c([a,b]) € WF(w).

22.10.2007,128 [22.10,2007.140
Now the hypothesE % %) jplies % [09) for each s and hence for each s we

have the alternatives course if the second condition holds for any 5C, 8 0007 107
then it holds for all larger s and in particular implies that the second case in (% 97)

(but for the j%nfba%&-?tﬂé’al) holds. So, what we really need to show is that if the

first case in (b. olds for all s then

22.10.2007.144| (5.113) c([a, b)) "WF(u) = 0.

{either c([a, b)) "WF4(u) =0

This is where we need to get some uniformity. However, consider nearby points
and bicharacteristics. Our assumption is that for some t € [a,b], c(t) ¢ WF(u) —
otherwise we are in the second case. Since the set WF(u) is closed and conic, this
implies that some open cone v containing ¢(¢) is also disjoint from WF(u). Thus it
follows that ¥y N WF;(u) = (0 for all s. This is where the geometry comes in to show
that there is a fixed open conic neighbourhood G of ¢([a, b]) such that

22.10.2007.145 | (5.114) GNWF,(u) =0V seR.

. . 22.10.2007.146
Namely we can take G to be a small neighbourhood as in Lemma 5.T0. Since
one point on each of the null bicharacteristic intervals forming G N X(P) meets a
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. .. 22.10.2007.143 )
point of v, the first alternative in (hIZj)m—ust_Hold for all these intervals, for all s.
That is,

22.10.2007.147 | (5.115) GNWFs(u) =0V s.

22.10,2007.137
Now (%T (IT] #BpYies 4o show that GNWEF(u) = 0 so in particular we are in the first

case in (5.97) and the theorem follows. ]

Finally we further simplify Theorem 5.2 to a purely local statement.

22.10.2007.139
22.10.2007.148 ‘ PROPOSITION 5.9. Under the hypotheses of Theorem|5.Z4ft € (a,b) and WFq(u)N
c((txe€)) =0 for some e > 0 then c(t) ¢ WFq(u).

22.10.2007.139 22.10.2007.148 . ]22.10.2007.127
DERIVATION OF THEOREM /5.2 FROM PROPOSITION 5.9. e dicotomy in (%.97)

amounts to the statement that if ¢(t) ¢ WFq(u) for some t € [a,b] then C = {t' €
[a,b];c(t) € WFo(u)} must be empty. Since WF(u) is closed, C' is also closed. Ap-
plying the Proposition to sup(C N [a,t)) shows that it cannot be in C' and neither
can inf(C' N (¢,b]) so both these sets must be empty and hence C' itself must be
empty. ([l

22.10.2007.148
5.15. Proof of Proposition 5.9

Before we finally get down to the analysis let me note some more simiplifica-
tions. We can actually assume that ¢(t) = a = 0 and that the interval is [0, d] for
some & > 0. Indeed this is just changing the parameter in the case of the positive
sign. In the case of the negative sign reversing the sign of P leaves the hypotheses
unchanged but reverses the parameter along the integral curve. Thus our hypothe-
ses are that

22.10.2007.150| (5.116) ¢([0,4]) N WEF 1 (Pu) = 0 (eventually just ([0, 6]) N WFo(Pu) = ) and
c((0,68]) NWFq(u) =0

and we wish to conclude that

[22.10.2007.151| (5.117) c(0) ¢ WFo(u).

We can also assume that

[22.10.2007.152| (5.118) c(0) ¢ WE_1 (u).

.. J22.10,2007.152 . 1
In fact, if (%I [8) does not hold, then there is in fact some s < —3 such that

c(0) ¢ WF,(u) but ¢(0) € WF,(u) for some ¢ < max(—%,s+3). Indeed, u its LfQisi(j)nzow 143

some Sz(%b?&ego%)}?ace Now we can apply the argument used earlier to deduce

oy amely, replace P by (D)st2P(D)~*" 2 an 4 by o7 49) Yty Then
(% [18) 1s saflsﬁed by v’ and if the argument to prove (5. works, we conclyde
that ¢ g 1% %@3{ whigh Js, g, contradiction. Thus, proving that (% [T7) follows
form (b. an . suffices to prove everything.

Okay, now to the construction. What we will first do is find a ‘test’ operator
A € U9 (R™) which has

22.10.2007.154| (5.119) WF'(A) € N(c(0)), A*=A




22.10.2007.155 |

22.10.2007. 156 |

22.10.2007. 157 |

22.10.2007.159 |

22.10.2007. 160 |

22.10.2007.161 |

22.10.2007.162 |
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for a preassigned conic neighbourhood N(¢(0)) of the point of interest. Then we
want in addition to arrange that for a preassigned conic neigbourhood N(¢(6/2)),

1
—(AP — P*A) = B>+ Ey + E4,
1
B € ¥’ (R"), B* = B is elliptic at ¢(0),
(5.120) 5
Ey € U9 (R™), WF'(Ep) C N(C(§))
and B, € U '(R").

. 22.10,2007.155 o
Before checking that we can arrange (%.IZU) et me comment on why it will

help! In fact t gr?oi%%_,ﬂ?gg in the following argument which will be sorted out
below. Given (5.1 et us apply the identity to u and then take the L? pairing

with « which would give
(5.121) —2Im{u, APu) = —i(u, APu) + i(APu,u) = | Bul|* + (u, Eo) + (u, Byu).

where I have illegally integrated by parts, which is part of the flaw in the argument.
Anyway, the idea is that APu is smooth — at least it would be if we assumed that

c u) = ) — so the left side is finite. Similarly by the third line o
Jor WP 0 he left side is fini Similarly by the third li f
(5.1207, WF"(E)) is confined to a sgion yhere 1 is known to be well-behaved and

the order of E; allows us to use
indeed we will, that

(5.122) Bu € L*(R™) = ¢(0) ¢ WFy(u)

. S0 with a little luck we can show, and

which is what we are after. The problems with this argument are of the same nature

that are met in discussions of elliptic regularity 89,9 1351926)8.(("6%%%8 are discussed below.

So, let us now see that we can arrange (b. . First recall that we have
normalized P to be of order 1 with real principal symbol. So
P*=P+iQ, Q€ VL (R"), Q =Q".
. o .. )22.10,2007.155
Thus the left side of the desired identity in (%.IZ(H can be written

(5.123) —i[A, P] + QA € V2 (R™), oo(—i[A, P] + QA) = —Hya + qa
. . . . |]22.10,2007.155
where ¢ is the principal symbol of ¢ etc. Since F; in (% [20) can include any terms
of order —1 we just need to arrange the principal symbol identity
(5.124) —Hya+qa=b*+e.
Notice that p is by assumption a function which is homogeneous of degree 1 so the
vector field H, is homogeneous of degree 0. We can further assume that
(5.125) H, # 0 on ¢([0, 9]).
Indeed, if H, = 0 at ¢(0) then the whole integral curve through ¢(0) consists of the
it apd, the, result is trivial. So we can assume that H, # 0 at ¢(0) and then

ollows by shrinking §. As noted above we can now introduce coordinates ¢
s € R?™~2 and © > 0, homogeneous respectively of degrees 0, 0 and 1, in terms of
WhiCh. H, ?2.%0 %Q} _?680, 1) so the integral curve is just (t,.O, 1) and the differential
equation (%.IZZH only involves the ¢ variable and the s variables as parameters (§;

disappears because of the assumed homogeneity)

d
(5.126) f@aqua =b% +e.
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So, simply choose b = ¢(t)p(|s|) for some cut-off function ¢(x) € C°(R) which is 1
near 0 and has small support in |z| < §’ which will be chosen small. Then solve

d ¢ /
22.10.2007.163| (5.127) — it qa = b = a(t,s) = —¢?(|s|)e” @) / QU g2t s)dt'

— 0o

where @ is a primitive of ¢. Integrating from ¢ << 0 ensures that the support of

a' is confined to |s| < ¢ and ¢t > —4’. Now simply choose a function ¢ € C*(R)

which is equal to 1 in ¢t < 36 — 0’ an LI5og0 hin t > 30 + ¢'. Then setting
a(t,s) = ¥(t)a(t, s) gives a solutlon of (% 26) with the desn“ed support properties.

Namely if we simply cut a and b off in © near zero to make them into smooth

symb ;ﬁ a1%d28(8]7e(‘11g§)perators B and A self-adjoint and with these principal symbols
then (£5 20} Tollows where the supports behave as we ﬁhﬁxf]gg& (51’5%5 made small.

So, what is the problem with the derivation of (b. . For one thing the
integration by parts, but for another the pairing which we do not know to make
sense. In particular the norm || Bu| which we wish to show to be finite certainly
has to be for this argument to be possible. The solution to these problems is simply
to regularize the operators.

So, now choose a sequence i, (R) where the variable will be ©. We want

22.10.2007.164] (5.128) fin € C2°(R), pn, bounded in S®(R) and s, — 1 € S¢(R) V € > 0.

This is easily arranged, for instance taking p € C°(R) equal to 1 near 0 and setting
wn(©) = u(®/n). Since we have arranged that the homogeneous variable O is

annihilated by H, = E we ¢ ](99 %ltlply through the equation and get a
similar family of solutions to (% 24)

22.10.2007.165| (5.129) —Hya, + qa, = b2 + e,

where all terms are bounded in S% (R"; R") (and have compact support in the base
variables). Now if we take operators A,,, B,, with these full symbols, and then their
self-adjoint parts, we conclude that A,, B, € ¥ (R") havg f& Syt @g bounded
in S° and we get a sequence of solutions to the identity (mnlformlty
Let’s check that we know precisely what this means. Namely for all € > 0,

22.10.2007.166 | (5.130)

A,, is bounded in WY (R™), A, — A in U¢_(R"), WF'(A,) C N(c(9)) is uniform,
%(AnP — P*A,) = B2 + Ey,, + E1 ,
B} = B, € ¥% (R") is bounded, B, — B in ¥<_(R™), ¥ (R") > B is elliptic at ¢(0),
Ey.,, € V2 (R™) is bounded, WF'(Ej.,,) C N(c(g)) is uniform
and By, € U (]R”) is bounded.

where the boundedness of the sequences means that the symbols estimates on the
left symbols have fixed constants independent of n and uniformity of the essential
support conditions means that for instance

q& N(c (5)) — J R e VY (R") elliptic at ¢

22.10.2007.167| (5.131)

such that REj , is bounded in ¥_>(R").

All this follows from our choice of symbols.
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I leave as an exercise the effect of the uniformity statement on the essential

support.
[22.10.2007.169 ] LEMMA 5.11. Suppose A,, is bounded in ¥ (R™) for some m and that
[22.10.2007.170| (5.132) WF'(A,) C G uniformly
‘ 22.10.2007. 167 ‘
for a closed cone G in the sense of (%.IB ). Then if u € CC°(R™) is such that
[22.10.2007.171] (5.133) WF,,(u) NG =0 then A,u is bounded in L*(R™).

N O Wiy ALfskn a position to finish! For finite n all the operators in the identity

in (% [30) are smoothing so we can apply tEg.degggpﬂssgo u and pair with u. Then

the integration by parts used to arrive at (5. is really justified in giving
22.10.2007.172| (5.134)
—2Im{u, Ap Pu) = —i(u, A, Pu) +i(A, Pu,u) = || Bpu||® + (u, Eo nun) + (u, By nu).

We have arranged that, %]&'(é@) is uniformly concentrated near (the cone ov 13 10.2007 . 169
¢([0, &) and, from (% I16), that WE'1 (Pu) does not meet such a set. Thus Lemma 5 T

)2
shows us that A, Pu is bounded in Hz (R™). Since we know that WE_1(u) does
not meet ¢([0, §]) we conclude (always taking the parameter ¢’ determining the size
of the supports small enough) that

22.10.2007.173| (5.135) |(u, A, Pu)| is bounded

as n — oo. Similarly |(u, Ep )| is bounded since Ej , is bounded in W9 (R") and
has essential support uniformly in the region where u is known to be in L?(R™) and
|{(u, E1 )| is bounded since Ej, is uniformly of order —1 and has essential sup-
port (uniformly) in the region where u is known to be in H_%(R”). Thus indeed,
| Bnul|L2 is bounded. Thus B,u is bounded in L?(R™), hence has a weakly conver-

gent subsequence, but this mus SSORYERRS tQ 1Bu when paired with test functions.
Thus in fact Bu € L?(R™) and (5.117) follows.

5.16. Hormander’s propagation theorem

. . 22.10.2007.126
There are still some global issues to settle. Theorem % I, which has been proved
above, can be 1@med1ate1y globahze(.i and. ml(j,rolocahzed AL, _t!}lla% same time. It is
also coordinate invariant — see the discussion in Chapter %, So can be transferred
to any manifold as follows.

]22.10.2007.174‘ THEOREM 5.3. If P € W™(M) has real principal symbol and is properly sup-
ported then for any distribution uw € C~°(M),
[22.10.2007.175] (5.136) WF(u) \ WF(Pu) C $(P)

is a union of maximally extended null bicharacteristics in X(P) \ WF(Pu).

Some consequences of this %ﬁla‘cion to the wave equation are discussed below,

and extension of it in Chapter [7. 99 10.2007 198
As already noted, the str netlieped gssumption on the regularity of 51%%7(%@)7

is not necessary to deduce (%Wg-s%qggapg}% (El [6) for ;5.[ 7). This is

not important in the proof of Theorem 5.I since we are making a much stronger

assumption on the gg}l&{ﬂ%@;g gPu anyway. However, to get the Orf rfé%f}??s "

version of Theorem %W 5‘8}{??}%&11}’7 we only need to prove ETTW

the corresponding form of (mn turn involves a more careful choice of

¢(x) using the following sort of division result.



[22.10.2007.177 |

[22.10.2007.178 |

22.10.2007.179 |

22.10.2007.180 |

22.10.2007.181 |

22.10.2007.182 |

22.10.2007.183 |

proof

BEE

mult

5.17. ELEMENTARY CALCULUS OF WAVEFRONT SETS 149

LEMMA 5.12. There exist a function ¢ € C*(R) with support in [0,00) which
is strictly positive in (0,00) and such that for any 0 < f € C*(R),

(5.137) /_ fY2(tdt' = d(t)a(t), a € C°(R), supp(a) C [0, 00).

PRrROOF. This is true for ¢ = exp(—1/t) in ¢t > 0, ¢(¢t) = 0 in ¢ < 0. Indeed the
integral is then bounded by

(5.138) /t F(#) exp(—2/t)dt| < Cexp(~2/t), £ < 1.

This shows that a(t), defined as the quotient for ¢ > 0 and 0 for ¢ < 0 is bounded
by C¢(t). A similar argument show that each of the derivatives are also uniformly
bounded by ¢t~V ¢(t) and is therefore also bounded. (]

Taking ¢ to be such a function in the discussion above (near the lower bound
of its support) allows the symbol a defined by integration, and then a,, to be
decomposed as

(5.139) an = bngn + ay,

where @/, is uniformly supported in ¢ < ¢’/10 and g, is also a uniformly bounded
sequence of symbols of order 0. This results in a similar decomposition for the
operators

(5.140) Ap =BGy + AL + R,
where R/, is uniformly of order —1, G,, is uniformly of order 0 and A/, also uniformly
of order 0 is uniformly supportedziZU' 116118016%'{99 where we alr %i;{ok%\zy' %bfmt u €
L?(R™). The previous estimate (%.135) on the left side of (b. can then be
replaced by

(5.141) [{u, Ay Pu)| < (B, G P)| + |, AY Pud| + | (u, B, Pu)| < C|| Byul| + C”

. . . . [22.10.2007.150 ]
using onlyQ,Ehﬁ) gggyﬁ%l estimate in (%l [6) to control the third term. The other

terms in (%.IBZH behave as before which results in an estimate

(5.142) |Bnull* < C'|| Bpul| + C”

which still implies that [[Bynu| is bounded, so the argumeng,can be conpleted
as before. This then prov%g .t}%e. 2‘(?(}176&‘%31’ form of Theorem 15.2. and hence, after

reinterpretation, Theorem 5:3.

5.17. Elementary calculus of wavefront sets

We want to achieve a reasonable understanding, in terms of wavefront sets, of
three fundamental operations. These are

(5.143) Pull-back: F*u
(5.144) Push-forward: F,u and
(5.145) Multiplication: wuj - us.
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In order to begin to analyze these three operations we shall first introduce and
discuss some other more “elementary” operations:

(5.146) Pairing: (u,v) — (u,v) = /u(m)v(m)dz
(5.147) Projection: u(x,y) — /u(x,y)dy

(5.148) Restriction: u(z,y) — u(zx,0)

(5.149) Exterior product: (u,v) — (u®v)(z,y) = u(z)v(y)
(5.150) Invariance: F*u, for F' a diffeomorphism.

£
Here %_MS and ( % l are spegial cases of %143 ), H? of %_1070171) and (%9) is

a comblnatlon of (5.145) and (5.143). Conversely the three fundamental operations
can be expressed in terms of these elementary ones. We can give direct definitions
of the latt raivghich we then use to analyze the former. We shall start with the
pairing in (5.146).

5.18. Pairing

We know how to ‘pair’ a distribution and a C* function. If both are C*° and
have compact supports then

(5.151) (ug,u9) = /ul(x)U2(ac)dx

and in general this pairing extends by continuity to either C; *°(R™) x C*>°(R") or
C>®(R™) x C;>°(R™) Suppose both u; and ug are distributions, when can we pair
them?

PROPOSITION 5.10. Suppose u1, us € C;°(R™) satisfy
(5.152) WF(u1) NWF(ug) =0
then if A € W9 (R™) has
(5.153) WF(u1) "WEF'(A) = 0, WF(ug) NWF'(Id—A) = ()
the bilinear form
(5.154) (u1,u2) = (Auy, ug) + (ug, (Id —A*)ug)
is independent of the choice of A.

9.10
Notice that A satisfying (hTT53) does indeed exist, just choose a € S, (R™;R™)
to be identi%a_%ly 1 on WF(us), but to have conesupp(a) N WF(u;) = @, possible
because of (5.152), and set A = qz(a).

PRrooOF. Of course ( % [54) makes sense becaube Aul7 Id —A*)ugy € C*(R™) by
microlocality and the fact that WF'(A) = - To prayg fhat this definition
is independent of the choice of A, suppose A’ also satlsﬁes )5 53). Set

(5.155) (ur,ug) = (A'uy,uz) + (uy, (Id —A")*us).

Then

(5.156) WF'(A— A)NWF(u;) = WF' (A — A)*) N WF(ug) = 0.
The difference can be written

(5.157) (ur,uz)" — (ug,uz) = (A — A)uy, uz) — (u1, (A — A") uz).
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Naturally we expect this to be zero, but this is not quite obvious since u; and us
are both distributions. We need an approximation argument to finish the proof.
Choose B € ¥ (R™) with

5 158 WF'(B) N WF(u1) = WF'(B) N WF (ug) =0
(5.158) WEF'(Id —B)NWF(A - A") =
If v, — ug, in C;*°(R™), v, € C°(R™) then
(5.159) wy, = ¢[(Id —=B) v, + Bug] — uz

if ¢ =1 in a neighbourhood of supp(uz), ¢ € C°(R™). Here Buy € C*°(R™), so
(5.160)
(A—Aw, = (A— AN¢(Id—B) - v, + (A — A")¢pBus — (A — A')uz in C*(R"),

since (A — A')¢(Id —B) € U= (R"). Thus
((A— AN uy,ug) — (A — A up,us)
(ur, (A = A) wn) — (ug, (A = A') ua),
since wn, —> s in C=(R™) and (A — A'Yw, —» (A — A")* us in C%(R™). Thus
(5.161)  (u1,u2) — (ui,ug) = nlgr;()[((A — A ur,w,) — (ur, (A— AN w,] = 0.
(]

Here we are using the complex pairing. If we define the real pairing by
(5.162) (u1,uz) = (u1,s)
then we find
PROPOSITION 5.11. If uy, ug € C;*°(R"™) satisfy
(5.163) (x,8) € WF(u1) = (z,—&) ¢ WF(ug)
then the real pairing, defined by
(5.164) (u1,u2) = (Aug,ug) + (ug, (Id —A"us),
where A satisfies (%%83)7 is independent of A.

PRrROOF. Notice that

(5.165) WE(@) = {(2,—&) € R™ x (R"\0); (2,€) € WF(u)}.
We can write (%11'(733), using (%%82), as
(5166) (ul,u2) = (Au1,62> + <’LL1, (Id 7At)UQ>.

Since, by definition, Atus = A*usy,
(5.167) (uhug) = <Au17ﬂg> + <U1, (Id —A*)ﬂ2> = <u1,ﬂg>
9.11 9.17 9.9
is defined by (F&rm), since (}31'63) translates to (h52). O
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5.19. Multiplication of distributions

9.18
The pairing result (% I 64)9(;;%]; be used to define the product of two distributions
under the same hypotheses, (5.163).

PROPOSITION 5.12. If uy, ug € C; °(R"™) satisfy

(5.168) (z,8) € WF(u1) = (z,—&) ¢ WF(us)
then the product of uy and ug € C°°(R™) is well-defined by
(5.169) uruz(¢) = (u1, puz) = (Pui,u2) ¥V ¢ € C°(R")

9.18
using (% 64).

PrOOF. We only need to observe that if u € C;*°(R") and A € U7 (R™) has
N u) = () then for any fixe €
WEF'(A) N WF(u) = 0 then f fixed ¥ € C°(R™)

(5.170) [V Apulcr < Cllpllcr p=k+ N
for oIS N, depending on m. This implies the continuity of ¢ — ujus(¢) defined
by (5.169). O

5.20. Projection

Here we write R} = RP x R’; and define a continuous linear map, which we
write rather formally as an integral

(5.171) C.(R") 5 ur— /u(x,y)dy € C, > (RP)

by pairing. If ¢ € C*°(RP) then

(5.172) i € CP(R™), m: R"> (z,y)— 2 €RP
10. 1

and for v € C;°°(R™) we define the formal ‘integral’ in (h’?l) by

(5.173) ([ wle ). 6) = ()., 0) i= u(ri).

In this sense we see that the projection is dual to pull-back (on functions) under
71, 80 is “push-forward under my,” a special case of (5.144). The support of the
projection satisfies

(5.174) supp ((m1)u) C w1 (supp(u)) V u € C°(R"™),
as follows by duality from
(5.175) supp(r7¢) C ;' (supp @)

PROPOSITION 5.13. Let m; : RPYF — RP be projection, then for every u €

Co > (RPHF)
WEF ((m1).u) C {(2,£) € R x (RP\0);

(5.176) { b
3y € R with (z,y,£,0) € WF(u)}.

Proor. First notice that
(5.177) (m1)« : CP(R™) — C°(RP).

10.4

Combining this with (hTI74) we see that

(5.178) sing supp ((71)«u) C 1 (sing supp u)
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10.6
which is at least consistent with Proposition % 3. To prove the proposition in full
let me restate the local characterization of the wavefront set, in terms of the Fourier
transform:

LEMMA 5.13. Suppose K CC R™ and I' C R"\0 is a closed cone, then
(5.179) " © Co(R™), WF(u) N (K xT) =0, Ae UL (R"), WF'(4) C K xT
. — Au € S(R").

In particular

sy " ECTTIR WEON (K xT) = 0. 6 € G R sup(o) € K
5.180 —
= du(&) is rapidly decreasing in T.

Conversely suppose T' C R™" N0 is a closed cone and u € S'(R™) is such that for
some ¢ € C°(R™)

(5.181) @({) is rapidly decreasing in T’
then
(5.182) WEF(u) N {z € R";¢(x) # 0} x int(T") = 0.

10.7
With these local tools at our disposal, let us attack (5.176). We need to show
that

(7,€) € R? x (RP\0) s.t. (T,y,&,0) ¢ WF(u) Vy € R”
= (T,€) ¢ WF ((m1)su) .

Notice that, WF(u) being conjg and m(WF(u)) being compact, WF (u)N(R™ x St
is compact. The hypothesis (5.183) is the statement that

(5.184) {Z} x RF x S"71 x {0} N WF(u) = 0.

Thus T has an open neighbourhood, W, in R?, and (£, 0) a conic neighbourhood 7,
in (R™\0) such that

(5.185) (W x RF x v1) N WF(u) = 0.
Now if ¢ € C°(RP) is chosen to have support in W

(5.183)

—

(5.186) (rre)u(€, n) is rapidly decreasing in ;.
Set v = ¢(m1)«u. From the definition of projection and the identity
(5.187) v = ¢(m)u = (m).[(7]P)ul,
we have
(5.188) 3(€) = (e ) = (={O)u) €, 0).

10.16
Now (m) shows that v(§) is rapidly decreasing in 71 N (R” x {0}), which is a
cone around ¢ in RP. Since v = ¢(m).u this shows that (z,&) ¢ WF ((m1).u), as
claimed. 0

Before going on to talk about the other operations, let me note a corollary of
this which is useful and, even more, helps to explain what is going on:

COROLLARY 5.1. Ifu € C;*°(R") and
(5.189) WF(u) N {(2,y,£,0);2 € RP,y € R* £ e RP\0} =
then (m1)s(u) € C(R™).
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10.7
PROOF. Indeed, (h?ﬁ) says WF ((m1).u) = 0. O

Here, the vectors (z,y, £, 0) are the ones “normal” (as we shall 566 {gally conor-
mal) ) 1‘(8he surfaces over which we are integrating. Thus Lemma %._RTand Corol-
lary moth state that the only singularities that survive integration are the ones
which are conormal to the surface along which we integrating; the ones even par-
tially in the direction of integration are wiped out. This in particular fits with the
fact that if we integrate in all variables then there are no singularities left.

5.21. Restriction
Next we wish to consider the restriction of a distribution to a subspace
(5.190) C.MR") sur—u | {y=0} e C=RP).

This is not always defined, i.e. no reasonable map (hgo) exists for all distributions.
[E(awlegver under an appropriate condition on the wavefront set we can interpret
in terms of pairing, using our definition of products. Thus le
in t f pairi i definiti f products. Thus let

(5.191) t:RP 52 +— (2,0) € R

be the inclusion map. We want to think of u [ {y = 0} as ¢*u. If u € C2°(R™) then
for any ¢’ € C3°(R™) the identity

10.35| (5.192) Fu(t*d') = u(¢'6(y))

holds.

The restriction map ¢* : C°(R™) — C°(RP) is surjective. If u € C;*°(R™)

satisfies the condition
10.21] (5.193) WEF(u) N {(2,0,0,n);z € RP,n e R"P} =)
then we can interpret the pairing
cu(g) = u(¢'d(y)) ¥V ¢ € C°(RP)
where ¢’ € C2°(R") and (*¢' = ¢

9.20
to define (*u. Indeed, the right side makes sense by Proposition hZ
Thus we have directly proved the first part of

10.21 10.20
10.22 PROPOSITION 5.14. Set R = {u € C;>*(R"); (%.]93) holds} then (LT.IEM) de-
fines a linear restriction map * : R — C;>°(RP) and

10.23]| (5.195) WF(:*u) C {(z,€) € R? x (RP\0); I 5 € R" with (z,0,§,m) € WF(u)}.
10.21
ProoOF. First note that (%.IQZ}) means precisely that

10.20| (5.194)

10.24| (5.196) @(€,m) is rapidly decreasing in a cone around {0} x R\0.
10.35
When u € C2°(R™) taking Fourier transforms in (%.IQQ) gives
— 1
0.25] (5.197) Fule) = — / (e, n)dn.
(2m)*

10.24 10.25
In general (%.196) ensures that the integral in (%.197) converges, it will then hold
by continuity. 10.95
We actually apply (% [97) to a localized version of u; if ¢» € C2°(RP) then

—

10.26| (5.198) Yot (u)(§) = (27T)_k/12(€)ﬂ(§,77)d77o
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Thus suppose (7, £) € RP x (RP\0) is such that (Z,0,&,7n) ¢ WF(u) for any n. If ¢
has support close to T and ¢ € C2°(R™P) has support close to 0 this means

(5.199) z/;/@(g, n) is rapidly decreasing in a cone around each (&, 7).

_ 10.24
We also have rapid decrease around (0,7) from (% 196) (make sure you understand
this point) as

(5.200) ?Zc\u(g, 7) is rapidly decreasing in v x RP
_ 10.25
for a cone, «, around £. From (% 97)

(5.201) wL/*(C\u)(é) is rapidly decreasing in +.

¢ WE(.*(Cu)). Of course if we choose ((y) = 1 near 0, t*(Cu) :18*%)
so (z,€) ¢ WF(u), provided (7,0,&,1) ¢ WF(u), for all 5. This is what (hgs)
says. (Il

Try to pjgtyye what is going on here. We can restate the main conclusion of
Proposition 5.14 as follows.

Take WF(u) N {(,0,&,1) € R? x {0} x (R™\0)} and let Z denote projection
off the n variable:

(5.202) R” x {0} x R? x R¥ -2 RP x RP
then
(5.203) WF (¢ u) C Z(WF(u) N {y = 0}).

We will want to think more about these operations later.

5.22. Exterior product

This is maybe the easiest of the elementary operators. It is always defined

is a bilinear map such that
WF(u; Kug) C [(supp(u1) x {0}) x WF(us)]
U [WF(u1) X (supp(uz) x {0})] U [WF(u1) x WF(uz)].

(5.204) (w1 Bz (9) = w1 (ua(d(a, ) = un(ur (B, ).
Moreover we can easily compute the Fourier transform:

(5.205) ur Buz(€,m) = 4 (E)ia(n).

PROPOSITION 5.15. The (exterior) product

(5.206) C®°(RP) x C;°(R*) «— C7®(RPHF)

10.33| (5.207)

PROOF. We can localize near any point (Z,7) with ¢1(x)¢2(y), where ¢q is
supported near T and ¢, is supported near y. Thus we only need examine the
decay of

10.34] (5.208) $rur © dous = rus (€) - daua(1).

Notice that if ¢>/1u\1 (€) is rapidly decreasin gronnd £ # 0 then the product is rapidly
decreasing around any (£,7). This gives (%.2'()7 a
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5.23. Diffeomorphisms

We next turn to the question of the extension of F*, where F': 0y — Q5 is
a C*> map, from C*(Q3) to some elements of C~°°(£2z). The simplest example of
pull-back is that of transformation by a diffeomorphism.

We have already noted how pseudodifferential operators behave under a diffeo-
morphism: F' : ; — Qo between open sets of R™. Suppose A € U2 (R") has
Schwartz kernel of compact support in 2; x € then we define

Sect .Cool
by Ap = G* - A-F*, G = F-L. In § B se-showed that Ap € U™ (R™). Tn fact we
showed much more, namely we computed a (very complicated) formula for the full
symbols. Recall the definition of the cotangent bundle of R™

(5.210) T*R™ ~ R" x R"
identified as pairs of points (7, €), where T € R™ and
(5.211) & = df(7) for some f € C(R™).

The differential df (T) of f at T € R™ is just the equivalence class of f(z)— f(T) € Zz
modulo Z2. Here

Iz = {g € C>*(R"); g(T) =0}
(5:212) Z2={Y g, gz,h eI}
finite

_ 11.2 11.3
The identification of £, given by (hTZTO) and (hT.ZTl), with a point in R™ is obtained
using Taylor’s formula. Thus if f € C*°(R"™)

(5.213) ) + Z 6% (@ =)+ Y gij(@)aiw;.

ij=1

The double sum here is in Z2, so the residue class of f(z) — f(Z) in Zz/Z2 is the
same as that of

of _
(5.214) Z 5. (@)@ = 7);.
=1 9%
That is, d(x — Z); = dxj, j = 1,...,n form a basis for TX*R" and in terms of this
basis
(5.215) Z:: o, T

Thus the entries of £ are just (88—9{1, .. Bz ) for some f. Another way of saying this

is that the linear functions £ - x = &1 + Eoxo - - - £y, have differentials spanning
TrR™.
So suppose F': 1 — Q9 is a C* map. Then

(5.216) F* i T2y — T2Q4, § = F(T)
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is defined by F*df(y) = d(F*f)(z) since F* : Ty — Iy, F* : T2 — I2. In
coordinates F(z) =y =

(5.217) aij(F*f(x)) - a% (Fla)) = > 2L ) 2%k
ie. F*(n-dy)=¢ -dx if

11.6] (5.218) = Xn: a—F’f(x) k-

course if F' is a diffeomorphism then the Jacobian matrix %—5 is invertible

and (5.218) is a linear isomorphism. In this case
F* T3 R «— T4 R"
(2, &) «— (F(x),n)
11.6
with £ and 1 connected by (MS) Thus (F*)* : C°(T*Qy) — C>°(T*Q).

[y
~

1.7] (5.219)

I

1.8 PrOPOSITION 5.16. If F' : Q1 — Qo is a diffeomorphism of open sets of R™
and A € U (R™) has Schwartz kernel with compact support in Q1 X Qo then

11.9] (5.220) om(Ar) = (F*) om(A)

and

11.10] (5.221) F* (WF'(AF)) = WF'(A).

It follows that symbol o, (A) of A is well-defined as an element of SQZ*“] (T*R™)
independent of coordinates and WF'(A) C T*R™\0 is a well-defined closed conic
set, independent of coordinates. The elliptic set and the characteristic set ¥, are
therefore also well-defined complementary conic subsets of T*Q\O.

PROOF. Look at the formulae. O

The main use we make of this invariance result is the freedom it gives us to
choose local coordinates adapted to a particular problem. It also suggests that
there should be neater ways to write various formulae, e.g. the wavefront sets of
push-forward and pull-backs.

11.12 PROPOSITION 5.17. If u € C;*°(R™) has supp(u) C Q2 and F : Q1 — Qo is
a diffeomorphism then
11.13| (5.222)

OF;

WE(F*u) C {(z,£) € R" x (R"\0); (F(x),n) € WF(u),n; = vy (2)&:}-

PROOF. Just use the standard definition
(5.223) WF(F*u) = ((|{2(4); A(F*u) € C™}.

To test the wavefront set of F*u it suffices to consider A’s with kernels supported
in Q; x Q since supp(F*u € ; and for a general pseudodifferential operator A’



158 5. MICROLOCALIZATION

there exists A with kernel supported in €y such that A'u — Au € C*°(R™). Then
AF*u € C (1) <= Apu € C°(€2). Thus

(5.224) WF(F*u) = ({2(A); Apue >}
(5.225) = ({F*(S(Ar)); Apu € C*}
(5.226) = F*WF(u )

since, for u, it is enough to consider operators with kernels supported in Q5 xQ5. [

5.24. Products

Although we have discussed the definition of the product of two distributions
we have not yet analyzed the wavefront set of the result.

PROPOSITION 5.18. If uy, us € C;°°(R™) are such that
(5.227) (2,€) € WF(u1) = (z,—§) ¢ WF(uz)
then the product ujug € C;°(R™), defined by Proposition %%92 satisfies
WF (uruz) C {(z,€); 2 € supp(u1) and (z,£) € WF(uz)}
(5.228) U{(z,€);z € supp(uz) and (z,€) € WF(u1)}
U{(z,€);€ = m +ma, (z,m:) € WF(uy),i = 1,2},

PROOF. We can represent the product in terms of three ‘elementary’ opera-
tions.

(5229) U1UL (l‘) =" [F* (ul X ’U,Q)]
where F' : R2" — R2" ig the linear transformation
(5.230) F(z,y) = (z+y,x —y)

11,15
and ¢ : R" < R™ x {0} C R?" is inclusion as the first factor. Thus (5.229)

corresponds to the ‘informal’ notation
(5.231) W () = w (z + y)us(e — ) | {y = 0}

and will follow by continuity o 98 e analyse the wavefront set properties.
We know from Proposition that

WF (u1 Kug) € {(X,Y,E,H); X €supp(u1),E =0,(Y, H) € WF(u2)}
(5.232) U{(X,Y,E,H); (X,E) € WF(u;), Y € supp(uz), H =0}
U{(X,Y,E,H); (X,Z) € WF(u), (Y,H) € WF(uz)}.
Since F is a diffeomorphism, by Proposition %TT
WE(F* (uy B uz)) = { (2,9, &, ); (F'(2,),Z, H) € WF(u; K us),
(&n) =

where F! is the transpose of F' as a linear map. In fact F* = F, so

WF(F*(u; Rug)) C

{(@,y,&m)z+ye supp(ul) E+n=0, (l‘—yé(é—n)) € WF(uz)}

ANE, H)}.

U{(z,y,&n); (@ +y, 5 (£+77)) € WF(u1), (fc—yé(é—n)) € WF(u2)}
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10.22
and so using Proposition % 1

WE(F*(u1 Kug)) [ {y =0}
C {(2,0,& —&); 2 € supp(ur), (z,&) € WF(uz)}
) {(x, 0, ga 77)7 ($ € Supp(u2)a (I,g) € WF(U’Q)}
1 1
U {(,0,6m); (2, 5(E+m) € WF(ua), (2, 5 (€ —m)) € WF(ua) }
Notice that
(5.233)
1 1
(2,0,0,n) € WF (F*(u1 R uy)) = (=, 577) € WF(uy) and (z, 577) WF(us2)

which introduces the assumption under which ujus is defined. Finally then we see
that

(5.234)
WF (ugug) C {(z,f), x € supp(uq), (x,€) € WF(UQ)}

U{(z,€);z € supp(uz), (z,£) € WF(u1)}
U{(x,€); (z,m) € WF(u1), (z,1m2) € WF(ug) and § =11 + 12}

Lo . . . %lféé
which is another way of writing the conclusion of Proposition 5.18. O

5.25. Pull-back
Now let us consider a general C*° map
(5235) F:Q — Qs O C Rn,QQ C R™.

Thus even the dimension of domain and range spaces can be different. When can
we define F*u, for u € C;°°(22) and what can we say about WF(F*u)? For a
general map F' it is not possible to give a sensible, i.e. consistent, definition of F*u
for all distributions u € C~>°(Qs).

For smooth functions we have defined

(5.236) F*:C(Q) — ()

but in general F*¢ does not have compact support, even if ¢ does. We therefore
impose the condition that F' be proper

(5.237) FYUK) eV K €y,

(mostly just for convenience). In fact if we want to understand F*u near T; €
we only need to consider u near F *1} c Q.

The problem is that the map (%235) may be rather complicated. However any
smooth map can be decomposed into a product of simpler maps, which we can
analyze locally. Set

(5.238) graph(F') = {(m,y) €0 xQg; y= F(m)} L Oy X Q.

This is always an embedded submanifold of €7 x Qo the functions y; — Fi(z),
i =1,...,N are independent defining functions for graph(F) and z,...,x, are
coordinates on it. Now we can write

(5.239) F=myou1pog
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where g : @ <— graph(F) is the diffecomorphism onto its range « — (z, F'(z)).
This decomposes F' as a projection, an inclusion and a diffeomorphism. Now con-
sider

(5.240) F*¢p=g" -1 -m5¢

i.e. F*¢ is obtained by pulling ¢ back from 5 to €1 x Qq, restricting to graph(F)
and then introducing the z; as coordinates. We have directly discussed (73¢) but
we can actually write it as

(5.241) T30 = 1R 6(y),

. ) . 11.21
so the result we have proved can be applied to it. So let us see what writing (5.240)
as

(5.242) Fr¢=g"oup(1Xe)
tells us. If uw € C;°°(€2) then
(5.243) WF(1Xu) C {(2,9,0,n); (y,n) € WF(u)}

by Proposition 5.1b. So we have to discuss ¢} (1 X u), i.e. restriction to y = F(x).
We can do this by making a diffeomorphism:

(5.244) Tr(z,y) = (z,y + F(z))
so that T (graph(F)) = {(x,0)}. Notice that g o Tr = m, s0
(5.245) Fr¢= 1],y (TF(1 K w)).

11.12
Now from Proposition %.I 7 we know that
(5.246) WF(Tp(1Xu)) = Th(WF(1 X u))
={(X,Y,E, H): (XY + F(X),&n) € WF(1 R u),
OF;
8xi

i.e.

" OF;
j J

So consider our existence condition for restriction to y = 0, that £ # 0 on WF(T7 (1K
u)) lie.

OF;

(5.248) (F(a),m) € WE(w) = 3> X3 gy 20
If (%1272[%) holds then, from (%12%) and Proposition %91.72?2

OF;
(5.249) WF(F*u) C {(m,f); 3 (F(x),n) € WF(u) and &; = 8—?(37)77]}

11.29 11.30
We can reinterpret (bZIB) and (5.249) more geometrically. The differential of

F' gives a map
F* . T;v(z)QQ — T;Ql Vze
(5.250) OF}

(F(x)vn) — (mvf) where 52 = 287.13177]
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11.29
Thus (M) can be restated as:
5 951 YV z € 4, the null space of F) : T;(x)Qg — Ty
(5.251) does not meet WF (u)

11.30
and then (%27[9) becomes

(5.252) WE(F*u) C | FZ[WF(u) N T, Q] = F*(WF(u))
r€Q

*

(proved we are a little. careful in th t .51 is not a map; it is a 17'1@}%2'0@ betweep
T*Qp and T*() and iy this sense (%.25 ) holds. Notice that (%.249) is a sensi-
ble “consequence” of (E‘TZEIL since otherwise WF(F*u) would contain some zero
directions.

PROPOSITION 5.19. If F': Q1 — Q9 is a proper C*™ map then F* extends (by
continuity) from C°(Qg) to

(5.253) {ueCr®(Qa); F*(WF(u)) N (1 x 0) =0 in T*Q1 }

11.32
and (%252) holds.

5.26. The operation F,

Next we will look at the dual operation, that of push-forward. Notice the basic
properties of pull-back:

(5.254) Maps CZ° to C°(if F' is proper)
(5.255) Not always defined on distributions.
Dually we find

PROPOSITION 5.20. If F' : Q3 — Qo is a C*° map of an open subset of R™
into an open subset of R™ then for any u € C>°(£2)

(5.256) Fi(u)(¢) = u(F"¢)
1s a distribution of compact support and
(5.257) F.: C7°(Q1) — C°(Q2)

has the property:
WEF(F.u) C {(y,n);y € F(supp(u)),y = F(z), F;n = 0}U
{ty,m);y = F(z),(z,Fyn) € WF(u)}.

PRrROOF. Notice that the ‘opposite * of (%22%4) and (%22%5) hold, i.e. Fy is always
defined buf even if u € C2°(£;1) in general Fou ¢ C°(€22). All we really have to
prove is (%258) As usual we look for a formula in terms of elementary operations.
So suppose u € C°(€21)

Fou(d) = u(F*9) ¢ €Cx(Q)
(5.259) = /u(x) (b(F(x)) dx
- / w(@)(y — F(z)) o(y) dyde.

(5.258)

Thus, we see that
(5.260) Fou=mn.H"(uX0)
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where § = §(y) € C;°°(R™), H is the diffeomorphism
(5.261) H(z,y) = (z,y - F(z))

and 7 : R”“"” g— R™ is projection off the first factor.

Thus %260 is the desired decomposition into elementary operations, since
ulkd € C oo(R"””), T " (uid) is always defined and indeed the map is continuous,
which actually proves (5.260).

So all we nee t 1do is estimate the wavefront set using our earlier results.
From Proposition 5.15 it follows that

(5.262)
WF(uR6) C {(2,0,&,n);2 € supp(u), £ =0} U {(,0,£,0); (z,€) € WF(u) }
u{mom)-(w §) € WF(u)}
= {(,0,&,m);z € supp(u),£ =0} U {(z,0,£,m); (z,£) € WF(u)}.

Then consider what happens under H*. This is a diffeomorphism so the wavefront
set transforms under the pull-back:

WE(H* (u K 6)) = WF(u()3(y — F(x))

= (@, Fa), 2 )5 = & - ZF< o), (2,0,6,m) € WP(u 5 9)}
(5263 — {(@, F(@),Z,m); % € supp(u :—Z
O{(e, F(2),Z,m)im € R™ (2,6) € WF(u)), 5 = & - gfjm}.

Finally recall the behaviour of wavefront sets under projection, to see that

WF(F u) {(y,n)' 3 (z,y,0,n) € WF(H*(u@é))}

= { (y,m (z) for some x € supp(u) and
OF;
a—me =0,72=1,. ,n}

U{(y,n);y = F(z) for some (z,£) € WF(u) and

ZE) m,z:l,...m)}.

This says

(5.264) WEF(F,.u) C {(y,n);y € F(supp(u)) and F}(n) =0}

(5.265) U{(y,n);y = F(z) with (z, F}n ) € WF(u)}

which is just (%_22%8) O

As usual one should note that the two terms here are “really the same”.
Now let us look at F, as a linear map,

(5.266) F.: C2(Q1) — C(Q).
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12.8
As such it has a Schwartz kernel, indeed (%260) is just the usual formula for an
operator in terms of its kernel:

(5.267) Fou(y) = /K(y,x)u(a:)dm, K(y,z) =d6(y — F(x)).

So consider the wavefront set of the kernel:

(5.268)  WE(8(y — F(z)) = WF(H"5(y)) = {(y. 251,§);y = F(),§ = Fyn}.
Now changing the order of the factors we can regard this as a subset

(5.269) WF'(K) = {((4,m), (@,))iy = F(x), € = Fn} C (2 x R™) x (4 x R").

As a subset of the product we can regard WF’'(K) as a relation: if T C Qo x
(R™\0) set

WEF/ (K)ol =
{(y,n) € Q2 x (R™\0);3 ((y,m)), (x,€)) € WF'(K) and (z,£) € T'}
Indeed with this definition
(5.270) WF(F,u) C WF'(K) o WF(u), K = kernel of F,.

5.27. Wavefront relation
One serious application of our results to date is:

THEOREM 5.4. Suppose 1 C R™, Qs C R™ are open and A € C~°(Q; x Q)
has proper support, in the sense that the two projections

(5.271) supp(A)

Ql Q2
are proper, then A defines a linear map
(5.272) A:CX(Q) — C ()

and extends by continuity to a linear map
(5.273) A:{ueC;™(X);WF(u)Nn{(y,n) € D x (R™\0);

(5.274) 3 (2,0,y,—n) € WE(K)} =0} — C, ()
for which

(5.275) WF(Au) C WF'(A) o WF(u),

where

WEF'(A) = {((2,), (y,m) € x R™) x (Qa x R™); (&,77) # 0
and (z,y,&,—n) € WF(K)}.

PrOOF. The action of the map A can be written in terms of its Schwartz kernel

(5.276)

(5.277) Aufz) = / K y)uly)dy = (m)(K - (1 8u).

Here 1 X u is always defined and
(5.278) WF(1Ru) C {(2,9,0,n); (y,n) € WF(u)}.
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So the main question is, when is the product defined? Our sufficient condition for
this is:

(5.279) (z,y,§,m) € WE(K) = (2,y,—§, —n) ¢ WF(1 K u)
which is
(5.281) ie. (y,—n) ¢ WF(u)
12.18
This of course is (5.274):
(5.282) Auw is defined (by continuity) if
(5.283) {(y,m) € WF(u); 3 (2,0,y,—n) € WF(A)} = 0.

Then from our bound on the wavefront set of a product
WF (K- (1Xu)) C
{(@,y.&m):(&n) =€) +(0,n") with
(5.284) (z,y,¢,n') € WF(K) and (z,7") € WF(u)}
U{(2,y,&m); (2, €,m) € WEF(K), y € supp(u) }

U{(z,y,0,m)i(z,y) € supp(A)(y, ) € WF(u)}.
This gives the bound
(5.285) WF (m(K - (1R w))) C {(z,€); (z,y,£,0) € WF(K - (1K u)) for some y}
(5.286) C WF'(A) o WF(u).
O

5.28. Applications

Having proved this rather general theorem, let us note some examples and

applications.
First, for pseudodifferential operators we know that
(5.287) WEF'(4) € {(z,2,£,€)}

. . . . Do %_22'%% .

i.e. corresponds to the identity relation (which is a map). Then (5.275) is the
microlocality of pseudodifferential operators. The next result also applies to all
pseudodifferential operators.

COROLLARY 5.2. If K € C7°°(Q1 x Q) has proper support and

(5.288) WF' (K) N {(x,y,£,0)} =0

then the operator with Schwartz kernel K defines a continuous linear map
(5.289) A:CX () — C°(M).

If

(5.290) WF'(K) N {(z,y,0,7)} =0

then A extends by continuity to

(5.291) A:CT0(0) — C ().

12.17 12.26

ProOOF. Immediate from (5.272)-( ). O
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5.29. Problems
8.10
PROBLEM 5.9. Show that the general definition (%32) reduces to

(5.292)  WF(u) = |{Zo(A); A€ U (R") and Au € C*(R")}, u e S'(R")

and prove the basic result of ‘microlocal elliptic regularity:’

Ifue &'(R") and A € ¥ (R") then
(5.293)
WF(u) C £(A4) UWF(Au).
ProOBLEM 5.10. Compute the wavefront set of the following distributions:

d(z) € S'(R"), |z| € S'(R™) and

(5.294) @ 1 |z <1
n({T) =
XE 0 |z > 1.
PROBLEM 5.11. Let I' € R™ x (R™\.0) be an open cone and define
(5.295) Co(R™) ={u € C;=(R"); Au € C®(R")
(5.296) vV Ae vl (R") with WF'(A)nT =0}.

Describe a complete topology on this space with respect to which C°(R™) is a dense
subspace.

PROBLEM 5.12. Show that, for any pseudodifferential operator A € ¥ (R"™),
WF'(A) = WEF'(4%).

PrROBLEM 5.13. Give an alwatlve proof to Lemma %5 along the following
lines (rather than using Lemma If o1, (A) is the left reduced symbol then for
e > 0 small enough

(5.297) bo = e /oL(A) € ST (R™R™).
If we choose By € U™ (R™) with or(By) = by then
(5.298) Id—Ao By =G € VY (R")
has principal symbol
(5.299) 00(G) =1— 0 (A) - by.
From (%&7)
(5.300) 75/40'0(G) = Ve/4-
Thus we conclude that if o7,(C) = 7,/4 then
(5.301) G = (Id —0)G + CG with CG € 1 (R™).
Thus (%598) becomes
(5.302) Id-ABy=CG + R, WF'(Ry) %z
Let By ~ gl(CG)j, By € U1 and set
3>

(5.303) B = By (Id+By) € U (R™).



.10.

2007.

190 |

.10.

2007.

191 |

.10.

2007

.192]

.10.

2007

.193]

.10.

2007.

194 |

.10.

2007.

200 |

166 5. MICROLOCALIZATION

From (%g()?)

(5.304) AB = ABy(I + By)

(5.305) — (1d—CG) (I + B1) — Ry (1A +By)
(5.306) —1d+Rs, WF'(Ry) % 2.

Thus B is a right microlocal parametrix as desired. Write out the construction of
a left parametrix using the same method, or by findi $ %Oright parametrix for the
adjoint of A and then taking adjoints using Problem 5.12.

PrOBLEM 5.14. Essential uniqueness of left and right parametrices.

PRrROBLEM 5.15. If (Z,£) € R™x (R™0) is a given point, construct a distribution
u € C;°°(R™) which has

(5.307) WEF(u) = {(z,t{);t > 0} C R™ x (R"\0).
PROBLEM 5.16. Suppose that A € U7 (R™) has Schwartz kernel of compact

support. If u € C;*°(R™) use the four ‘elementary operations’ (and an earlier
result on the wavefront set of kernels) to investigate under what conditions

(5.308) k(z,y) = Ka(z,y)u(y) and then vy(x) = (m1)«k
make sense. What can you say about WF(y)?

PROBLEM 5.17. Consider the projection operation under 7 : RP x R¥ — RP,
Show that (7). can be extended to some distributions which do not have compact
support, for example

(5.309) {u € S'(R");supp(u) N K x R” is compact for each K CC R"}.
PrROBLEM 5.18. As an exercise, check the Jacobi identify for the Poisson bracket
(5.310) {£:{9: 03} + {9, {h. f}} + {h, {f,9}} = 0V f,9,h € C*(R*").

24.10.2007.189 . . .
PrROBLEM 5.19. The fact that (%.9”) determines Hj uniquely is equivalent to
the non-degeneracy of w, that

(5.311) w,w) =0V w=v=0.
24.10.2007.189
Show that if w is a non-degenerate form and (b. 1s used to define the Poisson
bracket by
(5.312) {f,9} = w(Hy, Hy) = dg(Hy) = Hyg

.. . |24.10,2007.191 o
then the Jacobi identity (hTBTOJ)_h_oIaﬁf and only if w is closed as a 2-form.

24.10.2007.198
PROBLEM 5.20. Check that a finite number of regions (@I)WEHe comple-
ment of a neighbourhood gi qénz}&;; airég that if @ is smooth and has compact support
in  then the estimates (mneighbourhoods imply that a € SM(R";R")
and conversely.
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CHAPTER 6

Pseudodifferential operators on manifolds

In this chapter the notion of a pseudodifferential on a manifold is discussed.
Some preliminary material on manifolds is therefore necessary. However the discus-
sion of the basic properties of differentiable manifolds is kept to a bare minimum.
For a more leisurely treatement the reader might well consult XX or YY. Our main
aims here are first, to be able to prove the Hodge theorem (given the deRham the-
orem). Then we describe some global object which are very useful in applications,
namely a global quantization map, the structure of complex powers and the zeta
function.

6.1. C* structures

Let X be a paracompact Hausdorff topological space. A C*° structure on X is
a subspace

(6.1) FcC%X)={u:X — R continuous }
with the following property:
For each T € X there exists elements f1,..., f,, € F such that for some open
neighbourhood 2 5 7
(6.2) F:Q35z— (fi(z),..., fu(z)) €eR"
is a homeomorphism onto an open subset of R™ and every f € F satisfies
(6.3) f1Q=goF forsome ge C®(R").

13.
The map (%2) is a coordinate system near Z. Two C*° structures F; and Fs
are ‘compatible’ if F; U F; is also a C*° structure. Compatibility in this sense is an
equivalence relation on C*° structures. It therefore makes sense to say that:

DEFINITION 6.1. A C* manifold is a (connected) paracompact Hausdorff topo-
logical space with a maximal C*> structure.

The maximal C* structure is conventionally denoted
(6.4) C>(X) c C'(X).
It is necessarily an algebra. If we let C3°(W) C C*>°(X) denote the subspace of

f gc%ions which vanish outside a compact subset of W then any local coordinates
(%77 have the property
(6.5) F*:CP(F() «— {ueC®(X); u=0 on X\K,K CC Q}.
Futhermore C*°(X) is local:

u: X — Rand VT e X 3Qz open, Qz 57,
(6:6) s.t. u— fz =0 on Qz for some fz € C¥(X) = u € C=(X).

167
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A map G: X — Y between C* manifolds X and Y is C* if
(6.7) G*: C®(Y) —C®(X)
ie. Gou e C®(X) for all u € C*(Y).

6.2. Form bundles

A vector bundle is a triple 7 : V' — X consisting of two manifolds, X and V,
and a surjective C*>° map m with each
(6.8) V, =n ' (z)
having a linear structure such that

(6.9) F={u:V — R,u is linear on each V,}

is a C*° structure on V compatible with C*°(V) (i.e. contained in it, since it is
maximal).

The basic example is the cotangent bundle which we defined before for open
sets in R™. The same definition works here. Namely for each T € X set

Tz = {u € C=(X);u(T) = 0}

Z={u= Z wiug; ug, v € Iy}
(6.10) finite
X =TI /12, T°X = | | T3 X.
TEX
Som:T*X — X just maps each T> X to T. We need to give T*X a C*> structure

so that “it” (meaning 7 : T*X — X) becomes a vector bundle. To do so note
that the differential of any f € C*(X)

(6.11) df : X —T'X df@)=[f-[f@)]eTeX
is a section (7 o df =1d). Put
(6.12) F={u:T"X — Ruodf : X — RisC®V f € C®(X)}.

Then F = C*°(T*X) is a maximal C* structure on 7*X and
Fiin = {u: T*X — R, linear on each T2 X;u € F}

is therefore compatible with it. Clearly df is C*°.

Any (functorial) operation on finite dimensional vector spaces can be easily seen
to generate new vectors bundles from old. Thus duality, tensor product, exterior
powers all lead to new vector bundles:

(6.13) T,X = ([;X)", TX = | | T.X
reX
is the tangent bundle

k factors

A’;X = {u T X X oo X T, X — R;u is multilinear and antisymmetric }
leads to the k-form bundle
APX = | AEX, AN X ~T0X
rzeX

where equivalence means there exists (in this case a natural) C*° diffeomorphism
mapping fibres to fibres linearly (and in this case projecting to the identity on X).
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A similar construction leads to the density bundles

n=dim X factors

QCX = {u T X A ANT, X — R; absolutely homogeneous of degree a}

that is
u(tvy A.oovg) = [HYu(vr A Avy).

These are important because of integration. In general if 7w : V — X is a vector
bundle then

C¥(X;V)={u: X —V; rou=Id}
is the space of sections. It has a natural linear structure. Suppose W C X is a

coordinate neighbourhood and u € C*(X;Q), Q = Q' X, has compact support in
W. Then the coordinate map gives an identification

QX +— QG yR" Va

and

(6.14) / w— / u(@), u = gu(2)|dal
g

is defined independent of coordiantes. That is the integral
(6.15) / (CR(X;Q) — R
is well-defined.

6.3. Pseudodifferential operators

We will start with a definition of pseudodifferential operators on a (not nec-
essarily compact) manifold which has lots of properties but may be a bit hard to
verify in practice.

DEFINITION 6.2. If X is a C* manifold and C°(X) C C=(X) is the space of
C* functions of compact support, then, for any m € R, U™(X) is the space of
linear operators

(6.16) A:CX(X) — C®(X)
with the following properties. First,
if ¢, b € C°°(X) have disjoint supports then 3 K € C®(X?%;QR)
(6.17) such that ¥V u € C°(X) pAYpu = /K(a:,y)u(y),
X

and secondly if F : W — R"™ is a coordinate system in X and ¢ € C°(X) has
support in W then
3 B e 92 (R™), supp(B) C F(W) x F(W) s.t.
YAYu | W =F*(B((F™1)"(¢u))) ¥ u € CZ(X).
This seems a pretty horrible definition, since it requires us to check every coor-
dinate system, at least i pgénciple. In practice the coordinate-invariance we proved

earlier (see Proposition 5.4) means that this is not necessary and also that there
are plenty of examples as we proceed to see.
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LEMMA 6.1. The space ¥~>°(X) =, ¥"(X) contains all the smoothing op-

erators on X, those with kernels K € C*°(X?; Qg).

In fact there is equality between ¥~°°(X) and the space of smoothing operators
but it is easier to see this after a little more thought!

PROOF. Smoothing operators, having smooth kernels, satisfy the first part
of the definition and also the second since smoothing operators with compactly
supported kernels are pseudodifferential operators on R™. ([l

LEMMA 6.2. If G : U — R" is a coordinate patch on X and B € U (R™) has
kernel with support supp(B) € G(U) x G(U) then

(6.18) Au = G*B(Gil)*(u|U) defines A € ¥(X).

PROOF. Since the kernel of a pseudodifferential operator is smooth outside the
diagonal the first part of the definition holds for A — indeed if ¢, ¥ € C*°(X) then

(6.19)  ¢AY =GB (G7) (ul,), B'=(G1)"¢)BI(G")¥) € U °(R")
since (G71)*¢, (G71)* ﬁl G b)) have disjoint supports. Similarly for the

second part, the identity (6. still holds and if ¢ and i are both supported in
some other coordinate patch F': W — R™ then the support of the kernel of B’ is
contained in G(UNW) x GUUNW) and H = F o G~} is a diffeomor higp, from
G(UNW) to F(UNW). The local coordinate invariance in Propositioan.Tl._shoW
that f’lazlg{)’irB;l(H_l)* € U™ (R™) has kernel with support in F(UNW)x F(UNW)

and (I6. ecomes
(6.20) oAb = FB(F) )
which implies the second condition. O

Thus there are lots of examples — if B € W7 (R") and 1 € C2°(X) has suppogt, - oo
in a coordinate patch with image 1)’ in the local coordinates then applying (Eﬁ.l8)

to ¢’ By’ gives an element of ¥ (X). In fact each pseudodifferential operator is
a sum of a smoothing operator and terms of this type. To see this, first note the
following elementary result. Any open cover of a C* manifold has a partition of
unity subordinate to it, i.e. if A, C X are open sets for r € R and

(6.21) xX=[]J4
reR

there exists ¢; € C2°(X), all non-negative with locally finite supports:
(6.22) Vi supp(¢;) Nsupp(¢;) # 0 for a finite set of indices j,

where each supp(¢;) C A, for some r = r(i) and
(6.23) > ¢i(x)=1 Vu

In fact one can do slightly better than this.

13.9 LEMMA 6.3. Given an open cover U, of X there exists a partition of unity ¢;
(so with locally finite supports) and

(6.24) V i,j 3 a such that supp(¢;) Nsupp; C U,.
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Taking ¢ = j shows that thepartition of unity is subordinate to the given open cover
and the condition (%.24) is automatically satisfied if the intersection of supports is
empty.

PRrROOF. Take any partition of unity 1, subordinate to the cover U, and indexed
so that supp(¢),) C U,. Thus, the support of each supp(v,) is compact and only
meets finitely many of the others. It follows that each point p € supp(¢,) has a
neighbourhood V(p) which is contained in the intersection of all of the U, such
that p € supp(¢,). For each a take a partition of unity of X subordinate to the
cover by such V(p)’s and X \ supp(¢,). Then replace v, by the finitely many non-
zero products with this partition of unity (any term from a factor with support in
X \ supp(,)) gives zero. Taken together all the resulting (non-zero) functions give
a partition of unity as desired since when two of the supports intersect they are
contained in one of the V(p)’s. O

PROPOSITION 6.1. If ¢; is a partition of uqz’st%subordinate to a coordinate cov-
ering of X satisfying the condition of Lemma %Ttmd for each pair i, j such that
supp(¢;) Nsupp(¢;) # 0 Fij : Qi; — R™ is a coordinate system in a neighbourhood
Q; of this set, then an operator A : C*(X) — C>®(X) is a pseudodifferential
operator on X if and only if

(6.25)  ¢;Ap; has smooth kernel if supp(¢;) Nsupp(¢;) =0
and otherwise is of the form F{;-Aij(Fi;l)* with A;; € ¥ (R™)
and kernel supported in F(Q;;) x F ().
PROOF. The necessity of these conditions follows directly from the definition.
Conversely if A satisifies all these conditions then for each ¢, ¢ € C*(X) @AY is

a finite sy (2}337107%&1 %njl‘roegggs/ %]g the partition of unity) of terms to which either
Lemma 6.1 or Lemma 6.2 applies. Thus it is an element of U™ (X). |

So, this means that the original defintion can be replaced by the same one with
respect to any given cover by coordinate patches — meaning that a pseudodifferential
operator is just a (locally finite) sum of a smoothing operator plus pseudodifferential
operators acting in a cover by coordinate patches F; : ; — R™ :

(6.26) AcU™(X)= A=A+ A;, A €C™(X*Qg), Ai=F/Bi(F]')",

B; € W (R™), supp(B;) €; () x Fi(Q).

THEOREM 6.1. Let X be a compact C* manifold then the pseudodifferential
operators U*(X) form an order filtered ring.

PROOF. The main point of course is that they form a ring, the order-filtering
means that

(6.27) T™(X) o U™ (X) C U™ (X)),

Since X is compact, C°(X) = C*(X) and all the operators act on C*(X), so
the product is well-defined. From the remarks above, it suffices to consider the
four cases of products A o B where A and B are either smoothing operators or
pseudodifferential operators wit Sypports in a coordinate patch. In fact using a
partition of unity as in, Leppma.b. corresponding to a coordinate cover and then
applying Proposition %TﬁTheWre both pseudodifferential operators we can assume
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they have support in the same coordi %gcglagecal}f Then the result follows from the
local composition theorem of Chapter E So 1t is enough to suppose that at least one
of the operators is a smoothing operator. If both are smoothing then this follows
from the fact that the kernel of the composite is given in terms of the kernels of
the factors by

(6.28) (Ao B)(p,p) = /X A(p,)B(p) € C®(X% Qp).

When one factor is smoothing and the other is a local pseudodifferential the com-
poste is smoothing since it is given by the action of the pseudodifferential operator
(or its transpose) on the kernel of the smoothing operator, in one of the vari-
ables. g

Note that if X is not compact we cannot in general compose pseudodifferential
operators, since the first one maps C2°(X) into C*°(X) and the second may not act
on C*(X). This is sorted out below.

Now, it is most important to show that the symbol maps still makes sense and
has at leat most of the properties it had on R™. This is n Pg&iﬁgo(?b&ious because
of the non-uniqueness inherent in a presentation such as aﬁm however we
need to check that there is a place for the symbol to take values.

Recall that for an open set Q@ C R™ we deﬁngil%the symbol spaces ST (€; RP)
as consisting of the smooth functions satisfying (2.1). Let 7 : W — X be a real
vector bundle over a manifold X. So X is covered by local coordinate patches 2;
over which W is trivial, meaning there is a diffeomorphism

(6.29) Fyon () — Q) x RP

which maps each fibre 771(p) to the corresponding {p'} x R? and is a linear map.
Then if we choose a partition of unity subordinate to the cover we can set

(6.30) S™(W) = {a W —C;a= Z@F{kai for some a; € S™ (2 x Rp)}

provided we show this is independent of choices.

PRrROPOSITION 6.2. If W — X is a real vector bundle over a smooth manifold

X thegy the space, S™(W), of symbols on W is well-defined for each m € R by
(%.3()).

PROOF. We need to check to things here, what happens under changes of
coordinate covering and changes of local trivializations J 1\116)‘53887‘5}:)9‘5 can move the

¢ into local coordinates to get ¢} € C°(§) and write (%.B(H as
(6.31) S™(W) = {a W —C;a= ZF;‘qﬁgai for some a; € S™ (] x Rp)} .

Then ¢}a; actually has compact support in the base variables, so is a global symbol
on R™ x RP. If ), is a partition of unity subordinate to another coordinate patch
then we can lift these functions under = to W and write a € S™(W) as

a=> iFdha; =Y F¥idia;.
1,

.3
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Thus each 1;¢; is supported in the intersection of the two coordinate patches. Thus
it suffices to show that if

(6.32) F:wxRF — Q' xRP, F(x,8) = (f(x), A(x))

is a diffeomorphism, so f is a diffeomorphism and A(x) is smooth and invertible,
then a € S™(Q;RP), supp(a) C K x RP imples that F*a € S™(Q;RP). We can
do this in two steps since F' = F’ o (f,Id) where F’ is of the same form with
f = Id. The second ap amounts to a coordinate change and it is easy to see
that the estimates in (%LF) are preserved by such a transformation. Thus it suffices
to show that if a € S™(R™;RP) has support in K x RP for some compact K and
A:Q<+— GL(p,R) is a smooth map in an open neighbourhood of D K then

(6.33) a(x, A(x)€) € S™(R™;RP).
The basic symbol estimate
(@, Az)E)] < Csup{A(z)§)™ < cre™

therefore follows from the invertibility of A(z) and the fact that a vanishes outside
K x RP. V;;&De; and D,, . The symbol estimates on a function b just amount to
requiring the estimate

(6.34) |P(x,V, Dy)b(a, €)] < ClE)™

for all polynomials P with smooth coefficient in = (since b vanishes outside K x
RP. The diffeomorphism (z,§) — (x, A(z)£) maps the space of these differential
operators into itself, so the symbol estimates carry over. 0

Suppose A € ¥™(X) and p; is a square partition of unity subordinate to a
coordinate cover Fj : Q; — R®, so we can suppose

(6.35) supp(ps) C Qi D pf = 1.
Then
(6.36) A~ g e v (x)
. ' 1.10.2007.86 )
since [4, p;] € $™71(X) as follows from (6.26) and the corresponding local property.
This lead us to set
14.9| (6.37) om(T)(A) = Z by (2, €@
{i,m(r)€supp(pi)}
where
(6.38) r=F (€ dey) €9 dee Tr R, 29 = Fy(n(r))
J

and the b; are representatives of the symbols of the p; Ap;. This defines a function
on T*X\0, in fact the equivalence class

(6.39) om(A) € ST X) = s™(T*X)/S™ Y (T* X)
is well-defined.
o 4.1 . pa.9
PROPOSITION 6.3. The principal symbol map in (%.39 , defined as in (6.37),
gives a short eract sequence:
(6.40) 0= " HX) = om(X) I sm-ll(T X)) — 0.
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PROOF. First we need to check that o,,(A) is indeed well-defined. This involves
checking what happens under a change of coordinate covering and a change of
partition of unity subordinate to it. For a change of coordinate covering for a fixed
square partition of unity it suffices to use the transformation law for the principal
symbol under a diffeomorphism of R".

Now, if p;- is another square partition of unity, subordinate to the same covering
note that

> ppiAp)pi = piAp;
J
where equality is modulo U=l gince [¢, ¥™] C U™~ for ar%/%%oo function ¢.
It follows from (6.40) that the principal symbols, defined by (6.37), for the two
partitions are the same.

The principal symbol is therefore well defined. Moreover, it follows that if
¢ € C*°(X) then

(6.41) om($A) = ¢, (A) since pi(pA)p; = $(piAps)-
Certainly if A € U™~ 1(X) tqul}ngG(g.;Y ,= 0. Moreover if A € ¥™(X) and

om(A) = 0 then it follows from (6. at om(piAp;) = 0 and hence, from the
properties of operators on R™ that p;Ap; is actually of order m — 1. This proves
that the null space of o, is exactly ¥~ 1(X).

Thus it only remains to show that the map o, is surjective. If a € S™(T*X)
choose 4; € U7 (R™) by

(6.42) or(Ai) = pi(x)(F*)aipi(y) € SL(R™ x R™)
and set
(6.43) A= "FAG] G;=F "
14.9
Then, from (%37) om(A) = a by invariance of the principal symbol. O

6.4. The symbol calculus

The other basic properties of the calculus on a compact manifold are easily
established. For example to check that

(6.44) Omam (A B) =0 (A) - 0, (B)
if Ae U™(X), B € U™ (X) note that
(6.45) AB = Zp?Ap?B = ZpiApi - p;Bp; mod Wt =1,
0,J 0,J
Sect.MicP
In § %?Qthelﬁsgra the symbol calculus to construct a left and right parametrix for

an elliptic element of U™ (X), where X is compact, i.e. an element B € =™ (X),
such that

(6.46) AB —1d,BA —1d € U~>(X).

As a consequence of this construction note that:
PROPOSITION 6.4. If A € U™ (X) is elliptic, and X is compact, then
(6.47) A:C®(X) — C®(X)
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is Fredholm, i.e. has finite dimensional null space and closed range with finite di-
mensional complement. If v is a non-vanishing C* measure on X and a generalized
inverse of A is defined by

Gu=fifueRan(A),Af =u, f L, Nul(A)

A4
(6.48) Gu =0 ifu L, Ran(A)
then G € V~"™(X) satisfies

A GA=1d—myn
(6.49) AG = T1d—mp

where wy and wr are v-orthogonal projections onto the null space of A and the
v-orthocomplement of the range of A respectively.

PrOOF. The main point to note is that £ € U~°°(X) is smoothing,
(6.50) E:C®(X)—C®X) VEeU *X).

Such a map is compact on L%(X), i.e. maps bounded sets into precompact sets by
the theorem of Ascoli and Arzela. The second thing to recall is that a Hilbert space
with a compact unit ball is finite dimensional. Then

(6.51) Nul(A) = {u € C®(X); Au = 0} = {u € L*(X); Au = 0}
) 14.2
since, from (%5 ; Au = 0 = (BA—-1Id)u = —FEu, E € ¥*°(X), so Au = 0,
u el ®(X) = ueC>®X). Then
(6.52) Nul(4) = {u € L2(X); Au = 0/ 2y = 1} € L2(X)

is compact since it is closed (A is continuous) and so Nul(4) = E(Nul(A)) is
precompact. Thus Nul(A) is finite dimensional.

Next let us show that Ran(A) is closed. Suppose f; = Au; — f in C*(X),
uj € C*(X). By what we have just shown we can assume that u; 1, Nul(A). Now
if B is the parametrix

(6.53) u; = Bfj + Eu;, E € U~®(X).

Suppose, along some subsequence, ||u;||, — co. Then

6.54 J_—B J E| 1
(6:54) Tl (nujnu) * (nujnu)

shows that ﬁ lies in a precompact subset of L2, ﬁ — . This is a con-
J v J v

tradiction, since Au = 0 but |ju|| = 1 and v L, Nul(A). Thus the norm sequence
||lu;|| is bounded and therefore the sequence has a weakly convergent subsequence,
which we can relabel as u;. The parametrix shows that u = B f; + Eu; is strongly
convergent with limit u, which satisfies Au = f.

Finally we have to show that Ran(A) has a finite dimensional comple%
If wr is orthogonal projection off Ran(A) then from the second part of (6.
f =mRrE'f for some smoothing operator E. This shows that the orthocomplement
has compact unit ball, hence is finite dimensional. [

14.2
Notice that it follows that the two projections in (%@J) are both smoothing
operators of finite rank.
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6.5. Pseudodifferential operators on vector bundles

Perhaps unwisely I have carried through the discussion above for pseudodiffer-
ential operators acting on functions. The extension to operators between sections
of vector bundles is mainly notational.

THEOREM 6.2. If W — Y is a C* wvector bundle and F : X — Y is a C*®
map then F*W — X is a well-defined C*° wvector bundle over X with total space

(6.55) FW = | W

zeX
if @ € C(Y; W) then F*¢ is a section of F*W and C=(X; F*W) is spanned by
C®(X) - F*C=(Y; W).

Distributional sections of any C*° vector bundle can be defined in two equivalent
ways:

(6.56) “Algebraically” C~*°(X; W) = C~*°(X) ® C>®(X; W)
Co=(X)

or as the dual space
(6.57) “Analytically” C~°(X; W) = [C=(X; Q0 W)’

wll&gge W' is the dual bundle and €2 the density bundle over X. In order to use
(%737) we need to define a topology on C°(X;U) for any vector bundle U over X.
One can do this by reference to local coordinates.

We have just shown that any elliptic pseudodifferential operator, A € ¥ (X)
on a compact manifold X has a generalized inverse B € U~™(X), meaning

BA=1d—7ny

(6.58) AB = 1d -

where 7y and wg are the orthogonal projections onto the null space of A and
the orthocomplement of the range of A with respect to a prescribed C*> positive
density v, both are elements of ¥~°°(X) and have finite rank. To use this theorem
in geometric situations we need first to make the “trivial” extension to operators
on sections of vector bundles.

As usual there are two ways (at least) to approach this extension; the high road
and the low road. The “low” road is to go back to the definition of ¥ (X) and
to generalize to W™ (X;V,W). This just requires to take the definition, following
(%Tﬁ), but using a covering with respect to which the bundles V, W are both locally
trivial. The local coordinate representatives of the pseudodifferential operator are
then matrices of pseudodifferential opertors. The symbol mapping becomes

(6.59) (X V, W) — S™ (T X; Hom(V, W))

where Hom(V, W) ~ V ® W’ is the bundle of homomorphisms from V to W and
the symbol space consists of symbolic sections of the lift of this bundle to T*X. We
leave the detailed description and proof of these results to the enthusiasts.

So what is the “high” road. This involves only a little sheaf-theoretic thought.
Namely we want to define the space U™ (X;V, W) using ¥ (X) by:

(6.60) UGV, W) =0"(X) Q) CU(XEHVRERW).
oo (X2)
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To make sense of this we first note that ¥™(X) is a C>°(X?)-module as is the space
C>®(X2%;VRW') where VX W' is the “exterior” product:

(6.61) (VEW )@y = Ve @ W,.
15.3
The tensor product in (%T@U) means that
(6.62) A e U™(X;V,W) is of the form A = ZAi -G

where A; € U(X), G; € C*°(X?; VX W) and equality is fixed by the relation
(6.63) GA-G—A-$G =0.
Now what we really need to note is:

PROPOSITION 6.5. For any compact C*° manifold Y and any vector bundle U
overY

(6.64) C(Y;U) =C(Y) (X) C(Y:U).
Coo(Y)
PrROOF. C~®°(Y;U) = (C*(Y;Q2® U’)) is the definition. Clearly we have a
mapping
(6.65) C2(Y) @ CP(Y3U) 3 Y Ai-gi — CTX(Y;U)
c=(Y) i

given by
(6.66) Zui -9i(Y) = Zuz(gz )

since g;10 € C*(Y;Q) and linearity shows that the map descends to the tensor
product. To prove that the map is an isomorphism we construct an inverse. Since
Y is compact we can find a finite number of sections g; € C°°(Y;U) such that any
u € C®(Y;U) can be written

(667) u = Z higi h; € COC(Y)

By reference to local coordinates the same is true of distributional sections with
(668) hi=u-q q;€ COO(Y, U/)
This gives a left and right inverse. O

THEOREM 6.3. The calculus extends to operators on sections of vector bundles
over any compact C> manifold.

6.6. Hodge theorem

The identification of the deRham cohomology of a compact manifold with the
finite dimensional vector space of harmonic forms goes back to Hodge in the al-
gebraic setting and to Hermann Weyl in the general case. It is a rather direct
consequence of the Fredholm properties on smooth sections of the Laplacian. In
fact this has nothing much to do with the explicit form of the deRham complex, so
let’s do it in the natural context of an elliptic complex over a compact manifold M.
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Thuslet E;,i =0, ..., N be complex vector bundles and suppose d; € Diff* (M;E;,Eitq),
1 < N, form a complex of differential operators, meaning that for each ¢+ < N d;11
annihilates the range of d; which means just that
23.9.2007.34] (6.69) dij1d; = 0 € Diff'(M; E;; E;12), i < N.

Such a complex is said to be exact (on C* sections) if
23.9.2007.35| (6.70)

Co°(M; Bo)—2sCo(M; B> .. C®(M; Ex_1) "0 (M; Ey)
is exact, meaning that conversely
23.9.2007.36| (6.71) null(d;1) = d;C>*(M : E;) Vi < N.
The principal symbol o;(d;) € %g"gT;&M 3, hom(E;, By 1) is a homogeneous poly-

nomial of degree 1 and from (6. ese bundle maps for a complex over T M.
Of course the all vanish at the zero section so, excluding that, we say the original
complex is elliptic if the symbol complex

23.9.2007.37 | (6.72)

o1(d o1(dy
Co(T* M\ 0; 7 Eo) 222 coo (7 0 \, 0; 7 By ) 222

o1 (dn—
Co°(T* M\ 0: 7% En_ X222 (172 M\ 0: 7% Ey)
is exact.
Now, choose an Hermitian inner product on each of the F; and a smooth

density on M so that we can define the adjoints d; of the d;_1 (so that the subscript
corresponds to the subscript of the vector space on which the operator acts)

23.9.2007.38] (6.73) 6; = (di_1)* € Diff'(M; E;, E;_1), i=1,...,N.
Then form the Hodge operator and the Laplacian
23.9.2007.39 (674) (d+5)l S Diﬁl(M;Ei,Ei_l @Ei—&-l)) Az = 5i+1di+di—151‘2 S DlﬁQ(M,EZ)

We can also take the direct sum of all the terms in the complex and set

23.9.2007.41] (6.75) d = @,d; € Diff'(M; E,), § = &;0; € Diff*(M; E,).
23.9,.2007.34
Then (6. an e induced identity &;_19; = 0 together show that
23.9.2007.40| (6.76) (d+6)? = @;A; € Diff*(M; E,)

since applied to C*°(M; E;)
23.9.2007.42| (6.77)
(d+ 5)2‘CW(M;Ei) =(d+0)d; + (d+6)0; = (dit1 + Jit1)d; + (dic1 + 0i-1)6; = A,

23.9.2007.33 THEOREM 6.4. For an elliptic complex the operators d + 6 and all the A; are
elliptic,
23.9.2007.43| (6.78) null(4A;) = {u € C*°(M; E;); dju = 0, §;u =0}

and the inclusion of this space into the null space of d; induces an isomorphism of
vector spaces

23.9.2007.44| (6.79) null(4;) ~ {u € C*(M; E;); dyu = 0} /d;—1C*(M; E;).

. . . [23.9.2007.44 . .
In particular the vector spaces on the right in (% 79) are finite dimensional; these
are the (hyper-)cohomology spaces of the original complex.
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PrOOF. The symbol of 4; is exactly
(680) O'g(Ai) =01 (5@_‘_1)0'1 (dz) + 01 (di—l)o'l (51)

Over points of T*M \ 0 we can use the (pointwise) inner product on the E;’s and
the fact that o1(0;) = (01(d]_,, to see that

(fr01(20) f) = (f,01(8ix1)01(de) ) + (f, 01(di1)o1(6:) f) = |or(di) fI* + o1 (8:) |

Thus an element of the null space of o2(4;) is in the intersection of the null spaces
of 01(d;) and 01(d;). The null space of the latter is precisely the orthocomplement
to the range of the former, so (by the assumed ellipticity) o2(4;) is injective and
hence an isomorphism. As an elliptic operator the null space of 4A;, even acting
on distributions, consists of elements of C*°(M; E;). Moreover integration by parts
then gives

(6.81)  Am—0—> / (u, Avuy = ||dsul%a + [|S5ul|%e — diu = 0, S, = 0,
M

23.9.2007.43
The converse is obvious, so this proves (h?i 78).
We know that any elliptic operator on a compact gxrbif%g?isgg}edholm. More-
(I% .9, .

over A; is self-adjoint, directly from the definition in (6.74). Thus the range of A;
is precisely the orthocomplement (with respect to the L? inner product) of its own
null space:

Now expanding out A; we can decompose each element of the second term as

(683) Au = di,léiu + 5i+1diu = difl’l)ifl + 57;+1’LUZ'+1.

23.9.2007.45
The two terms here are orthogonal in L?(M; E;) and this allows us to rewrite (%.82)

as The Hodge Decomposition

Indeed, all three terms here are orthogonal as follows by '%e&r@otg.p%oby parts and
the fact that d?> = 0 and hence there must S egqgg(])i;)a' 16%%! s41§10'e each element
has such a decomposition, as follows from (6.827 and (6.83).
Now if u € C*°(M; E;) satisfies d;u = 0, consider its Hodge decomposition
(6.85) u = ug + duy + dv.
23.9.2007.51
The last term must vanish since applying d to (%.85 , dov = 0 and then integrating
by parts
(6.86) / (v, d5v)v = || 50| = 0,
M

23.9.2007.44
The map u)ug therefore takes the left side of (%.79) to the right. It is injective,
since ug = 0 means ,lgag %0187‘%act’ and it is surjective since ug is itself closed and
the decomposi 1S unique, so it is mapped to ug. This gives the Hodge

1o
isomorphism (%}j;gjm O

In fact the same argument works with distributional sections of the various
bundles. We know that, as an elliptic operator
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also has range exactly the annihilator of the null space of its adjoint, also A;, on
C*° sections. Thus we get a distributional decomposition

(6.88) C™°(M; E;) = mull(4;) & AC™(M; B,)

which we can still think of as ‘orthogonal’ since the pairing exists between the
smooth harmonic forms and the general distibutional sections. A distributional
form of the Hodge decomposition follows as before which we can write as

(6.89)  CT°(M; E;) = null(4;) @ (di—1C~®°(M; E;_1)+6;41C~(M; Ei11)) .
Here the second two terms do not formally ‘pair’ under extension of the L? inner
product so we just claim that the intersection is empty. This follows from the fact

tg%tg%oe/l.eggent of the intersection is harmonic and hence smooth and thus, from

.88J, vanishes. This lead immediately to a distributional Hodge isomorphism
(6.90) null(4;) = {u € C~*(M; E;);dju = 0} /d;—1C~®(M; E)

23.9.2007.43
completely analogous to (% 78). The p gog i;oglplggst the same. A closed distribu-
tional form has a decomposition as in (6. 397, u = ug + du’ + dv where u; and v are

now distributional sections. However applying d we see that ddv = 0 and ddv = 0
so v is harmonic, hence smooth, and the integration by parts argument as before
shows ghas 9y =0 (not of course that v = 0). This gives a map from right to left
in

0
(%.9”) which is an isomorphism just as before.

In particular this shows that the ‘distributional deRham’ and ‘smooth deRham’
cohomologies aE% .ig(.)%wpg%g: QI.IEOE@?C_‘[Sghe isomorphism is natural, even though both
isomorphisms (6. an . epend on the choice of inner product and smooth
density (since of course the harmonic forms depend on these choices). Namely the
isomorphism is induced by the natural ‘inclusion map’

(6.1

In many applications in differential geometry it is important to go a little further
than this. The Hodge theorem above identifies the null space of the Laplacian with
the intersections of the null spaces of d and §. More generally consider the spectral
decomposition associated to the A;.

PROPOSITION 6.6. If (C>(M; E;))t is the orthocomplement to null(4;) for

each i then the d; induce and exact complex
692)

(C=(M; Bg)) ™ —2> (C*(M; By ) ¥ — .. (Co(M; Ex 1))+ 2 (Co(M; Ex))*

which restricts to an exact finite-dimensional complex on the subspaces which are
eigenspaces of A; for a fized A > 0.

PRrROOF. All the null spaces vanish and exactness follows from the Hodge de-
composition. O

Of course the adjoint complex is the one for § and the same result holds for distri-
butional sections. Note that this means that the eigenspaces of A;, corresponding
to non-zero eigenvalues, can be decomposed into exact and coexact parts. Thus
even though the Hodge operator d + ¢ mixes form degrees, all its eigenvectors are
can be decomposed into eigenvectors of A which have ‘pure degree’.
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6.7. Sobolev spaces and boundedness

[Following discussions with Sheel Ganatra]

In the discussion above, I have shown that elliptic pseudodifferential operators
are Fredholm on the spaces of C*° sections directly from the existence of parame-
terices, rather than using the more standard argument on Sobolev spaces. However,
let me now recall this starting with operators of order 0. In fact it is convenient
to define the Sobolev spaces for other orders so that boundedness is ‘obvious’ and
then check that the definition is sensible.

LEMMA 6.4. On any compact manifold M each A € WO(M;V,W) for vector
bundles V' and W extends by continuity from C>°(M;V) to a bounded operator

(6.93) A LA(M;V) — L*(M;W).

PROOF. There are two obvious alternatives here. The first is to use the same
construction of approximate square roots as before. That is, using the symbol
calculus onie can see that if A is as above and we choose inner products on V' and
W and a smooth volume form on M so that A* is defined then for a large positive
constant C' there exists B € WO(M; V) so that

(6.94) C-B*B=A"A+G, Ge U ®(M;V).

This starts by solving the equation at a symbolic level, so showing that oo(A) exists
such that

(6.95) C — 00(B)*00(B) = 00(A)?, a5(A) = o0(A).

Thus o¢(A) is the square root of the positive definite matrix C' — o§(B)oo(B).
Then one can proceed inductively using the symbol calculus, as before, to solve the
problem modulo smoothing.

Alternatively we can simply use the known boundedness of smoothing opera-
tors on M and of pseudodifferenti rators on R™. Thus the local (matrices of)
operators, or order 0, as in (?:qg'%lgz%%unded on L*(R™) and since u € L?(M;V)
is equivalent to (F;)*t;u; € L*(R") for a partition of unity 1; subordinate to a

99;{%1%%9 GQyer over each element of which the bundle is trivial, the boundedness
WOf course we are also using the density of C>°(M;W) in L2(M; W)
which follows from the same argument. O

defines

DEFINITION 6.3. On a compact manifold and for a vector bundle W we set
(6.96)
H*(M;W) = {u €C®(M;W); Au € L*(M; V)V A€ \I!_S(M;VV,V)} , se€R.

Here we are demanding this for all pseudodifferential operators and all vector bun-
dles V. This of course is gross overkill.

PROPOSITION 6.7. For each s € R, C®°(M;V) is dense in H*(M;V), every
element A € U™ (M;V,W) extends by continuity to a bounded linear operator

(6.97) A:H(M;V)— H "™ (M;W)VseR, VseR
and if A € O™ (M;V,W) is elliptic then
(6.98) Au€ H¥(M;V) = u € H*™(M; W).
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PROOF. Since I have not quite fixed the topology on H*(M;V), the density
statement is to be interpreted as meaning that if uw € H*(M;V) then there is
a sequence u, € C®(M;V) such that Pu, — Pu in L*(M;W) for every P €

5l % yOI//VQ 2In fact the simplest thing to prove is that, with the ugly definition
(E 56) ot HO (AL

V) that
[18.10.2007.110] (6.99) P e U (M;V,W), u€ H*(M;V) = Pu € L*(M;W)

since this is precisely what the definition requires. Conversely we can see that

[18.10.2007.111] (6.100) Pec Vs (M;V,W), uc L*(M;V) = Puc H *(M;W)

Here we are using the action of pseudodifferential operators on distributions. In-
deed, if A € U=5(M;W,U) for some other vector bundle U then we just need
to show that APu € L?(M;U). Howev L Vo8 qgmposition theorem, AP €
WO(M;V,U) so this follows from Lemma %ms

Combining these two special cases of (%mget the general case. Note
that there is always an elliptic element Py € ¥*(M; V) for any s € R and any vector
bundle V. There is certainly an elliptic symbol, say (1+|¢[2)2 Idy where |- | is some
Riemannian metric. The surjectivity of the symbol maps shows that there is in fact
a pseudodifferential operator Ps with this symbol, which is therefore elliptic. By
the elliptic construction above this operator has a parameterix Qs € ¥5(M;V)
which is also elliptic and satisfies

[18.10.2007.112| (6.101) QsPs —1d, P,Q, —1d € U~°(M;V).

Now, given a general A € U™ (M; W, V) composing with this identity shows that
[18.10.2007.113] (6.102)
= (AQ;s)Ps+G=BP,+ G, B=AQ; € V" *(M;V,W), G € V~>°(M;V,W).

18.10.2007.10
A smoothing operator certainly satisfies (%.9?) ismce C>® %, Yo) Soot1s 1@4 8) if8r2007 111

all s) so it suffices to consider BP; in place of A. Applying (6.99) to P, and (
to B, with s replaced by m — s shows that

18.10.2007.114] (6.103) HS(M; V)22 L2(M; V) — B Hs=m (M, W)

o 18.10.2007.108
which gives (6.97). 18.10.2007.109

If A is elliptic then (6. ollows since if Q@ € ¥~™(M;W,V) is a parametrix
for A then
[18.10.2007.115| (6.104)
QA=1d-G, Ge ¥ >°(M;V), Au€ H*(M;W) = u = QAu+Gu € H*T™(M; V).

This means that the original definition can be written in the much simpler form
[18.10.2007.116] (6.105)
H*(M;W) = {ueC >™(M;W); P_su € L*(M; W) for some elliptic P_,s € U~5(M; W)} .

Here of course ‘some’ means for any one elliptic element.
Finally then the density also follows. Namely, if u € H*(M; V') then

[18.10.2007.117| (6.106) u = Qs(Psu) + Gu, Ps € V¥(M;V), Qs € U *(M;V), G € UW~°(M;V).

Thus Psu € L?(M;V). Let v,, — Psu in L?(M;V) then Gu € C*°(M;V) and
[18.10.2007.118] (6.107)
Qstn+Gu — u € H¥(M;V) since PQun+PGu — Gu € L*(M; W)V P € U*(M;V,W).

O




18.10.2007.119 |

18.10.2007.120 |

18.10.2007.121 |

[18.10.2007.122

[18.10.2007.123 |

[18.10.2007.124 |

[18.10.2007.125 |
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Using the Fredholm properties of elliptic operators we see that if P, €
Us/2(M; V) is elliptic then, if s > 0,
(6.108) By = P)yPsj+1€ W (M; V)

is an isomorphism. Indeed, it is elliptic so we know that any element w of its null
space is in C*°(M;V'). However integration by parts is then justified and shows that

(6.109) Bgu= 0= (P;)ou, Py jou) + ||ul|7. =0 = u=0.

Thus its null space consists of {0} and since it is (formally) self-adjoint, the same
is true of the null space of its adjoint. Thus, being Fredholm, it is an isomorphism.
In fact its inverse

(6.110) B;le U (M;V)
18.10,2007.121
is also invertible. We have already shown (%l 0) since B! is the generalized

inverse.
Thus we have shown the main part of

PROPOSITION 6.8. For any compact manifold M and any vector bundle V over
M there is an invertible element By, € U*(M; V) for each s and then
(6.111)  H*(M;V) ={u € C >°(M;V); Bu € L*(M;V)}, |lulls = || Bsul| 12

shows that H*(M;V) is a Hilbert space. Moreover v;u has entries in H*(R™) for
any covering of M by coordinate patches over each of which the bundle is trivial
and for any partition of unity subordinate to it.

ProOF. The last part just follows by looking at the local coordinate represen-
tative of Bs. Namely ¥;u is a (vector of) compactly supported distributions in the
coordinate patch and (1 4 |D|?)~*/2¢u € L*(R™) since it is smooth outside the
image of the support of v¥; by pseudolocality and inside the coordinate patch by
the boundedness of pseudodifferential operators discussed above. [

PROPOSITION 6.9. The L? pairing with respect to an inner product and smooth
volume form extends by continuity to a non-degenerate pairing

(6.112) H*(M;V)x H*(M;V) — C
which allows H=*(M; V) to be identified with the dual of H*(M;V) for any s.

Proor. Exercise! O

6.8. Pseudodifferential projections

We are interested in constructing projections in the pseudodifferential algebra
corresponding to arbitrary symbolic projections.

THEOREM 6.5. If M is compact, E is a complex vector bundle over M and
p € C°(S*M;hom(FE)) is valued in the projections in the sense that p?> = p then
there exists an element P € WO(M; E) with symbol p which is itself a projection.

First we work modulo smoothing operators, for later applications we shall do
this without assuming the compactness of M.
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1.12.2007.427 LEMMA 6.5. If E — M is a complex vector bundle and p € C®(S*M; E)
satisfies p?> = p then there exists Q € WO(M; E) which is properly supported and
such that

1.12.2007.428| (6.113) Q*—-Q eV >(M;E).

ProOF. Of course the first step is simply to choose Qg € W° 1]\/11'2 BOW}}E&? is
properly supported and has oo(Q) = p. This gives a version of (6. ut only
modulo terms of order —1 :

1.12.2007.429| (6.114) Q2 —Qo=E, € V1 (M;E).

However note, by composing with @ first on the left and then on the right, that
Q()El = E1Q0~ It follows that

1.12.2007.430] (6.115) (Id —P)E;P, PE;(Id—P) € V"""Y(M; E)
for i = 1. Th .Ill. ?gt %]Yf2_Q9 68;04§0(Id —Q)Eo(Id —Qo) and Q(l) = QO + Q1~ It
. a

follows from (6. an
1.12.2007.431] (6.116) Q) — Quy = Ein1 = Ei + Q) Qi + QiQuiy — Qi € V(M3 E).

Thus we can proceed by induction and successively find @; € U~ (M; E), always
properly supported, such that

: i 1.12.2007.431 .
1.12.2007.432| (6.117) Qu) = ZQj satisfies (6. or all i.
j=1
Then taking @) to be a properly supported asympotic sum of this series gives an
operator as claimed. O
5.6.1998.228 PROPOSITION 6.10. If M is compact, E is a complex vector bundle over M and

Q € VY (M; E) is such that Q* — Q € W=°°(M; E) then there exists P € W°(M; E)
such that P> = P and P — Q € ¥=°°(M; E).

PROOF. As a bounded operator on L?(M; E), Q has discrete spectrum outside
{0,1}. Indeed, if 7 ¢ {0,1} then

1.12.2007.434] (6.118) (Q —7Id)((1 —7)7'Q — 7 '(1d—Q)) =1d+(1 —7)"'v71(Q* - Q)

gives a parametrix for Q — 71d. The right side is invertible for |7| large and hence

for all 7 outside a discrete subset of C \ {0,1} with inverse Id +S(7) where S(7)

is meromorphic with values in W=°°(M; E). Letting I" be the circle of radius % —€

around the origin for € > 0 sufficiently small it follows that Q — 7 1d is invertible on

I with inverse ((1 —7)71Q — 771(Id —Q))(Id +S(7). Thus, by Cauchy’s theorem,
1

1.12.2007.435] (6.119) d—P=-— (1—Q) 'dr=1d-Q+ S, S € V>°(M; E)
T Jr

and moreover P is a projection since choosing I to be a circle with slightly larger
radius than T,

(a-PP =520 f Q)7 Q) arar
F/

7{/ ]i (7' - NN -Q) T + (P =) (= Q)T drldr
=I1d-P

1.12.2007.436| (6.120) 1 1
- 2mi 2mi
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Semiclassicalalgebra ‘

6.10. SEMICLASSICAL ALGEBRA 185

since in the first integral the integrand is holomorphic in 7 inside I' and in the
second the 7/ integral has a single pole at 7 = 7 inside I. O

The following more qualitative version is used in the discussion of the Calderén
projection .

PROPOSITION 6.11. If M is compact, E is a complex vector bundle over M and
Q € VO(M; E) is such that Q* — Q € W=°(M; E) and F C H*(M;E) is a closed
subspace corresponding to which there are smoothing operators A, B € U=°(M; E)
with1d —Q = A on F and (Q+B)L?(M; E) C F then there is a smoothing operator
B' € U=°(M : E) such that F = Ran(Q + B’) and (Q + B')?=Q + B'.

PrOOF. Assur g.g}"%g‘g}}ggss =0, so F is a closed subspace of L?(X; E). Ap-
% Uto ¢J

plying Proposition 6. we may assume that it is a projection P, without
affecting the other conditions. Consider the intersection F = FNRan(Id —P). This
is a closed subspace of L?(M; E). With A as in the statement of the proposition,
E C Nul(Id —A). Indeed P vanishes on Ran(Id —P) and hence on E and by hypoth-
esis Id —P — A vanishes on F' and hence on E. From the properties of smoothing
operators, E is contained in a finite dimensional subspace of C*°(M; E), so is itself
such a space. We may modify P by adding a smoothing projection onto F to it,
and so assume that F' N Ran(Id —P) = {0}.

Consider the sum G = F + Ran(Id —P) and the operator Id+B = (P + B) +
(Id—P), with B as in the statement of the Proposition. The range of Id +B is
contained in G. Thus G must be a closed subspace of L?(M;E) with a finite di-
mensional complement in C*°(M; F). Adding a smoothing projection onto such a
complement we can, again by altering P by smoothing term, arrange that

(6.121) L*(M;E) = F @ Ran(Id — P)

is a (possibly non-orthogonal) direct sum. Since P has only been altered by a
smoothing operator the hypotheses of the Proposition continue to hold. Let IT
be the projection with range F' and null space equal to the range of Id —P. It
follows that P’ = P + (Id —P)RP for some bounded operator R (namely R =
(Id —P)(P’ — P)P.) Then restricted to F, P =1Id and P =Id+A so R = —A on
F. In fact R = AP € ¥~°°(M; E), since they are equal on F' and both vanish on
Ran(Id —P). Thus P’ differs from P by a smoothing operator.

The case of general s follows by conjugating with a pseudodifferential isomor-
phism of H*(M; E) to L?(M; E) since this preserves both the assumptions and the
conclusions. O

6.9. The Toeplitz algebra
6.10. Semiclassical algebra

Recall the notion of a semiclassical 1-parameter family of pseudodifferential
operators (which ve will nevertheless call a semiclassical% g&%re%%or) on Euclidean
space in Section g.lg. Following the model in Section 6.3 above we can easily
‘transfer’ this definition to a manifold M, compact or not. The main thing to decide
is what to req e szw_g Rt of the kernel away from the diagonal. This however
is clear from (BTZFU).—ley in any compact set of M? which does not meet the
diagonal, the kernel should be smooth uniformly down to € = 0, including in € itself,

and it should vanish there to i ﬁrllétgo%r,dgg. This motivates the following definition
modelled closely on Definition %:2 and the discussion of operators between sections
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. . %§§u_dVTB, .. .
of vector bundles in Section 6.5. This time I have chosen to define the classical

operators, of course the spaces U _(X,E) have a similar definition.

DEFINITION 6.4. If X is a C*° manifold and E = (E4, E_) is a pair of com-
plex vector bundles over X then, for any m € R, O} (X;E) is the space of linear
operators

(6.122) A : CF([0,1] x X; Ey) — C°([0,1] x X; E_)
with the following properties. First,
(6.123)

if ¢, ¥ € C>®(X) have disjoint supports then 3 K. € C*([0,1]. x X?;Qp ® Hom(E)),

K. =0 at {e =0}such that V u € C°([0,1] x X; E}) ¢pApu = /Ke(;v,y)u(y),
b'e

and secondly if F': W — R™ is a coordinate system in X over which E is trivial,
with trivializations hiEi’W +— W x CN%, and 1 € C°(X) has support in W

then
3 B, € U(R™; CN+,CN-), supp(B,) C [0,1] x F(W) x F(W) s.t.
VApu | W = h F*(B((F1)"(hi'vu))) ¥ u € C°([0,1] x X; EL).
A semiclassical operator (always a family of course) is said to be properly
supported if its kernel has proper support in [0, 1] x X x X, that is proved the two
maps

(6.124) supp(Be)
X X
are both proper, meaning the inverse image of a compact set is compact. Since

(6.125) mx supp(Beu) C mp,(supp(Be) N g (mx supp(u))

(where supp(u) C [0,1] x X and 7x is projection onto the second factor) it follows
that a properly supported operator satisifes

(6.126) B, :C([0,1] x X; Ey) — C°([0,1] x X; E_).
The same is true of the adjoint, so in fact by duality
(6.127) B, : C*([0,1] x X; E;) — C*=([0,1] x X; E_).

The discussion above now carries over to give similar results for semiclassical
families.

PROPOSITION 6.12. The subspaces of properly supported semiclassial operators
for any manifold have short exact symbol sequences

0= UM H(X) — o (X) I sm-Ul(T X)) — 0,

0= P (X) = IF(X) —0,
7

v
1.12.2007.417[1.12.2007.418 _
compose as operators (6. an . and their symbols, standard and semi-

classical, compose as well:
Om+m/ (AEBE) = Um(Aé) o Jm’(BE)ﬂ
Usl(AeBe) = USI(AE) o Usl(Be)~

(6.128)

(6.129)
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) . .. [1.12.2007.441 . .
The L® boundedness in Proposition 2.14 carries over easily to the manifold
case.

PROPOSITION 6.13. If M is compact and E is a complex vector bundle over M
then A. € WY (M; E) then

(6.130) sup [|Aellz>(ar;m) < 00
0<e<1

We are particularly interested in semiclassical operators below because they
make it possible to easily ‘quantize’ projections.

PROPOSITION 6.14. Suppose p € C®(s'T*X;hom(FE)) is a smooth family of
projections for a compact manifold X then there exists a semiclassical family of
projections P. € WO(X; E) such that oq(P.) = p.

PROOF. By the surjectivity of the semiclassical symbol map we can choose
A, € ¥ (X; E) with o4(A.) = p and we can arrange that og(A) is the constant
family of projections defined by p on the sphere bundle at infinity. Then
(6.131) A2 - A =E. € eV (X;E).

) . ]1.12.2007.423 . )
Composing on the left in (% 31 ; gives the same result as composing on the right,
SO

(6.132) AE. =EA. = o(e) = po(e)p+ (Id —p)o(e)(Id —p)
where the symbolic identity is true in both sense, for o(e) = og(e) and o(e) =
071(6).

Now, we wish to ‘correct’ A, so this error term is smoothing and vanishes to
infinite order at e = 0. First we add the term

AW = A AV A, — ([d—A)AD Id -A,) € U 1(X; E)
1.12.2007.423
to A.. This modifies (% [3T) to
(6.133) (Ac+AM)2 A, — AW = B+ A AD + AW A, — AD € S 3(X; E).

Repeating this step generates an asymptotic solution and summing the asymptotic
series gives a solution modulo rapidly decreasing smoothing error terms.
|

6.11. Heat kernel
6.12. Resolvent
6.13. Complex powers
6.14. Problems

1:’11§O4BLEM 6.1. Show that compatibility in the sense defined before Defini-
tion 6.1 is an equivalence relation on C*° structures. Conclude that there is a
unique maximal C*° structure containing any give C*° structure.

PROBLEM 6.2. Let F be a C* structure on X a 5131 t Oy, 36314, be a covering
of X by coordinate neighbourhoods, in the sense of H and (6.3). Show that the
maximal (‘%E';?structure containing F consists of ALL functions on X which are of
the form (6.3) on each of these coordinate patches. Conclude that the maximal C*>
structure is an algebra.
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PROBLEM 6.3 (Partitions of unity). Show that any C* manifold admits parti-
tions of unity. That is, if O,, a € A, is an open cover of X then there exist elements
Pai €CP(X),a € A ieN, with 0 < p,; <1, with each p,; vanishing outside
a compact subset K,; C O, such that only finite collections of the {K,;} have
non-trivial intersection and for which

Z Pa,i = 1.

a€A,ieN
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Scattering calculus

:

Scat

S.Scattering.operators 7.1. Scattering pseudodifferential operators

There is another calculus of pseudodifferential operators w?igh is ‘smaller’ than
the traditional calculus. It arises by taking amplitudes in (b?) which treat the
base and fibre variables symmetrically, but not ‘simultaneously.” Thus consider the
spaces

21.2.1998.113] (7.1) SLYM(RP,RE) = {a € C®(RP'");
sup (14 |2) 711 + [¢) 7" D2 D a(z,€)| < o0, ¥ a, 8}

Rpin
Observe that
21.2.1998.115| (7.2) SLMRE;RE) C (14 |27)/287 (RE; RY).
We can then define
21.2.1998.114] (7.3) Ac U™ (R™) <= A= (1+|z|*)"?B,
B e VL (R") and o1 (B) € SY™ (R, RE).

It follows directly from this definition and the properties of the ‘traditional’ oper-
ators that the left symbol map is an isomorphism

1.2.2000.300] (7.4) op UL L(R™) — SL™(RD,RE).
To prove that this is %gebra, we need first the analogue of the asymptotic
completeness, Proposition 2.3, for symbols in SZ%*(RP; R™).
1.2.2000.292 LEMMA 7.1. Ifa; € S,59™m~I(RP,R") for j € Ny then there exists
N
1.2.2000.293] (7.5) ac YRR s.toa— Y a; € SNV (RPR™) VN € No.
§=0

Even though there is some potential for confusion we write a ~ )" a; for a symbol

o 1.2.2000.293 J
a satisfying (I7.5).

4.12
PrOOF. We use the same strategy as in the proof of Proposition b3 with the
major difference that there ar (i%sentially two different symbolic variables. Thus
with the same notation as in (%.54) we set

1.2.2000.294] (7.6) a= Z¢(€jz)¢(€j§)aj(z7€)

and we proceed to check that if the ¢; | 0 fast e@o%l%lgogsgsﬁ oo then the series

converges in S, (RP,R") and the limit satisfies (7.

189
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The first of the seminorms, for convergence, is
= Sgps%p(l + 1) T+ 1ED) TG e2) dlesE ) ay (2, €)]-
On the support of this function either |z| > 1/¢; or || > 1/e. Thus
A; < sup sgp(l +12) T+ [E) T ay (2, €)
x sgps%p(l + 1)1+ [E) T dlej2)(es6)
<é sgpszlp(l + )T A+ [E) T ay (2, €)]

The last term on the right is a seminorm on SZ7™~7 (RP, R™) so convergence follows
by choosing the €; eventually smaller than a certain sequenc q@positive numbers.
The same argument follows, as in the discussion leading to (%.56)7 for convergence

£ Bhgoggr'b%% for the derivatives and also for the stronger convergence leading to

.b). Since overall this is a countable collection of conditions, all can be arranged
by diagonalization and the result follows. (I

8.2.1998.99
With this result on asymptotic completeness the proof of Theorem .1 can be
followed closely to yield the analogous result on products. In fact we can also define

polyhomogen PUS QRETASOTS. Thig requires & little work if we try to do it directly.
However see (T.99 ; and Problem .17 which encourages us to identify

RC; x RC}, : Sop (RP, R™) «— C(SP! x §™1),
SHMRP,R™) = (14 |2*)2(1 + €)™/ (RP,R™), I, m € R.

[PolyDouble
These definitions are discussed as problems starting at Problem I.18. Thus we
simply define

1.2.2000.297 | (7.7)

1.2.2000.299 | (7.8) TLm(R™) = {A e Ui on(A) e SQQ”(R”,R”)}.
1.2.2000.295 THEOREM 7.1. The spaces W™ (R") (resp. WL™(R™)) of scattering (resp.

polyhomogeneous scattering) pseudodifferential operators on R™, form an order-
bifiltered x-algebra

1.2.2000.296| (7.9) b (R o W (R ¢ WY (R
with residual spaces
1.2.2000.355] (7.10) (WL (RY) = () W (R W0 (R™) = S(R™).

lm l,m
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CHAPTER 8

Elliptic boundary problems

Summary

Elliptic boundary problems are discussed, especially for operators of Dirac type.
We start with a discussion of manifolds with boundary, including functions spaces
and distributions. This leads to the ‘jumps formula’ for the relationship of the
action of a differential operator to the operation of cutting off at the boundary;
this is really Green’s formula. The idea behind Calderon’s approach to boundary
problems is introduced in the restricted context of a dividing hypersurface in a
manifold without boundary. This includes the fundamental result on the boundary
behaviour of a pseudodifferential operator with a rational symbol. These ideas are
then extended to the case of an operator of Dirac type on a compact manifold
with boundary with the use of left and right parametrices to define the Calderon
projector. General boundary problems defined by pseudodifferential projections are
discussed by reference to the ‘Calderon realization’ of the operator. Local boundary
conditions, and the corresponding ellipticity conditions, are then discussed and the
special case of Hodge theory on a compact manifold with boundary is analysed in
detail for absolute and relative boundary conditions.

Introduction

Elliptic boundary problems arise from the fact that elliptic differential operators
on compact manifolds with boundary have infinite dimensional null spaces. The
main task we carry out below is the parameterization of this null space, in terms of
boundary values, of an elliptic differential operator on a manifold with boundary.
For simplicity of presentation the discussion of elliptic boundary problems here will
be largely confined to the case of first order systems of differential operators of
Dirac type. This has the virtue that the principal results can be readily stated.

Status as of 4 August, 1998

. S.Manifolds. .functions.MWB .
Read through Section % [—Section Eg Tt is pretiy terse in places! Several vital

sections are still missing.

8.1. Manifolds with boundary

Smooth manifolds with boundary can be defined in very much the same was as
manifolds without boundary. Thus we start with a paracompact Hausdorff space
X and assume that it is covered by ‘appropriate’ coordinate patches with corre-
sponding transition maps. In this case the ‘model space’ is R™! = [0,00) x R" 71,
a Euclidean half-space of fixed dimension, n. As usual it is more convenient to use

191
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as models all open subsets of R™!; of course this means relatively open, not open
as subsets of R”. Thus we allow any

O=0"NR" O cR" open,

as local models.

By a smooth map between open sets in this sense we mean a map with a smooth
extension. Thus if O; for ¢ = 1,2 are open in R™! then smoothness of a map F'
means that

(81) F:0;— 0y, 30, CR", i=1,2, open and F : O} — O}
which is C* with O; = O, NR™! and F = F’|0;.

It is important to note that the smoothness condition is much stronger than
just smoothness of F' on O N (0,00) x R"~1.

By a diffeomorphism between such open sets we mean an invertible smooth
map with a smooth inverse. Various ways of restating the condition that a map be
a diffeomorphism are discussed below.

With this notion of local model we define a coordinate system (in the sense of
manifolds with boundary) as a homeomorphism of open sets

X>U-Z0cR™, 0,U open.

Thus &' is assumed to exist and both ® and ®~! are assumed to be continuous.
The compatibility of two such coordinate systems (Uy, ®1,01) and (Us, o, O2) is
the requirement that either Uy NUs = ¢ or if Uy N Us # ¢ then

(1)1’2 =®y0 @;1 : <I>1(U1 N Uz) — CI)2(U1 N U2)

is a diffeomorphism in the sense described above. Notice that both ®;(U; N Us)
and ®5(U; N Us) are open in R™!. The inverse ®; 5 is defined analogously.

A C* manifold with boundary can then be formally defined as a paracompact
Hausdorff topological space which has a maximal covering by mutually compatible
coordinate systems.

An alternative definition, i.e.
characterization, of a manifold with boundary is that there exists a C°° manifold
X without boundary and a function f € C°>°(X) such that df # 0 on {f =0} € X
and

X:{pGX;f(p)ZO},

with coordinate systems obtained by restriction from X. The doubling construction
described below shows that this is in fact an equivalent notion.

8.2. Smooth functions

As in the boundaryless case, the space of functions on a compact manifold
with boundary is the primary object of interest. There are two basic approaches to
defining local smoothness, the one intrinsic and the other extrinsic, in the style of
the two definitions of a manifold with boundary above. Thus if O C R™! is open
we can simply set

C*(0)={u:0 — C;FaelC=0"),
O' CR"open, O=0"NR"  u=1|o}.
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Here the open set in the definition might depend on u. The derivatives of u €
C*(0') are bounded on all compact subsets, K € 0. Thus

(8.2) sup |D%u| < oo, 0O°=0nN((0,00) x R"1).
KnO°

eq:F1
The second approach is to use (%2 as a definition, i.e.
to set

(8.3) C*(0) = {u: 0° - C; §% holds V K € O and all a} .
In particular this implies the continuity of u € C*°(O) up to any point p € O N
({0} x R"~1), the boundary of O as a manifold with boundary.
As the notation here asserts, these two approaches are equivalent. This follows
(as does much more) from a result of Seeley:

:F2
ProrosITION 8.1. If C*(O) is defined by (E3) and O' C R™ is open with
O = O' NR™! then there is a linear extension map

E:C>®(0) = C*(0"), FEulor=u

which is continuous in the sense that for each K' € O, compact, there is some
K € O such that for each «

sup |D*Eu| < Cy g sup |D%ul.
K’ KnO

The existence of such an extension map shows that the definition of a diffeo-
morphism of open sets Op, O3, given above, is equivalent to the condition that
the map be invertible and that it, and its inverse, have components which are in
C>(01) and C*(03) respectively.

Given the local definition of smoothness, the global definition should be evident.
Namely, if X is a C* manifold with boundary then

Co¥(X) ={u: X = C; (@ ")*(uly) € C>®(0) V coordinate systems} .

This is also equivalent to demanding that local regularity, i.e.
the regularity of (®71)*(u|o), hold for any one covering by admissible coordinate
systems.

As is the case of manifolds without boundary, C>°(X) admits parfitions of unity.
In fact the proof of Lemma 6.3 applies verbatim; see also Problem kTBi

The topology of C*°(X) is given by the supremum norms of the derivatives in
local coordinates. Thus a seminorm

sup ‘Da(q)_l)*(uw)’

KeO
arises for each compact subset of each coordinate patch. In fact there is a countable
set of norms giving the same topology. If X is compact, C>°(X) is a Fréchet space,
if it is not compact it is an inductive limit of Fréchet spaces (an LF space).

The boundary of X, dX, is the union of the ®~1(O N ({0} x R*"71)) over
coordinate systems. It is a manifold without boundary. It is compact if X is
compact. Furthermore, 0X has a global defining function p € C*(X); that is
p>0,0X ={p=0} and dp # 0 at 9X. Moreover if X is compact then any such
boundary defining function can be extended to a product decomposition of X near
0X:

(8.4) 3C D 0X,openin X e > 0 and a diffeomorphismey : C' >~ [0,€), x 0X.
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If 0X is not compact this ﬁ ?&@]1198382“@?1@ for an appropriate choice of p. For an

outline of proofs see Problem % I.
LEMMA 8.1. If X is a manifold with compact boundary then for MEI% .bé’_%@gélﬂéo

defining function p € C*°(X) there exists € > 0 and a diffeomorphism (

11.6.1998.251 PROBLEM &8.1.

The existence of such a product decomposition near the boundary (which might
have several components) allows the doubling construction mentioned above to be
carried through. Namely, let

(8.5) X =(XUX)/oX

be the disjoint union of two copies of X with boundary points identified. Then
consider

(8.6) C®°(X) = {(u1,uz) € C®°(X) & C®(X);
(oD (wile) = flp, ), (971 (uale) = f(=p,-),
fel™((-1,1) x 4X)}.

~ ~ eq:F4
This is a C* structure on X such that X < X, as the first term in (%5), is an
embedding as a submanifold with boundary, so

C®(X) =C®(X)|x.

In view of this possibility of extending X to X, we shall not pause to discuss
all the usual ‘natural’ constructions of tensor bundles, density bundles, bundles of
differential operators, etc. They can simply be realized by restriction from X. In
practice it is probably preferable to use intrinsic definitions.

The definition of C*°(X) implies that there is a well-defined restriction map

C®(X) 3 u— ulpx € C¥(0X).

It is always surjective. Indeed the existence of a product decomposition shows that
any smooth function on 9X can be extended locally to be independent of the chosen
normal variable, and then cut off near the boundary.

There are important points to observe in the description of functions near
the boundary. We may think of C*°(X) C C>°(X°) as a subspace of the smooth
functions on the interior of X which describes the ‘completion’ (compactification if
X is compact!) of the interior to a manifold with boundary. It is in this sense that
the action of a differential operator P € Diff " (X)

P:C®(X) — C¥(X)

should be understood. Thus P is just a differential operator on the interior of X
with ‘coefficients smooth up to the boundary.’

Once this action is understood, there is an obvious definition of the space of
C* functions which vanish to all orders at the boundary,

C>(X) = {u € C>(X); Pulopx = 0 ¥ P € Diff*(X)}.

Having chosen a product decomposition near the boundary, Taylor’s theorem gives
us an isomorphism

C=(X)/C=(X) = P> (0X) - [dplox]*.

k>0
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S.Distributions.MWB | 8.3. Distributions

It is somewhat confusing that there are three (though really only two) spaces of
distributions immediately apparent on a compact manifold with boundary. Under-
standing the relationship between them is important to the approach to boundary
problems used here.

The coarsest (as it is a little dangerous to say largest) space is C~°(X?°),
the dual of C°(X°; ), just the space of distributions on the interior of X. The
elements of C~°°(X°) may have unconstrained growth, and unconstrained order of
singularity, approaching the boundary. They are not of much practical value here
and appear for conceptual reasons.

Probably the most natural space of distributions to consider is the dual of
C*>®(X; Q) since this is arguably the direct analogue of the boundaryless case. We
shall denote this space

(8.7) CT(X) = (€=(X; Q)
and call it the space of supported distributions. The ‘dot’ is supposed to indicate

this support property, which we proceed to describe.
If X is any compact extension of X (for example the double) then, as already
noted, the restriction map C>°(X;Q) — C®(X;Q) is continuous and surjective.

Thus, by duality, we get an injective ‘extension’ map

(8.8) C™(X) 3 um 4 e C(X), u(p) = u(p|x).
We shall regard this injection as an identification C~°°(X) < C~>°(X); its range
is easily characterized.

:D2
PRrROPOSITION 8.2. The range of the map (EB) is the subspace consisting of

those @ € C~>°(X) with suppi C X.

The proof is given below. This proposition is the justification for calling
C'*OO(X ) the space of supported distributions; the dot is support to indicate that
this is the subspace of the ‘same’ space for X, i.e.

C~(X), of elements with support in X.

This notation is consistent with C>°(X) C C*(X) being the subspace (by

extension as zero) of elements with support in X. The same observation applies to

sections of any vector bundle, so
C®(X;Q) C C®(X;Q)
is a well-defined closed subspace. We set

(59 C=(X) = (€= (X; )

and call this the space of extendible distributions on X. The inclusion map for the
test functions gives by duality a restriction map:

(8.10) Rx :C™°°(X) — C™°(X),
Rxu(p) = u(p) V ¢ € C¥(X;0Q) = C*(X;Q).

We write, at least sometimes, Rx for the map since it has a large null space so
should not be regarded as an identification. In fact

(8.11) Nul(Ry) = {u € ¢~ (X); supp(v) N X° = ¢} = (=2 (X\X°),
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is just the space of distributions supported ‘on the other side of the boundary’. The
primary justification for calling C~>°(X) the space of extendible distributions is:

PROPOSITION 8.3. If X is a compact manifold with boundary, then the space
C(X°;Q) is dense in C*°(X;Q) and hence the restriction map

(8.12) C~(X) < C~°(X°)

:D .
is injective, whereas the restriction map from (E‘.IU , Rx : CT°(X) — C~ (X)),
18 surjective.

PRrROOF. If V is a real vector field on X which is inward-pointing across the
boundary then
exp(sV): X = X

is a diffeomorphism with F5(X) C X° for s > 0. Furthermore if ¢ € C*°(X) then
Fro — ¢in C>(X) as s — 0. The support property shows that Frp € C(X°)
if s < 0and ¢ € C®(X). This shows the density of C2°(X°) in C>(X). Since
all topologies are uniform convergence of all deriga?cll:) es in open sets. The same
argument applies to densities. The injectivit, (_)Ig (B-12) follows by duality.

On the other hand the surjectivity of (%’qﬂfbf follows directly from the Hahn-
Banach theorem. O

rop:D4 ~
PROOF OF PROPOSITION %.2. For & € C~*°(X) the condition that supp @ C X
is just
(8.13) a(p) =0V p € C® C (X\X;0Q) C C®(X;Q).

:D10 . :D10
Certainly (%e 3% holds if u € C~°(X) since ¢|x = 0. Conversely, if (e.

holds, then by continuity .‘%gld']:%le density of.Cé?"(f(\X; Q) in C®°(X\X°:Q), what
follows from Proposition E.B, u vanishes on C*®(X\ X°). O

It is sometimes useful to consider topologies on the spaces of distributions
C~°(X) and C~*°(X). For example we may consider the weak topology. This is
given by all the seminorms u +— ||(u, ¢)||, where ¢ is a test function.

LEM.MA 8.2. With respect to the weak topology, the subspace C2°(X°) is dense
in both C~>°(X) and C~*°(X).

8.4. Boundary Terms

To examine the precise relationship between the supported and extendible dis-
tributions consider the space of ‘boundary terms’.

(8.14) Col(X) = {uEC_OO(X);supp(u) C(‘?X}.

Here the support may be computed with respect to any extension, or intrinsically
on X. We may also define a map ‘cutting off’ at the boundary:

(8.15) C®¥(X) 3 ur ue. € CT(X), u(p) = / up ¥ @ € C°(X;Q).
X
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ProprosiTION 8.4. If X is a compact manifold with boundary then there is a
commutative diagram

(8.16) C>(X)
C>(X)

]

0 —C5 3 (X) —=C7(X) —=C™=(X) —=0

with the horizontal sequence exact.

PROOF. The commutativity of the triangle follows directly from the definitions.
The exactness of the horizontal sequence follows from the density of C°(X°; Q) in
C>®(X;Q). Indeed, this shows that v € Cy5°(X) maps to 0 in C~>°(X) since
v(p) =0V ¢ € C(X°;Q). Similarly, if u € C~°°(X) maps to zero in C~°(X)
then u(p) = 0 for all ¢ € C°(X°;Q), so supp(u) N X° = 0. O

Note that both maps in (E%& from C*°(X) into supported and extendible
distributions are injective. We regard the map into C~°°(X) as an identification.
In particular this is consistent with the action of differential operators. Thus P €
Diff ™" (X)) acts on C*°(X) and then the smoothness of the coefficients of P amount
to the fact that it preserves C*°(X), as a subspace. The formal adjoint P* with
respect to the sesquilinear pairing for some smooth positive density, v

(8.17) (o)) = /X oTv ¥ ot € CO(X)

acts on C*°(X):
(8.18) (P*p,v) = (pPy) ¥ ¢ € C¥(X), 9 € C¥(X), P7:C%(X) — C*(X),
However, P* € Diff™(X) is fixed by its action over X°. Thus we do have

(8.19) (P*o, 1) = (@, Pp) ¥V p €C(X), 9 €CP(X).

We define the action of P by duality. In view of the possibility of confusion,
we denote P the action on C~°°(X) and by P the action on C*°(X).
(8.20)

(Pu, ) = (u, P*p) YueC ®X) pel®X), P:C"(X) — C®(X)

(Pu, ) = (u, P*p) VueC ™(X),peC?(X), P:C®(X)— C™(X).
BT7
It is of fundamental importance that (h9) does not hold for all p,¢ € C>*(X).

This failure is reflected in Green’s formula for the boundary terms, which appears
below as the ‘Jump formula’. This is a distributional formula for the difference

(8.21) Pu, — (Pu). € Cy°,u € C*(X)P € Diff ™ (X).

Recall that a product decomposition of C C X near 90X is fixed by an inward
pointing vector field V. Let 2 € C*(X) be a corresponding boundary defining
function, with Vo = 0 near 0X, with yy : C — 0X the projection onto the
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boundary from the product neighborhood C. Then Taylor’s formula for v € C*(X)
becomes

1
(8.22) w0 ot (VEulan)ot.
Sy

It has the property that a finite sum
N

1 *
UN = QU — SDZ EXV(V]CUBX)!E}c
k=0

where ¢ = 1 near 0X, supp ¢ C C, satisfies

(8.23) P(un). = (Pun)e, P € Diff " (X),m < N.
. BT9

Since (1 — p)u € C*(X) also satisfies this identity, the difference in (%21) can (of
course) only depend on the VFu|gx for k < m, in fact only for k& < m.

Consider the Heaviside function 1. € C~*°(X), detained by cutting off the
identity function of the boundary. We define distributions
(8.24) 6 (z) = VIt e Cy3°,5 > 0.
Thus, 69 (z) = §(x) is a ‘Dirac delta function’ at the boundary. Clearly supp §(z) C
0X, so the same is true of 6U)(z) for every j. If ¢» € C*°(0X) we define
(8.25) P69 (2) = p(Xyp1p) - 69 (x) € Cp ¥ (X).
This, by the support property of §¢), is independent of the cut off ¢ used to define
it.

PROPOSITION 8.5. For each P € Diff"(X) there are differential operators on
the boundary P;; € Diff """ 771(9X), i +j <m, i,5 > 0, such that
(8.26) Pue— (Pu)e = > (P (Vilox) - 69 (x), ¥ u € C®(X),

4,J

and Pyyp—1 =1 ™o (P, dz) € C*(0X).

PROOF. In the local product neighborhood C,
(8.27) pP= Y pv

0<i<m

where P, is a differential operator of the order at most m —1, on X be depending on

x as a parameter. Thus the basic cases we need to analyze arise from the application
of V' to powers of x :

(8.28) ' (VIt!(aP). — (VIT1aP),)

I+p<j.

{ 0 l+p>j

1(7—n)! (G—p—1)
ot (1P

Taking the Taylor sense of the P,
P~y o' Py
BT10 "
and applying P to (M) gives

(8.29) Puc— (Pu)e= Y (=1)"(Pr(VFuloe)) 6077 9(a).
r+k<l
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BT15
This is of the form (m) The only term with [ —1 —r — k = m — 1 arises from
Il —m, k=71 =0 so is the operator P,, at x = 0. This is just i"™o (P, dx). O

8.5. Sobolev spaces

As with C*° functions we may define the standard (extendible) Sobolev spaces
by restriction or intrinsically. Thus, if X is an extension of a compact manifold
with boundary, X, the we can define

(8.30) H™(X)=H™X)|X, ¥VmeR; H"(X) C C~*°(X).

That this is independent of the choice of X follows from the standard properties
of the Sobolev spaces, particularly their localizability and invariance under diffeo-
morphisms. The norm in H™(X) can be taken to be

(8.31) el = inf {1l )3 % € H™(X), u = iix |

A more intrinsic defintion of these spaces is discussed in the problems.
There are also supported Sobolev spaces,

(8.32) H™(X) = {u € H™(X);supp(u) C X} c C~(X).
Sobolev space of sections of any vector bundle can be defined similarly.

PROPOSITION 8.6. For any m € R and any compact manifold with boundary
X, H™(X) is the dual of H-™(X;Q) with respect to the continuous extension of
the densely defined bilinear pairing

(u,v) :/Xuv, ue C®(X), vel®X;Q).

Both H™(X) and H™(X) are C>°(X)-modules and for any vector bundle over
X, H™(X;E) = H™X) ®c(x) C®(X; E) and H™(X;E) = H™(X) ®c~(x)
C>*(X;E).

Essentially from the definition of the Sobolev spaces, any P € Diff k(X i B, Eo)
defines a continuous linear map

(8.33) P:H™(X;E)) — H™ F(X; Ey).
We write the dual (to P* of course) action
(8.34) P:H™(X;E) — H™ *(X; Ey).

These actions on Sobolev spaces are consistent with the corresponding actions on
distributions. Thus

C®(X; ) = | JH™(X), ¢(X; E) = (| H™(X),

C>(X;E) = JH™(X), C*(X;E) = |H™(X).

m
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S.Dividing.hypersurfaces 8.6. Dividing hypersurfaces

As already noted, the point of view we adopt for boundary problems is that
they provide a parametrization of the space of solutions of a differential opera-
tor on a space with boundary. In order to clearly indicate the method pioneered
by Calderon, we shall initially consider the restrictive context of an operator of
Dirac type on a compact manifold without boundary with an embedded separating
hypersurface.

Thus, suppose initially that D is an elliptic first order differential operator act-
ing between sections of two (complex) vector bundles Vi and V; over a compact
manifold without boundary, M. Suppose further that H C M is a dividing hyper-
surface. That is, H is an embedded hypersuface with oriented (i.e. trivial) normal
bundle and that M = M, U M_ where My are compact manifolds with boundary
which intersect in their common boundary, H. The convention here is that M is
on the positive side of H with respect to the orientation.

In fact we shall make a further analytic assumption, that

(8.35) D :C>*(M; V1) — C*°(M; V) is an isomorphism.
As we already know, D is always Fredholm, so this i P}i(is fhe tl(%gological condi-
tion that the index vanish. However we only assume (%.3.5'5 to simplify the initial
discussion.

Our objective is to study the space of solutions on M. Thus consider the map

11.4.1998.196 | (8.36) {ueC®(M;;Vi); Du=0in MS} LN C>(H; V1), bru = uon, -
The idea is to use the boundary values to parameterize the solutions and we can
see immediately that this is possible.

) 11.4.1998.195 . [11.4.1998.196
11.4.1998.197 LEMMA 8.3. The assumption (%.35) imples that map by in (%.36) 15 1mjective.

ProoF. Consider the form of D in local coordinates near a point of H. Let the
coordinates be x,y1,...,Yyn_1 Where z is a local defining function for H and assume
that the coordinate patch is so small that V; and V5 are trivial over it. Then

n—1
D =AyD,+ Y A;D, + A

j=1
where the A; and A’ are local smooth bundle maps from Vi to Va. In fact the
ellipticity of D implies that each of the A;’s is invertible. Thus the equation can
be written locally

n—1

Dyu=Bu, B=-Y A;'D, —A;'A'.

j=1
The differential operator B is tangent to H. By assumption u vanishes when re-
stricted to H so it follows that D,u also vanishes at H. Differentiating the equation
with respect to x, it follows that all derivatives of w vanish at H. This in turn
implies that the global section of Vi over M

~ fu in M,
u =
0 inM_

. . . . 11.4.1998.195 .
is smooth and satisfies Du = 0. Then assumption (%.35) implies that u = 0, so
w =0 in M, and by is injective. (]
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11.4.1998.195
In the proof of this Lemma we have used the strong assumption (%W
we show below, if it is assumed Pftfai%gtsh% 5D is of Dirac type then the Lemma
remains true without assuming W\Ne can state the basic result in this
setting.

THEOREM 8.1. If M = M, U M_ is a compact manifold without boundary
with separating hypersurface H as described above and D € Diffl(M;Vl, Vo) is a
generalized Dirac operator then there is an element g € WO(H; V), V = Vi|H,
satisfying 12, = I and such that

(8.37) by :{u € C®(M4;V1); Du=0} — HcC>®(H; V)
is an isomorphism. The projection Ilc can be chosen so that
(8.38) b : {u € C®(M_;V1); Du=0} — (Id—IIc)C™(H; V)

then Il¢ is uniquely determined and is called the Calderon projection.

11.4.1998.195
This result remains true for a general elliptic operator of ]ﬁlrsA:L {)gréi;e glbf (%.35)
is assumed, and even in a slightly weakened form without (%.35 . Appropriate

modifications to the proofs below are consigned to problems.
For first order operators the jump formula discussed above takes the following
form.

LEMMA 8.4. Let D be an elliptic differential operator of first order on M, acting
between vector bundles Vi and V. If u € C*°(M; V1) satisfies Du = 0 in M$ then

(8.39) Du, = %al(D)(da:)(bHu) 5(x) € C(M: V).

Since the same result is true for M_, with an obvious change of sign, D defines
a linear operator

(8.40) D:{ue L' (M;Vi);uy =ulMy € C®(My; Vi), Duy =0in M3} —
1
EU(D)(do:)(bHu_,_ —bgu_)-d(zx) € C*(H; Vo) - §(x).
To define the Calderon projection we shall use the ‘inverse’ of this result.

11.4.1998.195
, PRQBOJLIION 8.7. If D € Diff* (M; Vi, Va) is elliptic and satisfies (%.35) then

1
(%.ZI()) 1S an 1somorphism, with inverse Ip, and

(8.41) Mov = by (Ipio(D)(dx)v . 5(x)) , v€C®(H; V),

. » 29.3.1998.187
satisfies the conditions of Theorem I8.1.

11.4.1998.205 | . . .
PrOOF. Observe that the map (%.Zﬂ)) is injective, since its null space consists
of solutions of Du = 0 globally on M; such a solution must be smooth by elliptic
regularity and hence must \ﬁnislgglgé/ 5@1@ assumed invertibility of D. Thus the main

task is to show that D in (%.ZI(H 1s surjective.

Since D is elliptic and, by assumption, an isomorphism on C* sections 19T 1998 . 205
M it is also an isomorphism on distributional sections. Thus the inverse of (%.Zi(l') ]
must be given by D~!. To prove the surjectivity it is enough to show that
(8.42) D™ w - 6(x))| My € C®(My; V1) ¥V w € C®(H; Va).

There can be no singular terms supported on H since w-§(x) € H~(M;V3) implies
that u = D~ 1(w - 6(z)) € L*(M; V).
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Now, recalling that D=! € W=1(M; Vs, V}), certainly u is C*° away from H.
At any point of H outside the support of w, w is also smooth. Since we may
decompose w using a partition of unity, it suffices to suppose that w has support in
a small coordinate patch, over which both V; and V5 are trivial and to show that
u is smooth ‘up to H from both sides’ in the local coordinate patch. Discarding
smoothing terms from D~! we may therefore replace D~! by any local parametrix
Q for D and work in local coordinates and with components:

(8.43)
Qij(w;(y) - 6(x)) = (2m) ™" / @V g, (2. € myw(y')8 (') da! dy' dEdn.

For a general pseudodifferential operator, even of order —1, the result we are seeking
is not true. We must use special properties of the symbol of @, that is D~!.

’S.Rational.symbols 8.7. Rational symbols

LEMMA 8.5. The left-reduced symbol of any local parametriz for a generalized

Dirac operator has an expansion of the form

(s:44)

o0
ai(,0) = > _ 9(2,0) " piju(2, ) with pij1 a polynomial of degree 31 — 2 in (;
=1

A L , . |13.4.1998.210
here g(z, () is the metric in local coordinates; each of the terms in (m ore
a symbol of order —I.

PRrROOF. This follows by an inductive arument, of a now familiar type. First,
the assumption that D is a generalized Dirac operator means that its symbol
o1(D)(z,¢) has inverse g(z,() to1(D)*(z,(); this is the princiapl symbol of Q.
Using Leibniz’ formula one concludes that for any polynomial r; of degree j

aCi (g(Z7 C)_QH_ITJ' (27 C)) = g(Z, C>_2ZT;+1(27 C)
where ;41 has degree (at most) j+ 1. Using this result repeatedly, and proceeding
by induction, we may suppose that ¢ = ;. + ¢/, where ¢; has an expansion up
to order k, and so may be taken to be such a sum, and g, is of order at most
—k — 1. The composition formula for left-reduced symbols then shows that
o1(D)gils1 = 9 Fqrr1 mod ST
where gj41 is a polynomial of degree at most 3k. Inverting o1 (D)({) as at the initial
step then shows that ¢;/,, is of the desired form, g % Yrpyq with 71 of degree

3k +1=3(k+1)— 2, modulo terms of lower order. This completes the proof of
the lemma. ]

11.4.1998.204
With this form for {5;194 sygg)sb%é)f @ we proceed to the proof of Proposition % 7.
That is, we consider (%.43). Since we only need to consider each term, we shall
drop the indicies. A term of low order in the amplitude ¢y gives an operator with
kernel in CV~?. Such a kernel gives an operator
C®(H; Vo) — CN=4(M; W)

. . N_d . .
with kernel in C . The result we want will therefore follow if 1\3/%?]3&3@5%‘?’5 each

term in the expansion of the symbol g gives an operator as in (%.42).
To be more precise, we can assume that the amplitude ¢ is of the form

qg=(1-¢)gq
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where ¢’ is a polynomial of degree 3l — 2 and ¢ = ¢(§,n) is a function of compact
support which is identically one near the origin. The cutoff function is to remove
the singularity at ¢ = (§,7) = 0. Using continuity in the symbol topology the
integrals in 2’ and y’ can be carried out. By assumption w € C°(R"~1), so the
resulting integral is absolutely convergent in n. If [ > 1 it is absolutely convergent
in £ as well, so becomes

Qw(y) - 6(x)) = (27f)7n/emgﬂy'"q(x,y,&n)w(n)dfdn

In |£] > 1 the amplitude is a rational function of &, decaying quadratically as
& — oo. If we assume that x > 0 then the exponential factor is bounded in the half
plane ¢ > 0. This means that the limit as R — oo over the integral in € > 0
over the semicircle || = R tends to zero, and does so with uniform rapid decrease
in 1. Cauchy’s theorem shows that, for R > 1 the real integral in £ can be replaced
by the contour integral over v(R), which is, forR >> |n| given by the real interval
[ R, R] together with the semicircle of radius R in the upper half plane. If || > 1
the integrand is meromorphic in the upper half plane with a possible pole at the
singular point g(x,y,&,n) = 0; this is at the point £ = ir%(x, y,m) where r(x,y,n)
is a positive-definite quadratic form in n. Again applying Cauchy’s theorem

Qu(y)d(z) = (2m) "+ / e U oy i ()

where ¢’ is a symbol of order —k + 1 in 7.

The product em’% (@.y:m) ¢/ (2,1, 1) is uniformly a symbol of order —k+1in z > 1,
with = derivatives of order p being uniformly symbols of order —k + 1+ p. It follows
from the properties of pseudodifferential operators that Q(w - §(z)) is a smooth
function in « > 0 with all derivatives locally uniformly bounded as x | 0.

.. [11.4.1998.204 29.3.1998.187
8.8. Proofs of Proposition 8.7 and Theorem 8.1

13.4.1998.207
This completes the proof of (%IZ),STcea similar argument applies in x < 0,
V"lif,}h,%%%b% deformation into the lower half plane. Thus we have shown that
( 40) 15%8§510isomorphism which is the first half of the statement of Proposition
7). Furthermore we see that the limiting value from above is a pseudodifferential
operator on H :

(8.45) Qow = 111101 D Hw - 6(x)), Qo € VO(H; Vo, 11).

11.4.1998.206
This in turn implies that II¢, defined by (%.4[ ] is an element of WO(H;V}), since it
is Qo o +o(D)(dx).
Next we check that Il is a projection, i.e.

that H% =g lffw=1I¢cv,v € C*(H; V1), then w = byu, u = IDl,cr{lDl(gigig)y%

) ) ) ) 7 74\ s
so u € C®(My;Vy) satisfies Du = 0 in M. In particular, by (%.BQE, Pu. =
101(D)(dz)w - §(z), which means that w = Ilcw so IIZ, = . Ihis also shows

19981
that the range of Ilo is precisely the range of by as st tieqL i{ég(i&ééi. T'he same

argument shows that this choice of the projection gives O

8.9. Inverses

Still for the case of a generalized Dirac operator on a compact manifold with
dividing hypersurface, consider what we have shown. The operator D defines a
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11.4.1998.203
map in (b.39 with mnverse
(8.46) Ip:{veC®(H;V1);Ucv=v} — {ueC®(My;V1); Du=0in My}

This operator is the ‘Poisson’ operator for the canonical boundary condition given
by the Calderon operator, that is u = Ipv is the unique solution of

(8.47) Du=0in M4, ueC®(M4; V1), lebgu = v.

We could discuss the regularity properties of Ip but we shall postpone this until
after we have treated the ‘one-sided’ case of a genuine boundary problem.

As well as I'p we have a natural right inverse for the operator D as a map from
C>®(M4; Vi) to C=°(M_;Va). Namely

LEMMA 8.6. If f € C*(M;Va) then u = D™ *(fe)|m, € C°(My; Vi) and the
map Rp : f — u is a right inverse for D, i.e.
DoRp =1d.

ProOF. Certainly D(D~!(fe) = fe, so u = D' (f)|m, € CT°(My;Vh) sat-
ifies Du = f in the sense of extendible distributions. Since f € C>°(My;V3) we
can solve the problem Du = f in the sense of Taylor series at H, with the con-
stant term freely prescibable. Using Borel’s lemma, let v’ € C*° (M4 ; V) have the
appropriate Taylor series, with bgu’ = 0.. Then D(ul) — f. = g € C®(M +, V3).
Thus v = D~tg € C>°(M; V7). Since D(u' — u”") = f., the uniqueness of solutions
implies that u = (u' —u”)|ar, € C®(M4; V7). O

Of course Rp cannot be a two-sided inverse to D since it has a large null space,
described by Ip.

29.3.1998.187
PrROBLEM 8.2. Show that, for D as in Theorem % it feC™(My;Ve)and v e
C°°(H; V1) there exists a unique u € C*° (M ; V3) such that Du = f in C*° (M, ; V3)
and bygu = IIcw.

8.10. Smoothing operators

The properties of smoothing operators on a compact manifold with boundary
are essentially the same as in the boundaryless case. Rather than simply point to
the earlier discussion we briefly repeat it here, but in an abstract setting.

Let H be a separable Hilbert space. In the present case this would be L?(X)
or L?(X; E) for some vector bundle over X, or some space H™(X; E) of Sobolev
sections. Let B = B(H) be the algebra of bounded operators on H and K = K(H)
the ideal of compact operators. Where necessary the norm on B will be written
I lls; K is a closed subspace of B which is the closure of the ideal F = F(H) of
finite rank bounded operators.

We will consider a subspace J = J(H) C B with a stronger topology. Thus we
suppose that J is a Fréchet algebra. That is, it is a Fréchet space with countably
many norms || ||x such that for each k there exists k' and C}, with

(8.48) IAB|lx < CxllAllw||Bllw Y A BeJ.

In particular of course we are supposing that J is a subalgebra (but not an ideal)
in B. To make it a topological *-subalgebra we suppose that

(8.49) [Alls < CllAlx YA€ T, x: T — J.
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In fact we may suppose that £ = 0 by renumbering the norms. The third condition
we impose on J implies that it is a subalgebra of K, namely we insist that

(8.50) FNJ is dense in J,
in the Fréchet topology. Finally, we demand, in place of the ideal property, that J
be a bi-ideal in B (also called a ‘corner’) that is,
(8.51) A, Ay e J,Be B= A1BA> € J,
V k 3 k' such that ||A3BAs||x < C||A1llw || Bllsll Az ||k -
PROPOSITION 8.8. The space of operators with smooth g«tFrneLTg_éctmg on sec-

tions of a vector bundle over a compact manifold satzsﬁes with H =
H™(X; E) for any vector bundle E.

PROOF. The smoothing operators on sections of a bundle F can be written as
integral operators

(8.52) / Az, y)u(y), A(z,y) € C°(X?; Hom(F) ® Qg).

Thus J = C*(X?;Hom(E)®Qr) and we make this identification topological. The
norms are the C*¥ norms. If P;,...,pyem) is a basis, on C*°(X?2), for the differential
operators of order m on Hom(FE) ® Q0 then we may take

(8.53) [Allm = sup || P; Al L~
J

for some inner products on the bundles. In fact Hom(F) = 7} E @ R E* from it
which follows easily that this is a basis P; = P;, ® Pj r decomposing as products.
From this (8.48) follows easily since

(8.54) IAB[|m —bupll( PirA) - (PjrB)|loo||AB|[L < C[| Al || Bl £

by the compactneg of X. From this (k53) follows with k£ = 0.

The density (8.50) is the density of the finite tensor product C*(X; E) ® C*
(X;E*®Qyp) in C*°(X?; Hom(E) ® Q). This follows fro shie boundaryless case
by doubling (or directly). Similarly the bi-ideal condition (8.52) can be seen from
the regularity of the kernel. A more satisfying argument using distribution theory
follows from the next result.

(I

PROPOSITION 8.9. An operator A : C®(X; E) — C~°(X; F) is a smoothing

operator if and only if it extends by continuity to C_DO(X;E) and then has range
in C®(X; F) = C~=(X; F).
ProoF. If A has the stated mapping property then compose with a Seeley

extension operator, then FA = A is a continuous linear map

A:C™®(X;E) = C®(X; F),
for an extension of F to F over the double X. Localizing in the domain to trivialize
E and testing with a moving delta function we recover the kernel of A as

A(z,y) = A- 5, € C®(X; F).
Thus it follows that A € C>°(X x X;Hom(E,F) ® Qg). The converse is more

obvious.

O
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S01 S04
Returning to the general case of a bi-ideal as in (%7[8)—(%32) we may consider
the invertibility of Id+A, A € J.

S01 . S04
ProrosiTION 8.10. If A € J, satisfying (@8)7(k52), then Id +A has a gen-
eralized inverse of the form Id+B, B € J, with

AB=1d—nmg,BA=1d—nm, € JNF
both finite rank self-adjoint projections.

PROOF. Suppose first that A € J and ||A||g < 1. Then Id +A is invertible in
B with inverse Id + B € B,

(8.55) B=>) (-1) A

Jj=1
Not only does this Neumann series converge in B but also in J since for each k
(8.56) 147l < CrllAllw A7 |8l|Alle < CRll Al 2,5 > 2.

Thus B € J, since by assumption J is complete (being a Fréchet space). In this
case Id +B € B is the unique two-sided inverse. <03

For general A € J we use the assumed approximability in (bSO) Then A =
A"+ A" when A" € FNJ and ||A”|zp < C||A"||x < 1 by appropriate choice. It
follows that Id +B” = (Id +A”)~! is the inverse for Id +A4” and hence a parameterix
for I1d + A:

(8.57) (Id+B")(Id+A4) = Id+A" +B"A
(Id+A)(Id+B") = Id+A'+ A'B”
with both ‘error’ terms in F N J. ([l

8.11. Left and right parametrices

Suppose that H; and Hs are Hilbert spaces and A : H; — Hs is a bounded
linear operator between them. Let J; C B(H1) and Jo C B(H2) be bi-ideals as in
the previous section. A left parametrix for A, modulo Ji, is a bounded linear map
By, : Ho — H4 such that

(8.58) BroA=1d+Jy, Jy € Ji.

Similarly a right parametrix for A, modulo J5 is a bounded linear map Bg : Ho —
H1 such that

(859) AoBgr=Id+Jg, Jr € Jo.

PrOPOSITION 8.11. If a bounded linear oper 17" A 02{1 — Ho has a left
parametriz By, modulo a bi-ideal [J1, satisfying (& 8)7(%?52), then A has closed
range, null space of finite dimension and there is a generalized left inverse, differing
from the original left parametriz by a term in Jy, such that

(860) BLOA:IdfTrL, ﬂLejlm]:,

with 7y, the self-adjoint projection onto the null space of A.
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ProOOF. Applying Proposition %8, Id +J; has a generalized inverse Id +4J,
J € J, such that (Id+J)(Id+Jr) = (Id—=}), n}, € J1 N F. Replacing By, by
By = (Id+J)By, gives a new left parametrix with error term 7 € J3 N F. The
null space of A is contained in the null space of B} o A and hence in the range
of Fp; thus it is finite dimensional. Furthermore the self-dajoint projection 7y,
onto the null space is a subprojection of 77, so is also an element of J; N F.
The range of A is closed since it has finite codimension in Ran(A(Id —=)) and
if f, € Ran(A(Id —7p)) = Auy, u, = (Id—np)u,, converges to f € Ha, then
u, = By f, converges to u € Hq with A(Id —7p)u = f. O

PrOPOSITION 8.12. If a bounded linear opemggr A H1 —> Ho has a right
parametriz Br modulo a bi-ideal Ja, satisfying ( %ﬁSZ then it has closed
range of finite codimension and there is a genemhzed mght mverse, differing from
the original right parametriz by a term in Ja, such that

(861) AoBgr=1Id—7g, mgr € JoN.F,
with Id —mwg the self-adjoint projection onto the range space of A.

PRrROOF. The operator Id +Jg has, by Proposition E%, a generalized inverse
Id+J with J € Ji. Thus Bf, = Bro (Id+J) is a right parametrix with error term
Id -7, 7z € Ji N F being a self-adjoint projection. Thus the range of A contains
the range of Id —7; and is therefore closed with a finite-dimensional complement.
Furthemore the self-adjoint projection onto the range of A is of the form Id —7wg
where g is a subprojection of 7, so also in J3 N F. O

The two cases, of an operator with a right or a left parametrix are sometimes
combined in the term ‘semi-Fredholm.” Thus an operator A : Hi — Ho is semi-
Fredholm if it has closed range and either the null space or the orthocomplement
to the range is finite dimensional. The existence of a right or left parametrix,
modulo the ideal of compact operators, is a necessary and sufficient condition for
an operator to be semi-Fredholm.

8.12. Right inverse

In treating the ‘general’ case of an elliptic operator on compact manifold
with boyndary we shall start by constructing an analogue of the right inverse in
Lemma % 6. So now we assume that D € Diff*(X;V;, V3) is an operator of Dirac
type on a compact manifold with boundary.

To construct a right inverse for D we follow the procedure in the boundaryless
case. That is we use the construction of a pseudodifferential parametrix. In order
to make this possible we need to extend M and D ‘across the boundary.” This
is certainly possible for X, since we may double it to a compact manifold without
boundary, 2X. Then there is not obstruction to extending D ‘a little way’ across the
boundary. We shall denote by M an open extension of X (of the same dimension)
so X C M is a compact subset and by D an extension of Dirac type to M.

The extension of D to D, being elliptic, has a parametrix Q. Consider the map

(8.62) Q' L*(X;V) — HY X3 V1), Q'f = QfeX

where f. is the extension of f to be zero outside X. Then Q' is a right parametrix,
DQ' = Id+E where E is an operator on L?(X;Vs) with smooth kernel on X2.
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8.6.1998. 246 -
Following Proposition b 12, D has a generalized right inverse Q” = Q'(Id+E’) u
to finite rank smoothing and

(8.63) D: HYX; W) +— L*(X;Va)

has closed range with a finite dimensional complement in C*°(X; V5).

28.4.1998.215
PROPOSITION 8.13. The map (%.63) maps C(X; V) to C®(X; V1), it is sur-
jective if and only if the only solution of D*u = 0, u € C*(X;Va) is the trivial
solution.

ProOF. The regulagjty statement, that Q'C>(X;V) C C>(X; Vi) follows as
in the proof of Lemma E 6. Thus Q' maps C®(X; V1) to C=(X; V) if and only

if any paramatrix Q' does so. Given f € C*®(X;V3) we may solve Du/ = f in
Taylor series at the boundary, with v’ € C*(X;V;) satisfying byu’ = 0. Then
D), — f € C*(X;Va) so it follows that Q'(f.)|x € C*(X; V).

Certajply, agyesolution of D*u = 0 with u € C®(X;Va) is grghogonal to .the
range of (B.63) so the condition is necessary. So, suppose that (% 63) is not surjec-
tive. Let f € L?(X;V3) be in the orthocomplement to the range. Then Green’s
formula gives the pairing with any smooth section

(Dv, f)x = (Dv, fe)x = (0,D"fe) ¢ = 0.
This means that D*f. = 0 in X, that is as a supported distribution. Thus, f €
C>®(X;V3) satisfies D*f = 0. O

As noted above we will proceed under the assumption that D* f has no such
non-trivial solutions in C*°(X; V3). This condition is discussed in the next section.

THEOREM 8.2. If unique continuation holds for D* then D has a right inverse
(8.64) Q:C®(X : Vo) — C®(X; V1), DQ =1d

where Q = Q' + E, Q'f = Qf|X where Q is a parametriz for an extension of D
across the boundary and E is a smoothing operator on X.

28.4.1998.215

PROOF. As just noted, unique continuation for D* implies that D in (%@‘3}7
is surjective. Since the parametrix maps C*°(X;V2) to C*(X;Vi), D must be
surjective as a map from C*(X;V7) to C®°(X; V). The parametrix modulo finite
rank operators can therefore be corrected to a right inverse for D by the addition
of a smoothing operator of finite rank. O

S.Boundary.map 8.13. Boundary map

The map b from C>*(X;E) to C*(0X; E) is well defined, and hence is well
defined on the space of smooth solutions of D. We wish to show that it has closed
range. To do so we shall extend the defintion to the space of square-integrable
solutions. For any s € R set

(8.65) N*(D) ={u € H*(X;E); Du = 0}.

Of course the equation Du = 0 is to hold in the sense of extendible distributions,
which just means in the interior of X. Thus A'*°(D) is the space of solutions of D
smooth up to the boundary.
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LEMMA 8.7. If u € N°(D) then
(8.66) Du, =v-68(z), ve H 2(0X; E)

defines an injective bounded map b : N°(D) — H~2 (0X; E) by b(u) = io(D)(dx)v
which is an extension of b : N°°(D) — C*>°(9X; E) defined by restriction to the
boundary.

ProoF. Certainly Du, C CgOX (X; E) has support in the boundary, so is a sum
of products in any product decomposition of X near 0X,

D(u,) = Zvj 26U ().

Since D is a first order operator and u. € LQ(X' ; E), for any local extension,
Du, € H7'(X; E). Localizing so that F is trivial and the localized v; have compact
supports this means that

(8.67) 1+ 02 + €72 55 (n)€? € L2(R™).

If v; # 0 for sc%ng %'938 (,4his is not true even in some region [n| < C. Thus v; =0
mus

for j > 0 and (K. old. Furthermore integration in £ gives

[ bl = ot ) >0, 50
(8.68)
[Pyt Pan <o

Thus v € H~2(8X; E) and b is well defined. The jumps formula shows it to
be an extension of b. The injectivity of b follows from the assumed uniqueness of
solutions to Du =0 in X. (]

6.6.1998.234
Notice that (%.68% is actually reversible. That is if v € H~2(0X;E) then
v-8(x) € H-1(X; E). This is the basis of the construction of a left parametrix for
b, which then shows its range to be closed.

~ 6.6.1998.231
LEMMA 8.8. The boundary map b in Lemma 8.7 has a continuous left paramet-
riz Ip : H-2(0X; E) — N°(D), Ip o b = Id+G, where G has smooth kernel on
X x 90X, and the range of b is therefore a closed subspace of Hfé(aX; E).

PROOF. The parametrix j; Gissg'ggg Q;Eectly by the parametrix Q for D, and
extension to X. Applying @ to (%.66 gives

— — -1
(8.69) u=Ipv+ Ru, Ip=RxoQo gO’(D)(dl‘)

with R having smooth kernel. Since I is bour%d%dlgg%r%AlH*% (0X; E) to L*(X;E)
and R is smoothing it follows from Proposition 8.I1 that the range of b is closed. [

8.14. Calderon projector

~ 6.6.1998.231
Having shown that the range of b in Lemma %.7 1s closed in H_%((“)X; E) we
now deduce that there is a pseudodifferential projection onto it. The discussion
above of the boundary values of the Q(w - d(x)) is local, and so applies just as well
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in the p%e.s&qggrél%% general case. Since this is just the definition of the map j; in

Lemma K.8, we conclude directly that

(8.70) Py = l)iglj;v, v €e€C®(0XE)
defines P € VY (0X; E).

6.6.1998.240
LEMMA 8.9. If P is defined by (%.7()% then P2 — P € U=>°(0X; E) and there
exist A, B € W=*°(0X; E) such that P —1d = A on Ran(b) and Ran(P + B) C
Ran(b).

PrOOF. That P? — P € U~°(9X; E) follows, as above, from the fact that Q
is a two-sided parametrix on distributions supported in X. Similarly we may use
the right inverse of D to construct B. If v € H —2 (0X; E) then by construction,

DIpv = R'v
where R’ has a smooth kernel on X x 9X. Applying the right inverse @ it follows
that v’ = Ipv—(QoR')v € N?(D), where Qo R’ also has smooth kernel on X x 9.X.
Thus b(u') = (P + B)v € Ran(b) where B has kernel arising from the restriction of
the kernel of Ao R to 90X x X, so B € U~°(0X; E). O

.. 4.6.1998.227 - L
Now we may apply Proposition %.l [ with " = Ran(b) and s = —5 to show the
existence of a Calderon projector.

ProPOSITION 8.14. If D is a generalized Dirac operator on X then there is an
element Il € WO(9X; E) such that 1%, = ¢, Ra Hedss ﬁgn(i)) on H 2 (0X; E),
IIc — P € U~°(0X; E) where P is defined by (%f?@%ﬁ’ﬂan(ﬂc) = Ran(b) on
C®(0X; E).

PRrROOF. The existence of psuedodifferential projection, I, differing from P
by a smoothing operator aﬁ%,‘i"éig%l_ JLange Ran(l;) is a direct consequence of the
application of Proposition 6.1T. ollows that Ran(b) N C*(0X; E) is dense in
Ran(b) in the topology of H~2 (0X; E). Furthermore, if follows that if v € Ran(b)N
C®(0X; E) then u € N°(D) such that bu = v is actually in C®(X; E), i.e.
it is in (D). Thus the range of b is just Ran(b) N C>®(8X; E) so Ran(b) is the
range of Il acting on C*°(0X; E). O

In particular b is just the continuous extension of b from N (D) to N(D), of
which it is a dense subset. Thus we no longer distinguish between these two maps
and set b = b.

8.15. Poisson operator
8.16. Unique continuation
8.17. Boundary regularity
8.18. Pseudodifferential boundary conditions

The discussion above shows that for any operator of Dirac type the ‘Calderon
realization’ of D,

1
(8.71) D¢ : {u€ H*(X; Ey);Tlebu = 0} — H* 1(X; Ey), s > 3
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is an isomorphism. 8.4 1998.1

We may replace the Calderon projector in (% 71) by a more general projection
I1, acting on C*°(0X, V1), and consider the map
(8.72) D : {u € C™(X; V1); by = 0} — C*°(X; Va).

In general this map will not be particularly well-behaved. We will be interested in
the case that IT € U(0X; V) is a pseudodifferential projection. Then a condition
for the map Dy to be Fredholm can be given purely in terms of the relationship
between II and the (any) Calderon projector Il¢.

THEOREM 8.3. If D € Diff'(X; E1, Es) is of Dirac type and Pi € ¥°(dX; E1)
is a projection then the map
(8.73) D : {u € C®(X; By); M(ugx) = 0} 25 C(X; Ey)
is Fredholm if and only if
(8.74) MMoTIle : Ran(Ilg) NC*(0V1) — Ran(Il) NC*>°(OE,) is Fredholm

and then e.siﬁ[ggg.f) ODH is equal to the relative index of Ile and II, that is the
index of (B.74).

Below we give a symbolic condition equivalent which implies the Fredholm con-

ition, oIk guough regularity conditions are imposed on the generalized inverse to

en this symbolic is also necessary.

PrOOF. The null space of Dy is easily analysed. Indeed Du = 0 implies that
u € N, so the null space is isomorphic to its image under the boundary map:

{u € N;IIbu = 0} LN {vel;Tv=0}.
Since C is the range of Il¢ this gives the isomorphism
(8.75) Nul(Dp) ~ Nul (T o Il : C — Ran(1I)).

In particular, the null space is finite dimensional if and only if the null space of
II o II¢ is finite dimensional.
Similarly, consider the range of Dy;. We construct a map

(8.76) 7:C®(0X; V1) — C™(X; Va)/ Ran(Dr).

Indeed each v € C*(0X; V1) is the boundary value of some u € C*(X : V1), let
7(v) be he class of DU. This is well-defined since any other extension «’ is such
that b(u — ') = 0, so D(u— ') € Ran(Dyy). Furthermore, 7 is surjective, since D¢
is surjective. Consider the null space of 7. This certainly contains the null space of
II. Thus consider the quotient map

7 : Ran(II) — C*°(X : V2)/Ran(Dn),
which is still surjective. Then 7(v) = 0 if and only if there exists v' € C such that
II(v —v') = 0. That is, 7(v) = 0 if and only if II(v) = IT o Ilc. This shows that the
finer quotient map
(8.77) 7' : Ran(II)/ Ran(IT o II¢) +— C>(X; V2)/ Ran(Dy)

is an isomorphism. This shows that the range is closed and of finite codimension if
II o Il¢ is Fredholm.
The converse follows by reversing these arguments. [
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8.19. Gluing

Returning to the case of a compact manifold without boundary, M, with a
dividing hypersurface H we can now give a gluing result for the index.

THEOREM 8.4. If D € Diffl(M;El,Eg) 1s of Dirac type and M = My N Ms is
the union of two manifolds with boundary intersecting in their common boundary
OM; NOMy = H then

(878) Ind(D) = Ind(HLc, Id —H27c) = Ind(Hzc, Id _Hl,C)
where I, ¢, ¢ = 1,2, are the Calderon projections for D acting over M.
8.20. Local boundary conditions
8.21. Absolute and relative Hodge cohomology

8.22. Transmission condition
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CHAPTER 9

The wave kernel

Let us return to the subject of “good distributions” as exemplified by Dirac
delta ‘functions’ and the Schwartz kernels of pseudodifferential operators. In fact
we shall associate a space of “conormal distributions” with any submanifold of a
manifold.

9.1. Conormal distributions

Thus let X be a C* manifold and Y C X a closed embedded submanifold —
we can easily drop the assumption that Y is closed and even replace embedded
by immersed, but let’s treat the simplest case first! To say that Y is embedded
means that each § € Y has a coordinate neighbourhood U, in X, with coordinate
T1,...,Ty in terms of which §y = 0 and

(9.1) YNU={z,=- =z =0}
We want to define
(9.2) I*(X,Y;Q3%) C CT™(X;Q2)

to consist of distributions which are singular only b P/ and small “along Y.”

So if u € C;°°(U) then in local coordinates (kfl’) we can identify u with v’ €
C.°(R™) so v’ € H:(R™) for some s € R. To say that u is ‘smooth along Y’ means
we want to have

(9.3) Db Db/ € HE(R™) Vi, Ly,

Th+1
and a fixed s’, independent of ! (but just possibly 1Qi§erent from the initial s);
of course we can take s = s’. Now conditions like (}&737 do not limit the singular
support of u’ at alll However we can add a requirement that multiplication by a
function which vanishes on Y makes v’ smooth, by one degree, i.e.

(9.4) ot e HSTIP(R™), Ip| = py + -+ + pr.
This last condition implies
(9.5) DI ... DfFalt el € HY(R™) if |q| < |pl.

Consider 1\@11@‘5 happens if we rea: Tange the order of differentiation and multi-
plication in (b.s;. Since we demand (5.5) for all p,q with |g| < |p| we can show in

tial that
(9-6) Vigl <lpl< L
(9.7 ==
L
(9.8) H(‘T"jiDéi)u € H*(R™) VY pairs, (jisg) € (1,...,k)>
i=1

213
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16.3 16.6

Of course we can combine W and (b&rj and demand
Ly

HDPL H w]iDei)ul € HCSGR”)(]%&) € (1’ i '7k)2
i=1

VLl,LQ pi € (k—l— 1,11,)
16.7 16.3 16.4
PrROBLEM 9.1. Show that (W implies (b.B) and (9.

16.7
The point about (b?T is that it is easy to interpret in a coordinate indepen-
dent way. Notice that putting C*° coefficients in front of all the terms makes no
difference.

(9.9)

LEMMA 9.1. The space of all C* wvector fields on R™ tangent to the submanifold

{z1 =+ =x = 0} is spanning over C>°(R™) by
(9.10) @;D;, Dy i,j < k,p> k.

PrROOF. A C* vector field is just a sum
(9.11) V=> a;D;j+Y byD,.

i<k p>k

Notice that the D, for p > k, are tangent to {z1 = --- = z = 0}, so we can
assume b, = 0. Tangency is then given by the condition
(9.12) Vz)i=0and {1 =---=x,=0},i=1,...,h

ie. aj =Y ajxe,1 <j<h Thus
(=1

(9.13) V=> ajmD;
=1
16.9
which proves (bIO) O
16.7
This allows us to write (W in the compact form
(9.14) V(R",Y;)Pu' € HE(R™) Y p

where V(R"™,Y}) is just the space of all C* vector fields tangent to Y3 = {z1 =
= zj, = 0}. Of course the local coordinate just reduce vector fields tangent to Y’
to vector fields tangent to Y} so the invariant version of (b 1) is

(9.15) V(X,Y)Pu C H*(X;Q2)V

16.1
To interpret (b 5] we only need recall the (Lie) action of vector fields on half-
densities. First for densities: The formal transpose of V is —V, so set

(9.16) Vo) = o(=V)
if g € C®(X;0),9 € C>®°(X). On R™ then becomes

[rve == [o-ve
- [o@we ds

9.17
(47 - / (Vo) + 5y ) du

Sy =Y Dia; ifV =Ya;D;.
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i.e.

16.13| (9.18) Ly (¢ldz]) = (V@)|dz| + dv¢.
Given the tensorial properties of density, set

16.14| (9.19) Ly (¢|dz|") = Voldz|" + tdy ¢.

This corresponds to the natural trivialization in local coordinates.

16.15 DEFINITION 9.1. If Y C X is a closed embedded submanifold then

IH (X,Y; Q%) = {uem (X;Q%) satisfying (11)}

16.16] (9.20) I (X,Y;Q%) - Jrme (X,Y;Q%) .

Clearly
(9.21) weI(X,Y;Q3) = u | X\Y €™ (X\Y; Q%)
and
(9.22) N (xv;0h) =c= (x;0%).

Let us try to understand these distributions in some detail! To do so we start with
a very simple case, namely Y = {p} is a point; so we only have one coordinate
system. So construct p =0 € R".

uel; (R", {0};9%) — u = o'|dz|? when

16.19| (9.23)
z*DPy/ € HE(R™), s fixed V |a| > |A|.

Again by a simple commutative argument this is equivalent to

(9.24) Dz’ € HE(R™) V |a| > |A].
_ 16.20

We can take the Fourier transform of (b.?zﬂ and get

(9.25) D¢ € (§) T L*RM) Y |a] > |B].
. 16.21

In this form we can just replace £7 by (£)!81, i.e. (b.ZS% just says

(9.26) D/ (€) € (&)~ PILAR™) V a.
Notice that this is very similar to a symbol estimate, which would say
(9.27) D' (€) € (§)m71PIL=®(R™) V av.
16.2 16.2

16, JAEMMA 9.2.16T e estimate (b.%% implies (b.Z? ; for anym > —s—35; conversely

(9.27) implies (9.26) for any s < —m — 2.

16.2 16.2
PROOF. Let’s start with the simple derivative, (b.Zi ; implies (b.26 ; This really
reduces to the case a = 0. Thus

is the inequality

(9.20) (/ |u|2ds); <supe) 1l ( [ @de)%
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and
(9.30) /<§>2Mdg = / (1+16P)™ dg < o0 iff M < —3.
To get (EFZ%% we just show that (EFSZ%% implies

(9.31) (©)*HelDgal € ()™ L® C L ifm4s < —g.

16.2
The converse is a little trickier. To really see what is goiilgg2 n we can reduce (b.ZG%
to a one dimensional version. Of course, near £ = 0, (b.%% just says 4’ is C*°, so
we can assume that |£| > 1 on supp @&’ and introduce polar coordinates:

(9.32) E=tw, we St > 1.
Then
16.2 16.2
Ezercise 2. Show that (b.ZG% (or maybe better, (b.25 ) implies that
(9.33) DEPU (tw) € t—* LA (R x S"~ L 1" Ldtdw) V k
for any C* differential operator on S™~1. O

) L 16.27 L
In particular we can take P to be elliptic of any order, so (b.SBi actually implies
16.28] (9.34) sup DF Pi(t,w) € t—5~FL2(RT; 1" Ldt)
w
or, changing the meaning to dt,

16.29] (9.35) sup | DfPa(t,w)| € t—57F "5 L? (R, dt).

wesSn—1

So we ar%ig the one dimensional case, with s replaced by s + an Now we can

rewrite (b.35; as

-1
16.30| (9.36 DD PG et L2 Wk —q=—5—k— 2~ 1.
! 2
Now, observe the simple case:
1
(9.37) F=0t<1,Df et'L? = feL>ifr< -
since
¢ N t 3
2
(9-38) sup | f| = / trg < (/ |g|2> : / £
—00 — 00
16. 3
Thus from (b.36; we deduce < ([ [g|?)?
1
(9.39) DfPiet™"L®ifr < -7, ie. —q> —s—k—g.
16.2
Finally this gives (b.Z?% when we go back from polar coordinates, to prove the
lemma.
DEFINITION 9.2. Set, for m € R,
(9.40) I (R, |[0}) = {u € CT(R"); 0 € S~ (R")}
with this definition,
(9.41) TH*(R",{0}) € I"(R",{0}) € I (R", {0})
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provided
(9.42) §>—m— g > s

16.3
FEzercise 3. Using Lemma 24, prove (b.ZII ; carefully.
So now what we want to do is to define I"(X, {p}; Q2) for any p € X by

ue I(X, {p}; Q2) <= F’(¢u) € I'(R",{0}),

(9.43)
u [ X\{p} € C=(X\{p}).

Here we have a little problem, namely we have to check that I™ {B’; {0}) is invariant
under coordinate changes. Fortunately we can do this using (b.ZII ;

LEMMA 9.3. If F': Q — R" is a diffeomorphism of a neighbourhood of 0 onto
its range, with F(0) =0, then

(9.44) F*{u e I*(R", {0};supp(u) C F(Q)} C I7*(R",{0}).
PROOF. Start with a simple case, that F' is linear. Then

(9.45) u=(2m)" " / a(€)dE,a € S™TE(R™).

)

AL (€)de Fo = Ax

zmAf

(9.46) i

\\\

el g Ly)| det A~ dn.

Since a((A*)~'n)|det A|~t € S™~%R"™) we have proved the result for linear trans-
formations. We can always factorize F' is

(9.47) F=G-A, A= (Fy)
so that the differential of G at 0 is the identity, i.e.
(9.48) G(z) =z + O(|z]*).
Now (E)%[é% allows us to use an homotopy method, i.e. set

(9.49) Gs(z) =z + s(G(z) — x) s€]0,1)
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so that Gy = Id, G, = G. Such a 1-parameter family is given by integration of a
vector field:

(9.50) .

- [Gi(voyas
0
when the coefficients of V, are
d
9.51 GV, =—Gy,.
( ) s 3] dS 3

17.1
l\gc}wl by (b7[92) %Gsﬂ- = Yz;zjaj;(z), so the same is true of the Vj;, again using
(E.IE%. 17.1

We can apply (9. to compute
!/
(9.52) @u=/cymm@
0

16.3
when u € I7" (R™, {0}) has support near 0. Namely, by (bZ[ ,u € ITH: (R", {0}),
with s < —m — 7, but then

(9.53) Viu € THETH(R™, {0})
n 16.3
since V.= > b;(z)x;x;D;. Applying (bZI ; again gives
i,j=1
(9.54) G (Vou) € I'™ (R™,{0}), Y m' >m — 1.
This proves the coordinates invariance. (I

Last time we defined the space of conormal distributions associated to a closed
embedded submanifold Y C X :

THY(X,Y)={ue€ H(X); V(X,Y)u Cc H*(X)V k}

TH*(X,Y) =TI"(X,Y) = JsIH*(X,Y).

Here V(X,Y) is the space of C* vector fields on X tangent to Y. In the special case
of a point in R", say 0, we showed that

(9.56) u € I*(R"),{0}) <= u € C;°°(R") and @ € SM(R"™), M = M(u).

In fact we then defined the “standard order filtration” by

(9.57) ue IR, {0}) = {u e C,®R");a e S™ i (R")},

and found that

(9.58) IH:(R",{0}) C IC_S_%(R", {0}) C IHf.’/ (R™, {0}) V &' < s.

(9.55)
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Our next important task is to show that I7*(R™, {0}) is invariant under coordinate
changes. That is, if F': Uy — R” is a diffeomorphism of a neighbourhood of 0 to
its range, with F'(0) = 0, then we want to show that

(9.59) F*u e I"(R",{0}) V u € IT*(R™,{0}),supp(u) C F(Uy).

Notice that we glready know the coordinate independence of the Sobolev-based
space, so using (g.58), we deduce that

(9.60) Fu e IZ”/ (R™, {0}) ¥V u e I*(R™,{0}),n" > m,supp(u) C F(Uy).
In fact we get quite a lot more for our efforts:
LEMMA 9.4. There is a coordinate-independent symbol map:
(9.61) I™(X, {p}; Q3@ > o2 >> gm+i-U] (T;R”;Q%)
given by the local prescription
(9.62) o (u) = a(€)|dg|*
where u = v|dac|% is local coordinate based at 0, with & the dual coordinate in T X.
PROOF. Our definition of I"™(X, {p}; 22) is just that in any local coordinate
based at p
(9.63) ue I™(X,{p}; Q%) = du = v|dz|?,v € I["(R",{0})
and u € C(X\{p}; Q%). So the symbol map is clearly supposed to be
(9.64) o™ () =, o(¢)]dg]> € SmHEITH(RY Q2)

where ¢ € 548 the 1-form ¢ = £-dx in the local coordinates. Of course we have to
show that (9.64) is independent of the choice of coordinates. We already know that

n_

19h§ ge of coordinates changes © by a term of order m — 7 —1, which disappears in
M o,the residue class is determined by the Jacobian of the change of variables.

From ) we see exactly how ¢ transforms under the Jacobian, namely as a

density on
TyR™ : A € GL(n,R) = A*v(n)|dn|*
= 0((A") " 'n)| det A" |dy|
son= At =
(9.65) A*v(n)|dy| = 0(£)|dE].
17.20
However recall from (b.63) that uis a hziilf—density, so actually in the new coordinates
v/ = A*v - |det A|z. This shows that (9.64) is well-defined.

Before going on to consider the general case let us note a few properties of
(X, {p}, %) ; -

FEzercise: Prove that
If P € Diff"™(X;Q7?) then
(9.66) P I™(X, {p}; Q2) — I M(X, {p}; Q) V m
o™ M (Pu) = oM (P) - ™ (u).

To pass to the general case of Y C X we shall proceed in two steps. First let’s
consider a rather ‘linear’ case of X = V a vector bundle over Y. Then Y can be



220 9. THE WAVE KERNEL

identified with the zero section of V. In fact V is locally trivial, i.e. each p € y has
a neighbourhood U s.t.
(9.67) = '(U) ~R} x U,,U' CRP

by a fibre-linear diffeomorphism projecting to a coordinate system on this base. So
we want to define

(9.68) I™(V,Y;Q2) = {u e I"(V,Y;Q3);
17.24
of ¢ € C*(U) then under any trivialization (9.

pu(e,y) = (2m) " / ¢™4a(y, €)d¢lde|*, mod C,

a€SMTETI(RERY).

17.2
Here p = dimY, p4+n = dim V. Of course we have to check that (b?)'g% is coordinate-
independent. We can write the order of the symbol, corresponding to v having order
m as

(9.69)

dimV dimY dimV  codimY

Moy Ty Tt 2
These additional shifts in the order are only put there to confuse you! Well, actually
they make life easier later.

Notice that we know that the space is invariant under any diﬁ’eomorphi%{%%
the fibres of V, varying smoothly with the base point, it is also obvious that (9.
in independent the choice of coordinates is U’, since that just transforms these
variables. So a general change of variables preserving Y is

(9.71) (y,2) — (f(y,2), X (y,2))  X(y,0) =0.

In 1a?rt21 ular f is a local diffeomorphism, which just changes the base variables
in &%"9%;, so we can assume f(y) = y. Then X(y,z) = A(y) - © + O(x?). Since
x — A(y) -z is a fibre-by-fibre transformation it leaves the space invariant too, So
we are reduced to considering

(9.72) G:(y,x) — (y, 2+ Bag(z,y)ziz;)y + Lbi(z, y)x;.

(9.70)

To handle these transformations we can use the same homotopy method as before
i.e.

(9.73) Gs(z,y=(y +s) Z bi(z,y)zi,x + s Z aij(z,y)TiT))

is a l-parameter family of diffeo;norphisms. Moreo:/ir

(9.74) %G:u = GiVik

where

(9.75) V, = ;ﬁi,g(s, Z,Y)x;0y, + ;j):kai’j’k + g;kaijk(m y, 8)4;, gjﬁia:k'

So all we really have to show is that
(9.76) Ve : MU' x R, U’ x {0}) — I~ U' x R", U’ x {0}) V M.

Again the spaces are C*°-modules so we only have to check the action of x;0,, and
;T + jOy, . These change the symbol to

(977) Dgiayla and Z'D&ng ~£ka
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respectively, all one order lower. 9

This shows that the definition (bm% is actually a reasonable one, i.e. as usual
it suffices to check it for any covering by coordinate partition.

Let us go back and see what the symbol showed before.

LEMMA 9.5. If
(9.78) we I™(V,Y: Q7% )u = v|dz|?|d¢|?
defines an element
(9.79) o™ (u) € SMTETE-I (Y Q7))

independent of choices.

Last time we discussed the invariant symbol for a conormal distribution asso-
ciated to the zero section of a vector bundle. It turns out that the general case
is not any more complicated thanks to the “tubular neighbourhood” or “normal
fibration” theorem. This compares Y — X, a closed embedded submanifold, to the
zero section of a vector bundle.

Thus at each point y € Y consider the normal space:

(9.80) N,Y = NJ{X,Y} = T,z/T,Y.

That is, a normal vector is just any tangent vector to X modulo tangent vectors to
Y. These spaces define a vector bundle over Y :

(9.81) NY = N{X;Y}= | | NY

yey
where smoothness of a section is inherited from smoothness of a section of T, X, i.e.
(9.82) NY =T,X/T,Y.

Suppose Y; C X; are C*>° submanifolds for ¢ = 1,2 and that F: X; — X5 is a
C*° map such that

(9.83) F(Y;) CYa.

Then F : T, X1 — T'r(,) X2, must have the property
(9.84) Fo:T,)Y1 — Tp)Y2 Vy €Y.
This means that F, defines a map of the normal bundles
(9.85) F,: NY; —— NY,

L

Yl %F' YQ.

Notice the very special case that W — Y is a vector bundle, and we consider
Y — W as the zero section. Then

(9.86) Ny{W; Y} — W, VyeY
since
(9.87) T,W=T,Y @ Ty(Wy) VyeW.

That is, the normal bundle to the zero section is naturally identified with the vector
bundle itself.
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So, suppose we consider C°° maps
(9.88) f:B— N{X;Y}=NY

where B C X is an open neighbourhood of the submanifold Y. We can demand
that

(9.89) fly)=(y,0)eNY VyeV

which is to say that f induces the natural identification of Y with the zero section
of NY and moreover we can demand

(9.90) fx : NY — NY is the identity.

18.6
Here f. is the map (ET85), so maps NY to the normal bundle to the zero section
of NY, which we have just observed is naturally just NY again.

THEOREM 9.1. For any closed embedded submanifoﬁ%% c X the'rlse%sts a
gl fibration, i.e. a diffeomorphism (onto its range) (9.88) satisfing (ETBW and
ZET.QU%; two such maps f1, fo are such that g = fo 0 ffl 18 a diffeomorphis ,4ve4r
the zero section of NY, inducing the identity on'Y and inducing the identity (9.90).

PrOOF. Not bad, but since it uses a little Riemannian geometry I will not
prove it, see [ ], [ ]. (For those who know a little Riemannian geometry, f~! can be
taken as the exponential map near the zero section of NY, identified as a subbundle
of Ty X using the metric.) Of course the uniqueness part is obvious. ([l

Actually we do not really need the global aspects of this theorem. Locally it is
immediate by using local coordinates in which Y = {z; =--- = a2 = 0}.

Anyway using such a normal fibration of X near Y (or working locally) we can
simply define

I'™(X,Y:0Q7) = {ueC®(X;Q7);uis C* in X\Y and
(f71)"(¢u) € I™(NY,Y;Q2) if ¢ € C(X),supp(¢) C B},

Naturally we should check that the definition doesn’t depend on the choice of f.
This means knowing that I™(NY,Y; Q%) is invariant under g, as in the theorem,
b gye have already checked this. In fact notice that g is exactly of the type of
(9.72). Thus we actually know that

(9.91)

(9.92) o™ (g*u) = o™ (u) in STTETE(NFY; Q7).
So we have shown that there is a coordinate invariance symbol map
(9.93) o™ (X, Y;Q3) — SRt iU (NTY; 02)

giving a short exact sequence
(9.94)
0= I Y(X,Y;:07) — I"™(X,Y;Q3)@ > g™ >> §mHiti-[l(N*Y: Q3) — 0

(9.95) where n = dim X — dimY,p = dimY.

Asymptotic completene 5 ries over immediately. We also need to go back and
check the extension of (%ch
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ProposiTION 9.1. If Y — X is a closed embedded submanifold and A €
U™ (X;02) then

(9.96) A IM(X,Y;Q7) — IMPY(X Y Q) Y M
and
(9.97) "M (Au) = o™(A)o™(A) | N*Y oM (u).

Notice that o™ (A) € S™~(T*X) so the product here makes perfectly good sense.

PROOF. Since everything in sight is coordinate-independent we can simply
work in local coordinates where

(9.98) X ~RY xRy, Y = {z =0}.

Then u € I™(X,Y;Q2) means just

(9.99) U= (277)_”/ei”‘5a(y7§)d§~ \dm|%,a e SMTETI(RP,RY).
Similarly A can be written in the form

(9.100) A= (2m)" P / el o= = np (g € n)dedn.

Using the invariance properties of the Sobolev based space if we write
(9.101) A=Ay+Xz;B;, A = qr(b(0,y,&,m))

we see that Au € I™TM(X,Y; Q%) is equivalent to Agu € I™TM(X,Y; Q%). Then
©0.002)  gu=(2m) "0 [0, € )by ' dnde,
where we have put Ay in right-reduced form. This means

(9.103) Agu = (2m)™" / e ey, £)de

where

0000) (&) = 2n) 7 [ SUIb0y E maly' /i

Regarding ¢ as a parameter, this is, before y’ integration, the kernel of a pseudo-
differential operator is y. It can therefore be written in left-reduced form, i.e.

(9.105) c(y,§) = (2m)~" / ¢V Me(y, & n)dndy’ = e(y, &, 0)
where e(y,&,n) = b(0,y,& 75)? y,§€) plus terms of order at most m+ M — %4 + & — 1.
This proves the formula (9.97). O

Notice that if A is elliptic then Au € C* implies u € C*, i.e. there are no
singular solutions. Suppose that P is say a differential operator which is not elliptic
and we look for solutions of

(9.106) Pu € C™(XQ7).
How can we find them? Well suppose we try

(9.107) uwe IM(X,Y;Q7)
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for some submanifold Y. To know that w is singular we will want to have

18.25| (9.108) o(u) is elliptic on N*Y

(which certainly implies that u ¢ C>). 8.1
he simplest case would be Y a hypersurface. In any case from (bQ() and

(ETO;%) we deduce

(9.109) o™ (P) - oM (u) = 0.
So if we assume (EJ%(%%) then we must have
(9.110) o™(P) | N*Y =0.
DEFINITION 9.3. /%Ss%manifold 1s said to be characteristic for a given operator

P € DIff"(X; Q%) if (0110) holds.

18.26
course even if P is characteristic for y, and so (krrog) holds we do not recover

f
(E)Tsfl)%), just

18.29] (9.111) Pue I™M-1(X v Q3)

i.e. one order smoother than it “should be”. The task might seem hopeless, but let
us note that these are examples, and important ones at that!!
Consider the (flat) wave operator

n
(9.112) P=P?-) D;=D;-AonR"".
i=1
A hypersurface in R"*! looks like
(9.113) H = {h(t,x) =0},(dh # 0 on H).
The symbol of P is
(9.114) APy =1" g =7 =&} - — &,
18.27
where 7, ¢ are the dual variables to ¢, z. So consider (9.110),
(9.115) N*Y = {(t,z; Adh(t,y)); h(t,z) = 0}.
18.32
Inserting this into (b 4) we find:
oh\* oh \? ah\?
18.34 9.116 A— ) = A— | —---=A=—] =0 h=0
o (35) (g (ras) =oen
i.e. simply:
oh\>
18.35 . — | =|ds on h(t,z) =0.
9.117 o dzh|* on h 0

This is the “eikong] gguation” for i (and hence H).
Solutions to (FJ [T7) are easy to find — we shall actually find all of them (locally)
next time. Examples are given by taking h to be linear:

18.36| (9.118) H={h=at+b-x =0} is characteristic for P <= a* = |b|*.

Since h/a defines the same surface, all the linear solutions correspond to planes

18.37] (9.119) t=w-z,we S
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So, do solutions of Pu € C*> which are conormal with respect to such hyper-
surfaces exist? Simply take

(9.120) u=v(t—w-x) veI*(R,{O};Q%).
Then
(9.121) Pu=0,u € I*(R™, H;Q?).

For example v(s) = §(s),u = 0(t —w - x) is a “travelling wave”.

9.2. Lagrangian parameterization

We will consider below the push-forward of conormal distributions under a
fibration and how this gives rise to the more general notion of a Lagrangian distri-
bution. So we first consider the local model for a fibration, which is projection, m,
off a Euclidean factor

m: R} x RE - Ry,
The most important case of conormal distributions associated to a submanifold here
is that of a hyperspace H C R} x bbR¥ with global defining function h € C>(R™+F),
H={h=0},dh#0o0n H.

Recall from the general properties of conormal distributions that if u is conor-
mal to H then WF(u) C N*H = {X-dh(y, 2); h(y, z) = 0}. From the properties of
wavefront set under push-forward, if u has compact support then

WF(mou) C {(y,n); 3 zs.t. (y,2) € H,

oh
That is, the singularities of u are (co-)normal to H and any singularities not (co-
Jnormal to the fibres are wiped out by integration.

So, we are interested in the set

(9.122) Cn = {(y.2) € H; 2 (y,2) = 0}
27.5.2008..569]

1= Adh(y, 2)

the ‘fibre critical’ set; a point is in this set if the fibre through it is tangent to H
at that point. In general this can be quite singular but by the implicit function
theorem

J

30.3.2008.579 .
Observe that the set (b.IZZ% only depends on H, not on the chosen defining
function, h. Indeed any other defining functions is just A’ = ah with a # 0. Of
course this defines the same hypersurface H and since

on'  0Oh Oa

9.124) oW _oh, ou,
Zj Zj Zj

leads to the same fibre critical set C'y, justifying the notation.
A fibre-preserving map in local coordinates is just one of the form

(9.125) (5.2) = Pl ), 2= F(y'.#), y = G(y)

oh
27.3.2008.569 | (9.123) dh(y,2), da—(g, Z) linearly independent = Cp is smooth near (7, z).
>
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so under a diffeomorphism of this form the fibre above y pulls back to the fibre above

y'. The definition of C'y is also invariant under fibre-preserving diffeomorphisms.
Namely, if H' is the pull back of H then Cg also pulls back to Cy+ since

. F
(0126) K = Fh i, W) = h(y,2) = dol/ (. #) = 2 d.h(y,2)

0z
. |27.3.2008.569
prop:1 PROPOSITION 9.2. Under the non-degeneracy assumption (b.123§ on H C R™"x
R¥, the map
27.3.2008.570| (9.127) N*H\O|. > (y,2;Mdh) = (y, Adh) € T*R™\ 0

is locally an embedding with range a conic Lagrangian submanifold Ay, i.e., a ho-
mogeneous submanifold of dimension n such that

27.3.2008.571| (9.128) o= andyj vanishes as a I1-form on Ap.
J

. 27.3.2008.570 . |
PROOF. In local coordinates the map (b 27) 1s the projection

T (y,2,m,¢) = (y,m)
restricted to the submanifold
N*H\ O, = {(y:zn,¢);h(y,2) =0
(9.129 o

By the implicit function theorem it sufﬁce721}93§%88% "[éj,%t the differential is injective

when restricted to the tangent space of ( , 1.e., that no element of the null
space of 7, is tangent to M = N*H \ 0|¢,, (other than zero of course). The null
space of 7, is spanned by 0., and J,. Since ¢ = 0 in N*H over Cy, only a - 0,

could be tangent to it. However, n; = Aaf@_ on M and also % =0on M so
793 v

27.3.2008.569

which impl%gsg%:oog pogause of (9.123). 27.3.2008.569
Thus (9.127) is locally an embedding, 1537,315 88k ig{nersion as long as (b [23 ; '

holds, with the image denoted Ag. To see (b [78], 1.c. that o = 0 when restricted

to Ay it is enough to show that #*a =3, n;Ay; =0 on M = (N*H \ 0)|c,, . Since

1; z)\g—yhj on M,
oh
a:)\za—dyj:Adh:O
i Y

on M, since h = 0. O

Notice that under a coordinate transformation in the variables y, say y = G(y’),
the hypersurface H is transformed to H' defined by h'(y/, 2) = h(G(y'),2) and Ag
is replaced by

(9.130) A ={( 1), y=GW), 0 -dy' =n-G*dy, (y,n) € Au}.

That is, Ay is a well-defined submanifold of T*R™\ 0 with R™ treated as a manifold.
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9.2. LAGRANGIAN PARAMETERIZATION 227

27.3.2008.569
We shall say a hypersurface H C R"” x R¥ such that (9. olds near e H
is a parameferization of Apg near (y,dh(y,2)), p = (g, Z) given by (9. . Propo-

sition 9.2 has a converse, namely any A C T*R™ \ 0 which is homogeneous and
Lagrangian arises this way locally, that is provided

A C T*R™\ 0 is smooth of dimension n,
t-A=A,t>0is Lagrangian
w = Z dn;dy; vanishes on A.

J

(9.131)

Note that as a consequence of the assumed homogeneity of A, this last condition is
equivalent to

(9.132) a= andyj vanishes on A.
J

9.4.2008.679
Certainly (b.ISZ; implies that w = da vanishes on A. Conversely, the homogeneity
means exactly that R =7 - 0, is everywhere tangent to A. Then for any v € T,A,

(9.133) a(v) =w(R,v) = 0.

PROPOSITION 9.3. Any homogeneous Lagrangian submanifold has a parame-
terization near each point (§,7) € A and H can be chosen to be minimal in the
sense that if p is the base point of the parameterization

0?h
821'82’]' (p) =0

. .. |27.3.2008.573
PrOOF. Fix (4,7) € A, 71 ¢ 0 by assumption in (b.lB ; Let S C R™ by the
projection of T{y 7 A onto the first factor. Thus

(9.134)

(9.135) dmS=n—-k—-1<n-1

by homogeneity (which implies 7- 0, is tangent to A) so k > 0. By an affine change
of variables in R™ we may assume yj = 0 and that S = sp{0.,,,,...,0y, }. Thus
on A, near (g,7), the variables y;, j > k + 2, have independent differentials and
dy; = 0 at (y,7) for j = 1,...,k + 1. The vanishing of «, and da, on A, and in
particular on the tangent space T{y A implies that

nk+2:"':77n:03't (gaﬁ)7
digte = -+ =dn, =0 at (7,7).

Thus the variables n;, 7 = 1,..., k+1 and y;, | > k+2 together give local coordinates
on A near (g,7). By a further linear transformation among only the first k + 1

variables we can assume that 77 = (1,0,...,0).
Write
a=mdyy— Y yidni+ > mdy+d( Y myp).
2<<k+1 I>k+2 2<<k+1
27.3.2008.573
By assumption in (kfﬁl%_fthI—form vanishes identically on A. Next restrict to
I' = An{m = 1}, which involves no essential loss of information due to the

assumed homogeneity of A. Then z; =141, 1 < j <k and y’ = (yr+2,...,Yyn) are
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local coordinates on I' near the base point and the other variables can therefore be
expressed in terms of them and so we may define a function g(z,y”) by

(9.130 sei ) =mt Y myyont

2<j<k+1

Thus on T,

a=dg— Z Yj+1dzj + Z mdy; =0on ' =

(9.137) S
g

dg
i1 =2 Yig1=—, j=1,...,k, =——1>k+2.
Ni+1 = 25, Yj+1 8zj J m oyl =

We shall show that the zero set of the function
k

(9.138) Wy, 2) =+ 2y — 9(2,9")

=1

27.3.2008.569 .
parameterizes A near (g, 7). Certainly (b I23% holds so it suffices to check that the
Lagrangian it parameterizes is indeed A. Differentiating h,

99 .
CH:{yj+1:87zja]: ks h*leFZZJyJ—H 9(z,y") = 0}

j=1
. 28.3.2008.574
shows that the z; and y;, { > k 4 2 are coordinates on C'y and from (b 37;

k

(9-139) dyh = dyr + ) zdyji1 — dyrg(z,y") = (y,dyh) €T

j=1

so H does parameterize A. rop:2
This completes the proof of Proposition 8.3 since h is minimal, in that %h/9z;0z; =
0 at the chosen base point. O

As we shall see below, it is important to observe that two minimal paramer-
izations of a conic Lagrangian near a given point are equivalent in the sense that
there is is a fibre-preserving diffeomorphism mapping base point to base point and
taking one hypersurface to the other.

LemMA, 9.6 (Minimal parameterizations). If H' C R™ x R¥ i§0NyRsy sageface
satisfying (9. at p = (g, zZ) which is minimal in the sense that (9. olds 03 e es0
which locally parameterizes a conic Lagrangian A then k' = k, the integer in (9.

for that Lagrangian and there is a local fibre-pres Tving, diffemorphism reducing H'
to the hypersurface H constructed in Proposition % 3

EOOF We may work in the local coordinates introduced in the proof of Propo-
sition

hus, in addition to assyupipe that H' = {I’(y, z) = 0} parameterizes A
near (,7) we may suppose that (b IB%% holds and also that p = (g, z) is the %gge,z
point of both the given parameterization and that constructed in Proposition

Thus y;, for j > n—k+ 2,1 < k+ 1 are coordinates on A, § = 0, 7 =
(1,0,...,0) and T3 7 A is reduced to normal form. First we arrange that, locally,
Cy = Cg by a fibre-preserving diffeomorphism. Of necessity dh’ = dy; at the base
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point, so b/ = a(y1 +9(y2, - - -, Yn, 2)). So may assume that b’ = y1+g(ya, . .., Yn, 2)-
From the arranged form of the tangent space to A at the base point we know that

on’'
(9.140) dya—(ﬁ) define {dy; =0, 2<j <k+1}.
Zj
Thus, after a linear change of fibre coordinates, we may suppose that
on’' ~
(9.141) dya—zj = dy; at p.

Now the assumption that H' and H parameterize the same Lagrangian means
that

(9.142) Cy 3 (y,2)

I

(v, dyh(y, 2)) == (y, dyh'(y,2")) in AN {m =1}

Cru 3 (y,2)

induces a diffeomorphism from Cg to Cgy/. We need to check that this can be
extended to a fibre preserving diffeomorphism, but this is clear since z and the

Yy = 642 oo Y 81ve coordinates on C'y and similarly on Cyr and in terms of
B 12[2; 1s th

these (9. e restriction of the identity in y and
on’'

9.143 zj = y, 2

(9.143) i = gy )

which is fibre-preserving.
Thus we have arranged that Cy = Cpy and that dyh = dyh’ there, which
means that

(9.144) ' =h+O((h,d.h)?)

i.e. the difference vanishes quadratically on Cy = Cy.

So, we need to make a further fibre-preserving transformation which removes
these quadratic terms, leaving C'y fixed of course. This can be done using the
Morse lemma. Since a proof is not included here, it seem appropriate to prove it
directly — this amounts to Moser’s proof of the Morse Lemma.

Since we have arranged that h’ and h are equal up to quadratic terms on
Cy it follows that hy = (1 — t)h + th' is, for t € [0,1], a l-parameter family of
parameterizations of the same Lagrangian A with Cpy fixed (and of course dh;
constant on C'y.) So, Moser’s idea applied to this case, is to look for a 1-parameter
family of fibre-preserving diffeomorphisms,

(9145) Ft(y7z) = (y,Z(t,z)), FO(y7Z) = (yvz)a
starting at the identity and such that
(9146) Ft*h/t = ht(y,Z(t,Z)) = h(y,Z) = ho(y,Z)

The nice feature of this is that the condition can be expressed differentially and
written in the form

d
(9.147) 0= %Ft*ht = Ff(Vihy(y,2) + h}) = Vihe(y,2) + h, =0
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where V; is the 1-parameter family of vector fields defining F;. That is, F; can be
recovered from V; and the intial condition Fy = Id, and will be fibre-preserving if
and only if

k
(9.148) Vi=> w;(t,2)0,
j=1
4.4.2008.638
is tangent to the fibres. The remarkable property of (b IZI7; is that ‘F} has disap-

peared’ and we only need to find V;.
By construction

k
Oh Oh
i,j=1
Ohy oh

— Al nN_"
— (‘921 ; 'Lj(tayvy)azj

where the G;; are smooth and A;; is invertible near C'y. Thus

dh i dGi(t,y',z) Oh Oh , _, Ohy

(9.149) y G 902 (A= 5 )i

4,J=1

constructs V;. O

It also follows from Proposition 9. at there is a parameterization of A, near
a given point, with any number of fibre variables z, greater than or equal to k.
Namely, if 2z’ € R? and p(2’) is a non-degenerate quadratic form in 2’ then

H' ={(y,z,2) e R" x R" x R% I’ = h(y,z) +p(z')}

also parameterizes A and has k+¢q fibre variables, simply because ?)Z: =0s 2 =01

Conversely we may remove ‘unnecessary’ fibre variables.

LEmMA 9.7. If H C {R?:ZZ) x R™} is defined by h where at the base point
0?hgze is invertible and Z = S(z,y) is the local sollution of Oh/0Z(z,S,y) = 0

then H = {h' = h(z,S,y) locally parameterizes the same Lagrangian as H.

PROOF. The invertibility of 92h/0Z? at the base point 7, 2, Z) implies that the
local solution of Oh/0Z(z, S,y) is of the indicated form and then A’ exists. Then

on'  Oh 0S 0Oh

1 i i

(9.150) 9: 0z 92 0Z
from which it follows that Cyd(y, 2z, Z) — (y,z) € Cpgs is an isomorphism and
dyh' = dyh at the points so identified. Thus b’ parameterizes the same Lagrangian

as h. O

The most familiar case of a conic Lagrangian submanifold of T*R™ is the conor-
mal bundle of a submanifold. If the manifold is of codimension k + 1 then

G={yeR"%q(y) == gr+1(y) =0, dg; independent}
k+1
N*G = {(y,n) € T*R™n =Y nidgi(y)}-
i=1

1See Problem N
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Clearly G is parameterized near n = (1,0,...,0) by
k
hy,2) = g1(y) + Y zg41(h).
j=1

Then 82h/9z;0z; = 0. Conversely,

PROPOSITION 9.4. If H C R™ x R* is such that 62h/aziazj =0 on Cy then
H parameterizes the conormal bundle of a submanifold locally.
PROOF. See Problem MM. O

9.3. Lagrangian distributions

Now we are in a position to associate a space of distributions with a conic
Lagrangian, A C T*X \ 0, in a way that generalizes the conormal distributions
discussed earlier.

4.4.2008.642 DEFINITION 94. If A C T*X \ 0 is a smooth conic Lagrangian submanifold
then

4.4.2008.643| (9.151) I"(X,A) CCT(X)
is defined to consist of those distributions satisfying

4.4.2008.644 | (9.152) WF(u) C A

and such that for each p € A there is a local parameterization H C X x RF of A
near p and v € I*(X x R¥, H) with compact support such that

2.4.2008.685] (9.153) pé WEu(-) — / o(-, 2)d2).
Rk
Thus by definition a distribution is Lagrangian if it is ‘smooth away from the
Lagrangian’ and microlocally given by push-forward of a conormal distribution on
a parameterizing hypersurface near each point of the Lagrangian.

As usual this definition only really makes good sense because the same class
of singularities near a given point of A arises by pushing forward, independent of
which parameterization of the Lagrangian is used. So, we check this first

One thing to check is that this does indeed reduce to the conormal distributions
discussed earler.

9.4.2008.684 PROPOSITION 9.5. If A = N*G \ 0 is the conormal bundle of an embedded
submanifold then
9.4.2008.685| (9.154) I"(X,N*G) =I"(X,G).
PROOF. Stationary phase to minimal parameterization. O
4.4.2008.646 LEMMA 9.8. If H; C X xR¥i i = 1,2, near p; € Cg, are two parameterizations

of a conic Lagrangian A near p € A and x € C(X x R¥) then for each v €
I*(X x RM; Hy) there exists w € I*(X x R Hy) such that

v(-,z)dz—/ w(-,2")dz'.
k1 RFE2

Nothing is said about the orders of v and w, but we will work this out as we go
along.

4.4.2008.647| (9.155) D¢ WF(/
R
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PROOF. Suppose first that ?8@2%3,%& are minimal parameterizations at p.
Then we know from Proposition WWWO parameterizations are related by a
fibre-preserving diffeomorphism. This means that the resulting spaces of conormal
distributions are mapped onto each other by the diffeomorphism and its inverse
locally and then w is the pull-back of v with a Jacobian factor inserted to ensure
that the integrals are the same.

So, to prove the general case it suffices to work with an arbitrary parameteriza-
tion H; and we may suppose that Hs is any convenient minimal parameterization.
At the base point,

0%hy

(9.156) 9292 has rank p
(el

where minimality corresponds to p = 0. After a linear change of variables, we may
take this matrix to be the identity in the last p x p block. Then by the implicit
function theorem,

ohy
821-

=0, ki—p+1<i<k = z2j = Zj(y,Z/), ki—p+l <ky, 2 = (21,...,Zk), k=ki—p.

Thus,

0157
k1

h1(y,2’) = h(y,z’)—l— Z Hij(zi_Zi(y’z/))(zj_Zj(yvz/))’ h(zlvy) = hl(yazlaz(y’zl))
ij=k1—p+1

with H;; symmetric and invertible. (]

9.4. Keller’s example of a caustic

Keller was the first to effectively compute with Lagrangian distributions in a
context, that of a caustic, where what is now called the Keller-Maslov line bundle
cannot be avoided. This example will be discussed here and should help to motivate
the general, invariant, definition of the symbol of a Lagrangian distribution in the
next section.

Consider the wave operator in 2 + 1 dimensions

(0.158) P=D} D}~ D

The forward forcing problem for P is uniquely solvable. That is, if f € C~>°(R?)
has support in £ > 0 then there is a unique distribution

(9.159) u € C (R?), Pu=f, supp(u) C {t > 0}.
It is also the case that if in addition f € C*°(R?) then u € C*°(R?). In particular
this means that if u is a solution of Pu = 0in ¢t < 0 then u can be extended uniquely
to a solution in the whole of R32 and the singularities in the future only depend on
the singularities in the past.

So, suppose that we have arrange that u € C~°°(R?) is conormal to some
hypersurface in t < 0 and satisfies the wave equation, or at least has Pu smooth
there. It is possible to find such solutions, u € I"™(R3, G) which are elliptic (so in
particular not smooth) if G is characteristic for the wave equation, meaning that

(9.160) N*G C B(P) = {(z,y,t,7,&m); 7% = € +1*}.

2Problem NN
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The most obvious example of this is a characteristic plane G = {t = w - (z,y)}
where |w|? = 1. Then for instance

(9.161) POt —w- (2,9)) =0

As we shall see below, it is possible to continue any smooth curve C' € R? as a
characteristic hypersurface (in two ways in fact) for |t| < e where € > 0 depends on
C, and especially on its curvature. As opposed to the case of the line w - (z,y) =0
which leads to the global surface above, in general this characteristic hypersurface
will develop singularities. Again as we shall see below, the conormal bundle of the
curve defines a global smooth conic Lagrangian and the singularities correspond
to the places where the projection of this to the base is not locally smooth. The
particular example we consider here, following the idea of Keller, is where G is a
parabola. The general construction is carried out below but for the parabola

.’L‘2

2
(9‘162) C:{y:%}v N*CZ{(:C,?,—I'T},’U), €, UGR}
we can find the global Lagrangian — it is ‘the union of the light rays through the
points of N*C'\ 0". Here, by a light ray, we mean a straight line in X(P) C T*R?
on which 7, ¢ and 7 are constant (with 72 = ¢2 +n?) and t = tq+ s, © = w9 — £s/T
and y = yo —ns/7. Here (to, o, yo0, 7T, &, n) is the initial point, so we can take to = 0
and s = ¢ and so initially 7 = +(22 + 1)27 and
(.16
Ao = {(t, zor—"0" Bt +(2241)? ) teR,n 0}
C = R e R N ) x y =0T, 1) To, 1, ) .
@113 2 (@i T T 7
- 412 e 6%%ke T to have the oppsosite sigh to 7, meaning the negative sign in
(b I 63; then y increases with ¢ from its initial (non-negative value) snd x increases
if negative and decreases if positive. It is straightforward to check® that

(9.164) Az =N*Gint < 1,G smooth.

In fact the first singularity which occurs, meaning the first point at which the
intersection of the tangent space to Ag and the fibre of 7*R? has dimension greater
than 1 is at (1,0,1,—1,0,1) at which it has dimension 2 — it always has dimension
1in ¢t < 1. In fact we can easily see exactly where the tangent space to A, meets
the fibre with dimension greater than one since this is exactly where

d t t
ro(l—————)]=1—-——— =0and
dzxg (x3+1)2 (x3+1)2

(9165 I S U R
drg \ 2 (22 +1)2 (1+23)2

3
%,x:xg,y:1+§x8.

This curve is the full caustic, K. As a curve, it is smooth as a curve except for a
singular point at (1,0, 1), which is the point we are most interested in. Notice that
if we think of A as projecting to the conormal bundle to a family C} of curves in
R? starting at Cy = C and parameterized by ¢, then for ¢t < 1, C; is smooth, for
t = 1 it has a single singular point at (1,0,1) and for ¢ > 1 these curves each have

= t=(1+x3)

3Problem ***
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two singular points, on K. If you check® what is happening to the curvature of C;
you will see that it is positive in the ‘upwards direction’ (i.e. for y increasing) and
this remains true for ¢ > 1 for the part of the curve outside K; however the part of
the curve above K has the opposite curvature. This is reflected in the behaviour
of the symbols as we shall see.

V2!
&

Using the construction in the previous sections we can find an explicit parame-
terization for Ag near (1,0,1) and show that there are solutions of Pu = 0 nearby
which are Lagrangian with respect to A.. Thus following the proof of Propositon 6.3
we first make an affine change of coordinates setting

¢
(9.166) S:y—t,R:%—l,x:x.

The dual variables are then

(9.167) 77:04_%,T:_U_;_B,f:gi.e.azu’p:n—kr.

2 2
Thus in the canonically dual coordinates to these coordinates is

9.168) A = (5.0 Ror.p) =

1 _
(§x3 +t((xd +1)

W=

t1+ (22 +1)72) -1,

DN | =

2
—1), 29 — xot(aag + 1)_%, % +

1 1 1
5 (L (8 + DF)n, —zon, (1= (o + 1)2)n)swo, . £ € Ry # 0}

where we use the same parameterization. Now the base point has been moved to
the point (1,0,0) above the origin in (S, z, R) and the projection to the base of the
tangent space is fixed by

(9.169) dz =0, dS =0.

4problem ***
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Then a parameterizing hypersurface is given by
(9.170) h=S+4zx—F(R,z2), F=ux¢

where z = ¢ and R are taken as coordinates on A, N {o = 1}. Thus F is given
implicitly by:-
(9.171)

1 xf 1
F(R,z) = (zo—wot(x3+1)" %)z, 5(14'(%34'1)%)77 =1, z=—zn, R= ZO—&—Et(l—&—(x%—i—l)_%)—l,
where we eliminate 7 using the second equation and xg and ¢ in terms of z and R
using the last two. Now, we know that 92h = 0 at the base point and we can easily
check that

(9.172) O3h =7 at p.

This of course means that 92h < 0 above z = 0 for t = 1 — § and 92h > 0 above
x=0fort=144d, > 0 small. The effect of this is Keller’s observation

As a conormal distribution the symbol of u
(9.173)

is multiplied by ¢ across the swallowtail tip.

This shows that we must expect ‘factors of i’ to appear in the definition of the sym-
bol of a Lagrangian distributions when we generalize from the conormal case. These
factors are what constitutes the Keller-Maslov line bundle over a conic Lagrangian.

9.5. Oscillatory testing and symbols

The symbol of a conormal distribution is defined by taking the Fourier trans-
form across the submanifold. To extend this to the Lagrangian case requires some
care. We shall show that if u € I*(X, A; Q%) is a half-density then we can define
its symbol as an object on A (but not quite a function) by pairing with oscillating
functions. Thus consider

(9.174) A(s, fv) = ule ™), feC™(X), ueI"(X,A Q7).
The argument is really local, so it is enough tq take X = R™, but we do want to
ensure coordinate invariance. In order for (9.17 o make sense, v should be a

half-density. Obviously to find (i.e. define) the symbol at some point A € A, or
really the ray through that point, we will suppose that v has support near the
projection of that point. The main question is then, what we should demand of f.
It is clearly natural to expect to take

(9.175) df (r(\)) =X e T*X \ 0.
LEMMA 9.9. For any \ € A, the phase f € C*(X) can be chosen so that
(9.176) f(m(N) =0 and graph(df) M A = {\}
5.4.2008.667
and then, if v has sufficiently small support near w(\), A(s, f,v) in (9. 15 a

classical symbol for any u € I*(X, A; Q%).
NB: Cutoffs need to be done better and argument cleaned up!

rop:2
PROOF. As shown in the proof of Proposition B.B coordinates can be introduced
near the projection of A in terms of which the base point and the tangent space to
A at the base point takes the form

(9.177) A=dy, T’NA =sp{d,,, 1 <j<k+1, ,, | >k+2}.
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Since, for any choice of a real-valued function f € C*°(X), and any coordinates

6.4.2008.674| (9.178) graph(df) = {(y,dy,f)} CT*X

is a smooth Lagrangian submanifold (since it clearly has dimension n, being a
graph, and a = 7 -dy = df5i.s4‘(“21 gg%_/%n A, and hence w = da vanishes there).
Thus, if df (7 (X)) = A then (%t the condition that the pairing between
T*Agraph(df) and ThA be non-degenerate. Thus the condition on f is just

2
6.4.2008.672| (9.179) det (gaf\iPHz) #0.
U5 0=

Put more invariantly, this condition can be stated in terms of any submanifold S
through m(A) = g which is conormal bundle tangent to A at A, i.e. A € N*S and
T)\N*S = T)\A as

6.4.2008.673| (9.180) df (y) = A, f|A has a non-degenerate critical point at g.

Of course such a s bln igoéc}sS exists, for example that given locally by y; = y;
for j > k+2 and (%:18' SE only depends on 75.°

Under this assumption of transversality we need to examine (&%’?ﬁ%gvgglknow
from the properties of the wave front set that only the points where df € WF(u) can
make asymptotic contributions to A(s, f,v). Thus, if v has small enough support
then only the point A € WF(u) is relevant and we may suppose that, in local
coordinates,

6.4.2008.675| (9.181) u(y) = /e”h(y’z)a(y,z,7)dzd7'|dy|%, a € Shhy

for some m and some parameterizing hypersurface for A at A. Then
6.4.2008.676 | (9.182) A(s, f,v) = /ei(m(y’z)*sf(y))a/(y,Z,T)dszdy, aldy|2v = d'|dy).
Consider the inverse Fourier transform in s

6.4.2008.677 | (9.183) u(t) = /ei(Th(y’Z)fsf(yHSt)a'(y,Z,T)dszdyds.

A cutoff keeping 7 > 1 and r = s/7 bounded from above an below can be inserted
here making on a C* change to w. It then follows that

6.4.2008.678| (9.184) h(t,y,z) = h(y,z) —rf(y) +rt

defines a hypersurface parameterizing N*{¢t = 0} which means that u is conormal
to 0 and its Fourier transform A(s, f,v) is equivalently a classical symbol. ([

5Note that this shows something rather less than obvious, which is worth checking by hand.
Namely if one takes a C*° éf‘i}‘{’%{f{}é?’éﬁ f to f + eg then if € is small enough and df + edf =
X' € A then the condition %Tgmrﬁold at the new point A’ — even though the dimension
of the tangent space may well be different (it can only be larger). This is just the stability of
transversality.
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9.6. Hamilton-Jacobi theory

Let X be a C* manifold and suppose p € C>®(T*X\0) is homogeneous of
degree m. We want to find characteristic hypersurfaces for p, namely hypersurfaces
(locally) through 7 € X

(9.185) H={f(x) =0} heC™®)h(x)=0,dh(z)#0
such that
(9.186) p(z,dh(z)) = 0.

19.2 19.2
Here we demand that (bISG) hold near Z, not just on H itself. To solve (5T86) we
need to impose some additional conditions, we shall demand

(9.187) p is real-valued
and
(9.188) dfibrep # 0 or B(p) = {p =0} C T*X\0.

This second condition is actually stronger than really needed (as we shall see) but
in any case it implies that

(9.189) Y(P) c T*X\0 is a C*™ conic hypersurface

by the implicit function theor I8
The strategy for solving (g 86) is a geometric one. Notice that

(9.190) Ap ={(z,dh(x)) e T*X\0}

actually determines A up to an additive constant. The first question we ask is —
precisely which submanifold A € T*X\0 corresponds to graphs of differentials of
C*° functions? The answer to this involves the tautologous contact form.

a: T"X — T(T*X) ¢ 7toa=1d

Here 7 : T*(T*X) — T*X is the projection. Notice that if z1,...,z, are local
coordinates in X then x1,...,x,,&1,...,&, are local coordinates T* X, where & €
T; X is written

(9.191)

(9.192) £= &Gdu;.
i=1
Since z1,...,Tn, &1, .- ., &, are local coordinates in T* X they together with the dual
coordinates Z1,...,2,, X1,...,X, are local coordinates in T*(T™*X) where
(9.193) CETLo(T"X) = ¢ =) Ejdr;+ > X;d;.
j=1 j=1

In these local coordinates
(9.194) a=>Y &adu;!
j=1

The first poinﬁlés;chat « is independent of the original choice of coordinates, as is
evident from (9.191).
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19 dEMMA 9.10. A submanifold A C T*X\0 is, near (z,€) € A, of the form
(9:190) for some h € C>(X), if

(9.195) m: A — X is a local diffeomorphism
and
(9.196) a restricted to A is exact.

19.12
PROOF. The first condition, (m), means that A is locally the image of a
section of T*X :

(9.197) A ={(z,{(x)),  €C®(X;T*"X)}.

Thus the section ¢ gives an inverse Z to 7 in (ETQTE%) It follows from (%%‘51) that
(9.198) Z*a = (.

Thus if « is exact on A then ( is exact on X, {( = dh as required. O

Of course if we are only working locally near some point (Z, ) € A then (9.196)
can be replaced by the condition

(9.199) w=da=0on X.

Here w = da is the symplectic form on T*X :

(9.200) w=Y_d&; A da;.
j=1

DEFINITION 9.5. A submanifold A C T*X of dimension equal to that of X is
said to be Lagrangian if the fundamental 2-form, w, vanishes when pulled back to

A.

By definition a symplectic manifold is a C*>° manifold S with a C*> 2-form
w € C%(9; A?) fixed satisfying two constraints

(9.201) dw=0
(9.202) w /\f' ' ANw#£0 dim S = 2n.

A particularly simple example of a symplectic manifold is a real vector space, nec-
essarily of even dimension, with a non-degenerate antisymmetric 2-form:

cExFE—R
(9.203) “
w:E<+— E*.
19.17
Here @(v)(w) = w(v,w) V w € E. Now (krzm) is trivially true if we think of w as
a translation-invariant 2-form on E, thought of as a manifold.
Then a subspace V C E is Lagrangian if
wv,w)=0Vo,weV
2dimV =dim F.
Of course the point of looking at symplectic vector spaces and Lagrangian subspaces
is:

(9.204)

LEMMA 9.11. If S is a symplectic manifold then T,S is a symplectic vector
space for each z € S. A submanifold A C S is Lagrangian iff T,A C T.S is a
Lagrangian subspace ¥V z € A.
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We can treat w, the antisymmetric 2-form on F, as though it were a Euclidean
inner product, at least in some regards! Thus if W C E is any subspace set

(9.205) W« ={veFEwhw) =0YweW}.

LEMMA 9.12. If W C E is a linear subspace of a symplectic vector space then
dim W* +dim W = dim E; W s Lagrangian if and only if

(9.206) W =Ww.
PROOF. Let W% C E* be the usual annihilator:
(9.207) W% ={a€cE*alv)=0YvecW}
Then dim W = dim E — dim W. Observe that
(9.208) QWY — WO,
Indeed if & € W9 and &(v) = « then
(9.209) a(w) =o)(w) =wlv,w) =0Vwe W

implies that v € W¥. Conversely if v € W* then o = @(v) € W°. Thus dim W¥ +
dimW =dim E.
Now if W is Lagrangian then o = @(w), w € W implies

(9.210) a(v) =o(w)(v) =w(w,v) =0V v € w.

19.25 19.24
Thus (W) C W = W C W%, by (m), and since dim W = dim W%, (9.206)
holds. The converse follows similarly. O

The “lifting” isomorphism @ : E <— E* for a symplectic vector space is like the
Euclidean identification of vectors and covectors, but “twisted”. It is of fundamental
importance, so we give it several names! Suppose that S is a symplectic manifold.
Then

(9.211) Gy T8 +—T;SVzeS.

19.26
This means that we can associate (by the inverse of (bZTI)) a vector field with
each 1-form. We write this relation as
H, € C™(S;TS) if v € C*°(S;T*S) and

9.212
( ) 0.(Hy,)=yVzes.

Of particular importance is the case v = df, f 1§°2°%S) Then Hgs is written
Hy and called the Hamilton vector field of f. From (b? 2)

(9.213) w(Hy,v) =df(v) =vfVovel,S Vzeb.
19.28

The identity (b.ZIB) implies one important thing immediately:

(9.214) Hif =0V feC®(S)

since

(9.215) Hyf =df(Hy) = w(Hy, Hp) =0

by the antisymmetry of w. We need a generalization of this:

LEMMA 9.13. Suppose L C S is a Lagrangian submanifold of a symplectic man-
ifold then for each f € Z(S) = {f € C>(X); f | {s =0}, Hy is tangent to A.
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PROOF. Hy tangent to A means Hy(z) € LAV z € A If f = 0 on A then
df =0 on T.A, ie. df(z) € (T.A)° C (T.S) V z € A. By (m) the assumption
that A is Lagrangian means @, (df(z)) € T>A, i.e. Hy(2) € T¢A as desired. O

This lemma gives us a necessary condition for our construction of a Lagrangian
submanifold

(9.216) A C 2(P).

Namely H, must be tangent to A! We use this to construct A as a union of integral
curves of H,. Before thinking 1%b§)ut this 1egr.igusly, let’s look for a moment at the
conditions we imposed on p, (bTS?) and (E? [88). If p is real then H, is real (since
w is real). Notice that

(9.217) If S =T*X then each fibre T) X C T*X is Lagrangian .
Remember that on 7* X, w = da, a = £ - dz the canonical 1-form. Thus T X is just

1 5=a50nst, so dx =0, s0 a =0 on %;Z( and hence in particular w = 0, proving
(FJ.Z 7). This allows us to interpret (9.188) in terms of H,, as

19.4

(9.218) (bTBS) +— H,, is everywhere transversal to the fibres T); X.

1o NOW we want to construct a little piece of Lagrangian manifold satisfying
(b.Z 6). Suppose z € X(P) € T*X\0 and we want to construct a piece of A
through z. Since m,(H,(z)) # 0 we can choose a local coordinate, ¢t € C>°(X), such
that
(9.219) T (Hp(2))t # 0, ie. Hy(m"t)(2) # 0.

Consider the hypersurface through 7(z) € X,

(9.220) H={t=1t(z)} = 7(z) € H.

Suppose f € C*(H),df (m(z)) = 0. In fact we can choose f so that

(9.221) f=f1H[f eC®X), df'(n(z)) =2
where z € Z(P) was our chosen base point.

19.3
JEPREM 9.2. (Hamilton-Jacobi) Suppose p € C*°(T*X\0) sqlisfies (E&%Z)

and (9.188) near z € T*X\i%, L is a hypersurface through 7(z) asin (TETZTQ), (9216)

and f € C*(H) satisfies (52‘21), then there exists f € C*(X) such that

A = graph (df) C (P) near z

(9.222) f 1 H=f nearn(z)
df(n(2)) = 2
and any other such solution, f, is equal to f in a neighbourhood of (z).

PROOF. We need to do a bit more work to prove this important theorem, but
let us start with the strategy. First notice that A N7~ 1(H) is already determined,
near 7(z).

To see this we have to understand the relationship between df (h) € T*H and
df(h) € T*X, h € [, £, 1 H = f. Observe that H = {t = 0} lifts to T;; X C T*X a
hypersurface. By (kf?ﬁl)7 H; is tangent to T X and non-zero. In local coordinates
t,x,...,Zn_1, the x’s in H,

(9.223) H=——
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where 7, &1, ...,&, are the dual coordinates. Thus we see that

(9.224) mg:ThX — T*H my(B)(v) = pv),v e Tp,H C TpX,
is projection along 9,. Now starting from f € C*°(H) we have

(9.225) Ay CT*H.

Notice that if f € COO(X),ﬂH = f then

(9.226) AfNTxHX has dimension n — 1

and

(9.227) (A NTHX) = Ay

The first follows from the fact that A jlsa graph over X and the second from the
definition, (bm) So we find O

1. JEMMA %&435 If z € ¥(P) and H is a hypersurface through mw(z) satisfying
(F:rzm) and (9.220) th {LQWS% (E(P)NTHX) — T*H s a local diffeomorphism in
a neighbourhood z; if ?W) is to hold then
(9.228) ApNTHX = (7)) (Ay) near z.

19.36

PrOOF. We know that H, is tangent to X(P) but, by assumption (Fn‘n) is not
tangent to T X at z. Then X(P)NT}; X does have dimension 2n—1—1 = 2(n—1).
Moreover 7gis projection along 9, which cannot be tangent to X(P)N T X (since
it would be tangent to X(P)). Thus wf has injective differential, hence is a local
isomorphism.

So this is our strategy:

Start with f € C*°(H), look at Ay C T*H, lift to ANTHX C X(P) by 7h.
Now let

(9.229) A = | J{H, — curves through (mf;) " (Af)}.
This we will show to be Lagrangian and of the form A 7o it follows that

(9.230) pla,df)=0,f | H=.

9.7. Riemann metrics and quantization

Metrics, geodesic flow, Riemannian normal form, Riemann-Weyl quantization.

9.8. Transport equation

The first thing we need to do is to finish the construction of characteristic
hypersurfaces using Hamilton-Jacobi theory, i.e. prove Theorem XIX.37. We have
already defined the submanifold A as follows:

1) We choose z € £(P) and t € C*(X) s.t. Hym*(t) # 0 at dz, then selected
feC®H),H={t=0}NnQ,Q> 7z s.t.

(9.231) z(v)=df(v) Vv e T H.
Then we consider

(9.232) Ay = graph{df} = {(z,df(v)), e € H} CT*"H
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as our “initial data” for A. To move it into 3(P) we noted that the map

20.3| (9.233) S(P)Nn  THX — T"H
I
{t=0 in T*X}
. . . %)2-11’, . . .
is a 3local diffeomorphism near z, df (7(z)) by (9.231). The inverse image of Ay in
(5233) is therefore a submanifold Ay C X(p) N T} X of dimension dimX — 1 =
dim H. We define

20.4| (9.234) A= U{HP — curves of length e starting on Af}
So we already know:
20.5| (9.235) A C 3(P) is a manifold of dimension n,
and
20.6| (9.236) m: A — X is a local diffeomorphism near n,

What we need to know most of all is that
20.7| (9.237) A is Lagrangian.

That is, we need to show that the symplectic two form vanishes identically on
T.A, V2 € A (at least near z). First we check this at z itself! Now

(9.238) T.A=T.A; + sp(H,).

N

N
©

0

00

Suppose v € T, A £, then
0 (9.239) w(v, H,) = —dp(v) = 0 since Ay C B(P).
Of course w(H,, H,) = 0 so it is enough to consider

20.10] (9.240) w|(ToAp x T.Ay).

20.3
Recall from our discussion of the projection (b.233) that we can write it as projection
along 0. Thus

wx (U, w) = wH(v/a ’lU,) if v, w € TZ(THX)a
(ch)ev =2 (chy)ew = w' € T,(T*H)
20.10
where z = df (n(z)). Thus the form (M) vanishes identically because Ay is La-

N
o
-
[N

(9.241)

grangian. ~
In fact the same argument applies at every point of the initial surface Ay C A :
(9.242) T./A is Lagrangian V 2’ € Ay.

To extend this result out into A we need to use a little more differential geometry.
Consider the local diffeomorphisms obtained by exponentiating H,, :

(9.243) exp(eH,)(ANQ) C AV esmall, Q3 z small

This indeed is really the definition of A; more precisely,

20.14] (9.244) A= | exp(eH,)(Ay).

e small

N
o
=
w

The main thing to observe is that, on T* H, the local diffeomorphisms exp(eH,,) are
symplectic:

20.15| (9.245) exp(eH,) wx = wx.
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%%z;i‘_r%y (b2?2'21155), (%?2'4133) and (E)QZ%) prove (%)2%7) The most elegant wary to prove
(5.215)

is to use Cartan’s identity (valid for H,, any vector field, w any form)

(9.246) % exp(eH,)*w = exp(eHp)" (La,w)
where the Lie derivative is given explicitly by
(9.247) Ly =dowy +uyod,
cy being contradiction with V' (i.e. a(-,+,...) — a(V,-,+,...)). Thus
(9.248) Ly,w = d(w(H)y,-)) + tv(dw) = d(dp) = 0.
(Il
Thus from (%5), (%.)2'“3’6) and (%7) we know that
(9.249) A = graph(df), f € C*(X), near 7(2),

must satisfy the eikonal equation
(9.250) p(x,df(x)) =0 near n(z),Hf | H = f

where we may actually have to add a constant to f to get the initial condition —
since we only have df = df on TH.
So now we can return to the construction of travelling waves: We want to find

(9.251) wel*(X,G;Q%) G={f=0}
such that w is elliptic at z € X(p) and

(9.252) Pu e C™(X).

So far we have noticed that

(9.253) Omim(Pu) = om(P) | N*G - o(u)
so that

(9.254) N*G C X(p) < p(z,df) =0on f =0
implies

(9.255) Pue I"™M=1(X G;Q7) near (2)

20.24
which is one order smoother than without (bm)
It is now clear, I hope, that we need to make the “next symbol” vanish as well,
i.e. we want

(9.256) Omtm—1(Pu) =0.
Of course to arrange this it helps to know what the symbol is!

PROPOSITION 9.6. Suppose P € U™ (X; Q%) and G C X is a C* hypersurface
characteristic for P (i.e. N*G C X(P)) then ¥V u € IM(X,G;Q2)

(9.257) Omar—1(Pu) = (—iH, + a)om, (u)
where a € S™1(N*G) and H, is the Hamilton vector field of p = 0., (P).
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PROOF. Observe first that the formula makes sense since A = N*G is La-
grangian, A C X(p) implies H, is tangent to A and if p is homogeneous of degree
m (which we are implicitly assuming) then
(9.258) Ly, : S"(A;Q3) — ST YA Q) Vm

where one can ignore the half-density terms. So suppose G = {1 = 0} locally,
which we can always arrange by choice of coordinates. Then

(9.259) X = N*G = {(0,2/,&,0) € T*X}.

To say N*G C X(p) means p =0 on A, i.e.

(9.260) p=z1q(z, &) + Z{“jpj(am €) near z
j>1

with ¢ homogeneous of degree m and the p; homogeneous of degree m — 1. Working
microlocally we can choose @ € U™ (X,Q2), P; € U~ 1(X,Q2) with

(9.261) om(Q) = ¢, 0m—1(Pj) = p; near z.
20.30

Then, from (F;rzm)

(9.262)

P=21Q+ D, Pi+ R+ P, RecWU™ Y(X;Q3)z¢ WF'(P'),P € ¥"(X,0Q%).
Of course P’ does not affect the symbol near z so we only need observe that
or_1(z,u) = —dg, op (1)
(9.263) Vuel (X,G;02)
0r(Dy;u) = Dy o (u).

This follows from the local expression
(9.264) u(z) = (27r)*1/ 8z €1)dér.
Then from (%)2%‘22) we get
s ar-1(Pu) = =De, (qoar(w) + Y Doy (pjons(w)) +7 - om(w)

(9.265) J

0 0
ij [A% —q [Aa5 o (u) + a'opr(u).
J i

§>1

20.3
Observe from (Erm) that the Hamilto yeggor field of p, at 1 = & = 0 is just the
(B 257).

expression in parenthesis. This proves (I

So, now we can solve (%)2%%) We just set
(9.266) o (u)(exp(eH,)z') = e exp(eH,) ) ¥V 2 € Ay = AN {t =0}.
where A is the solution of
(9.267) HyA=a, ATt=0=0 onAy
and b € S™(Ap) is a symbol defined on Ag = AN {t = 0} near z.
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PROPOSITION 9.7. Suppose P € U™ (X; Q%) has homogeneous principal symbol
of degree m satisfying

(9.268) D = 0m(P) is real

(9.269) dfprep#0 onp=0

and z € X(p) is fized. Then if H 5 m(z) is a hypersurface such that m.(Hp) N H
and G C H 1is an hypersurface in H s.t.

(9.270) z=cy(z) e H;

there exist a characteristic hypersurface G C X for P such that GN H = G near

7m(z), z € NX,G. For each

(9.271) ug € I™5(H,G; Q) with WF(ug) C 7,
v a fized small conic neighbourhood of Z n T*H there exists
(9.272) ueI(X,G; Q%) satisfying
(9.273) ul G=ug near mz € H

(9.274) Pu e C™ near mz € X.

PRrOOF. All the stuff about G and go.igsjust Hamilton-Jacobi theory. We can
take the symbol of ug to be tgjoe A in (kfﬁg%)%%once we think a little about half-
densities, and thereby expect (9.273) and (9.274) to hold, modulo certain singular-

ities. Indeed, we would get
(9.275) up [ G—wug € I"+%_1(H,G;Q%) near 7z € H

(9.276) PueI"™™™2(X,G; Q%) near 7z € X.

So we have to work a little to removgol%ger order terms. Let me do this infor%al],y,
without worrying too much about (b.273) for a moment. In fact I will put (b.275)
into the exercises!

20.46 20.44
All we really have to observe to improve (b.276) to (b.??zl) is that
(9.277) geI(X,G;02) =3 we ™ (X:G:07)
. s.t. Pu—gelr_l(X,C;’;Q%)

which we can then iterate and asymptoti(E? 1X7sum. In fact we can choose the
solution so u [ H € C*°, near wZz. To solve (9.277) we just have to be able to solve

(9.278) —i(Hp + a)o(u) = o(g)
which we can do by integration (duHamel’s principle). O

. 20.48 L .
The equation (b.278) for the symbol of the solution is the transport equation.
We shall use this construction next time to produce a microlocal parametrix for P!
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9.9. Problems

PrROBLEM 9.2. Let X be a C*> manifold, G C X on C* hypersurface and
t € C*°(X) a real-valued function such that

(9.279) dt #0onT,GVpe L=Gn{t =0}

T
Show that the transversality condition (b.279) ensures that H = {t = 0} and
L = HNG are both C* submanifolds.

T
PROBLEM 9.3. Assuming (b.279) show that dt gives an isomorphism of line
bundles

(9.280) QF (H) = Q3 (X) ~ Q (X)/|dt]*
and hence one can define a restriction map,
(9.281) C™(X;07) — C™(H; Q7).

PRrROBLEM 9.4. Assuming 1 and 2, make sense of the restriction formula
(9.282) VH ™ (X,G;Q%) — [ (H,L;Q%)
and prove it, and the corresponding symbolic formula
(9.283) Oyl (u ] H)= ()" (om(u) | NfG) /|d7|%.

NB. Start from local coordinates and try to understand restriction at that
level before going after the symbol formula!

9.10. The wave equation

We shall use the construction of travelling wave solutions to produce a para-
metrix, and then a fundamental solution, for the wave equation. Suppose X is a
Riemannian manifold, e.g. R™ with a ‘scattering’ metrice:

(9.284) g= Z gij(z)dz'dx? | gi; = &;;]x|R.

1,j=1
Then the associates Laplacian, on functions, i.e.

n

1 0 . 0
(9.285) Au=— — —(0gg" (x)) —u
i;l \/§ 89cj 8:@
where ¢ (z) = (g;;(z)) " and g = det g;;. We are interested in the wave equation
(9.286) Pu=(D? = A= f onR x X

F201r §implicity we assume X is either compact, or X = R™ with a metric of the form
(b.? 84).

The cotangent bundle of R x X is
(9.287) T*(R x X) ~ T"R x T*X
with canonical coordinates (t,z,7,£). In terms of this

(9.288) o(P)=7"—|EPlEl = > g7 (@)&&;

i,5=1
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21.3 21.4

Thus we certainly have an operator satisfying the conditions of (bZSG) and (hzsz;),
since

dp Op
9.289 dered = | 7=, ==
(9.289) fibre P (aT o¢
As initial surface we consider the obvious hypersurface {t = 0} (although it will
be convenient to consider others). We are after the two theorems, one local and
global, the other microlocal, although made to look global.

):Ozrzoandg”(x)fi:Oﬁfzo.

THEOREM 9.3. If X is a Riemannian manifold, as above, then for every f €
C,*RxX) Fl!uelC ®RxX) satisfying

(9.290) Pu=fiu=0nt<inf{t; 3 x)€supp(f)}.

THEOREM 9.4. If X is a Riemannian manifold, as above, then for every u €
C (R x X),
(9.291) WF(u)\WF(Pu) C (P)\WF(Pu)
is(a )um'on of maximally extended H,-curves in the open subset X(P)\W F(Pu) of
3(P).

21.5
Let us think about Theorem mrst. Suppose X is fixed on §z € C~°(X; Q)
is the Dirac delta (g measure) at z. Ignoring, for a moment, the fact that this is not
quite a generalized function we can look for the “forward fundamental solution” of
P with pole at (0,Z) :

9.292
(9-292) E,=0int<0.

21.5
Theorem 9.3 asserts its existence and uniqueness. Conversely if we can construct
E; for each T, and get reasonable dependence on Z (continuity is almost certain
once we prove uniqueness) then

(9.293) K(t,z;t,7) = Ez(t — t,x)

. . Rl.6
is the kernel of the operator, f o+ u solving (b.290).

So, we want to solve (9.292). First we convert it (without worrying about
rigour) to an initial value problem. Namely, suppose we can solve instead

PGa(t,z) =0in R x X

(9:204) Gz(0,2) =0, D:Gz(0,2) = 0z(z) in X.
Note that
(9.295) (9(t,z,7,0) ¢ (P) = (t,x;7,0) ¢ WF(G).

This means the restriction maps, to ¢t =0, in (9.294) are well-defined. In fact so is
the product map:

(9.296) Ez(t,x) = H(t)Gz(t, x).
21.11 21.9
Then if G satisfied (% simple computation shows that E; satisfies (kT292)
(52

Thus we wgnt to solve ).

Now (9.294) seems very promising. The initial data, ¢z, is certainly conormal to
the point {Z}, so we might try to use our construction of travelling wave solutions.
However there is a serious problem. We already noted that, for the wave equation,
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there cannot be any smooth characteristic surface other than a hypersurface. The
point is that if H has codimension k then

(9.297) N:H C TZ(R x X) has dimension k.

To be characteristic we must have

(9.298) N:HCS(P)= k=1

Since the only linear space contained in a (proper) cone is a line.

However we can easily ‘guess’ what the characteristic surface corresponding to
the point (x,Z) is — it is the cone through that point:

This certainly takes us beyond our conormal theory. Fortunately there is a way
around the problem, namely the possibility of superposition of conormal solutions.

To see where this comes from consider the representation in terms of the Fourier
transform:

(9.299) S(z) = (2m)™™ / e e de .

The integral of course is not quite a proper one! However introduce polar coordi-
nates £ = rw to get, at least formally

(9.300) i(z) = (277)_”/ / errern=Ldr dw.
0 sn—1
In odd dimensions 7~ 1 is even so we can write
o0
1 .
(9.301) §(x) = @ / / e dr dw,n odd .
T
S§n—1 —o0

Now we can interpret the r integral as a 1-dimensional inverse Fourier transform
so that, always formally,

d(z) = W / fo(z - w)dw
Sﬂ,—l

(9.302) n 0dd
fn(s) = (217r) /e"s'y”_ldr.
In even dimensions we get the same formula with
(9.303) Fuls) = % / ¢i"s "L
These formulas show that
(9.304) fu(s) = |Ds|"16(5).

Here |S¢|"~! is a pseudodifferential operator for n even or differential operator
(= D7 1) if n is odd. In any case

(9.305) fo € "7 (R, {0})!
Now consider the map
(9.306) R" x S"' 3 (z,w) = z-w ER.
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Thus C* has different
(9.307) w-dr4+z-dov#0orz-w=0
So the inverse image of {0} is a smooth hypersurface R.

LEMMA 9.15. For eachn > 2

1 . .
(9.308) fulz,w) = Q—/ez(w'w)T\H”_ldr eI i (RxS" L R).
Y3

PROOF. Replacing |r|"~! by p(r)|r|"~! + (1 — p(r))|r|*~!, where p(r) = 0 n
r < %,p(r) = 1in r > 1, expresses f, as a sum of a C*° term and a conormal
distribution. Check the order yourself! O

PROPOSITION 9.8. (Radon inversion formula). Under pushforward correspond-
ing to R* x S*71@ > 1 >> R"

(m1)sfr = 2(2m)" 16 (),
I = foldw||dz|.
PROOF. Pair with a test function ¢ € S(R™) :

(9.310) (m).fi = [[ Fule- wiota)de do

by the Fourier inversion formula. ([l

(9.309)

So now we have a superposition formula expressing d(x) as an integral:

1
Sn—1
where for each fixed g f (2 -w) is conormal with respect to z -w = 0. This gives us
a strategy to solve (krzsm)

PROPOSITION 9.9. Each z € X has a neighbourhood, Uz, such that for t > 0
(independent of &) there are two characteristic hypersurfaces for each w € S*~1

(9.312) H,, C (=1, x Us
depending on Z,w, and there exists

(9.313) u* (t, @ 8,w) € I (=8t x Uz, HE )
such that

(9.314) Pu* eC>

0319 P e S

PRrROOF. The characteristic surfaces are constructed through Hamilton-Jacobi
theory:

N*H* c %(P),

(9.316) Hy=H*N{t=0}={z-w=0}.
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There are two or three because the conormal direction to Hy at 0; wdz, has two
Y(P):

(9.317) T==1, (r,w) € Tj (R x X).

With each of these two surfaces we can associate a microlocally unique conormal
solution

Put =0, v |{t=0}=u
uf € I*(R", {z - w = 0})
Now, it is easy to see that there are unique choices
uf +uy =6(z - w)
Dyut + Dyu” [ {t =0} = 0.

(9.318)

(9.319)
.30

(See exercise 2.) This solves (b.315) and proves the proposition (modulo a fair bit

of hard work!).

O

So now we can use the superposition principle. Actually it is better to add the
variables w to the problem and see that

ut(t,z;w,Z) € I*(R x R™ x S"~1 x R"; HY)
H* CRxR" x S" ! x R"
being fixed by the condition that

(9.320)

(9.321) HENR xR™ x {w} x {2} = HZ,,.

Then we set

(9.322) GL(t,z) = / (ut +u ) (2, Ty w, T).
S§n—1

21.11
This satisfies (krm) locally near z and modulo C*. i.e.
PGy € C((—H(t) x Us)
GL 1 {t=0}=
(9.323) o [t =0} =av,
v; € C*®
D,GL = bz(x) + vo

Let us finish off by doing a calculation. We have (more or less) shown that
ut are conormal with respect to the hypersurfaces H*. A serious question then
is, what is (a bound one) the wavefront set of GL? This is fairly easy provided we
understand the geometry. First, since u® are conormal,

(9.324) WF(u*) c N*H*.
Then the push-forward theorem says
WF(GF) c{(t.z,7,6); 3 (ta, 7.6 w,w) € WF(ub)}

(9.325) Gt = (ﬂ-l)*ui = / ui(t,s;w,i)dw

Sn— 1
so here

(9.326) (t,z, 7,6, w,w) € T*(R x R™ x ") = T*(R x R™) x T*S"~1.
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We claim that the singularities of G lie on a cone:

(9.327) WF(G%) C Az CT*(RxR")

where Az is the conormal bundle to a cone:

Az =c{(t,z;7,8); t #0,D(x,Z) = £t,
(1,6) = 7(1, Fd: D(x, 7))

where D(xz,Z) is the Riemannian distance from z to Z.

(9.328)

9.11. Forward fundamental solution
Last time we constructed a local parametrix for the Cauchy problem:
PG = feC>() 0,2) eQCRx X
(9.329) GLlt=0=4u
D.GL [ {t =0} =dz(z) +u” o, u" € C>®(Qp)

where P = D? — A is the wave operator for a Riemann metric on X. We also
computed the wavefront set, and hence singular support of Gz and deduced that

(9.330) sing - supp..(Gz) C {(t,2);d(z, @) = |1]}
in terms of the Riemannian distance.
(9.331)

22.1
This allows us to improve (b.329) in a very significant way. First we can chop
G off by replacing it by

(9.332) ¢ (W) .

€

where ¢ € C*°(R) has sup grt near 0 and is identically equal to 1 in some neigh-
bourhood of 0. This gives (9:329) again, with G, now supported in say d? < t? 4 €2

(9.333)
Next we can improve (9.329) a little bit by arranging that

(9.334) u'=u"=0, Dff|_=0Vk

This just requires adding to G’ a C*°, v, function, so that

(9.335) v ‘t:(): u', Dy |t:0: —",  DF(Pu) |t:0: —DFf |t’:(J k> 0.

Once we have done this we consider

(9.336) E. =iH(t)G%

which now satisfies

(9.337) , );( o ()
supp(EL) € {d?(w,7) <12 + 2} 0 {t = 0}.

Here F' vanishes in ¢t < 0, so vanishes to infinite order at ¢ = 0.
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Next we remark that we can actually do all this with smooth dependence of Z.
This should really be examined properly, but I will not do so to save time. Thus
we actually have

E'(t,x,z) € CT°(P(—00,€) x X x X)
22.9| (9.338) PE' =§(t)oz(z) + F
supp B’ C {d*(z,z) > > + 2} N {t > 0}.

We can, and later shall, estimate the wavefront set of E. In case X = R™ we can
take F to be the ezact forward fundamental solution where |z| or Z > R, so

supp(F) € {t > 0} N {Ja|, |z| < R} N {d® < £* + €}
22.10 9.339
( ) F eC®((—o0,€6) x X x X).

Of course we want to remove F| the error term. We can do this because it is
a Valterra operator, very s'%ilfaor to an upper triangular metric. Observe first that
the operators of the form (9:339) form an algebra under t-convolution:

t
(9.340) F=F ol F(t,z,z) = //Fl(t, —t x, 2 ) Fo(t', 2t z)da' dt’.
0

In fact if one takes the iterates of a fixed operator
(9.341) FR = p=1 o p

One finds exponential convergence:

Ck+1N )
(9.342) |DeDY PR (t,2,7)| < T’MN int<e—4VvN.
Thus if F is as in (%23%%) then Id + F has inverse Id + F),
(9.343) F=>Y(-1)FY
i>1

again of this form. ~ 99 10
Next note that the composition of E’ with F' is again of the form (5339), with
R increased. Thus
22.14| (9.344) E=E+FEoF

. . e %23'% .
is a forward fundamental solution, satisfying (9.338) with F' = 0.
In fact E is also a left parametrix, in an appropriate sense:

22.15 PROPOSITION 9.10. Suppose u € C~°((—o0,€) x X) is such that
22.16 | (9.345) supp(u) N [=T,7] x X is compact ¥ T and for T < €
then Pu=0= u = 0.

PRrROOF. The trick is to make sense of the formula
22.17 | (9.346) 0=FE-Pu=u.

In fact the operators G with kernel G(t,z,Z), defined in ¢ < € and such that
Gx¢p CC®V¢pelC>®and

22.18| (9.347) {t > 0} n{d(z,z) < R} D supp(G)
22.16
o4 on the space (9-345) as t-convolution operators. For this algebra E x P = Id so
(5:516)

holds! O
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We can use this proposition to prove that E itself is unique. Actually we want
to do more.

22.19 THEOREM 9.5. If X is either a compact Riemann manifold or R™ with a scat-
tering metric then P has a unique forward fundamental solution, w.

(9.348) supp(E) C {t >0}, PP =1d
and

(9.349) supp(F) C {(t,2,Z) e R x X x X;d(z,z) < t}
and further

(9.350) WF'(E) C IdUF,

where Fy is the forward bicharacteristic relation on T*(R x X)
C = (t,x,r,f) ¢ Z(P) = ]:+(C) :(Z)
22.23| (9.351) (= (t,,7,8) €X(P) = F,(¢) ={¢" = (t,2',7,¢)
t' >t x (" =exp(TH,)¢ for some T}.

PROOF. (1) Use F; defined in (—oo,€e x X to continue E globally.
(2) e the freedom of choice of {t = 0} and uniqueness of £ to show that
(b?37[9)can %g grranged for small, and hence all,
(3) Then get (9.351) by checking the wavefront set of G.

]
As corollary we get proofs of (%23%3) and (%23%4)
PrROOF OF THEOREM XXI.5.
(9.352) u(t,z) = / B(t—t, 2,2\ f(t' 2 )da'dt'.
(]

PROOF OF THEOREM XXI.6. We have to show that if both WF(Pu) # 2z and
WEF(u) # 2 then exp(0H,)z ¢ W F(u) for small é. The general case that follows from
the (assumed) connectedness of H), curves. This involves microlocal uniqueness of
solutions of Pu = f. Thus if ¢ € C°°(R) has support in ¢ > —§, for § > 0 small
enough, 7*t(z) =1

(9.353) P(¢(t —t)u) = g has z ¢ WF(g),
and vanishes in ¢ < §. Then

pt—thu=Exg

(9.354) = exp(TH,)(z) ¢ WF(u) for small .
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9.12. Operations on conormal distributions

I want to review and refine the push-forward theorem, in the general case,
to give rather precise results in the conormal setting. Thus, suppose we have a
projection

(9.355) XXxY@>g>>X

where we can view X X Y as compact manifolds or Euclidean spaces as desired,
since we actually work locally. Suppose

(9.356) @ C X xY is an embeded submanifold.

Then we know how to define and examine the conormal distribution associated to

Q. If
(9.357) uweI™(X xY,Q;Q)

when is 7, (u) € C~*°(X;) conormal? The obvious thing we ned is a submanifold
with respect to what it should be conormal! From our earlier theorem we know
that

(9.358) WF(r.(u)) C {(z,£); I (z,&y,0) e WF(u) C N*Q}.
So suppose Q = {g;(z,y) =0,j =1,...,k}, k = codim Q. Then we see that

k k
(9359) (jﬂgv gao) € N*Q — (Eag) S Qag: ZTjdejaszdij = 0.

j=1 j=1
Suppose for a moment that @ has a hypersurface, i.e. k = 1, and that
(9.360) Q — m(Q) is a fibration

then we expect
THEOREM 9.6. 7, : I"™(X x Y,Q,Q) — I' (X, 7(Q)).

PRrROOF. Choose local coordinates so that

(9.361) Q= {z; =0}

1 - ,
(9.362) u = E/e”léla(m 2y, &1)dé
(9.363) i = % /emlglb(x’,fl)dﬁl
(9.364) b= /a(x’,y,§)dy~

(]

Next consider the case of restriction to a submanifold. Again let us suppose
@ C X is a hypersurface and Y C X is an embedded submanifold transversal to

Q:

QMY =QY
(9.365) le. T,Q+T,Y =T,X VqgeQy
= Qy is a hypersurface in X.

Indeed locally we can take coordinates in which
(9.366) Q={z1=0}Y ={2" =0}, z=(a1,2",2").
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THEOREM 9.7.

(9.367) Ci I™(X,Q) — I (Y, Qy )k = codimY in X.
23.9
ProoF. In local coordinates as in (ETKGG)
_ i ix1&1 A/,
u = 9 e a(x(x y L 751))d§7
(9.368) T .
cfu = —/eimlgla(a:’,(),fl)dfl.
2m

Now let’s apply this to the fundamental solution of the wave equation. Well rather
consider the solution of the initial value problem
PG(t,xz,z) =0
23.11| (9.369) G(0,z,z) =0
D:G(0,z,T) = dz(x).

We know that G exists for all time and that for short time it is

23.12| (9.370) G— / (ug(t, 2, T;w) + u_(t, z, T;w))dw + C*
gn—1
where u4 are conormal for the term characteristic hypersurfaces H,, satisfying
N*H, C %(P)
Hin{t=0}={(x—Z) -w=0}

23.13| (9.371)

Consider the 2 x 2 matrix of distribution

(DG G
(9.372) Ut) = (DfG DtG) :
Since WFU C X(P), in polar 7 # 0 we can consider this as a smooth function of
t, with values in distribution on X x X. O
THEOREM 9.8. For eacht € R U(t) is a boundary operator on L*(X)® H'(X)
such that
u\ [ u(t)
(9573 v (1) = (o)

where u(t,x) is the unique solution of
(D? — A)u(t) =0
23.17| (9.374) u(0) = ug
D; +u(0) = ug.

PRrROOF. Just check it! O

23.12
Consider again the formula (b.B?()). First notice that at x =z, t = 0, dH* =
dt + d(x — T)w) (by construction). so

23.18| (9.375) Hih{zr=2}={t=0} CRx X - Rx X xY xS" 1.
Moreover the projection

23.19] (9.376) Rx X xS —R
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clearly fibres {t = 0} over {t = 0} €= {0} C R. Then we can apply the two
theorems, on push-forward and pull-back, above to conclude that

(9.377) () = / Glt,2,7) | # = 3de € C~(R)
X

is conormal near t = 0 i.e. C* in (—e¢,€)\{0} for some € > 0 and conormal at 0.
Moreover, we can, at least in principle, work at the symbol of T'(t) at t = 0. We
return to this point next time.

3.E)or the moment let us think of a more ‘fundamental analytic’ interpretation of

2
(b.37 7). By this I mean
(9.378) T(t) = trU(t).
REMARK 9.1. Trace class operators AX; Smoother operators are trace order,

tr = [ K(z, )

(9.379) /U(t)d)(t) is smoothing

(9.380) (T'(t), p(t)) = tr(U(t), o(t))-
9.13. Weyl asymptotics

Let us summarize what we showed last time, and a little more, concerning the
trace of the wave group

PROPOSITION 9.11. Let X be a compact Riemann manifold and U(t) the wave
group, so

(9.381) U(t) : C¥(X) x C¥(X) 3 (ug,ur) = (u, (£), D+tu(t)) € CP(X) x C®(X)

where u is the solution to

(D} = A)u(t) =0
(9.382) u(0) = ug
Diu(0) = uy.

The trace of the wave group, T € §'(R), is well-defined by
(9.389) 7(6) = U (6).U(6) = [ U)ottt ¥ 6 € S®)
and satisfies

o0
(9.384) T=Y(|1+) 2cos(th;)

j=1
(9.385) where 0 = \g < AT < A3... Aj >0
is the spectrum of the Laplacian repeated with multiplicity
(9.386) sing . supp(T) C LU{0} U —-L

where L is the set of lengthes of closed geodesics of X and
if v € C(R),¥(t) =0 if |t| > inf L—¢€,e >0,
(9.387) VT € I(R,{0})
o(T) =
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_PROOF. We have already discygged (%%%4) and the first part of (6%%7) (given
(9.386)). Thus we need to show (9.386), the Poisson relation, and compute the
symbol of T' as a cononormal distribution at 0 .

Let us recall that if G is the solution to

(D? = A)G(t,z,z) =0
(9.388) G(0,2,%) =0
D:G(0,z,%) = §z(x)

then

(9.389) T = m.(A2D:G),
where

(9.390) AT RXxX 5Rx X xX

is the embedding of the diagonal and

(9.391) mT:Rx X —R

is projective. We also know about the wavefront set of G. That is,
(9.302) WF(G) C {(t:x,f_,T,évf_);TQ = |¢]” = I€P%,
exp(sHp)(0,z,7,€) = (t,z,7,&), some s}.

24.11 )
Let us see what (9.392) says about the wavefront set of T. First under the

restriction map to R x A

WFE(pAD:G) C{(t,y,7,n); 3
(9.393) AT :
<t7xay77-7£a§); n= g - g}

Then integration gives

(9.394) WF(T) c{(t7); 3 (t,y,7,0) € WF(D:G)}.
Combining (%%E%) and (2%'13) we see
t €sing.supp(T) = 3 (t,7) e WF(T)
(9.395) = 3 (2,788 € WF(D,G)
= 3 s st exp(sH,)0,z,7,& = (t,z,7,§).
Now

(9.396) p=1"—[¢% so H, =278, — Hy, g = [¢,

H, being a vegfor, field on 7" X. Since WF is conic we can take [§| = 1 in the last
condition in (B.I}QS). Then it says

(9.397) s = 27t, exp(tH%g)(x,g) = (z,¢),

since 7% = 1.

The curves in X with the property that their tangent vectors have unit length
and the lift to 7% X is an intzegrlasl curve of H 14 are by definition geodesic, parame-
terized by arclength. Tg%sg(bﬁg?) is the statement that |¢| is the length of a closed
geodesic. This proves (9.386).
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So now we have to compute the symbol of T" at 0. We use, of course, our local
representation of G in terms of conormal distributions. Namely

(9.398) G=> 6,Gj, ¢ €CX),
J
where the ¢; has support in coordinate particles in which

Gj(t,z,7) = / (ug(t, 2, Tyw) + u_(t, 2, T;w)) dw,

(9.399) Sl_ |
upm = 7/elhi(m’j’w)fai(w,i,f,w)df.
2m
3
Here hy are solutions of the eikonal equation (i.e. are characteristic for P)
|Ochs|? = [he|?
(9.400) ha| =(@-7)w
:l:athj: > 0,
which fixes them locally uniquely. The a4 are chosen so that
(9.401) (ut +us | =0,(DyurDeu) | 0((x —7) - w)Pus € C*.
24.17
Now, from (19.399)
1 -
(9.402) Ug + u_ ’t =5 =2 (g 4 g )(z,2, & w)dE =0
= T
S0 a4 — a_. Similarly
1 ) -
Diuy + Dyu_ ’t:() =5 oi((@—2)-w)E [(Dihy)ay + (Dih-)a_]dE

(9.403) .

= s (=D
24.18
From (b?[OD) we know that Dihy = Fildy(x — T) - w| = Fi|lw| where the length is
WitE Aegpect to the Riemann measure. We can compute the symbols or both sides
in (9.403) and consider that

1
2(2m)n—1
is necessary to get (5%[69[) Then

T(t) = 2m. (LA D:G)

(9.404) —2i|wlay = """ = Dihyay + Dihoa— |

1 .
(9-405) =5 22/ / e ETTDE (Db ay)(x, E w, ) dédwdz.
bt X gn-1
24.21
Here dz is really the Riemann measure on X. From (m) the leading part of this
is
(9.406) 2 > / / eihi(t’l’w’“)5;|§|”_1d§dwdx
21 & 4(2m)n—t
Jj+ X §n—-1

since any term vanishes at ¢ contributes a weaker singularity. Now

(9.407) hy = +|w|t + (z — T) - w + 0(t?).
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From which we deduce that

1 itT
(9.408) dOT() = o / e a(r)dr

a(t) ~ C, Vol(X)|r|"1C, =

where (), is a universal constant depending only on dimension. Notice that if n is
odd this is a “little” function.

The final thing I want to do is to show how this can be used to describe the
asymptotic behaviour of the eigenvalue of A : [

PROPOSITION 9.12. (“Weyl estimates with optimal remainder”.) If N(X) is
the number of eigenvalues at A satisfying A3 < \, counted with multiplicity, the

24.25] (9.409) N(A) = C, Vol(X)A™ + o(A" 1)

The estimate of the remainder terms is the here — weaker estimates are easier
to get.

PROOF. (Tauberian theorem). Note that

A
(9.410) T = F(p) where N(X\) = /u()\),
0
w1(A) being the measure
(9.411) pN =D A=A
)\?Gspec(A)

Now suppose p € S(R) is even and [ p=1, p > 0. Then N,(A) = [(N)p(A—X) is
a C* function. Moreover

d o
(9.412) LNy =
Suppose we can choose p so that
(9.413) pz(),/p:l,peS, plt) =0, |t| > €

for a given € > 0. Then we know [ip is conormal and indeed
d
NV ~ CVol(X)A" 1 4 ...
= N,(\) ~ C"Vol(X)\" + lots.

So what we need to do is look at the difference

24.28| (9.414)

(9.415) NN = NO) = [ N = X)p(x) = Np(x).
It follows that a bound for N
(9.416) N ) = NO|< (L A+ )™ (L + ]
gives
(9.417) N(A) = N,(\) <ot
24.31
which is what we want. Now (b@TS) follows if we have
(9.418) NA+1D) =NXN<COA+|A)  t/\
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This in turn follows from the positivity of p, since
(9.419) [ o= 20u00) < o+,

24.27
Finally then we need to check the existence of p as in (9.413). If ¢ is real and

even so is ¢. Take ¢ with support in (=5, 5) and construct ¢ x ¢, real and even with

o. O
9.14. Problems

PROBLEM 9.5. Show that if F is a symplectic vector space, with non-degenerate

bilinear form w, then there is a basis vy, ..., v,,w1,...,w, of E such that in terms
of the dual basis of E*
(9.420) w=Y v Aw}.

J

Hint: Construct the w;,v; successive. Choose v; # 0. Then choose w; so that
w(vy,w1) = 1. Then choose vs 80 w(vy,v9) = w(wy,ve) = 0 (why is this possible?)
and wg so w(vz, w2) = 1, w(vi, w2) = Y(wi, w2) = 0. Then proceed and conclude
that (9.420) must hold.

Deduce that th%%ig a linear transformation T : E — R?" so that w = T*wp,
with wp given by (9.200).

19.45
PROBLEM 9.6. Extend problem b.5 to show that T can be chosen to map a
given Lagrangian plane V' C FE to

(9.421) {z =0} cR*"
Hint: Construct the basis choosing v; € V'V j!

PROBLEM 9.7. Suppose S is a symplectic manifold. Show that the Poisson
bracket

(9.422) {f.9} = Hyg
makes C*°(S) into a Lie algebra.



CHAPTER 10

K-theory

KTheory
This is a brief treatment of K-theory, enough to discuss, and later to prove, the

Atiyah-Singer indE@eorem. I am starting from the smoothing algebra discussed
earlier in Chapter ¥in order to give a ‘smooth’ treatment of K-theory (this approach
is in fact closely related to the currently-in-vogue subject of ‘smooth K-theory’).
In particular the K-groups K!(X) and K2(X) of any manifold X, corresponding to
compactly-supported classes, are defined. The elementary properties are derived
and important isomorphism between them are discussed. There is a plethora of
such maps which are listed here to try to help keep them straight:-

9.11.2007.322
The clutching construction, Proposition T0.6
clu: K}(X) — K2R x X).
L - .. R2.11.2007.356
The 1-dim isotropic index, Proposition [10.9
Indiso : KL(R x X) — K2(X).
oind
The 1-dim Toeplitz index, elliptics on the circle §il).?
Indr, : KHR x X) — KY(X)
The N-dim isotropic index, quantize elliptic symbols

Indigo : KLR?2V 7! x X) — KY(X).

14.5.2008.820 | (10.1)
14.5.2008.822 | (10.2)
14.5.2008.823 | (10.3)

14.5.2008.825 | (10.4)

14.5.2008.826 | (10.5) 5 5 2008.780
The N-dim odd semiclassical index, quantize invertible matrices, Proposition [10.14

md2dd, - KLHREY x X) — KL(X).

iso,sl *

The N-dim even semiclassical index, quantize projections

Ind - KORHMY x X) — K2(X).

iso,sl

14.5.2008.827 | (10.6)

N-dim isotropic index, quantize elliptic symbols
Indiso : KY(E) — K2(X).
0dd semiclassical index quantize invertible matrices

Thom® = Ind?%, : K}(F) — KL(X).

iso,sl * “*c

14.5.2008.828| (10.7)

14.5.2008.829 | (10.8)

Even semiclassical index quantize projections

Thom = Ind{¥¢Y, : KS(E) — KQ(X)

iso,sl *

14.5.2008.824 | (10.9)

The Bott map, tensor with Sg
Bott = Thom ™' : K%(X) — KY(E).

12.5.2008.797 | (10.10)

The three maps before the last are for a real vector bundle £ over X with symplectic
structures on the fibres — they are the same as the preceeding three in the case of a

261



7.11.2007.268

22.11.2007.330 |
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trivial bundle except that the first of those then involves the inverse of the clutching
construction.

10.1. What do I need for the index theorem?

Here is a summary of the parts of this chapter which are used in the proof of
the index theorem to be found in Chapter 2.

(1) Odd K-theory (K!(X)) defined as stable homotopy classes of maps into
GL(N, C), or as homotopy classes of maps into G~°.

(2) Even K-theory (K.(X)) defined as stable isomorphism classes of Zy-graded
bundles.

(3) The gluing identification of K!(X) and K.(R x X).

(4) The isotropic index map K} (R x X) — K(X) using the eigenprojections
of the harmonic oscillator to stabilize the index.

(5) Bott periodicity — proof that this map is an isomorphism and hence that
K (X) = Ko (R? x X).

(6) Thom isomorphism K¢(V) — K¢(X) for a complex (or symplectic) vector
bundle over X. In particular the identification of the ‘Bott element’ Sy €
K. (V) which generates K (V') as a module over K.(X).

With this in hand you shoul be able to proceed to the proof of the index
theorem in K-theory in Chapter I2. If you want the ‘index formula’ which is a
special case of the index theorem in cohomology you need a bit more, namely the
discussion of the Chern character and Todd class below.

10.2. Odd K-theory

First recall the ‘smoothing group’

(10.11) G

iso

(R") ={A€ ¥ (R"); IBe ¥ R"), d+B = (Id+A4)"'}.

1S0 150

Note that the notation is potentially confusing here. Namely, I am thinking of
G . °(R™) as the subset consisting of those A € ¥, °(R™) such that Id+A is

invertible. The group product is then not the usual product on W, >°(R™) since

(Id +A1)(Id +A5) =1d+A; + As + A1 As.

Just think of the operator as ‘really’ being Id +A4 but the identity is always there
so it is dropped from the notation.

One consequence of the fact that Id 4+ A is invertible if and only if det(Id +A) #
0 is that!
(10.12) G Z(R™) € U_2°(R") = S(R*™) = C*°(R2") is open and dense.

iso iso

In view of this there is no problem in understanding what a smooth map into
G (R™) is. Namely, it is a map into ¥;_>°(R"™) which has range in G,>°(R") and

the following statment can be taken as a definition of smoothness, but it is just
equivalent to the standard notion of a smooth map with values in a topological

1 22.11.2007.328 , ,
See Problem T0.871f you want a proof not using the Fredholm determinant.
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vector space. Namely if X is a manifold then
(10.13)
Cx(X;G™>) =
{aeC®(X xR™M);a=0at X xS* 71 a(z) € G2°(R™) V z € X},

C®(X;G°) ={a € C®(X xR™M);a =0 at X x "1
a(z) e G PR Vee X, 3 KeEX st alz) =0Vee X\ K}

1S0

Notice that ‘compact supports’ here means that the actual operator we have in
mind, which is Id +a, re 1G6S to%;c.lb%gidentity outside a compact set.

The two spaces in (i;)IS; (they are the same if X is compact) are groups.
They are in fact examples of gauge groups (with an infinite-dimensional target
group), where the composite of a and b is the map a(x)b(x) given by composition
in G_J°(R™). Two elements ag, a1 € C°(X;G°) are said to be homotopic (in
fact smoothly homotopic, but that is all we will use) if there exists a € C°(X x
[0,1];; Gi.>°) such that ap = a‘tzo and a1 = a|t:1. Clearly if by and by are also
homotopic in this sense then agbg is homotopic to aiby, with the homotopy just
being the product of homotopies. This gives the group property in the following

definition:-
DEFINITION 10.1. For any manifold

(10.14) KL(X) = C®(X; G .2°(R™))/ ~

c 180

s the group of equivalence classes of elements under homotopy.

Now, we need to check that this is a reasonable definition, and in particular see
how is it related to K-theory in the usual sense. To misquote Atiyah, K-theory is
the topology of linear algebra. So, the basic idea is that G;;>°(R™) is just a version
of GL(N, C) where N = oo (but smoother than the usual topological versions). To
make this concrete, recall that finite rank elements are actually, dense in Wi >°(R™).
Using the discussion of the harmonic oscillator in Chapter E we can make this even
more concrete. Let m(y) be the projection onto the span of the first NV eigenvalues
of the harmonic oscillator (so if n > 1 it is projecting onto space of dimension a
good deal larger than N, but no matter). Thus m(yy € W 5°(R") is an operator of

finite rank, exactly th Sum of the dimensions of these eigenspaces. Then, from the
discussion in Chapter &I

[ €SR") = mnyf— fin S(R") as N — oo,
Ae \I’_OQ(Rn) - W(N)ATF(N) — Ain \If_oo(Rn) as N — oo.

1S0 150

(10.15)

The range of 7(y) is just a finite dimensional vector space, so isomorphic to
CM (where M depends on N and n, the simplest case is n = 1 since then M = N).
We will choose a fixed linear isomorphism to C* by choosing a particular basis of
eigenfunctions of the harmonic oscillator. If a € ¥; 5°(R"™) then 7(x)am ny becomes

a linear operator on CM, so an element of the matrix algebra.

PROPOSITION 10.1. The ‘finite rank elements’ in C°(X; G °(R™)), those for

180

which m(xyA = Ay = A for some N, are dense in C°(X; G~ (R")).

These elements are really to be thought of as finite rank perturbations of the iden-
tity.
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PROOF. This just requires a uniform version of the argument above, which in
fact follows from the pointwise version, to show that
(10.16) A€ CT(X; W >°) = mnAm(ny — Ain C°(X; U °(R™)).

150

From this it follows that if A € C°(X;G;°(R")) (meaning if you look back,

that Id +A is invertible) then Id +7m(y)A is invertible for N large enough (since it
vanishes outside a compact set). O

COROLLARY 10.1. The groups KL(X) are independent of n, the dimension of
the space on which the group acts (as is already indicated by the notation).

In fact this shows that m(nyamvy and a are homotopic in CZ°(X; G °(R™))
provided N is large enough. Thus each element of K!(X) is represented by a finite
rank family in this sense (where the order N may depend on the element and the
identity needs to be added). Any two elements can then be represented by finite
approximations for the same N. Thus there is a natural isomophism between the
groups corresponding to different n’s by finite order approximation. In fact this

approximation argument has another very important consequence.

PROPOSITION 10.2. For any manifold KL(X) is an Abelian group, i.e. the group
product is commutative.

PrROOF. In view of the preceeding result it suffices to take n =1 so NV and the
rank of 7y are the same. As shown above, given two elements [a], [b] € K} (X) we
can choose representatives a, b € C°(X; G ,;°(R™)) such that 7(yya = am(y) = a
and m(n)b = bm(ny = b. Thus they are represented by elements of C*°(X; GL(V, C))
for some large N (so the actual element is Id +7r(N)a7r(N)). Now, the range of
72Ny contains two N dimensional spaces, the ranges of 7y and 72 n) — 7). Since
we are picking bases in each, we can identify these two N dimensional spaces and
then represent an element of the 2/N-dimensional space as a 2-vector of N-vectors.
This decomposes 2N x 2N matrices as 2 x 2 matrices with NV x N matrix elements.
In fact this tensor product of the 2 x 2 and N x N matrix algebras gives the same
product as 2N x 2N matrices (as follows easily from the definitions). Now, consider
a rotation in 2 dimensions, represented by the rotation matrix

cosf) —sind
(10.17) (sin9 cos > ’

This rotates the standard basis e1, e to ez, —ej as 6 varies from 0 to 7/2. If we
interpret it as having entries which are multiples of the identity as an N x N matrix,
and then conjugate by it, we get a curve

a(@,0) = cosf) sinf\ fa O cos) —sinf
7T \—sin€ cos®) \0 Idy/) \sin@ cos@

acos?f +sin”f  (Id —a)sin cos
(Id —a)sinfcosf  cos®f 4 asin®@ |-

(10.18)

This is therefore an homotopy between a represented as an N x N matrix and the
same element acting on the second N dimensional subspace, i.e. it becomes

(10.19) (I%N 2) .
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This commutes with the second element which acts only in the first N dimensional
space, so, because of homotopy equivalence, the product in K!(X) is commutative.
O

So now we see that K!(X) is an Abelian group associated quite naturally to the
space X. I should say that the notation is not quite standard. Namely the standard
notation would be K!(X), without any indication of the ‘compact supports’ that
are involved in the definition. I prefer to put this in explicitly. Of course if X is
compact it is not necessary.

LEMMA 10.1. Any proper smooth map f : X — Y induces a homomorphism
[*KLYY) — KL(X) by composition; the map f* only depends on the homotopy
class of f in proper smooth maps.

This makes K! into a contraviant functor on the category of manifolds and proper
maps to the category of abelian groups, if you like to think in those terms.

PrOOF. If a € CX(Y;G.°) then ffa = ao f € CX(X;G°) where the
compactness of the support is a consequence of the assumed properness of the
map — that f~1(K) € X for any K € Y. Homotopies lift to homotopies, so it is
straightforward to check that this is a homomorphism at the level of K! and that

it only depends on the homotopy class of f. O

Thus, since it is contravariant, ‘pull-back’ is dte}%e natural operation on K-theory.
The index theory that we discuss in Chapter T2 1s concerned with the ‘wrong-way’
map, i.e. push-forward, for K-theory.

LeEmMA 10.2 (Excision). The inclusion of any open set i : U — X induces a
natural map
(10.20) i s KL(U) — K(X).

PROOF. Any smooth map with compact support a € C°(U;G~°°) can be
extended as the identity to give a smooth map a € C°(X;G~°) so fixed by the

properties @ = a on U, A :6'(% %% o§ 7\;? Homotopies also extend in this way so this

induces the natural map ( O

A fundamental role is played below by the following result computing the odd
K-theory of the product S x X of a general manifold and a circle.

ProprosITION 10.3. For any manifold the natural projection, w: X xS — X,

the inclusion ¢ : X x R — X xS given by the 1-point compactification of R and
the inclusion p1 : X > v — (x,1) € X X S, lead to a split short exact sequence

(10.21) 0—=KL(X x R)—>KL(X x S)2>KL(X)—=0
v
and hence an isomorphism
(10.22) K{(X xS) =KL{(X xR) ® KL(X)

PROOF. Certainly mop; = Idx so pjon™ = Id shows that pj must be surjective
and 7* injective. Since 1 € S is not in the image of ¢, every class in the image of
has a representative which is equal to the identity on the image of p;, so pulls back
to zero in K!(X), so pjou =0.
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Since an element in C°(X x S; G~*°) which vanishes at X x {1} is homotopic
through such elements to one which vanishes near X x {1} (and with supports
uniformly compact) this sequence corresponds to the short exact sequence of groups

(10.23) {a€CX(X xS;G %) a(z,1)=0Vze X} —

1SO0
CZ(X X85 Gige”) — C (X5 Gi”).
6.5.2008.792
Under homotopy this becomes the direct sum decomposition (I10.22 ; O

Thus there are two Abelian groups K!(X) and K!(X x R) associated to the
manifold X with direct sum naturally K:(Sx X). As we shall see below it is perfectly
natural to define the even K-theory of X to be KY(X) = K!(X x R) (although the
notation K. %(X) would be even better) and to denote the sum of the two terms
as

(10.24) K (X)=K!S x X).

We will not do this now, only because it is potentially confusing and instead will
give a more standard definition of K(X) and then define a natural index map (the
isotropic index)

(10.25) Indjs, : K3 (X x R) = KQ(X).

If you know a little algebraic topology, you will see that the discussion above
starts from the premise that G;.5°(R") is a classifying space for odd K-theory. So

this is true by fiat. The corresponding classifying space for even K-theory is then
the pointed loop group, the set of maps

(10.26) G2 (R") = {a € C®(S; G

150,8us 150

(R™);a(l) =1d}.

10.3. Computations

Let us pause for a moment to compute some simple cases. Namely

LEMMA 10.3.
(10.27) K!({pt}) = {0}, KL(R) = Z, K'(S) = Z.

PROOF. The first two of these statemen S égl o _pgifectly from the next two
results. The third is a direct consequence of (10.22) and the first two. ]

LEMMA 10.4. The group G .>°(R™) is connected.

ProOF. If a € G ;;°(R™), the curve [0,1] 5> t — (1 — t)a + tm(nyam(y) lies

1S0

in G_2°(R™) for N sufficiently large. Thus it suffices to show that GL(n,C) is

180
connected for large N; of course?

(10.28) GL(N,C) is connected for all N > 1.
(]

PROPOSITION 10.4. A closed loop in v : S — G .°°(R™) is contractible (ho-

1S0
motopic through loops to a constant loop) if and only if the composite map

(10.29) ¥ =detoy:S — C*

27 23.11.2007.380
See Problem [T0.12
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is contractible, so
(10.30) m(GL P (R™) =Z

iso
with the identification given by the winding number of the Fredholm determinant.

PROOF. Again, as in the previous proof but now a loop can be deformed into
GL(N, C) so it is certainly enough to observe that?

(10.31) m1 (GL(N,C)) =Z for all N > 1.
]

An explicit generator of 7 (G,5°) is given by the stabilization of the loop into

GL(N,C) = C\ {0} which is the identity map on the circle embedded in C :
(10.32) v(0) = €2,
10.4. Vector bundles

!diﬂ%tion of a complex vector bundle was briefly discussed earlier in Sec-
tion 6.2. Recall from there the notion of a bundle isomorphism and that a bundle
is said to be trivial, over some set K, if there is a bundle isomorphism from its re-
striction to K to K x C¥. The direct sum of vector bundles and the tensor product
are also briefly discussed there.

To see that there is some relationship between K-theory as discussed above and
vector bundles consider K!(X) for a compact manifold, X. First note that if V is
a complex vector bundle over X and e : V — V is a bundle isomorphism, then
e defines an element of K!(X). To see this we first observe we can always find a
complement to V.

ProPOSITION 10.5. Any wvector bundle V' which is trivial outside a compact
subset of X can be complemented to a trivial bundle, i.e. there exists a wvector
bundle E, also trivial outside a compact set, and a bundle isomorphism

(10.33) VoFE — X xCV.

PrOOF. This follows from the local triviality of V. Choose a finite open cover
U; of X with M elements in which one set is Uy = X \ K for K compact and such
that V is trivial over each U;. Then choose a partition of unity subordinate to U;
— so only the ¢y € C*°(X) with support in Uy does not have compact support. If
fi:V v, — C* x Uj is a trivialization over U; (so the one over Uy is given by the
assumed triviality outside a compact set) consider

M
(10.34) F:V—XxC"™ uz)— @ fi(di(u(z)).

This embeds V' as a subbundle of a trivial bundle of dimension N = kM since the
map F' is smooth, linear on the fibres and injective. Then we can take F to be the
orthocomplement of the range of F' which is identified with V. (|

Thus, a bundle isomorphism e of V' can be extended to a bundle isomorphism
e®Idg of the trivial bundle. This amounts to a map X — GL(M N, C) which can
then be extended to an element of C*°(X; G;,>°(R™)) and hence gives an element

of K!(X) as anticipated. It is straightforward to check that the element defined in

3 . 23.11.2007.382
Proof in Problem T0.13
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K!(X) does not depend on choices made in its construction, only on e (and through
it of course on V).

This is one connection between bundles and K} . There is another, similar, con-
nection which is more important. Namely from a class in K}(X) we can sonstruct oo
a bundle over S x X. One way to do this is to observe that Proposition W
ciates to a bundle V' a smooth family of projections 7y € C°(X; M(N,C)) which
is trivial outside a compact set, in the sense that it reduces to a fixed projection
there. Namely, 7y is just (orthogonal) projection onto the range of V. We will need
to think about equivalence relations later, but certainly such a projection defines a
bundle as well, namely its range.

For the following construction choose a smooth function © : R — [0, 7] which
is non-decreasing, constant with the value 0 on some (—oo, =T, constant with value
/2 on [—-T/2,T/2] and constant with the value 7 on [T, 00), for some T > 0, and
strictly increasing otherwise. It may also be convenient to assume that © is ‘odd’
in the sense that

27.11.2007.384| (10.35) O(—t) =7 —O(t).

This is just a function which we can used to progressively ‘rotate’ through angle 7
but staying constant initially, near the middle and near the end. If a« € GL(N,C),
consider the rotation matrix

~ [cos()Idy —sin(f)a?
(10.36) S(0,a) = ( sn0)a  cos(8)Idy ) € CLEN.C).
This is invertible, in fact

S(0,a)S(0,a) =S(0+6¢,a), S(0,a) =1d,

(10.37) d m (0 —a
(MS(H,a):S(G—f—Q,a):(a 0 )5(9,a),

Now, for a compact manifold X, consider a € C°>°(X; CV) which is everywhere
invertible then

22.11.2007.338| (10.38) R x X 3 (t,z) — Ry(t,x) = S(O(t),a(z))

has inverse R,(—t,z) and is equal to the identity in [t| > T. We will use this to
construct a bundle on R x X which is trivial for ¢ > 0. The idea is that R, (¢, z)
‘rotates by 7/2’ as ¢ runs over (—o0,0). Set

a ta Hoo a 7ta t S
22.11.2007.339| (10.39) I, = (1 0), I (t,z) = Ba(t, 2l Ra(~t, ) 0
0 0 RId(t,l')HOORId(—t75L') t 2 0.

Clearly, IT/, (¢, z) is smooth in ¢ < 0, and in ¢ > 0, and is constant outside a compact
set. In fact II/, is globally smooth, since near t = 0, ©(t) = 7/2, by construction,
$0

-1 -1
way  moo = (0 () 70 = (0 )
- N

is independent of a and hence smooth. Thus in fact II/(¢,x) is constant near
t = 400 where it takes the value II.,, which is projection onto the first C.
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Note, for later reference that
, B cos?(0(t)) Idy cos(O(t)) sm(@(t)) )
ot z) = (sin(@(t)) cos(O(t))a(x) sin?(0(t)) ) <0

—1

(10.41)

has entries linear in a and a

14.5.2008.819

Notice that if the conjugating matrix in (WO%_(ﬁ_dTlot jump as it does at
t = 0, but for instance we continued conjugating by R,(t,z) in ¢ > 0 instead of
switching to a = Id, then the bundle which is the range of the family of projections
would be globally isomorphic to the range of I, with R,(t,z) being the global
isomorphism. In particular if @ = Id this is indeed the case, so that at least a = Id
corresponds to a trivial bundle.

This was all under the assumption that X is compact and the construction will
not quite work if it is not, since then since then IT/, outside a compact set, even
when a = Id. To cover the non-compact case we need to ‘undo’ the twisting at
infinity in X which we do with a global isomorphism (not constant at infinity!) and
consider instead

(1042) Ha(t,.’L') = RId(—t,LU)H;(t71')RId(t,£U).
In case X is compact this is a global isomorphism, constant o gtslgi So§oappact set,
and so gives the same bundle up to isomorphism. In the form (i():ZIZF ; the projection

is actually constant in ¢ > 0.

LEMMA 10.5. An element ﬁ(1§§°°0 (X GL(N, C)) equal to the identity outside

a compact set defines, through A2), a smooth family of matrices with values in
the projections, I, € C*°(R x X; M (2n,C)), which is constant outside a compact
subset and so defines a vector bundle over R x X which is trivial outside a compact
set.

We will see below that this is one of the 1mportan1? 4d5e15161§§ Lion maps for

K-theory that we need to understand, in fact it leads to (

So, by now it should not be so surprising that the K-groups introduced above
are closely related to the ‘Grothendieck group’ constructed from vector bundles.
The main issue is the equivalence relation.

DEFINITION 10.2. For a manifold X, K.(X) is defined as the set of equivalence
classes of pairs of complex vector bundles (V,W), both trivial outside a compact
set and with given trivializations a, b there, under the relation (Vi,Wi;a1,b1) ~
(Va, Wasag, ba) if and only if there is a bundle S and a bundle isomorphism

(10.43) T:-VieoWeasS— VoW S
which is equal to (as @ ba) (a1 ® be) ® Idg outside some compact set.

Note that if X is compact then the part about the trivializations is completely void,

then we just have pairs of vector bundles (V, W) and the equlvagﬁq(ie ﬁeol.;xtg?p is the

existence of a stabilizing bundle S and a bundle isomorphism (
This is again an Abelian group with the group structure given at the level of
pairs of bundles (V;, W;), i = 1, 2 by*

(10.44) [(Vi, W)l + [V, W) = [(Vi © Vo, Wi @ Wa)]

4 9.11.2007.319
See Problem or the details.
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with the trivializations (a1 ® az), (b1 ® b2). In particular [(V, V)] is the zero element
for any bundle V' (trivial outside a compact set).

The equivalence relation being (stable) bundle isomorphism rather than some
sort of homotopy may seen strange, but it is actually more general.

22.11.2007.340 | LEMMA 10.6. IfV is a vector bundle over [0, 1]; x X which is trivial outside a

compact set then Vy = V‘t:o and Vp = V‘t:l are bundle isomorphic over X with
an tsomorphism which is trivial outside a compact set.

PROOF. The proof is ‘use a connection and integrate’. We can do this explicitly
as follows. First we can complement V' to a trivial bundle so tha‘%'t. f%%%]ﬁ}t];é%d with
a constant projection outside a compact set, using Proposition mfamily
of projections be my (¢, ) in M x M matrices. We want to differentiate sections of
the bundle with respect to t. Since they are M-vectors we can do this, but we may
well not get sections this way. However defining the (partial) connection by

22.11.2007.341| (10.45) Viu(t) =0'(t) — mpu(t) = (Id =7y ) Vo (t) = ((Id =7y )o(t)) =0

if Tyv = v, i.e. if v is a section. Now, by standard results on the existence, uniquenss
and smoothness of solutions to differential equations, the condition Viv(t) = 0
fixes a unique section with v(0) = vy € Vp fixed. Then define F' : Vj — V; by
Fvg = v(1). This is a bundle isomorphism. O

, S %%w
9.11.2007.322 ProPOSITION 10.6. For any manifold X the construction in Lemmal10.5 gives

the ‘clutching’ isomorphism

(10.46) clu s KL(X) 3 [a] — [(I,, 1)) = Ko(R x X)

where II5° s the constant projection to which 11, restricts outside a compact set.

22.11.2007.336

PrOOF. The range of the projection II, in Lemma melemen‘u of
K¢(R x X) but we need to see that it is independent of the choice of a representing, . - .,
[a] € K}(X). A homotopy of a gives a bundle over [0,1] x X and then Lemma [T0.6
shows that the resulting bundles are isomorphic. Stabilizing a, i.e. enlarging it
by an identity matrix adds a constan nLoiggtiop . to II, and the same projection
projection to IIS°. Thus the map in (IUZIG% is well defined. So we need to show
that it is an isomorphism. First we should show that it is additive. Recall that
the addition in K} (X) is defined either by composition in G.>° or by taking the
direct sum. The direct sum of two bundle isomorphisms valued in GL(N,C) is
then a bundle isomorphism in GL(2N,C) and the construction above leads to the
corresponding direct sum of the two projections valued in 2N x 2N matrices, giving
a 4N x 4N projection and this is the addition in K so clu is a homomorphism.
. If Visa bu-n.dle yer 1R2>60¥. é?gglich is trivial qutside a c.oml-)act set, we carl embed
it as in Proposition T0.5 so it 1s given by a family of projections 7y tzhllislpio(agyﬁ?
involves a bundle isomorphism). Now, using the connection as in (il).ZISi we can
define an isomorphism of the trivial bundle 7{?. Namely, integrating from ¢t = =71 to
t =T defines an isomorphism a. The claim is that, (TLs TI2°) = (V, V*>°). I leave the

details to you, there is some help ig ﬁrglg&gné !U.ll). Conversely, this construction

recovers a from I, so shows that ( s mjective and surjective. [
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22.11.2007.349 |

22.11.2007.352
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10.5. Isotropic index map

9.11.2007.323 o o .
Now, (0. 1s part of Bott periodicity. The remaining part is that, for any

manifold X there is a natural isomorphism
(10.47) KR x X) — K (X).

If we regard this as an identification (and one has to be careful about orientations
here) then it means that we have identified

(10.48) K2(X) = KR x X) = Ko(X) = K. (R? x X)
as is discussed orG }381)9"‘73 4for the moment what we will work on is the definition
of the map in (%;):47 J. This is the ‘isotropic’ (or ‘Toeplitz’®) index map.

So, we get to the start of the connection of this stuff with index theory. An
element of K!(R x X) is represented by a map from R x X to GL(N, C), for some
N, and with triviality outside a compact set. In particular this map reduces to the
identity near £o0o in R so we can join the ends using the radial compactification of
R +—— S and get a map

a€C™®(Sx X;GL(N,C)), a=1Id near {1} x X and outside a compact set.

6.5.2008.793
This indeed is essentially the implied definition of K?(X) before (l().25;. Now,
we can interpret @ as the principal symbol of an elliptic family in ¥ (R;CV)

depending smoothly on € X (and reducing to the identity outside a compact
set). Let’s start with the case X = {pt} so there are no parameters.

PROPOSITION 10.7. If A € W (R;CY) is elliptic with principal symbol a =

00(A) € C=(S; GL(N,C)) then the index of A is given by the winding number of
the determinant of the symbol

yda
do

and if a = 1d near {1} € S then Indiso(A) = 0 if and only if [a] = 0 € KL(S).

. PROOF. ***"fExpand This follows' from Proposit.ion E%%.%%g—gfijgesf?lk Jghag, ghe
winding number is. Then check that it defines the identification (mve
that the index is stable under homotopy and stabilization and that the index of a
product is the sum of the indices. Then check one example with index 1, namely
for the annihilation operator will suffices. For general A with winding number m,
compose with m factors of the creation operator — the adjoint of the annihilation

operator. This gives a Lpergder Sx%th symbol for which the winding number is
trivial. By Proposition U.% 1§ 1(:%'10 ;593 g;eformed to the identity after stabilization,

so its index vanishes and (10.49) follows. (]

Now for the analytic step that allows us to define the full (isotropic) index map.

(10.49) Indiso(A) = — wn(det(a)) = b tr(a

- )do
21t Js

PRrROPOSITION 10.8. Ifa € C*(R x X; GL(N,C)) (so it reduces to the identity
outside a compact set) then there exists A € C(X; VY (R;CN)) with o¢(A) = a,

A constant in X \ K for some compact K and such that null(A4) is a (constant)
vector bundle over X.

5 22.11.2007.346 .
See Problem [77 for this alfernative approach.
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PROOF. We can choose a B € C®(X; VY (R;CY)) with o(B) = a by the
surjectivity of the symbol map. Moreover, taking a function ¢ € C*°(X) which is
equal to 1 outside a compact set in X but which vanishes where a # Id, (1—1)B +
1 Id has the same principal symbol and reduces to Id outside a compact set.

The problem with this initial choice is that the dimension of the null space
may change from point to point. However, we certainly have a parametrix Gp €
C(X; WY (R;CY)) which we can take to be equal to the identity outside a compact
set, by the same method, and which then satisfies

(10.50) GpB =1d+R;, BGp =1d+Ry, R; € C°(X; U > (R;C").

180

So, recall the finite rank projection () onto the span of the first N eigenspaces.
We know that Ry7m(ny — Ry in Wi 5°(R; CV) and this is true uniformly on X since

the support in X is compact. So, if ]\éQislllalé%g?erggélgh sup,ex |[R1(z)(Id —mny) || <
%. Composing the first equation in (T0.50] on the right with Id —m(n) we find that

(10.51) GpB(Id —m(ny) = (Id +Ry (Id =7 (ny))) (Id =7 ()
where the fact that Id —m(y) is a projection is also used. Now
(Id+Ri(Id —m(n))) "' =1d+5;
where S; € C(X;P. >°(R)) by the openness of G ;°°(R). So if we set A =

1S0 150

B(Id —7(y)) and G = (Id +51)Gp we see that
(10.52) GA =1d—7(y).

In particular the null space of A(x) for each z is exactly the sparI Q_fff(%bf dfcer-

tainly annihilates this set but can annihilate no more in view of (I0.52). Moreover
A has the same principal symbol as B and is constant outside a compact set in
X. O

22.11.2007.352
Now, once we have chosen A as in Proposition mfrom the constancy
of the index that family A(z)* also has null spaces of constant finite dimension, and
indeed these define a smooth bundle over X which, if X is not compact, reduces
to 7y near infinity — since A = Id —m() there. Thus we arrive at the isotropic
index map.

22.11.2007,352
ProrosITION 10.9. If A is as in Proposition [10.8 the the null spaces of A*(x)
form a smooth vector bundle Nul(A*) over X defining a class [(m(n), Nul(A*))] €
Ko (X) which depends only on [a] € KL(R x X) and so defines an additive map

(10.53) Indiso : KL(R x X) — K (X).

PROOF. In the earlier discussion of isotropic operators it was shown that an
elliptic operator has a generalized inverse. So near any particular point £ € X we
can add an element E(Z) € U,_>°(R;CY) to G(z) so that H(Z) = G(z) + E(z) is a
generalized inverse, H(z)A(z) = Id —7(ny, A(Zp(Z) = Id —7'(Z) where 7'(Z) is a
finite rank projection onto a subspace of S(R). Then H(z) = G(z) + E(Z) is still a
parametrix nearby and

(10.54) H(x)A(x) = 1d —7(ny, A(z)H(x) =1d —p(z) near z

where p(z) must have constant rank. Indeed, it follows that p(x)n’(Z) is a smooth
bundle isomorphism, near Z, from the range of 7/(Z) to the null space of A*. This
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shows that the null spaces of the A*(z) form a bundle, which certainly reduces to
m(n) outside a compact set. Thus

22.11.2007.359 | (10.55) (), null(A*))] € K (X).

Next note the independence of this element of the choice of N. It suffices to
show that increasing N does not change the class. In fact increasing N to N + 1
replaces A by A(Id —m(y41)) which has null bundle increased by the trivial line
bundle (Id(y 1) —7(n)). The range of A then decreases by the removal of the trivial
bunglle, Afplldey 1) —m(x)) and null(A*) increases correspondingly. So the class
in (10.55) does not change.

To see that the class is independent of the choice of A, for fixed a, consider two
such choices. Initially the choice was of an operator with a as principal symbol,
two choices are smoothly homotopic, since tA + (1 — t)A’ is a smooth family with
constant symbol. The same construction as above now gives a pair of buq?i €5,0¥687 340
[0,1] x X, trivialized outside a compact set, and it follows from Lemma [I0. a
the class is constant. A similar discussion shows that homotopy of a is just a family

over [0,1] x X so the discussion above aﬁﬁlieﬁ 0,4t apd shows that the bundles can

be chosen smoothly, again from Lemma e class is constant. O

It is important to understand what the index tell us.

22.11.2007.368 | PROPOSITION 10.10. If a € C®°(R x X; GL(N,C)) then Indiso(a) = 0 if and
only if there is a family A € C*°(X; VY (R;CN)) with 0o(A) = a which is constant

outside a compact set in X and everywhere invertible.

PROOF. The definition of the index class above shows that a may be quan-
tized to an operator with smooth null bundle and range bundle such with Ind;s,(a)
represented by (m(n),p’) where p’ is the null bundle of the adjoint. If A can be
chosen invertible this class is certainly zero. Conversely, if the class vanishes then
after stabilizing with a trivial bundle 7y and p’ become bundle isomorphic. This
just means that they are isomorphic for sufficiently large N with the isomorphism
being the trivial one near infinity. However this isomorphism is itself an element of
Co°(X; U, (R; CV)) which is trivial near infinity. Adding it to A gives an invertible
realization of the symbol, proving the Proposition. O

10.6. Bott periodicity

Now to the proof of Bott periodicity. Choose a ‘Bott’ element, which in this
case is a smooth function

B:R— C*, B(t)=1for |t| > T,
arg (t) increasing over (0,27) for t € (=T, T)

22.11.2007.361] (10.56)  B(t) = °Y — {

. 27.11,2007.384 . . Lo
where O satisfies (I10.35) and the preceeding conditions. Thus § has winding number
one but is constant near infinity.
We first show

22.11.2007.357 . . . )
]22.11.2007.360\ PROPOSITION 10.11. The map (10.53) s surjective with explicit left inverse
generated by mapping a smooth projection (constant near infinity) to

[22.11.2007.362] (10.57) (mv, 7)) — B(t) 'y + (Id —7y) € C°(R x X; GL(N, C)).
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Proor. Theg syrigetiviky follows from the existence of a left inverse, so we need
to investigate (II0. serve that 5(t) 2 \{vlh%{}oglg}fgd to the circle, is a symbol

>
with winding number 1. By Proposition we may choose an elliptic operator
b € U2 (R) which has a one-dimensional null space and has symbol in the same
class in K!(R) as 871 In fact we could take the annihilation operator, normalized

to have order 0. Then we construct an elliptic family By € U9 _(R;CV) by setting
22.11.2007.363| (10.58) By =7y (2)b+ (Id -7y (2)), = € X.

The null space of this family is clearly 7y ® N, where N is the fixed one-dimensional
vector space null(b). Thus indeed

[22.11.2007.364] (10.59) Indiso(By) = [(mv, 757)] € Ke(X).

This proves the surjectivity of Ind;s,, the index map in this isotropic setting. [

180

With some danger of repeating myself, if X is compact the ‘normalizing term’ at
infinity 7¢F is dropped. You will now see why we have been dragging this non-
compact case along, it is rather handy even if interest is in the compact case.

This following proof that Ind;g, is injective is a variant of the ‘clever’ argument
of Atiyah (maybe it is very clever — look at the original proof by Bo {or the much
more computational, but actually rather enlightening, argument in

. . o . 22.11,2007.344
SELION 10.12. For any manifold X, the isotropic index map in (W

wha
28 an Zsomorphzsm
(10.60) Indiso : KE(R x X) — K (X).

. .. [22.11.2007.360 . . . . .
PRrROOF. Following Proposition I0.IT only the injectivity of the map remains
to be shown. Rather than try to do this directly we use another carefully chosen

homotopy.
So, we need to show that if a € C$°(R x X; GL(N,C)) has Indiso(a) = 0 ‘E%l(?l% 2007399
0=1[d] € Klggsl f<2%(0)7 \/3%3% a first step we use the construction of Proposition

and Lemma 0.5 to construct the image of [a] in K.(R? x X). It is represented by
the projection-valued matrix

[22.11.2007.365] (10.61) M, (t,s,2) € C3°(R* x X; M(2N,C))
which is constant near infinity. Then we use the surjectivity of the index map in
the case

[22.11.2007.366] (10.62) Indiso : Ke(R x (R? x X)) — K (R? x X)

.. .. |22.11,2007.363
and the explicit lift (Hmjmtmct

[22.11.2007.367] (10.63)
e € C°(R? x X;GL(2N,C)), e(r,t,s,2) = B(r)a(t,s,2) + (Id ~IL.(t, 5, 7)),

Indiso(e) = [Ha7ngo] € KC(R2 X X)

Here the ‘r’ variable is the one which is interpreted as the variable in the circle at
infinity on R? to turn e into a symbol and hence a family of elliptic operators with
the given index. However we can rotate between the variables r and s, which is an
homotopy replacing e(r,t,s,x) by e(—s,t,r,z). Since the index map is homotopy
invariant, this symbol must give the same index class. Now, the third variable here

is the argument of a, the original symbol. So the quantization map just turns a and
I which appears in the ﬁ%@}llgogolr ;&g ee (T0.4T) — into any operator with these

symbols By Proposition a (maybe after a little homotopy) is the symbol of
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an invertible family. Inserting this in place of a and its inverse for a=! gives an
invertible family of operators with symbol e(—s,t,7,2)®. Thus Indis(e) = 0, but
this means that

22.11.2007.370| (10.64) 0 = [(T1,,TI°)] € K (R?* x X) = 0= [a] € K}(R x X).
9.11.2007.325
This shows the injectivity of the isotropic index map and so that (II0. 1S an
isomorphism. O

What does this tell us? Well, as it turns out, lots of things! For one thing the
normalization conditions extend to all Euclidean space:-

0} k Z k
22.11.2007.371] (10.65) K (R¥) = {0}k even K)(R*) = even
Z  kodd, {0} & odd.
This in turn means that we understand a good deal more about G_>°(R").
’22.11.2007.372‘ THEOREM 10.1 (Bott periodicity). The homotopy groups Gi.J°(R™) are
_ {0} k even
22.11.2007.373 10.66 (G2 (R™) =
| | ( ) 7T]( 1s0 ( )) {Z Lk odd.

Indeed Bott proved this rather directly using Morse theory.

10.7. Toeplitz index map

Although the map from K!(R x X) to K.(X) has been discussed here in terms
of the quantization of symbols to isotropic pseudodifferential operators it could
equally, and more conventionally, be done by quantization to ‘Toeplitz operators’.
The advantage of the isotropic quantization is that it extends directly to higher
dimensions. The Toeplitz algebra is the ‘compression’ of the pseudodifferential
algebra on the circle to the pgggtii/ietzFourier components, some form of the Hardy
space. This is discussed in § 6.9. In the Toeplitz context, m ) is projection onto
the span of the first NV exponentials exp(ilf), 1 <1 < N.

PROPOSITION 10.13. If A € C*°(X; ¥, (S; C*)) is an elliptic family of Toeplitz

operators, which is constant outside a compact subset of X and has o(A)(1,x) =
Idgxk then for N sufficiently large A(Id —m(yy)) and its adjoint have null spaces
forming a smooth vector bundle over X, the class [(Nul(A),Nul(4*))] € K%(X)
depends only on the class in of the symbol in KL(R x S) and the map so defined

(10.67) Indr, : KL(R x X) — KY(X)

s equal to the isotropic index map discussed above.

Notice that the assumption that the symbol of A is equal to the identity at 6 = 1 on

the circe, for all 2 € X, means that it can be interpreted (after a little defor a‘gi &3 775
as defining an element in the compactly supported K-group on the left in (;U(;;] %,

where R is identified with S\ {1} by the map

(1065

R >t +— exp(iO(t)), © € C*(R), ©'(t) >0, O(t) =0, t << 0, O(t) =27, t >> 0.

where the orientation is important.

B 22.11.2007.369 )
See Problem [T0.T for some more details
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22.11 .2007.369\ PROBLEM 10.1. Go through the argument for the stability of the null bundle

and the independence of choices, it is essentially the same as for the isotropic case
but using the properties of the Toeplitz algebra, and smoothing operators on the
circle instead.

PROOF. The proof of the stability of the index etc, leading to the map (%@%%M
is essentially the same as in the isotropic case so is omitted. It remains to show
that quantization by Toeplitz operators gives the same index map as quantization
by istropic operators.

The shift operator, which is multiplication by e~* followed by projection back
onto the Hardy projection, is elliptic and has ndgx 1 asa Toeplitz operator. Its
symbol is homotopic, after the identification (HOTS%(O—EE the symbol of the anni-
hilation operator in the isotropic algebra (after change of order using the square
root of the harmonic oscillator), which also has index 1 and is the Bott element.
Thus the two indexes agree on this element, with X a point. The argument of
sujectivity for the isotropic index above, which involves twisting the annihilation
operator with a bundle on X applies equally well in the Toeplitz setting. Thus
both maps are surjective and the injectivity of the isotropic index shows that these
element span K!(R x X), so the two maps give the same isomorphism. a

10.8. The isotropic-semiclassical index (or quantization) maps

Especially since the geometric version of the odd index plays a considerable
role in the proof of the index theorem of Atiyah and Singer below, we next discuss
the ‘odd’ version of the isotropic index theorem which arises from the semiclassical
limit for isotropic operators. This is used in the next section to obtain the Thom
isomorphism in K-theory.

We shall show that for any even dimensional Euclidean sp o Ehgo%;éng%)l map
(T0.5):

for isotropic smoothing operators leads to the isomorphism in

(10.69) Inde? : KR x X) — KL(X)

for any manifold X. This is consistent with the other Bott periodicity constructions,
as is shown below.

PROPOSITION 10.14. If a € C*®°(R?*" x X;GL(N,C)) has compact support, in

the sense that a = 1d outside a compact set, the there exists A’ € C3°(X; \IISITSO(R") CcM)

such that 05 (A") = a — Idy and then for small € > 0 [I N %J(c ) depends
only on [a] € KL(R* x X) and gives the isomorphism ( .

PROOF. The main step is the existence of the semiclassical f: ! élax, reducing to
the identity outside a compact set, but this is shown in Chapter g

The fact that [A.], for € > 0 so small that As is invertible for all 0 < § < ¢, only
depends on a follows from the homotopy equivalence of all possible semiclassical
quantizations. The independence of choices follows from similar arguments to those
above — homotopies induce homotopies and stability leads to stability. ([

The even isotropic-semiclassical index map is defined in a similar way using the
quantization of projections.

PROPOSITION 10.15. If p € C®(R?" x X; M(N,C)) is a family of projec-

tions which takes a fized value po, outside some compact set then there exists
Q € CX(X;U 2 (R");CN) such that ps + Q is a family of projections with

sliso
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17.5.2008.837
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Doo + 051(Q) = p and for € > 0 sufficiently small [poo + Q] %4 ggc}y de-

pends on [p] € KYR?" x X) and this leads to the isomorphism (

PROOF.

It is important that these two maps are consistent with each other, under
iteration and with Bott periodicity, as discussed in the preceeding section.

L ML 0]09.%23The isotropic-semiclassical quantization maps and the clutching
U.ZI;)' lead ©

map o the commutative diagrammes of isomorphisms

(10.70) KL(R2" x X) —2 KO(R x R2" x X)
Ind?;‘,di llnd?:f"
KL(X) ————KI(R x X).
and
(10.71) KO(R? x R?" x X) LU0 KI(R x R?" x X) 2% KO(R?" x X))

Ind;"j“l In d;);j,di \LI dgyen

KY(R? xX)TKi(RxX) KY(X).

Indiso

i . 17.5.2008.833 ..
PrOOF. This commutativity N(INNEY r{]le(ib%t;s gggm the explicit formula

for the clutching construction in (IIT. . Namely, if A is an isotropic-
gpnicilafos&ga}a&uantlzatlon of a then A~} quantlzeb a~! and inserting A and A~! into
(T0.4T) gives an isotropic-semiclassical quantization of IT, to a family of projections
defining I1,.  [17.5.2008.83%.5.2008.833 .
The left square in (0. 1S . or replaced by R x X and written
backwards. The commutativity of the right square follows from the formula for

the inverse of the isotropic index. Again t?%b 1113‘ g&g_;anaégy an explicit formula, lift

a projection to an invertible family, as in (II0. us the commutativity of the
sgmar azgét}gsgle horizontal maps inverted follows and since these are isomorphisms
(0. 7; & is also commutative. (]

LEMMA 10.8. For any manifold X
Ind&¥™ = (Indjgo o clu™)" : KYR™ x X) — KI(X),

180

md? = (clu™ o Indiee)™ : KL(R?™ x X) — KL(X)

150

(10.72)

are the Bott periodicity maps and for any N and M and either parity p, the dia-
gramme

(10.73) KTC’(XQM X X)
Ind?
KR (X2NH2M ¢ X) K2 (X)
commutes.

17.5,2008.837
Proor. To prove (II0. O
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10.9. Complex and symplectic bundles

In Chapter El;%l%le algebra of istropic pseudodifferential on a symplectic vector
space F' is discussed. For example the algebra of operators of order 0 is just a
non-commutative product on the space of smooth functions on the radial compact-
ification of F, C°°(F). This product varies smoothly with the symplectic form used
to define it. Now suppose that F — X is a real vector bundle over a manifold X
which has a symplectic structure, that is a section

w € C®(X;A’F"),
(1074
veF,, w(vw)=0VweF,=v=0
is given. Then the isotropic algebras on the fibre combine to a smooth bundle
of algebras. It is this bundle of algebras which we will use to discuss the Thom
isomorphism. Since the Thom isomorphism in K-theory is usually thought of in
terms of complex bundles, not realy symplectic bundles, we recall the relationship
between them here.

Recall that any complex vector space F' has an underlying real vector space, Fg,
which is the same set with only real multiplication allowed. Then multiplication
by i@ on F becomes a real isomorphism J : Fg — R with the property that
J? = —1d. Conversely, on a real vector space with such an isomorphism, complex
multiplication, defined with multiplication by z = a+1i5 being o+ .J, is a complex
vector space with the original real vector space underlying it.

LEMMA 10.9. A real vector bundle of even rank admits a complex structure

if and only if it admits a symplectic structure and the homotopy classes of these
structures are in 1-1 correspondence.

If X is not compact, this correspondence of complex or symplectic structures ex-
tends to those which are trivialized outside a compact set.

Proor. This is really just the corresponding construction in linear algebra.
Any complex vector space F' admits an Hermitian structure, a sequilinear positive
definite form:

(1075
h:FxF—C,

h(z1v1 + 2202, w) = z1h(v1, W) + 22h(ve, w), h(v,w) = h(w,v), h(v,v) >0, h(v,v) =0= v =0.

To see this, just take the Euclidean inner product with respect to a basis. The
imaginary part of h,

(10.76) wp (v, w) = Sh(v,w)

is a symplectic form on Fg. Moreover h(v,w) = wp (v, Jw) + iw(v,w) so the Her-
mitian structure can be recovered from the symplectic strucure and J. Conversely,
if V is a real vector space with symplectic form wy then choosing a real Euclidean
structure g on V defines a linear map J' : V — V by

1077
( ) wy (v, J'w) = g(v,w) = g(w,v) = wy(w, J'v) = —wy (Jv,w).

Thus g(J'v,w) = wy (J'v, Jw) = —wy (Jw, J'v) = —g(J'w,v) = —g(v, J'w) shows
that J' is skew-adjoint with respect to g and g((J')%v,w) = —g(J'v, J'w) shows
that its square is negative definite and self-adoint. Thus —(J')? = A% where A is

wy (v, Jw) = g(v,w) =
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a positive definite real self-adjoint matrix, with respect to g, which commutes with
J' (since i.J' is self-adjoint and its eigenvectors are eigenvectors of A% and hence A.
Thus J = A~1J’ is a complex structure, J? = —Id.

For a symplectic vector bundle, this construction can be carried out smoothly,
simply by choosing a smooth family of real metrics on the fibres. The construction
of J from J’ is determined and hence is easily seen to yield a smooth homorphism
J of the real bundle, and hence a smooth complex structure. Moreover both the
construction of a complex structure from the symplectic and of the symplectic
structure from the complex can lift to homotopies, since they can be carried out
smoothly in parameters. (I

10.10. Thom isomorphism

The even semiclassical isotropic index map is shown above to generate an iso-
morphism

(10.78) Indiso, : KJ(R?Y x X) — KO(X)

for any manifold X. Here the product can be interpreted as a trivial even-rank
bundle over X. The Thom isomorphism extends this to the bundles discussed in
the previous section.

ProprosiTION 10.16. If F — X is an even-rank real vector bundle over X,

trivial outside a compact set and with a symplectic structure constant outside a
compact set then semiclassical isotropic quantization gives an isomorphism

Thom : KY(F) — K9(X) with inverse
(10.79)

K9(X) 3 [V] — [V®bg] € KY(E)

where bg € KY(E) is the Bott element corresponding to the harmonic oscillator.

PRrROOF. We first show that isotropic qua tizgt'%gso%grojections on the fibres
}(HQ% in th

descends to an index map in the bundle case ( e bundle case. Certainly

an element of KY(F) is represented by a smooth map F — M (N, C) for some N

with values in the projections and constant outside a compact subset of F' (which

of course projects to a compact subset of X). Mainly we just need to show that the
previous discussion extends smoothly to this case and also that there is a smooth

‘Bott element’ Br € KY(F), so represented by a family of projections, suc 2t}§ 008.796
Ind(F) = [C] is a trivial one-dimensional bundle. Then the second line in (%().?;;

gives a left inverse of the index,

(10.80) Ind(7*[V] @ ) = [V] € KJ(X).

As for the original isotropic index, this proves that the index map is surjective for
any symplectic bundle F as in the statement above. So only the injectivity remains
to be shown.

If F is a real vector bundle with symplectic structure then it is shown above that
it can be realized as the underlying real vector bundle for a complex vector bundle
with the symplectic structure being the imaginary part of an Hermitian structure
on E. If F is trivial, with constant symplectic structure outside a compact set, then
FE can be taken to be trivial with complex Hermitian structure outside a compact
set. Then E can be embedded as a subbundle of a trivial complex bundle CV with
constant inclusion outside a compact set. Extending the Hermitian structure to
the whole bundle, as a direct sum, and constant outside a compact set, shows that
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8.11.2007.287

8.11.2007.288

8.11.2007.289
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F' can be complemented to a trivial bundle with direct symplectic forms constant
outside a compactum. Let the complementary bundle be G so F @& G = R?* for
some k. Now we have maps

(10.81) KY(R?* x X)

Ind
KY(X).
Indc 4
K2 (F)

We claim that this diagramme commutes. *** This is supposed to be done back in
the isotropic chapter, namely that when quantizing a projection on the product of
two vector spaces one can first quantize in one subspace and then the other. For
the moment the more complicated case of the adiabatic limit has already been done
so this should be clear enough. 19.5.2008.804

From the commutativity of (0. 1t follows that Indp is an isomorphism.
Indeed, the bottom two are injective and top is known to be an isomorphism from
the preceeding discussion. Thus Indp must also be surjective and hence is an
isomorphism and Indg is Indg for a different bundle and base. O

10.11. Chern forms

I would not take this section seriously yet, I am going to change it.

Let’s just think about the finite-dimensional groups GL(N, C) for a little while.
Really these can be replaced by G;.>°(R™), as I will do below, but it may be a strain
to do differential analysis and differential topology on such an infinite dimensional
manifold, so I will hold off for a while.

Recall that for a Lie group G the tangent space at the identity (thought of as
given by an equivalence to second order on curves through Id), g, has the structure
of a Lie algebra. In the case of most interest here, GL(n,C) C M (N, C) is an open
subset of the algebra of N x IV matrices, namely the complement of the hypersurface
where det = 0. Thus the tangent space at Id is just M (N, C) and the Lie algebra
structure is given by the commutator

(10.82) [a,b] = ab—ba, a,b € gl(N,C) = M(N,C).

At any other point, g, of the group the tangent space may be naturally identified
with g by observing that if ¢(t) is a curve through g then g~'c(t) is a curve through
Id with the equivalence relation carrying over. This linear map from TG to g is
herlpfully denoted

(10.83) g tdg:T,G — g.

In this notation ‘dg’ is the differential of the identity map of G at g. This ‘Maurier-
Cartan’ form as a well-defined 1-form on G with values in } — which is a fixed vector
space.

The fundamental property of this form is that

_ 1 _ -
(10.84) d(g™'dg) = —5lg™"dg. g™ " dg).

In the case of GL(V, C) this can be checked directly, and written slightly differently.
Namely in this case as a ‘function’ ‘g’ is the identity on G but thought of as the
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canonical embedding GL(N,C) € M(N,C). Thus it takes values in M(N,C), a
vector space, and we may differentiate directly to find that

8.11.2007.290 | (10.85) d(g'dg) = —dgg~'dg A dg

where the product is that in the matrix algebra. Here we are just using the fact

that dg=' = —¢g 'dgg—' which comes Lo '@er‘zegr&tiating the defining identity
g 'g = Id. Of course the right side of (10.85) is an i%%f(qllg%w%g& a function on

the tangent space T,G x T,G and so does reduce to ( when the product is
repalced by the Lie product, i.e. the commutator.

Since we are dealing with mat '8%7059i(}1ﬁnite matrix, groups throughout, I will
use the ‘non-intrinsic’ form (IU.SS]% n which the r%l (61'07182§£l€ matrix product,
rather than the truly intrinsic (and general) form ( 15.8%.
8.11.2007.291 PROPOSITION 10.17 (Chern forms). If tr is the trace functional on N x N ma-
trices then on GL(N,C),

tr((g dg)**) =0V k €N,
Bok_1 = tr((g_ldg)%_l) is closed V k € N.

ProoOF. This is the effect of the antisymmetry. The trace idenitity, tr(ab) =
tr(ba) means precisely that tr vanishes on commutators. In the case of an even
number of factors, for clarity evaluation on 2k copies of Ty GL(N,C), given for
a; € M(N,C),i=1,...,2k, by the sum over
8.11.2007.293 | (10.87)

tr((g~"dg)**) (a1, as, . .., a2) = ngn(e) tr(g " ac(1)g M ae() - 9 o)) =

8.11.2007.292| (10.86)

- ngn(e) tr(g_lae(2k)g_lae(l) e 9_1%(21@71)) = —tr((g~"'dg)*)(a1, az, ..., az).

In the case of an odd number of factors the same manipulation products a
trivial identity. However, notice that
8.11.2007.294| (10.88) g tdgg' = —d(g7")
is closed, as is dg. So in differentiating the odd number of wedge products each pair
g tdgg~'dg is closed, so (tr being a fixed functional)
8.11.2007.295| (10.89) dBog—1 = tr(dg~ ') (g7 dgg™ dg)?*7?) = —tr((g~'dg)**) = 0
by the previous discussion. O
Now, time to do this in the infinite dimensional case. First we have to make

sure we know that we are talking about.

8.11.2007.296 DEFINITION 10.3 (Fréchet differentiability). A function on an open set of a
Fréchet space, O C F, f : O — V, where V is a locally convex topological space
(here it will also be Fréchet, and might be Banach) differentiable at a point u € O
if there exists a continuous linear map D : F — V such that for each continuous

seminorm || - |la on V there is a continuous norm || - ||; on F such that for each
€ > 0 there exists § > 0 for which
8.11.2007.297 | (10.90) ol <0 = |If(u+v) — f(u) = To|lo < €lv]];.

This is a rather strong definition of differentiability, stronger than the Gateaux
definition — which would actually be enough for most of what we want, but why
not use the stronger condition when it holds?
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8.11.2007.298 ProproOSITION 10.18. The composition of smoothing operators defines a bilinear
smooth map

8.11.2007.299| (10.91) U (R") x U _2(R") — U_°(R"), ||abllr < Cklla|lg+n0llk+n

iso iso iso
(where the kth norm on u is for instance the C¥ norm on (z)¥u and inversion is a
smooth map

8.11.2007.300| (10.92) G0 (R™) — G2 (R™).

iso iso

PRrROOF. I did not define smoothness above, but it is iterated differentiability,
as usual. In fact linear maps are always differentiable, as follows immediately from
the definition 8?}1. Jamgds true of jointly continuous bilinear maps, so the norm
estimates in (HEEJ‘I%WI;IJ—ally prove the regularity statement. The point is that the
derivative of a bilinear map P at (a,b) is the linear map

8.11.2007.301] (10.93) Q,3(a,b) = P(a,b)+P(a,b), P(a+a,b+b)—P(a,b)—Q, ;(a,b) = P(a,b).

The bilinear estimates themselves follow directly by differentiating and estimating
the integral composition formula

8.11.2007.302| (10.94) aob(z,2') = /a(z,z”)b(z”,z’)dz”.

The shift in norm on the right compared to the left is to get a negative factor of
(") to ensure integrability.

Smoothness of the inverse map is a little more delicate. Of course we do know
what the derivative at the point g, evaluated on the tangent vector a is, namely

g tag™!. So to get differentiability we need to estimate

1

8.11.2007.303| (10.95) (¢9+a) ' =g '4+glag =g ta Z(—l)kﬂg*l(ag*l)k ag~
k>0
This is the Neumann series for the inverse. If a is close to 0 in ¥, >°(R") then
we know that ||a||z2 is small, i.e. it is bounded by some norm on ¥, >°(R™). Thus
the series on the right converges in bounded operators on L?(R™). However the
smoothing terms on both sides render the whole of the right side smoothing and
with all norms small in ¥;_>°(R"™) when a is small.
This proves differentiability, but in fact infinite differentiability follows, since
the differentiability of ¢g—' and the smoothness of composition, discussed above,

shows that g 'ag™! is differentiable, and allows one to proceed on inductively. [

We also know that the trace functional extends to ¥, °(R™) as a trace func-
tional, i.e. vanishing on commutators. This means that the construction above of
Chern classes on GL(V, C) extends to G;;°(R™).
8.11.2007.292
8.11.2007.304 PROPOSITION 10.19. (Unigversal Chern forms) The statements (10.86) extend

to the infinite-dimensional group G .>°(R™) to define deRham classes [Bak—1] in
each odd dimension.

In fact these classes generate (not span, you need to take cup products as well) the
cohomology, over R, of Gi,>°(R™).

180

ProOOF. We have now done enough to justify the earlier computations in this
setting. [



8.11.2007.305

8.11.2007.306

8.11.2007.307

8.11.2007.308

8.11.2007.310

8.11.2007.311

8.11.2007.312

8.11.2007.313

9.11.2007.321
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PROPOSITION 10.20. If X is a manifold and a € CX(X;G.°(R™) then the
forms a*Bar_1 define deRham classes in HC%H(X;R) which are independent of
the homotopy class and so are determined by [a] € KL(X). Combining them gives

the (odd) Chern character
(10.96) Cho([a]) = cop—10"Bax—1.
k

8.11.2007.306
the particular constants chosen in (I().QG% corresponding to multiplicativity under
tensor products, which will be discussed below.

ProoF. The independence of the (smooth) homotopy class follows from the
computation above. Namely if a; € C2°(X x [0, 1]; G.>°(R®n) then Bag—1 = a Bag—1
is a closed (2k — 1)-form on X x [0, 1]. If we split it into the two terms
(10.97) Bop_1 = bgk_l(t) + ’}/2].3_1(75) Adt
where bog_1(t) and yo,—1(t) are respectively a t-dependent 2k — 1 and 2k — 2 form,
then

9]

dBsop_1 =0 < &bzk_l(t) = dx'ygk_g(t) and hence

(10.98) 1
b(1)2k—1 — b(0)ok—1 = dptok—2, pok—2 = / dtyar—2(t)
0

shows that b(1)ax—1 and b(0)2r—_1, the Chern forms of a; and a are cohomologous.
O

The even case is very similar. Note above that we have defined even K-classes
on X as equivalence classes under homotopy of elements a € C2°(X; G >, (R™).

i80,sU8
The latter group consists of smooth loops in G ;7 (R™) starting and ending at Id .
This means there is a natural (smooth) map

(10.99) T:G22 (R") xS — GL®(RY), (a,0) —> a(9).

1S0,sSus 180

This map may be used to pull back the Chern forms discussed above to the product
and integrate over S to get forms in even dimensions:-

27
(10.100) B :/ tr(g~tdg)* 1, k=0,1,....
0

oo n L
ProprosITION 10.21. The gmu%gispz H%ll) has an infinite number of compo-

nents, labelled by the ‘“index’ By in ( , the other Chern forms define cohomol-
ogy classes such that for any map

(10.101) Ch([a]) = i cora” Pok
k=0

defines a map K9(X) — Hev?(X).

The range of this map spans the even cohomology, this is a form of a theorem of
Atiyah-Hurzebruch.

Iff:X—Yis 9?%9%@7%?? then it induces a pull-back operation on vector
[0.2) and th

bundles (see Problem is in turn induces an operation

PRrROBLEM 10.2.
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9.11.2007.320| (10.102) M KY) — K(X).
. .. B.11.2007.309 .
Now we can interpret Proposition 77 in a more K-theoretic form.

10.12. Chern character

We have seen above that the ‘unnormalized’ Chern forms Tr((a~'da)**1) are
well-defined closed forms on the group G~°° and allow manipulation in the uisual
way. In particular they each pull back to give cohomology classes associated to a
given odd K-class on a manifold. It is important for us to understand the behaviour
of these forms under the basic maps in K-theory that 2‘5’?11}32‘6%-?1_%1226(1 above. The

most important is the isotropic/Toeplitz index map (I10.47). For the moment, we

will take X to be COFEFUEP%‘LQ%/_P% Mlough this is not necessary.

The inverse of (IT0. we know explicitly, that is we know how to represent a
bundle as the index bundle of a family of isotropic (or Toeplitz) operators. Namely
if F is a vector bundle over X then it can be embedded as a subbundle of a trivial
bundle so there is a smooth family of projections IT € C*(X; M (N, C)) such that
we may identify £ = Ran(II). Then E (as an element of K (X)) is the index bundle
for any isotropic family with symbol

28.4.2008.714] (10.103) a(z,0) = e T(x) + (Idy —TI(z)), (z)? = II(z).

So, it is naturally of interest to compute the (odd) Chern forms of a on S x X.
Computing away,

a'da = (€T 4 1d —1I) (—ie “doTI + (e~ — 1)dxTI)
28.4.2008.715| (10.104) 0, _io "
=e"(e™ = DIdxIT+ (e7* — 1)(Id —II)dx IT — idOII.
As a form on a product manifold we may decompose

28.4.2008.716| (10.105) Tr((a " da)* Y =dona+ 3

where o and 8 are forms on X depending smoothly on 6. Since we know it is closed
it follows that

28.4.2008.717 | (10.106) df(0yB —dxa)+dxB=0=dxB =0, dxa = 90.

Expanding « and 8 in Fourier series

28.4.2008.718 | (10.107) a= Z ey, B = Zemﬂk
kEZ kEZ

28.4.2008.717
it fa éoysz Egn}lg 0. 06() that all the 5 with k # 0 are exact. In fact all the terms
o ({# 4. % .

. corresponding to k # 0 are exact since
. 4 1 .
29.4.2008.773] (10.108) do A ey, + e By, = d(%e’kaak).
i

So the only cohomology which can arise comes from the terms g and [y since
separately dag = 0 and dfy = 0.

28.4.2008.716
28.4.2008.719 PROBLEM 10.3. Show that fy arising from the Chern form in (II0. U5‘ 1s coho-
mologous to a constant (i.e. is exact except in form degree 0. What is the constant?
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So, we most want to compute ag. By definition « is the contraction of Tr(gg’i% ék%lg
with dy. Watching out for normalizations it follows from antisymmetry and (II0. UZE)

that
28.4.2008.720| (10.109)  « = —i Tr (I(e” (e~ — DII(dxT) + (e~ — 1)(Id —II)(dxII))?¥)
where you should note that for a projection II(dxII) = II(dxII)(Id —II) (meaning

that the differential is completely off-diagonal with respect to the projection at that
point). So in fact

(10.110) a = —i(e™(e7" — 1)* Ty (TIdx TI(1d —1)d x IT)¥) .
Thus

2m

28.4.2008.722] (10.111) ag = _2i e (=10 — 1)k g0 Tr(w"), w = (dxI1)(Id —II)(dx I0).
™Jo

The constant here can be readily evaluated and is (perhaps)

. 27
A . 2k)!
28.4.2008.723] (10.112) S e (e —1)%dh = ;BRI

Now, w is in fact the curvature of a connection on the bundle E = Ran(II).
Namely, d can be applied to sections of Ran(IT) but will not give a new section
of the bundle (with values in 1-forms as well), however V!ls = Ilds = Ildlls is a
connection since it distributes over functions

VH(fs) =dfs+ Vs,

The curvature of this connection is easily computed, especially if one uses extension
of the distribution law to all forms

V(sa) = das + (=1)FaVs, a € C>®(X;A¥),
since then
28.4.2008.726] (10.113) (VD25 = TId(Mds) = TI(dIT)(Id —IT)(dIT) = w.

Thus for this one connection we see that oy is a multiple of Tr(w*). The basic
observation of Chern-Weil theory is

28.4.2008.727 LEMMA 10.10. For any connection V on a complex vector bundle E the forms
tr(wh) € C®(X; A%, w=V?
are closed and represent a fixed deRham cohomology class.

28.4.2008.728
PRrOOF. The crucial point is that (II0.10) is always a closed form. The connec-
tion V acts on sections of E but also defines a connection on the bundle hom(E)
of homomorphisms. Namely if b € C*°(X;hom(FE)) then

(Vb)s = V(bs) —bVs = [V,b]s

is a connection. As before it extends to homomorphisms with values in forms and
in this sense Bianchi’s identity holds

(10.114) Vw=0= Vuw" =0.
28.4.2008.730 o
Indeed, (I0-1 IZI() just comes from the associativity of operators, that V(V)? =
(V)2V.

Locally on a coordinate patch in X over which the bundle F is trivial, i.e. can be
identified with CV, any connection takes the form d+~ where 7 is a homomorphism



28.4.2008.731

28.4.2008.732

28.4.2008.733

28.4.2008.734

28.4.2008.735

28.4.2008.736

28.4.2008.737

28.4.2008.738

28.4.2008.739
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of CN with values in 1-forms on X in the open set. Then the connection acting on
homomorphisms becomes Vb = db + [, b] and so
(10.115) dtr(w") = tr(dw®) = tr(dw® + [y,w"]) = tr(VwF) =0

using the trace identity.

Thus, tr(w*) is a closed form for the curvature of any connection on E. To see
that its cohomology class does not depend on which connection is used, observe that
any two connections V; ¢ = 0,1 are connected by a smooth path of connections,
Vi = (1-1¢)Vo+1tVy, t € [0,1]. This 1-parameter family of connections is also a
connection on F pulled back from X to X x [0,1] in the sense that it defines
(10.116) Vs(t,x) = Vis(t,x) + dtoes(t, x).

The Chern form tr(V?) is therefore closed as a form on X x [0, 1] from which it

follows that tr(V3) and tr(V?3), WE]sc})L %§8sit;1pull—backs tot =0 and ¢t = 1, are

cohomologous by the analogue of . O

This means that the cohomology classes
(10.117) Ch(E,V) = tr(w"*), Ch(E) = [Ch(E, V)] € H**(X)

are well-defined.

. |28.4.2008.733
LEMMA 10.11. The Chern forms in (I0.117) define maps

(10.118) K(X) — H?**(X), k € Ny.
PROOF. For the formal difference (E4, E_) of two bundles theg Ghern classes
are just the differences. To see that this gives a well-defined map (T0.113) we need

to check that it respect equivalence classes. Invariance under bundle isomorphisms
is obvious enough ****. To see invariance under stability, that (E, @ F,E_ @ F)
defines the same class as (F4, E_) it suffices to consider the Chern classes of sums
of bundles. In fact the Chern classes are additive, since we can always take as
connection on a sum the direct sum of connections on the summands. Then the
curvature is the direct sum of the curvatures and it follows that

(10.119) Ch(E® F,VF @ V) = Ch(E, V¥) + Ch(F, VF)
at the level of forms, and hence certainly at the level of cohomolgy. (Il

It is also straightforward to see what happens to these Chern forms for the
tensor product of two bundles. Again on F ® F on can take as connection the
tensor product of connections on the bundles. Then

(10.120) (VE@ V)= (VE)? @ ldg +1dp ®(VF)?
and it follows that the Chern forms decompose (for this connection)

k
L _ .
(10121) tI‘E®F(wE®F)k = Z <]> trE((wE)J) A tI‘((wF)kij).
j=0
From the properties of the exponential and binomial coefficients it follows that
the Chern character, formally a sum of all the Chern forms,
(10.122) Ch(FE) = tr(exp(w)) = — tr(wk) € C>(X;A%)
k=0
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defines a map which is both additive and multiplicative
28.4.2008.740 | (10.123)
Ch: K% X) — H®*"(X), Ch(e+ f) = Ch(e) + Ch(f), Ch(ef) = Ch(e) A Ch(f)

in cohomolgy (where you might prefer to think of wedge as the cup product). The
basic normalization ensures that the constant terms is the (effective) rank of the
bundle. A second normalization is possible, multiplying the curvature by a constant.
This is frequently chosen so that the term of degree 2 is integral, i.e. is in the image
of the integral cohomology.

Now, having normalized the even Chern character, consider the second map
involved in Bott periodicity. Namely the injection

28.4.2008.741| (10.124) K'(X) — K9S x X).

Here we use an element a € C*°(X; GL(N, C)) to define a vector bundle over S x X
by ‘clutching’. The bundle can be defined in terms of its global section, so set, for
€ > 0 small,

28.4.2008.742| (10.125)

C®(Sx X;E,) = {s €C>®([0,27 + €); CN); s(t + 2m,2) = a(z)s(t, z), t € [0,€)}.

28.4.2008.743 ProBLEM 10.4. Go through the proof that the 3 12? Gssmﬁgth vector bundle
over S x X such that C*(S x X; E,), as defined in (i():l? gi, is the space of global

sections. Hint:- Define the fibre as a quotient of the putative space of sections.

We wish to consider the Chern character of the bundle E, and related it to a
sum of forms on X. To do so we need to choose a connection on FE,; this can be
thought of as a differential operator on sections. Namely if p € C*°(R) has p(t) = 1
int<1and p(t) =0in ¢t > 7 then

28.4.2008.744| (10.126) Vs(t) = dxs + dtds + p(t)a ' das
is a well-defined operator
28.4.2008.745| (10.127) V:C®(SxX;E,) —C®(SxX;E,®A").
Indeed, if € > 0 is small enough, p(t) =1 in ¢ < € and
28.4.2008.746 | (10.128) Vs@2m +t,2) =ds2m + t,z) = das(t, z) = a(Vs(t, z)).
It is convenient to choose p so that p’ < 0.
22.11.2007.336
12.5.2008.806 LEMMA 10.12. The bundle E, is isomorphic to the range of I1, in Lemma 10.5.

PROOF. We proceed to show that E, can be embedded as a subbundle of C2¥
as a bundle over Sx X. Consider E,® FE,-:. This is defined by the same construction
as F, with a replaced by

12.5.2008.808 | (10.129) (a 01>
0 a
acting on C?V. It was shown above that this matrix is trivial as an odd K-class,

i.e. can be connected to the identity. This can be done explicitly, for instance the
family B(r)=

12.5.2008.809] (10.130) (_?d‘;jss(ii((;)(r)) i{q:;fégzggg)
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connects it to

12.5.2008.810] (10.131) (Iod I%N>
- N

if 6 : [0,1] — [0,27] is weakly increasing and constant at 0 and 27 negy, the end, o
:().IZQ() to

points. Reversing the curve with a replaced by the identity connects (
the identity.

Now, to embed E, as a subbundle of C?V it suffices to consi %_Ehﬁ) &qgo.ale
Epq) over S x X x I where B(r), for r € I, is the curve connecting (ll).l29(§ to the
identity. Thus Ep, is E, @ E,-1 at one end of the interval and C?N at the other.
Choosing a connection on Ep(,y and integrating from FE, and integrating from one
side to the other embeds E, as a subbundle of C3VV.

It remains to show tE@t ﬁhigﬁu?sl%undle is isomorphic to the range if II, as

defined in bef Le 4L§: A ; to do so consider in more detail the connection on
i() 126 %;e [9)

Ep(yy. From ( - component of the connection is
12.5.2008.811| (10.132)

Voa,s = 0ps+ p(t)B(r) 1 (0,B(r))s = {

Ors+ p(t)0'(r)As(z)s 1€
Ops + p(t)O'(—r)Azs 1 e [T, 7

Al = <—a0(x) az)(z)> » Az = (—OId Id(()a:)) '

The induced connection on homomorphisms acts by conjugation, so the projection
in C2V which gives the embedding is the solution of

S
NIE

12.5.2008.812| (10.133) O I(r) + p(t)O'(r)[A(x), II(r)] = 0, I1(0) = <I§l 8) .

We will do this in two stages, corresponding to the two subintervals for B(r).

It is natural to look for I(r) = Q(r)II(0)Q(r)~" with Q invertible. Then the

differential condition ([IO. can be replaced by
12.5.2008.813| (10.134)

8,Q(r) + p(t)®' (r) A1 (2)Q(r) = 0 = 8-(Q(r) ") + p(1)O'(r)Q(r) " As (z) = 0,
where Q(0) = Id. This is satisfied by
12.5.2008.814| (10.135) Q(r) = S(p(t)O(r), —a™ )

22.11,2007.338
where S(6,a) is defined in (T0.38].

Thus after the first interval of integration the projection is
12.5.2008.815| (10.136) S(2mp(t), —a~HII(0)S(—27mp(t), —a™1).

In the second interval of the homotopy, a is replaced by the identity so FE, is
embedded in C?V through the projection

12.5.2008.816 | (10.137) S(—2mp(t), —1d)S(2np(t), —a~II(0)S(—27p(t), —a~1)S(27mp(t), — Id).

o . [22.11,2007.339 )
This is the same as I, (¢,z) in (10.39) except that all the signs are wrong at
once!**** Better try to get the orientations right! O

Now the curvature of this connection over S x X is

28.4.2008.747] (10.138) V2 = (d + p(t)a " da)? = p/'(t)dta™ da + (p2(t) — p(t))(a" da)?.
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The Chern character form of E, with respect to this connection is

28.4.2008.748] (10.139) oy %(p’(t)dta_lda +(0(1) = p(t))(a da)?)*.
oy

From this even-degree sum of closed forms on S x X we can extract an odd-degree
sum of forms on X by integration over S. Changing variable from ¢ to p(t) gives

1
Cn(a) = 32 gy [ a7 dal(20) = pte)) o )
k

-1
28.4.2008.749 | (10.140)

= /0 tr(a™tdaexp(w(s)))ds, w(s) = s(s —1)(a"da)>.

28.4.2008.749
28.4.2008.750 PROPOSITION 10.22. The odd Chern character, defined by (II0. ZJ;(i), gives an
additive map
28.4.2008.751] (10.141) K'(X) — HY(X)
which has the multiplicative property
28.4.2008.752] (10.142) Ch*(a ® Idg) = Ch°%(a) A Ch(E)

for any vector bundle E over X.

JROOE. ’];gbls follows directly from the discussion above. The multiplicativity
i (5 % .

. 1S a consequence of the fact that if ¢ ® Idg is used to define a bundle
over S x X follo%i.rhg_ 4 %_%tching construction above then the resulting bundle is
E, ® E. Then (IU.IZL;; is a consequence of the multiplicativity of the even Chern
character under tensor products. (I

In fact it is rather useful to generalize the formula in (%%ﬁ%%llowing a
to be an isomorphism of a general bundle F' over X, rather than a trivial bundle.
Then a defines a class by stabilization, meaning that if F' is complemented to a
trivial bundle then a is extended by the identity on the complement. Proceeding
directly the space of glo 514@65 s [&f the new bundle over S x X is defined by the
obvious replacement of (IT0. :
28.4.2008.754| (10.143)
C®(S x X; E,) = {s € C([0,2m + €); F); s(t + 27, z) = a(z)s(t,x), t € [0,€)}.
8.4

. . . J28.4.2008.744 . r
The trivial connection d in ( 1(1.126s can then be replaced by a connection V¥ on
F and used in the same way to define a connection

28.4.2008.753] (10.144) Vs = (V' +p(t)a™'Va)s.

The formula for the odd Chern character in this more general setting is due (I
believe) to Fedosov (beware of possible sign errors below, to say the least)
28.4.2008.755 | (10.145)

1
Ch°%(a) = / tr(a”*Vaexp(w(s)))ds,
0
w(s) = (1 — s)wp + sa *wra + s(s — 1)(a” *da)?.

28.4.2008.755
28.4.2008.756 PROBLEM 10.5. Go through the derivation of (TU. IZIE’;) and correct it as neces-
sary!

28.4.2008.749 . J8.11.2007.306
28.4.2008.757 PrROBLEM 10.6. Formula (l().lZI(;i normalizes the constants in (I().QG%; what

are they?
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Going back to the discussion at the beginning of this section we can now deduce
the ‘Toeplitz index in cohomology’.

. . L 22.11,2007.344
28.4.2008.758 PROPOSITION 10.23. Under the isotropic/Toeplitz index map (W

28.4.2008.759 | (10.146) Ch(Ind(a)) = —%/Ch"dd(a).
S

28.4.2008.752
Of course this is consistent with (0. IZIZ‘} since we know that if F is a bundle over X
then Ind(a®Idg) = Ind(a) ® E, where this should really be thought of as products
in K-theory.

PRrROOF. Check the constants, I haven’t. *** O

I also should discuss here the extension to non-compact manifolds. This is quite
straightforward.

10.13. Todd class
Toddclass

Now, we need to go on and see the effect on the Chern character, i.e. in
cohomology, of the Thom isomorphism; whoops it isn’t there yet ***. Thus, if F
is a complex (or symplectic) vector bundle over X then there is an isomorphism

(10.147) Thom : K¢(E) — K*(X)

which is given by the isotropic index map.

28.4.2008.761 ProproOSITION 10.24. If E is a complex vector bundle over X then there is a
cohomology class TA(E) € H®**(E) such that under the Thom isomorphism
28.4.2008.762| (10.148) Ch(Thom(f)) :/ Ch(f) ATd(E).
E/X

Note that this Todd class Td(E) represents a ‘twisting’ in the behaviour of K-theory
as opposed to cohomology under push-forward.

28.4.2008.760

PROOF. We are supposed to know by now that the inverse of (m?%Tglven
by ‘twisting with the Bott element’. That is, we know there is an element g €
KY(E), the Bott element, represented by a family of harmonic oscillators, which
has index class, Thom(Sg), a trivial 1-dimensional line bundle.

Consider first the case that E is a trivial line bundle, hence a trivial bundle
with fibre R? as a real space. Thus we know about Bott periodicity and in fact we
get a commutative diagramme

(10.149) KO(X x R?) —% = KA(X x R) = KY(X)

\L Ch \L Chedd l Ch

Heven (X x R?) —— H24d (X x R) —— He"*"(X).

The top row we know to be isomorphisms and the two bottom maps are also
isomorphisms, given by integration. We have defined the odd Chern character so
that the left square commutes. We also know that the Bott element, the symbol
e~% on the circle, induces an element of K:(R x X) which is mapped to the trivial
line by the index map, the second map on the top, and has Chern character equal
to 1. The commutativity of the right square then follows from the multiplicativity



29.4.2008.765

29.4.2008.766

29.4.2008.767

29.4.2008.768
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. 28.4.2008.752 28.4.2008.762 ,
of the Chern character in (II0. . is proves (II0. in the case that F is a

trivial line bundle.

Since we have not assumed that X is compact here the caseQQt_" 2 §%1§§;ng rank

n trivial complex or rank 2n real bundle follows by iteration of ( ; again the
Todd class is 1.

Now, as with the Thom isomorphism for K-theory, we pass to the general
case by complementing a complex bundle E to a trivial bundle £ ¢ CV with
complementary bundle F. Then we know we have isomorphisms in K-theory and
cohomology leading to a commutative diagramme

(10.150) Heven(E)

f ®Br K9(X) —% Hever(X)

Hgven(X X (CN)

Here all three inner maps and all three outer maps are isomorphisms. The inner
triangle commutes and the outer triangle also commutes, being fibre integration.
The quadrangle towards the lower right commutes, this being the case of a trivial
bundle just discussed. Thus the diagramme without the dotted arrow is commuta-
tive. Moreover there is only one way to get the left quadrangle to commute, namely
by defining

(10.151) Ch’(e):/FCh(ec@b’p)

where the integral is over the fibres of F. Then the whole diagramme commutes and
gives us the formula in cohomology that we want. On the other hand, Ch(e® Sr) =
7* Ch(e) ® Ch(Br) where 7 is the projection from CV x X to E along the fibres of
F. Since

(10.152) /ﬂ*a/\bza/\/ b
f F

for any form b on CV x X with compact support relative to the fibres of F, the
integral being fibre integration, we conclude that

(10.153) Ch'(e) = Ch(e) A Td(E), Td(E) = / Ch(Br)

with the Todd class being, by definition, a form on the total space of E, but not
with compact support. [



6.5.2008.786
6.5.2008.787

6.5.2008.788

[22.11.2007.328

22.11.2007.329 |

[22.11.2007.343 |

[22.11.2007.342

9.11.2007.319

[23.11.2007.380 |
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10.14. Stabilization
In which operators with values in . °>° are discussed.

10.15. Delooping sequence

The standard connection between even and odd classifying groups.

10.16. Looping sequence

The quantized connection between classifying groups.

10.17. C* algebras
10.18. K-theory of an algeba
10.19. The norm closure of ¥°(X)
10.20. Problems

—00
iso

PROBLEM 10.7. There is a natural adjoint map on ¥
look at the unitary subgroup

(10.154) U o(R") = {A € G (R™); (Id+A) ™ =1d+A*} .

iso iso

(R™) so we could also

Show that the natural inclusion induces an homotopy equivalence, so there is a
natural identification

(10.155) Ko (X) = C2(X;U®)/ ~

c iso
where the equivalence relation is again homotopy.

PROBLEM 10.8. Remind yourself of the proof that G >°(R™) C ¥_>°(R") is

180 180

open. Since G >°(R™) is a group, it suffices to show that a neighbourhood of

0e€ v >R is a neighbourhood of the identity. Show that the set || Al|gr2) < 3,
given by the operator norm, fixes an open neighbourhood of 0 € ¥; >°(R™) (this is

the L? continuity estimate). The inverse of Id +A for A in this set is given by the
Neumann series and the identity (which follows from the Neumann series)

(10.156) (Id4+A)"' =1d+B=1d—-A+ A* - ABA
in which a prioiri B € B(L?) shows that B € W, _°°(R") by the ‘corner’ property

150

of smoothing operators (meaning ABA" € ¥_*°(R") if A, A" € ¥_°(R") and
B € B(L?).
9.11.2007.323

PROBLEM 10.9. Additivity of the map (10.

. 9.11.2007.323 .
PROBLEM 10.10. Details that ( U.ZIB% 1s"an isomorphism.

9.11.2007.318 _ )
PrOBLEM 10.11. Check that (10.44) 1s well-defined, meaning that if (Vi, Ws)

is replaced by an equivalent pair then the result is the same. Similarly check that
the operation is commutative and that it make K(X) into a group.

23.11,2007.379

PrOBLEM 10.12. Check that you do know how to prove (mway
is to use induction over N, since it is certainly true for N = 1, GL(1,C) = C*.
Proceeding by induction, note that an element a € GL(N,C) is fixed by its effect
on the standard basis, e;. Choose N — 1 elements ae; which form a basis together
with e;. The inductive hypothesis allows these elements to be deformed, keeping
their e; components fixed, to eg, k > 1. Now it is easy to see how to deform the
resulting basis back to the standard one.
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23.11,2007.381

PROBLEM 10.13. Prove (ﬁ(TBT)—H’lHF The result is very standard for N = 1.
So proceed by induction over N. Given a smooth curve in GL(N, C), by truncating
its Fourier series at high frequencies one gets, by the openness of GL(N,C), a
homotopic curve which is real-analytic, denote it a(f). Now there can only be a
finite number of points at which e; - a(f)e; = 0. Moreover, by deforming into
the complex near these points they can be avoided, since the zeros of an analytic
function are isolated. Thus after homotopy we can assume that g(6) = e;-a(f)e)l #
0. Composing with a loop in which e; is roatated in the complex by 1/¢(6), and
es in the opposite direction, one reduces to the case that e; - a(f)e)l = 0 and then
easily to the case a(f)e; = ej, then induction takes over (with the determinant
condition still holding). Thus it is enough to do the two-dimensional case, which is
pretty easy, namely e; rotated in one direction and ey by the inverse factor.
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CHAPTER 11

Hochschild homology

11.1. Formal Hochschild homology

The Hochschild homology is defined, formally, for any associative algebra. Thus
if A is the algebra then the space of formal k-chains, for k € Ny is the (k + 1)-fold
tensor product

(11.1) AP — A A® - @ A

The ‘formal’ here refers to the fact that for the ‘large’ topological algebras we shall
consider it is wise to replace this tensor product by an appropriate completion,
usually the ‘projective’ tensor product. At the formal level the differential defining
the cohomolgy is given in terms of the product, %, by

(11.2)
blag®@a; ®@---@ap) =b(ap®@a; @ @ay) + (=1)*(ap*xax) ® a1 @ - @ ap_1,
k—1
V(ap®@ar @ - @ay) = Z(—l)jao®'~'®aj—1 Raj41*0; aj12 Q- Q ag.
§=0

LEMMA 11.1. Both the partial map, b', and the full map, b, are differentials,
that is

(11.3) (V)2 =0 and b* = 0.

.. . . HHdifferential
ProOF. This is just a direct computation. From (hfﬁ_lt_f(—)ﬂﬁvs that

(11.4) (V) (ap®@ a1 @ ag @ -+ @ am)

m—175—2
= Z Z(_l)](_l)p("'®ap+1*ap®"‘®aj71®aj+1*aj®aj+2®"'®am)
Jj=2 p=0
m—1 m—2
_ ("'®aj+1*aj*aj_1®"')* Z("‘®aj+21*aj+1*aj*®"‘)
j=1 j=0
m—3 m—1
+ Z (—1)J(—1)p*1(a0®- Q0100 41%4; Q0 42Q- - - Qapy1xap®- - - ) = 0.
J=0 p=j+2

295
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Similarly, direct computation shows that
(b—)W(ag @ @ am) = (=1)"" (ay % ao* Gm @ - pm_1)

m—2
+ Z(—l)”m*l(ao*am®~-~®ai+1 *a; @)+ (ag* G * 1 Q-+ ),
=1
B(b—b)ag®  @am)=(—1)"(a1 xag* @m @+ am_1)
m—2
+ Z(—l)”m(ao*am@---@aiﬂ *a; ®---) and
i=1

(bfb’)Q(a0®~-~®am) =—(ap * Gm * A1 @ - +)
(11.5) (b=bW +b(b-b)=—(b-0V)>
0

The difference between these two differentials is fundamental, roughly speaking
b is ‘trivial’.

LEMMA 11.2. For any algebra with identity the differential b’ is acyclic, since
it satifies

(11.6) b's + sb' = Id where
(11.7) s(ap @ ®am) =Id®ag ® -+ @ .

ProOF. This follows from the observation that
m
(11.8) V(Id®ag @ @ am) =ag @+ D apm + » (~1)'Id@ --a;*a;_2®--).
i=1

O

DEFINITION 11.1. An associative algebra is said to be H-unital if its b’ complex
is acyclic.

Thus the preceeding lemma just says that every unital algebra is H-unital.
11.2. Hochschild homology of polynomial algebras

Consider the algebra C[z] of polynomials in n variables!, z € R" (or z € C™ it
makes little difference). This is not a finite dimensional algebra but it is filtered by
the finite dimensional subspaces, P,,[z], of polynomials of degree at most m;

Clz] = |J Pumlz], Pulz] C Pmya[a].

Furthermore, the Hochschild differential does not increase the total degree so it is
enough to consider the formal Hochschild homology.

The chain spaces, given by the tensor product, just consist of polynomials in
n(k + 1) variables

(C[x])®(k+1) = Clzo, x1, ..., zx], z; € R™.

1The method used here to compute the homology of a polynomial algebra is due to Sergiu
Moroianu; thanks Sergiu.
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Furthermore composition acts on the tensor product by

p(z0)q(z1) = p® ¢ — p(w0)q(x0)

which is just restriction to zg = x1. Thus the Hochschild differential can be written

b:Clzo,...,zr] — Clzg, ..., k1],
k—1
(bq)(éf(),l'l, N ,.’Ekfl) = Z(—l)ﬂp(x(h N vxjflvmjvxﬁijrlv N ,xk,l)
7=0
+ (=D)*q(z0, 71, ..., Tp_1,20)-

One of the fundamental results on Hochschild homology is

THEOREM 11.1. The Hochschild homology of the polynomail algebra in n vari-
ables is

(11.9) HH,,(C[z]) = C[z] ® A*(C™),
with the identification given by the map from the chain spaces
9 b . .
Clzg,...,zx] 2 ¢ — — . — dz?* A - NdzlF.
[ 0 k] q ISJZLSTL 81‘{1 axikp|m:xo:w1:m:zk 1 k

24.9
Note that the appearance of the original algebra C[z] on the left in ( .9% is
not surprising, since the differential commutes with multilplication by polynomails
in the first variable, zg

b(r(zo)q(wo, ..., zx)) = r(zo)(bq(zo, - - ., k).
Thus the Hochschild homology is certainly a module over C|x].

PRrROOF. Consider first the cases of small k. If £ = 0 then b is identically 0. If

k =1 then again
(bq)(w0) = q(x0,20) — q(xo, w0) =0
vanishes identically. Thus the homology in dimension 0 is indeed Cl[z].

Suppose that k£ > 1 and consider the subspace of C[xg, z1, ..., x| consisting of
the elements which are independent of x1. Then the first two terms in the definition
of b cancel and

k—1
(bq)(l'o, Tlyeoo ,l’kfl) = Z(—l)]p(l'o, ey SUjfl, (Ej, .’tj, 1’j+1, ey Ckal)
j=2
+ (=1)*q(zo, z1,...,2x_1,20), Du,q = 0.
It follows that bq is also independent of x1. Thus there is a well-defined subcomplex
on polynomails independend of 1 given by

Clzo, 2, . .., 2] 3 g — (bq) (20, T2, . .., Tp_1)
k—1 k—1
::j{:(—J)Jp(xo,xQ,xg,xg...,xk_l)4— (—1)
j=2 j=3
p(l’o, sy Lj—1, L5, Ljy Tty - - - axk—l) + (_l)kq(x07$25 cee axk—laxo)
The reordering of variables (xg,x2,3,...,25) — (22,23,...,2k, zo) for each k,

transforms b to the reduced Hochschild differential &’ acting in k variables. Thus b
is acyclic.
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Similarly consider the subspace of C[xg,x1, ..., x| consisting of the polynomi-
als which vanish at z1 = xg. Then the first term in the definition of b vanishes and
the action of the differential becomes

(11.10)  (bq)(wo,x1,...,2x—1) = P(T0, T1, 21, T2, ..., Tp—1)+
k-1
Z(_l)]p(x(h sy L1, L5, Ly Tjpdy - 7xk71)
j=2
+ (=D *q(zo, x1, ..., xh_1,x0), if b(z0,T0,T2,...) = 0.
It follows that bq also vanishes at 1 = xg.
By Taylor’s theorem any polynomial can be written uniquely as a sum

q(xo, 1,22, ..., 1) = ¢y (To, T1, T2, . .., x) + ¢ (x0, T2, . .., Tk)

of a polynomial which vanishes at 1 = g and a polynomial which is independent
of x1. From the discussion above, this splits the complex into a sum of two sub-
complexes, the second one of which is acyclic. Thus ﬁ&e. Hochschild homology is
the same as the homology of b, which is then given by (I[T.10), acting on the spaces

(11.11) {q € Clzg,x1,...,2x]; q(x0,21,...) = 0}.

This arg et can be extended iteratively. Thus, if £ > 2 then b maps the
subspace of ( ; [) of functions independent of z5 to functions independent of o
and on these subspaces acts as b’ in k — 2 variables; it is therefore acyclic. Similar it
acts on the complementary spaces given by the functions which vanish on zo = ;.
Repeating this argument shows that the Hochschild homology is the same as the
homology of b acting on the smaller subspaces
(1112) {q € Clzg, 21, .., 2k];q(-..,zj—1,25,...) =0, j=1,...,k},
' (bq)(zo, 1, ..., xp_1) = (—=1)*q(x0, 21, ..., Tp_1,20).
Note that one cannot proceed further directly, in the sense that one cannot reduce
to the subspace of functions vanishing on x, = xo as well, since this subspace is
not linearly independent of the previous ones?

k—1

T — Xy = Z(.’Ejl — {,Cj).

=0 24.94
It is precisely this ‘non-transversality’ of the remaining restriction map in (Errz)
which remains to be analysed.

Now, let us we make the following change of variable in each of these reduced

chain spaces setting

Yo = To, Y1 = T5 — Tj—1, fOI‘jZl,...,k}.

Then the differential can be written in terms of the pull-back operation
k—1
EP : Rnk — Rn(k+1)7 EP(y()?ylv v 7yk—1) = (yanh ey Yk—1, — Zyj)a
j=1

bg = (—1)"Epq,

2Hence Taylor’s theorem cannot be applied.
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The variable g = yg is a pure parameter, 59 Gan be dropped from the notation (and
restored at the end as the factor C[z] in (h‘rg% Also, as already noted, the degree
of a polynomial (in all variables) does not increase under any of these pull-back
operations, in fact they all preserve the total degree of homogeneity so it suffices to
consider the differential b acting on the spaces of homogeneous polynomials which
vanish at the origin in each factor

v =1a€C"yr, ..., ulsa(sy) = s™qy), a(yr,--- ¥j-1,0,y541,- .-, y) = 0}
b: Q' — Qiy, bg = (—1)"Epq.
To analyse this non-transversality further, let J; C Clyi,...,yx] be the ideal
generated by the n monomials yf, l=1,...,n. Thus, by Taylor’s theorem,

Ji - {q € C[yla"'vyk};q(ylay27'"7yj—1707yj7yk) = 0.

Similary set
k—1
JP = {qe(c[ylavyk]?q(ylvv_zy]) :0)
j=1

For any two ideals I and J, let I - J be the span of the products. Thus for these
particular ideals an element of the product is a sum of terms each of which has a
factor vanishing on the corresponding linear subspace. For each k there are k + 1
ideals and, by Taylor’s theorem, the intersection of any k of them is equal to the
span of the product of those k ideals. For the k coordinate ideals this is Taylor’s
theorem as used in the reduction above. The general case of any k of the ideals
can be reduced to this case by linear change of coordinates. The question then, is
structure of the intersection of all k41 ideals. The proof of the theorem is therefore

completed by the following result. O
LEMMA 11.3. The intersection Q' N Jp = Q™ - Jp for every m # k and
(11.13) QY nJp = AF(CM).
PrOOF. When m < k l‘%c;%geal Q7 vanishes, so the result is trivial.
Consider the case in ( ), when m = k. A homogeneous polynomial of

degree k in k variables (each in R™) which vanishes at the origin in each variable is
necessarily linear in each variable, i.e. is just a k-multilinear function. Given such
a multilinear function ¢(yi, ..., yx) the condition that bg = 0 is just that

(11.14) a(y1, - Ye-1,—Y1 — Y2 — - — Yp-1) = 0.

Using the linearity in the last variable the left side can be expanded as a sum of
k — 1 functions each quadratic in one variables y; and linear in the rest. Thus the
vanishing of the sum implies the vanishing of each, so

a1, Yk—1,Y;) =0V ji=1,... k-1

This is the statement that the multlinear function ¢ is antisymmetric between the
jth and kth variables for each j < k. Since these exchange maps generate the
permutaflog group, ¢ is necessarily totally antisymmetric. This proves the isomor-
phism (l [.13) since A*(C") is the space of complex-valued totally antisymmetric
k-linear forms.?

Thus it remains to consider the case m > k+ 1. Consider a general element ¢q €
QN Jp. To show that it is in Q" - Jp we manipulate it, working modulo Q7' NJp,

3Really on the dual but that does not matter at this stage.
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and use induction over k. Decompose g as a sum of terms ¢;, each homogeneous in
the first variable, y;, of degree [. Since ¢ vanishes at y; = 1) f}&% first term is ¢,
linear in y;. The condition bg = 0, i.e. ¢ € Jp, is again just (I1.I4). Expanding in
the last variable shows that the only term in bg which is linear in gy is

QW1 Yh—1,—Y2 = — Yk—1)-

Thus the coefficient of y; ;, the ith component of y; in ¢, is an element of Q;cn:ll
which is in the ideal Jp(R¥~1), i.e. for k — 1 variables. This ideal is generated by
the components of ys + - - - 4+ yx. So we can proceed by induction and suppose that
the result is true for less than k variables for all degrees of homogeneity. Writing
Yo+ -y = (y1 + Y2+ - + yx) — y1 It follows that, modulo Q7 - Jp, ¢1 can
be replaced by a term of one higher homogeneity in y;. Thus we can assume that
q; = 0 for ¢ < 2. The same argument now applies to go; expanded as a polynomial
in y; the coeflicients must be elements of QZ:Q N Jp. Thus, unless m —2 =k — 1,
i.e. m = k + 1, they are, by the inductive hypothesis, in QZ“:lz - Jp(R*=1) and
hence, modulo Q" - Jp, g2 can be absorbed in g3. This argument can be continued
to arrange that ¢; =0 for i < m — k + 1. In fact ¢; =0 for ¢ > m — k + 1 by the
assumption that ¢ € Q7.

Thus we are reduced to the assumption that ¢ = ¢,—r+1 € Q' NJp is homoge-
neous of degree m — k41 in the first variable. It follows that it is multilinear in the
last k — 1 variables. The vanishing of bg shows that it is indeed totally antisymmet-
ric in these last k — 1 variables. Now for each non-zero monomial consider the map
J:{1,2,...,n} — Ny such that J(¢) is the number of times a variable y; ; occurs
for some 1 <[ < k. The decomposition into the sum of terms for each fixed .J is
preserved by b. It follows that we can assume that ¢ has only terms corresponding
to a fixed map J. If J(i) > 1 for any 4 then a factor y; ; must be present in g, since
it is antisymmetric in the other & — 1 variables. In this case it can be written y; ;¢’
where bg’ = 0. Since ¢’ is necessarily in the product of the indeals Jy - ... Jg - Jp it
follows that ¢’ € @™ - Jp. Thus we may assume that J(i) = 0 or 1 for all i. Since
the extra variables now play no role we may assume that n = m is the degree of
homogeneity and each index ¢ occurs exactly once.

For convenience let us rotate the last k£ — 1 variables so the last is moved to the
first position. Polarizing ¢ in the first variable, it can be represented uniquely as
an n-multilinear function on R™ which is symmetric in the first n — k + 1 variables,
totally antisymmetric in the last kK — 1 and has no monomial with repeated index.
Let Myp_1(n) be the set of such multilinear funtions. The vanishing of bg now
corresponds to the vanishing of the symmetrization of ¢ in the first n—k+2 variables.
By the antisymmetry in the second group of variables this gives a complex

bn— 1 b2

My(n) —2 My_1(n) "= ... b bo

M1 (n) Mo 0.

The remaining step is to show that this is exact.

Observe that dim(Mj,(n)) = (}) since there is a basis of Mj,(n) with elements
labelled by the subsets I C {1,...,n} with k elements. Indeed let w be a non-
trivial k-multilinear function of k variables and let w; be this function on RF ¢ R®
identified as the set of variables indexed by I. Then if a € My(n — k) is a basis of
this 1-dimensional space and a; is this function on the complementary R®* the
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tensor products ajwy give a basis. Thus there is an isomorphism

My >q= Z crar @ wy — Z cr @ wr € AF(R™).
IC{1,....,n}, 1=k IC{1,..,n},|I|=k

Transfered to the exterior algebra by this isomorphism the differential b is
just contraction with the vector e; + e + -+ + e, (in the first slot). A linear
transformation reducing this vector to e; shows immediately that this (Koszul)
complex is exact, with the null space of by, on A¥(R") being spanned by those w;
with 1 € I and the range of by11 spanned by those with 1 ¢ I. The exactness of
this complex completes the proof of the lemma. (Il

11.3. Hochschild homology of C*(X)

The first example of Hochschild homology that we shall examine is for the
commutative algebra C*°(X) where X is any C* manifold (compact or not). As
noted above we need to replace the tensor product by some completion. In the
present case observe that for any two manifolds X and Y

(11.15) C®(X)®C®(Y) C C®(X x Y)

is dense in the C* topology. Thus we simply declare the space of k-chains for
Hochschild homology to be C>°(X**1), which can be viewed as a natural comple-
tion of C*°(X)®*+1). Notice that the product of two functions can be written in
terms of the tensor product as

(11.16) a-b=D*(a®b), a,bcC®(X), D: X > z+— (2,2) € X2

The variables in X**! will generally be denoted zg, z1,...,2;. Consider the
‘diagonal’” submanifolds
(1117) Di,j = {(2’07 21y - ,Zk); Z; = Zj}, 27] = O, e,y 1 7& j

We shall use the same notation for the natural embedding of X* as each of these
submanifolds, at least for j =i+ 1 and i =0, j = m,

Di,i—i—l(an .. .,Zm_l) = (Zo, .. ~7Zi,ziazi+17~ . .,Zm_l) (S Di,i-&-l, Z = 07. oM — ].
Dm’O(ZO,...,mel) = (ZO,...,mel,ZO).

Then the action of b’ and b on the tensor products, and hence on all chains, can be
written

m—1
(11.18) Yo=Y (-1)'Dj, 0, ba=ba+ (~1)"D}, ya.

i=0

40ne way to justify this is to use results on smoothing operators. For finite dimensional
linear spaces V' and W the tensor product can be realized as

V®W =hom(W’ V)

the space of linear maps from the dual of W to V. Identifying the topological dual of C*(X)
with Co *°(X; ), the space of distributions of compact support, with the weak topology, we can
identify the projective tensor product C*(X)®C>(X) as the space of continuous linear maps from
Cc *°(X;9) to C*®(X). These are precisely the smoothing operators, corresponding to kernels in
C>®(X x X).
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THEOREM 11.2. The differential ' is acyclic and the homology® of the complex

(11.19) Lt e (xRrYy b oo xRy s

is naturally isomorphic to C*°(X; A*).
Before proceeding to the proof proper we note two simple lemmas.

LEMMA 11.4. SFor any j = 0,...,m — 1, each function a € C®(X**1) which
vanishes on D; ;11 for each i < j can be written uniquely in the form
a:o/—}—o/’, 0/, o e Coo(XkJrl)
where o vanishes on D, ;11 for all i < j+1 and &' is independent of zj41.
PROOF. Set o/ =75, ,(D ;) where m; : X¥+1 — X* is projection off the
jth factor. Thus, essentially by definition, o’ is independent of z;y;. Moreover,
Tit1Dj 41 =1d so D} ;10" = D}, a and hence D}, a” = 0. The decomposi-
tion is clearly unique, and for i < 7,
(11.20) Djjr10omjp1 0 Diiy1 = Diiv10 Fij

for a smooth map Fj ;, so o vanishes on D; ;11 if « vanishes there. O

LEMMA 11.5. For any finite dimensional vector space, V, the k-fold exterior
power of the dual, A*V*, can be naturally identified with the space of functions

(11.21)
{uec®(VF)u(sv) =sfv, s >0, u | (Vix{0}xVF ") =0 fori=0,... k-1

andu | G=0, G:{(Ul,...,vk)EVk;’Ul—‘r"'-‘r’Uk:O}}.

PROOF. The homogeneity of the smooth function, u, on V* implies that it is a
homogeneous polynomial of degree k. The fact that it vanishes at 0 in each variable
then implies that it is multlinear, i.e. is linear in each variable. The vanishing on
G implies that for any j and any v; € V, i # j,

(11.22) Zu(vl,...,vj,hvi,vjﬂ,...,vk) =0.

i#]
Since each of these terms is quadratic (and homogeneous) in the corresponding
variable v;, they must each vanish identically. Thus, u vanishes on v; = v; for each
i # j; it is therefore totally antisymmetric as a multlinear form, i.e. is an element
of A*V*. The converse is immediate, so the lemma is proved. O

HH. ciX
Proog, pr THEOREM [TT.2." The H-unitality” of C>*(X) follows from the proof
of Lemma hl_(ﬂ which carries over verbatim to the larger chain spaces.
By definition the Hochschild homology in degree k is the quotient

(1123) HHk(COO(X)) — {u c COO(X’CJrl); bu = 0}/bcoo(Xk+2)

The first stage in identifying this quotient is to apply Lemma [I[T.4 repeatedly. Let
us carry through the first step separately, and then do the general case.

5This homology is properly referred to as the continuous Hochschild homology of the topo-
logical algebra C*°(X).
6As pointed out to me by Maciej Zworski, this is a form of Hadamard’s lemma.

7Meaning here the continuous H-unitality, that is the acyclicity of ¥’ on the chain spaces
Coo(XkHT,
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HL.ciX
For j = 0, consider the decomposition of u € C>(X**1) given by Lemma .ZIc,l
thus
(11.24)

u = ug + u(1), U € WikCOO(Xk), Uy € Jl(k) = {u € C°°(Xk+1);u I Do1 = 0}.

Now each of these subspaces of C>°(X**1) is mapped into the corresponding sub-
space of C>(XF¥) by b; i.e. they define subcomplexes. Indeed,

u € miC®(X*) = Dg yu = Dy 5u so

k—1
u=mv=bu=mBv, B'v=— Z(—l)iD;iHu + (—1)]“D};170v.
i=1
For the other term
k—1
i)k * k—
(11.25) buay = Y (—1)'Df ;s quay + (—1)FDi guy = bugy € J{F7Y.
i=1

24.3
Thus, bu = 0 is equivalent to bug = 0 and bug;y = 0. From (I 1.3;, defining an
isomorphism by

(11.26)  Eg,_1) : C(XF) — C=(XF), Eg_ryv(z1, ..., 26) = v(22, ..., 2k, 21),

it follows that

-1
(11.27) B=-E;' W Eu
24.37
is conjugate to b'. Thus B is acyclic so in terms of (T1.24)
(11.28) bu=0= u—u@) =bw, w=mv.

As already noted this is the I&rs;c&tep in an inductive procedure, the induction
being over 1 < j < k in Lemma IT.4. Thus we show inductively that

(11.29) bu= 0= u—u = bw,
ugy € I = {ue (X );u | Diyyr =0, 0<i <j—1}.
24.39
For j = 1 this is (M) Proceedi irclg}pctively we may suppose that u = u;) and
take the decomposition of Lemma ; 4, so
(11.30) U(j) = uw 4+ Ui+1), UG+1) € J;_]T_)l, u = 7T;+1U € J](k).

Then, as before, bu(;) = 0 implies that bu’ = 0. Furthermore, acting on the space
7r;‘+1C°°(X’“) N J(kj), b is conjugate to b’ acting in k + 1 — j variables. Thus, it is
again acyclic, so u(;) and u(; 1) are homologous as Hochschild k-cycles.

The end point of this inductive procedure is that each k-cycle is homologous
to an element of

(11.31) J® = P = Ly e (X ) Dfyu=0, i <i<k—1}.

Acting on this space bu = (—1)’“D;70u, so we have shown that
(11.32)
HH,(C® (X)) = M® /(M npc=(x*)), M = {ue J®; D} ju=0}.
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Now consider the subspace
(11.33) M® = {u € c>=(X*);
u= > (f(z5) = f(zi01) upy, up; € MP fec>(X).}.
finite, 0<j<k—1

If u=(f(zj) = f(zj41))v, with v € M*) get

(1134) ’LU(Z(),Zl,...7Zj,Zj+1,Zj+2,...,Zk+1)
= (*1)j(f(zj) = f(Zj+1))v(20, - -+, 255 Zj 125 25435 -+ + 5 2k)-
Then, using the assumed vanishing of v, bw = u.® Thus all the elements of M®*)
are exact. ~
Let us next compute the quotient M (¥) /M (k)| Linearizing in each factor of X
around the submanifold zp = z; = - -+ = 2, in V¥ defines a map
(11.35) p:M® sy —u eC(X;TX @@ T X).

The map is defined by taking the term of homogeneity k in a normal expansion
around the submanifold. The range space is therefore precisely the space of sections
of the k-fold tensor product bundle which v &E.syson the subbundle defined in each
fibre by v1 + -+ - + vy = 0. Thus, by Lemma [IT.5, i actually defines a sequence

(11.36) 0— M®*) — M*) £y coo(X AP X) — 0.
24.48
LEMMA 11.6. For any k, (I1.36) is a short exact sequence.

PROOF. So far I have a rather nasty proof by induction of this result, there
should be a reasonably elementary argument. Any offers? (I

From this the desired identification, induced by u,
(11.37) HH,(C™ (X)) = C*°(X; A*X)

follows, once is is shown that no element u € M®*) with u(u) # 0 can be exact.
This follows by a similar argument. Namely if v € MI_(I]E) dsyexact then write u = bv,
v € C°(X*) and apply the decomposition of Lemma hmo get v = vg +v(1). Since
u = 0 on D it follows that bvg = 0 and hence u = bvyy. Proceeding inductively
we conculde that u = bv with v € M* D, Now, u(bv) = 0 by inspection. O

11.4. Commutative formal symbol algebra

As a first step towards the computation of the Hochschild homology of the
algebra A = UZ(X)/¥~>°(X) we consider the formal algebra of symbols with
commutative product. Thus,

(11.38) A={(a;)2_.:a; € C®(S*X; PY)), a; =0 for j >> 0}.

j:—oo’

Here P®*) is the line bundle over S*X with sections consisting of the homogeneous
functions of degree k on T* X \ 0. The multiplication is as functions on 7*X \ 0, so

(aj) - (bj) = (¢j), ¢j = Z a;j_1by

k=—oc0

8Notice that V(20,5 2j, 242, -, 2k4+1) vanishes on z;41 = z; for i < jand i > j+ 1 and
also on zg + z1 + - -+ + zx41 = 0 (since it is independent of z; 1 and bv = 0.
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using the fact that P @ P*) = pPU+k) We take the completion of the tensor
product to be

(11.39) B® ={uec>(T*X\0)*" M )iu= Y up,
finite

uy € C°(S*X; P @ U @ ... @ PUW) || = k).

That is, an element of B*) is a finite sum of functions on the (k + 1)-fold product
of T*X \ 0 which are homogeneous of degree I; on the jth factor, with the sum
of the homogeneities being k. Then the Hochschild homology is the cohomology of
the subcomplex of the complex for C*>(T*X)

(11.40) AN () AN~ (S RN,

24.54
THEOREM 11.3. The cohomology of the complex (M) for the commutative
product on A is

(11.41) HHy(A) = {a € C=(T*X \ 0; A*(T*X); o is homogeneous of degree k}.
11.5. Hochschild chains

The completion of the tensor product that we take to deﬁiglc%c }égnlstochschild
homology of the ‘full symbol algebra’ is the same space as in (I I.SS; but with the
non-commutative product derived from the quantization map for some Riemann
metric on X. Since the product is given as a formal sum of bilinear differential
operators it can be take to act on an pair of factors.

(%) (*) (*)
(11.42) L ES g B gy B0

The next, and major, task of this chapter is to describe the cohomology of this
complex.

THEOREM 11.4. The Hochschild homolgy of the algebra, \I/%hg(X)/\Il;}fg"(X),
of formal symbols of pseudod; resntial operators of integral order, identified as the
cohomology of the complex (I1.42), is naturally identified with two copies of the

cohomology of S*X?
(11.43) HHy(A;0) = H*F(S*X) @ H*" 1% (5" X).

11.6. Semi-classical limit and spectral sequence

The ‘classical limit’ in physics, especially quantuum mechanics, is the limit in
which physical variables become commutative, i.e. the non-commutative coupling
between position and momentum variables vanishes in the limit. Formally this
typically involves the replacement of Planck’s constant by a parameter h — 0. A
phenomenon is ‘semi-classical’ if it can be understood at least in Taylor series in
this parameter. In this sense t%gyﬁ%gkg?g@&czlllépfnology of the full symbol algebra
is semi-classical and (following [4]) this is how we shall compute it.

The parameter h is introduced directly as an isomorphism of the space A

Lp:A— A, Ly(a;)i__o = (ha;)i__o, h>0.

j=—00 j=—o00"

identification in ( see (I77).

9n particulal%lt.ls% Hoch;ﬁ?&]&&lomology vanishes for £ > 2dim X. For a precise form of the
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Clearly Ly o Ly, = Lpps. For h # 1, Ly, is not an algebra morphism, so induces a
1-parameter family of products

(11.44) axp B= (L") (Lya* Lyp).

In terms of the differential operators, associated to quantization by a particular
choice of Riemann metric on X this product can be written
* *
(11.45) axn B=1(¢;)j= oor ;= > h*Pulaj_i_r.b).
k=0l=—x

It is important to note here that the Py, as differential operators on functions on
T*X, do only depend on k, which is the difference of homogeneity between the
product a;_;4rb;, which has degree j + &k and c;, which has degree j.

Since A with product x, is a 1-parameter family of algebras, i.e. a deformation
of the algebra A with product * = %1, the Hochschild homology is ‘constant’ in h.
More precisely the map Ly, induces a canonical isomorphism

L} : HHy (A; %) = HHy (A; *).

The dependence of the product on h is smooth, so it is reasonable to expect the
cycles to have smooth representatives as h — 0. To investigate the consider Taylor
series in h and define

Fop={ac B®): 3 a(h) € =([0,1)4; B®) with a(0) = a and
bpa € hPC* ([0, 1)h;Bk_1)},
Gpr = {a € BM; 3 8(h) € ¢*([0,1)4; BTV with
brB(h) € hP~1C>([0,1)5; B® and (t77b,8)(0) = a}.

Here by, is the differential defined by the product x,.

Notice that the F}, ;, decrease with increasing p, since the condition becomes
stronger, while G, increases with p, the condition becoming weaker.'Y We define
the ‘spectral sequence’ corresponding to this filtration by

Epk=Fp1/Gpi

(11.46)

(11.47)

These can also be defined successively, in the sense that if
k= {ue Byoypsu=[u], v € F,1}
ok ={e € Bpipsu=[u],Ju' € Gy}

then Ep,k} = FZ/),k‘/G;),k?'

The basic idea'! of a spectral sequence is that each E, = @, E, s, has defined
on it a differential such that the next spaces, forming F,;,, are the cohomology
space for the complex. This is easily seen from the definitions of F}, ;. as follows.
If « € F, let 5(t) be a 1-parameter family of chains as in the defintion. Then
consider

(11.48) ~(tPbyB)(0) € BFY,

01f o € Gp, and B(h) is the 1-parameter family of chains whose existence is required for
the definition then B’(h) = hB(h) satisfies the same condition with p increased to show that
o € Gp+1’k.

Hot Leray I suppose, but I am not really sure.
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This depends on the choice of 3, but only up to a term in Gpr—1. Indeed,
let 5’(t) is another choice of extension of « %iggying the condition that b,[" €
hPC>([0,1); B*~1) and let 4’ be defined by (7'“7[8) with 8 replaced by 3’. Then
5(t) = t71(B(h) — B'(h)) satisfies the requirements in the definition of G 1, i.e.
the difference v/ — v € G, k—1. Similarly, if & € G, then v € Gnk.u The map so
defined is a differential

b(p) : Epyk — Epykfl, b%p) =0.

This follows from the fact that if 1 = by« then, by definition, u = (t77b,3)(0),
where o = (3(0). Taking A(t) = t PbrB(t) as the extension of u it follows that
bpA =0, 50 by = 0.

Now, it follows directly from the definition that Fyr = Eor = B®*) since
Go,x = {0}. Furthermore, the differential b(g) induced on Fj is just the Hochschild
differential for the limiti .}ggoduct, *0, which is the commutative product on the
algebra. Thus, Theorem [[T.3 just states that

*

Eyp= @ {uec>(T*X \0; A¥);u is homogeneous of degree k}.

k= 24.56
To complete the proof of Theorem MTT.4 it therefore suffices to show that
(11.49) By = H*H(S*X) @ H>17F(5* X)),
(1150) Ech = Eg,k, v p > 2, and
(11.51) HH (05, (X) /-2 (X)) = plggo E, k.

The second and third of these results are usually described, respectively, as the
‘degeneration’ of the spectral sequence (in this case at the ‘Es term’) and the
‘convergence’ of the spectral sequence to the desired cohomology space.

11.7. The E5 term

As already noted, the E; i term in the spectral sequence consists of the formal
sums of k-forms, on T* X \ 0, which are homogeneous under the R action. The Es
term is the cohomology of the complex formed by these spaces with the differential
b(1), which we proceed to compute. For simplicity of notation, consider the formal
tensor prodoct rather than its completion. As already noted, for any o € B*) the
function by« is smooth in A and from the definition of b,

k—1
d .

(11.52) %bha(o) = Z(—l)lao ® - ®ai—1 ® P1(ai+1,0) ® Qip2 @ - @ ay

i=0

+ (=1D*Pi(ag,ar) @ a1 @ - @ ap_1, a =ag @+ ® ay,.

The general case is only more difficult to write, not different.!> This ce %ﬂg&y
determines by« if «v is a superposition of such terms with bpaw = 0. Although (ITT.52)
is explicit, it is not given directly in terms of the representation of a, assumed to

satisfy bpaw = 0 as a form on T*X \ 0.

12Indeed, o is then the value at h = 0 of B(t) = t~PT1b, ¢(t) which is by hypothesis smooth;
clearly b, 8 = 0.

13r¢ you feel it necessary to do so, resort to an argument by continuity towards the end of
this discussion.
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To get such an explicit formula we shall use the symplectic analogue of the
Hodge isomorphism. Recall that in any local coordinates on X, z;, i = 1,...,n,
induce local coordinates x;, &; in the part of T*X lying above the coordinate patch.
In these canonical coordinates the symplectic form (which determines the Poisson
bracket) is given by

n
(11.53) w=Y_d& Aduy.
k=1

This 2-form is non-degenerate, i.e. the n-fold wedge product w™ # 0. In fact this
volume form fixes an orientation on 7*X. The symplectic form can be viewed as
a non-degenerate antisymmetric bilinear form on T, (7*X) at each point ¢ € T*X,
and hence by duality as a bilineear form on 7 (7 X). We denote this form in the
same way as the Poisson bracket, since with the convention

{a7 b}(Q) = {da> db}q
they are indeed the same. As a non-degenerate bilinear form on T*Y, Y = T*X
this also induces a bilinear form on the tensor algebra, by setting

{e1@-@er, Lo @ fi,}=][{e 15}
i

These bilinear forms are all antisymmetric and non-degenerate and restrict to be
non-degnerate on the antisymmetric part, A*Y, of the tensor algebra. Thus each of
the form bundles has a bilinear form defined on it, so there is a natural isomorhism

(11.54) Wy : ARBY — AZFY, a AWLB = {a, Blw", o, B € C™(Y,AFY),
for each k.

) ‘ . [24.73 ) _
LEMMA 11.7. In canonical coordinates, as in (I1.53), consider the basis of k-
forms given by all increasing subsequences of length k,

I:{1,2,... k} — {1,2,...,2n},

and setting

(11.55)  ar =dzpay Adzga) A+ Adzp),

(Zla 22yt 7Z2n) = ($1;€17$Qa£27 e 7$n7€’n)'
In terms of this ordering of the coordinates
(11.56) We(ar) = (1) Doy gy

where W (I) is obtained from I by considering each pair (2p—1,2p) forp=1,...,n,
erasing it if it occurs in the image of I, inserting it into I if neither 2p — 1 nor 2p
occurs in the range of I and if exactly one of 2p — 1 and 2p occurs then leaving it
unchanged; N(I) is the number of times 2p appears in the range of I without 2p—1.

PRrROOF. The Poisson bracket pairing gives, on 1-forms,
—{dw;j, d§;} = 1 = {d¢;, d;}
with all other pairings zero. Extending this to k-forms gives
{ar,a;} =0 unless (I(4),J(5)) = (2p —1,2p) or (2p,2p — 1) V j and
{ar,a;} = (D), if (I(§), J(§)) = (2p — 1,2p) for N values of j
and (I(y),J(j)) = (2p — 1,2p) for N — k values of j.
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24.72  124.75
From this, and (IT.54), (IT.56) follows. O

From this proof if also follows that N (W (I)) = N(I), so W2 = Id. We shall
let

(11.57) 0w =W, 0do W,
denote the differential operator obtained from d by conjugation,
0w 1 C¥(T*X \ 0;A%) — C>°(T* X \ 0, AF71).
By construction §2 = 0. The exterior algebra of a symplectic manifold with this
differential is called the Koszul complex.'* All the oy are closed so
da
bw(acy) = W ( gdzj) A (*UN(I)OZW(I)
- J
(11.58) ou !
= Z —(=1)NDW,,(dz; A aw(rn),
7 3zj

Observe that!'®
W, (dz2p—1 A O4W(I)) = 00/0z20p, O
W (dz2p A aw (1)) = /020,101,
where, ¢, denotes contraction with the vector field v. We therefore deduce the

following formula for the action of the Koszul differential
2n

(11.59) do(aar) = Z(Hzia)ba/az,;aL
i=1
LEMMA 11.8. With E; identified with the formal sums of homogeneous forms
on T*X \ 0, the induced differential is

1
(11.60) by = ~ 0

PrROOF. We know that the bili (;langifferential operator 2¢P; is the Poisson
bracket of functions on 7™ X. Thus (%m) can be written

k—1
(IL.61)  2ibra = Z(_l)iao ® - ®ai—1 ©{ai41,0i} ® aip2 ® -+ @ ag
i=0
+ (_1)k{a07ak}®a1 & .- ®ak,1, a = q (SRR ®ak~
The form to which this maps under the identification of E5 is just

k—1
(11.62) 211)10[ = Z(—l)iao A dai_l VARERIVAN d{ai+1, ai} A dai+2 N ag
=0
+ (=1)*{ag, ar} Aday A - Adag_y

14Up to various sign conventions of course!

15Check this case by case, as the range of I meets the pair {2p — 1,2p} in {2p — 1,2p},
{2p — 1}, {2p} or 0. Both sides of the first equation are zero in the second and fourth case as are
both sides of the second equation in the third and fourth cases. In the remaining four individual
cases it is a matter of checking signs.
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Consider the basis elements aj for k-forms. These arise as the images of the
corresponding functions in local coordinates on X**1

ar(z0,21, -+, 2k) = Z(—l)sgno(z1,al(1) — 20,01(1))
g
X 22,61(1) = #1,01(1)) - - - (21,01(m) = 20,01(m—1))-

Since these functions are defined in local coordinates they are not globally
defined on (T X' \0)**!. Nevertheless they can be localized away from zp = - - - = 2,,
and then, with a coefficient (a;(20))j-_, a; € C®(T*X \ 0) homogeneous of
degree j with support in the coordinate patch, unambiguously define elements of
E; which we can simply denote as a(zog)a; € Fp. These i(ir_nlgnts, superimposed
over a coordinate cover, span ;. Consider b(;)& given by (IIT.62). In the sum, the
terms with P; contracting between indices other than 0,1 or m,0 must give zero
because the Poisson bracket is constant in the ‘middle’ variable. Futhermore, by
the antisymmetry of &, the two remaining terms are equal so

’ib(1) (CL&]) = Z (Hz“(l)a)(—1)Sgn(o)dzg[(2) JANEERIVA dZU[(k)

oE€Pg
= Z(Hzia)ba/@ia[.

3

24.81
Since this is just (IT.59) the lemma follows. O

With this lemma we have identified the differential on the F; term in the spec-
t 21 Sequence with the exterior differential operator. To complete the identification
(TT-49) we need to compute the corresponding deRham groups.

PROPOSITION 11.1. The cohomology of the complex

d - 0 * d - [e’e] * d
AN Z Crom() (T* X\ 0;AF) = Z Crom) (T X\ 0; ARy S5
Jj=—o0 j=—00

in dimension k is naturally isomorphic to H*(S*X) @ H*1(S*X).

PROOF. Choose a metric on X and let R = |£| denote the corresponding length
function on T*X \ 0. Thus, identifying the quotient S*X = (T*X \ 0)/R* with
{R = 1} gives an isomorphism 7*X \ 0 = S*X x (0,00). Under this map the
smooth forms on 7% X \ 0 which are homogeneous of degree j are identified as sums

Cﬁgmu) (T*X \ O,Ak) = Q;
(11.63) YN, n . dR / 0o [ q* k 1" 0o [ q* k—1
= R (afj + o /\f)’ o € CP(S*X;A%), of € C=(S*X; A,

The action of the exterior derivative is then easily computed

daj = B;, B = R (B} + B; =" A‘%R),
B =daj, B =da + j(—1)""al.
Thus a k-form (a;)7__, is closed precisely if it satisfies
(11.64) joy = (=1)*da), do/y = 0V j.

It is exact if there exists a (k — 1)-form (v;)5__, such that

(11.65) o = dvj, off =dvf Jrj(fl)k’y;.
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Since the differential preserves homogeneity it is only necessary t ﬁngiyze these
equations for each j t%ral j. For j # 0, the second equation in (T1.64) follows
from the first and ( 5265) then holds with v} = %(—1)’“0[;’ and 7/ = 0. Thus the

gll%qlology lgs 8%nly in the subcomplex of homogeneous forms of degree 0. Then
(T1:61) and (165

) and ( ) become
dogy =0, dag = 0 and af = dv), af = dvy)
respectively. This gives exactly the direct sum of H*(S*X) and H*~1(S*X) as the
cohomology in degree k. The resulting isomorphism is independent of the choice of
the radial function R, since another choice repla o8 8@ by Ra, where a is a smooth
positive function on S*X. In the decomposition (I [.63), for j = 0, ) is unchanged
whereas «f, is replaced by o, + o) A dloga. Since the extra term is exact whenever
oy is closed it has no effect on the identification of the cohomology. ]

24.82 24.67 24.63
Combining Proposition TT.T and Lemma TT.8 completes the proof of (IT.49).
We make the identification a little more precise by locating the terms in FEjs.

PROPOSITION 11.2. Under the identification of E1 with the sums of homoge-
neous forms on T*X \ 0, Es, identified as the cohomology of ., has a basis of
homogeneous forms with the homogeneity degree j and the form degree k confined
to

(11.66) k—j=dmX, —dimX <j <dimX, dimX > 2.

PrOOF. Provided dim X > 2, the cohomology of S*X is isomorphic to two
copies of the cohomology of X, one in the same degree and one shifted by dim X —
1.6 The classes in the first copy can be taken to be the lifts of deRham classes from
X, while the second is spanned by the wedge of these same classes with the Todd
class of S*X. This latter, n — 1, class restricts to each fibre to be non-vanishing.
Thus in local representations the first forms involve only the base variable and
in the second each terms has the maximu%%gmber, n — 1, of fibre forms. The
cohomology of the complex in Proposition [TT.T therefore consists of four copies of
H*(X) consisting of these forms and the same forms wedged with dR/R.

With this decomoposition of the cohomology consider the effect on it of the map
W,,. In each case the image forms are again homogeneous. A deRham class on X in
degree [ therefore has four images in E5. One is a form of degree k1 = 2n — [ which
is homogeneous of degree j; = n —I. The second is a form of degree ks =2n—1—1
which is homogeneous of degree jo = n — [ — 1. The third image is of form degree

ks = n—1[1+1 and homogeneous of degree j3 = —+ 1 and the final image is of form
j[ggrsese ky = n — [ and is homogeneous of degree j; = —I. This gives the relations
(TT.66). O

11.8. Degeneration and convergence

Now that the E5 term in the spectral sequence has been explicitly computed,
consider the induced differential, b5y on it. Any homogeneous form representing a
class in F5 can be represented by a Hochshild chain « of the same homogeneity.
Thus an element of E; in degree k corresponds to a function on C°((T*X)\)*+!)
which is separately homogeneous in each variable and of total homogeneity k — n.
Furthermore it has an extension 3(t) as a function of the parameter h, of the same

16T hat is, just as though S*X =S"~1 x X, where n = dim X.
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homogeneity, such that b;3(t) = t*y(t). Then by = [y(0)], the class of ¥(0) in Es.
Noting that the differential operator, P;, which is the jth term in the Taylor series
of the product *; reduces homogeneity by j and that b, depends multilinearly on
*p, it follows tha 7@)_ ggust decrease homogeneity by 7. Thus if the class [y(0)] must
vanish in Fy by (I1.66). We have therefore shown that by =0, so B3 = E3. The
same argument applies to the higher differentials, degi%igg the E, = FE5 for r > 2,
proving the ‘degeneration’ of the spectral seque (i%é ).

The ‘convergence’ of the spectral sequence, (; .51), follows from the same anal-
ysis of homogneities. Thus, we shall define a map from FE5 to the Hochschild ho-
mology and show that it is an isomorphism.

11.9. Explicit cohomology maps
11.10. Hochschild holomology of ¥~*°(X)
11.11. Hochschild holomology of ¥%(X)

11.12. Morita equivalence



CHAPTER 12

The index theorem and formula

Using the earlier results on K-theory and cohomology the families index theo-
rem of Atiyah and Singer is proved using a variant of their ‘embedding’ proof. The
index formula in cohomology (including of course the formula for the numerical
index) is then derived from this.

12.1. Outline

The index theore ggoétiyah and Singer is proved here in K-theory, using the
results from Chapter i%l and then the cohomological version is derived from this.
Here are the main steps carried out below:-

(1) Fibrations of manifolds, M — B, are discussed and shown to be embed-
dable in a trivial fibration following Whitney’s embedding theorem.

(2) The ‘semiclassical index’ is defined using semiclassical smoothing oper-
ators, first for odd K-theory and then for even K-theory; it there is an
innovation here, this is it. Both exhibit ‘excision’.

(3) The odd and even semiclassical index maps are shown to be related by
suspension, using a calculus combining semiclassical smoothing operators
and standard pseudodifferential operators.

(4) The odd (and hence the even) semiclassical index is shown to be natural
for iterated fibrations.

(5) The group of homotopy classes of sections of the bundle G=>°(M/B; E)
is shown to reduce to K.(B) using smooth families of projections approx-
imating the identity.

(6) The notion of an elliptic family of pseudodifferential operators on the fibres
of a fibration is introduced and the analytic index Ind, : K.(T*(M/B)) «—
K. (B) is defined.

(7) The analytic and semiclassical index maps are shown to be equal by defin-
ing a combined analytic-semiclassical index which extends both.

(8) The topological index map is defined using embeddings and the Thom
isomorphism and is shown to be equal to the analytic and semiclassical
index maps.

Subsequently the special case of Dirac operators is treated and the formula for
the Chern character of the index bundle is deduced.
Maybe other things will go in here, n forms, determinant bundle etc.

12.2. Fibrations

Instead of just considering families of pseudodifferential operators on a manifold
but depending smoothly on parameters in some other manifold we allow ‘twisting
by the diffeomorphism group’ and consider the more general setting of a family of
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pseudodifferential operators on the fibres of a fibration, so the parameters are the
variables in the base of the fibration and the operators act on the fibres, which are
diffeomorphic to a fixed manifold. This indeed is the setting for the ‘families index
theorem’ of Atiyah and Singer.

So, first we need a preliminary discussion of fibrations. A map between two
manifolds

(12.1) ¢: M — B

is a fibration, with typical fibre a manifold Z, if it is smooth, surjective and has the
‘local product’ property:-
(12.2)

Each b € B has an open neighbourhood U C B

for which there exists a diffeomorphism Fy giving a commutative diagramme

—>Z><U

\/

Here of course, my is projection onto the second factor. In particular this means
that each fibre ¢~1(b) = Z, is diffeomorphic to Z, and in such a way that the
diffeomorphism can be chosen locally to be smooth in b € B. However there is
no chosen diffeomorphism and of course in general the diffeomorphism cannot be
chosen globally smoothly in b — other wise the fibration is trivial in the sense that
there exists a diffeomorphism giving a commutative diagramme

(12.3) M— .~ 7«B

I use the notation

(12.4) Z——M

k

to denote a fibration, the headless arrow meaning that there is no chosen diffeo-
morphism onto the fibres; often people put an arrow there.
One standard source of fibrations is the implict function theorem.

PROPOSITION 12.1. ' If ¢ : M — B is a smooth map between connected
smooth compact manifolds which is a submersion, i.e. the differential ¢, : T, M —
Ty(m)B is surjective for every m € M, then ¢ is a fibration.

It is easy to see that this implication can fail if M is not compact.

We will discuss operators on the fibres of a fibration below. First however
we consider one of the important steps in the proof of the Atiyah-Singer theorem,
namely the embedding of a fibration.

1 7 12.2007.454
See Problem
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ProPOSITION 12.2. Any fibration of compact manifolds can be embedded in a
trivial fibration to give a commutative diagramme

(12.5) M\—> RM x

ProOF. Following Whitney, simply embed M in RM for some M. This is easy
to do, much the same way as vector bundle can be complemented to a trivial
bundle.? Then let ¢ be the product of this embedding and ¢, giving a map into
RM x B. a

Vector bundles give particular examples of fibrations. There are various stan-
dard constructions on fibrations, in particular the fibre product.

LEMMA 12.1. If ¢; : M; — B, i = 1,2 are two fibrations with the same base
and typical fibres Z;, then

My xp My = {(m1,ma) € My x My; ¢1(m1) = ¢p2(ma)} C My x My
is an embedded submanifold and the restriction of ¢1 X ¢o to it gives a fibration

(126) Zl X Z2 M1 XB MQ
\L¢1><¢2
B.

PROOF. Just look at local trivializations. O

It has become standard to denote ‘relative objects’ for a fibration, meaning
objects on the fibres, using the formal notation M/B for the fibres. Thus T'(M/B)
is the fiber tangent bundle. It is a bundle over the total space M with fibre at
m € M the tangent space to the fibre through m, ¢=(¢(m)), at m. To see that
it is a bundle, just look at local trivializations of the fibration. Its dual bundle
is T*(M/B), with fibre at m the cotangent space for the fibre. This will play a
significant role in what we do below.

12.3. Smoothing families

Philosophically, it is often a good idea to think of a space like C*° (M), the
smooth functions (or more generally sections of some vector bundle) on the total
space of a fibration as an infinite-dimensional bundle over the base. The fibre at
b is just C*°(Zy), the smooth functions on the fibre, and a local trivialization of
the fibration gives a local trivialization of this bundle. To be consistent with the
notation above I suppose this bundle should be denoted C*(M/B) = C>*(M) (or
CX(M/B) = C(M) if M is not compact but B is) thought of as a bundle over B.

Next let us consider smoothing operators on the fibres of a fibration from this
point of view. Recall that the densities on a manifold form a trivial, but not
canonically trivial, real line bundle over the manifold. If this bundle is trivialized

2 7.12.2007.457
See Problem 2.2 Tor more details.
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then the smoothing operators on Z are identified with the smooth functions (their
Schwartz kernels) on Z x Z. Really this is more invariantly written

(12.7) U=(Z) = C®(Z x Z;750(Z))

where 75,Q(Z) is the density bundle over Z, pulled back to the product under the
projection onto to the right-hand factor.

7.12.2007 .452
LEMMA 12.2. For a fibration (12.4) the densities bundles on the fibres form a
trivial bundle, denoted Q(M/B), over the total space and the bundle of (compactly-
supported) smoothing operators on the fibres may be identified as

(12.8) WX (M/B) = C(M x5 M; 75 (M B))

where TR is the right projection from the total space of the fibre product to the total
space of the fibration.

PROOF. Perhaps this is more a definition than a Lemma. The fibre density
bundle is- just. the densjty bymdle for T(M /B). It is then easy to see that an elemfant
on the right in (T2 efines a smoothing operator on each fibre of the fibration
and these operators vary smoothly when identified in a local trivialization of the
fibration. This leads to the notation on the left. O

Again ¥_>°(M/B) can be thought of as a (big) bundle over B.

So, now to something a little less formal. As noted above, one case of a fibration
is a vector bundle. If we consider a symplectic (or complex) we have discussed the
Thom isomoprhism in K-theory above. In doing this we have used, rather exten-
sively, the projections () onto the first IV eigenspaces of the harmonic oscillators.
Since the index theorem is an geometric extension, to a general fibration, of the
Thom isomorphism, we need some replacement for these ‘exhausting projections’ in
the general case. Unfortunately there is nothing® to take the place of the harmonic
oscillators on the fibres. Of course there are similar objects, such as the Lapla-
cians for some family of fibre metrics, but the eigenvalues of such operators are not
constant. As a result the eigenspaces are not even smooth and there is not simple
replacement for 7(y). But we really want these, so we have to construct them a
little more crudely. T will do this using the embedding construction above; this is
a similar argument to the core of the proof of the Atiyah-Singer theorem but in a
much simpler setting.

First we note an extension result using these same 7(x)’s, or just m(y), the
projection onto the ground state of the harmonic oscllator.

ProOPOSITION 12.3. Let W be a symplectic vector bundle over a compact man-
ifold Z then there is a natural embedding as a subalgebra

(12.9) W=®(Z) = U°(W; A*),

into the algebra of smoothing operator on the total space of the bundle of radial of
the fibres of W which vanish to infinite order at the boundary, acting on sections
of the exterior algebra, in which an operator on Z is identified with an operator on
the ground state of the bundle of harmonic oscillators.

3As far as I know, please correct me if you know better.
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PROOF. The point here is simply that the bundle of ground states of the (bun-
dle of) harmonic oscillators is canonically trivial. Indeed all these functions (and
the projections onto them) are positive, so there is a unique choice of unit length
basis. A smoothing operator on the manifold is then lifted to the same smoothing
operator acting on this line bundle, so as a smoothing operator on the total space
it is projection onto this bundle, followed by the action of the smoothing operator.
Clearly this forms a subalgebra as claimed, since the Schwartz functions correspond
to the functions vanishing at infinity on the radial compactification. |

Now, suppose the total space of W is mapped diffeomorphically to an open
subset of a smooth manifold in such a way that S(W), the space of functions which
are Schwartz on the fibres, is identified with the smooth funct'QHszygBtohl support in
the closure of the image set. Then the algebra on the right in (T2.9) is identified as
the subalgebra of the smoothing operators on this manifold with supports in the
closure of the image.

12.4. Semiclassical index maps

As noted above, the index theorem may be thought of as the essential unique-

SEO;OB]? EBUSh forward map in K-theory. Given a fibration of manifolds as in
(T2.4) we w1

first define a ‘semiclassical index map’

(12.10) Indg : K¢(T%(M/B)) — Ke(B).

In fact we will do this separately for odd and even K-theory and then compare the
results. First we need to discuss the family of fibrewise semiclassical algebras on
the fibres of ¢.

In accordance with the general notation for fibrations the space of semiclassical
families of smoothing operators is denoted W °°(M/B;E) where E is a vector
bundle over M. Repeating again the general principal, this is the space of sections
(defined explicitly below) of an infinite dimensional bundle over B whose fibre above
b € B consists of the (space of families of) semiclassical smoothing operators on
Zy = ¢71(b). There is of course a lot more notation like this below.

Since we have defined the semiclassical algebra on sections of any bundle over
any manifold, W °°(Zy; Ep) is well defined. Thus A € W °°(M/B; E) consists of
an element of W °°(Zy; Ey) for each b € B, where we only need to specify the
meaning of smoothness in b € B. Locally in B the notion of smoothness if obvious
enough, since the bundle is trivialized and the meaning of smooth Deudence 1 ebra
on parameters, which is in any case straightforward, is explained in §6.10. It is
therefore only necessary to check that this notion is invariant under diffeomorphisms
of the fibres, depending smoothly on the base. 1 ask you to do this in problems
below . *#4*

The results derived earlier for the semiclassical algebra can now be restated
for fibrations. The most significant one is the existence and behaviour of the semi-
classical symbol map. Here we recall that the semiclassical symbol is ‘not quite’
a function on the fibrewise cotangent bundle. It is a (Schwartz) functloqson ctla551ca1a1gebra
slightly different bundle denoted *'7*(M/B) which is discussed in Section 6.10. In
particular this bundle is bundle-isomorphic to T*(M/B) but not equal, i.e. not
canonically isomorphic, to it.
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PROPOSITION 12.4. For any fibration the algebra of uniformly properly sup-
ported smoothing operators on the fibres, ¥ (M/B; E), gives a short exact, mul-

tiplicative, sequence

(12.11)
Osl

0——= €V *(M/B; E)—— VU >°(M/B; E) —= S(*'T*(M/B); hom(E)) — 0.

Recall that eV °°(M/B; E) is just this lazy man’s notation for sections which are
of the form €A where A is another semiclassical family.

PROOF. *** Part of this proof will be shifted back to the section on the semi-
classical calculus on a single manifold where 5!7*Z has already been used but not
defined. TanCotan

In §me is a rather pedantic definition of the cotangent bundle of a man-
ifold. Namely the fibre at a point p € M is defined to be the ‘linearization’ of the
space of functions vanishing at p, that is the quotient

(1212
TyM ={feC*(M); f(p) = O}/{Z figi; fis9i € C(M), fi(p) = gi(p) = 0}

finite

Suppose we take the product of M and an interval [0, 1]. Then

(12.13) W*T(;,E)M =
{f eC=(M x[0,1]); 0. f =0, f(p,e) =0}
{ Z fzglvfzagl S COO(M X [07 1]), 8€fz = 8697, = 07 fi(pa€> = gl(p7 6) = 0}

finite

is a rather complicated-looking definition of the pull-back to M x [0, 1] of the cotan-

gent bundle to M, under the projection 7 : M x [0, 1] M ?togpsé%) € M x[0,1].

The latter is just defined to be T,y M and the definition ( is obviously isomor-
phic to Ty M since 3&1 éc.;%ofsqgggions are independent of €, that is it is simply the
same definition as (T2.12); 1.e. this discussion appears moronic.

Let us just change this slightly by inserting factors of e ~!. Namely set

(12.14

SlT*MP = {f € COO(M X (O, 1}),6]0 S COO(M X [Oa 1])7 ae(ef) - Oa f(pa 0) = O}/‘Sa
£={heC®((0,1) x M)ieh =Y fig;

finite

for f;,9; € C°(M % [0,1]), Ocfi = 0egi =0, fi(p) = g:(p) =0}.

Of course this second definition just involves inserting a factor of €. So, given that
we know what e is,

(12.15) ST M, > T* M,

On the other hand, suppose that we think of [0,1] as a compact, connected, non-
empty, 1-dimensional manifold with boundary. That is, we permit ourselves to
make diffeomorphisms in e. The differential condition O.f = 0 is invariant under
diffeomorphisms, although 0. itself is not. However, € just becomes a defining
function for 0 € [0,1], it could as well be 2¢gr even el (c) with 7' > 0 and smooth.
The result of this is that the isomorphism (&ZT%W well-defined. The left side
is well-defined for [0,1] as a manifold and it is always isomorphic to T,y M, but it
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is not canonically isomorphic to Ty M. The result is that SIT* M is a well-defined
vector bundle over M, bundle isomorphic to T*M but not canonically so.

Now, the claim is that the semiclassical symbol really gives a function on 7*Z,
not as one might naively think, on T*Z — however the error in so thinking will
likely never show up! Notice that this is clear from the definition of the semiclas-
sical symbol in local coordinates, i.e. back on R™. There we took the kernel of the
semiclassical family,

(12.10 Bl )

€

changed variable to Z = Z;ZI, restricted the result to e = 0 and then took the
Fourier transform to get a function b(z,¢) on R™ x R™ which is Schwartz in the
second variables. Under change of variables we showed before that this transforms
as a function on T*R™, so in the case of manifolds gives a function on 7* M. However,
this depends on knowing precisely what € is. If you think of the variable €/2 instead
the resulting function will be b(z,{/2). Note that you might expect a change by
an overall factor of 2™ but this does not happen because this is absorbed in the
measure when we take the Fourier transform. On the other hand the discussion
above shows that after the new identification with ST M

(12.17) B eV % (M) = 0q(B) € S('T*M) is well-defined.

The case of semiclassical families acting on a vector bundle on the total space
of a fibration just involves the invariance under diffeomorphisms, and the behaviour
under multiplcation by smo EE; : %@9&% of the semiclassical smoothing algebra.
That is, the exact sequence a'['Z._F‘IJ%’E)l—ncﬁding its multiplicativity, just comes from
the same result on each fibre. |

. . . |25.2.2008.534 .
One direct way to see why the image space in (2. ; is the right one is to define
os1(B) by ‘oscillatory testing’. This is done in Euclidean space in Problem****,
Restating this result more invariantly we get

LEMMA 12.3. If A € V*(M/B;E), u € C*(M;E) and f € C*(M) is real-

valued then

) . d
(12.18) lim =/ B(eH ) ey = g (4

g (M;E
i E)ueC (M; E)

with the limit existing in this space.

_ ) . 25.2.2008.542
Notice that we need to interpret df /e € C*(M; SIZ;*M?OSI@ gpsection for (T2 18:} to

make sense. Going back to the formal definition (| we can do this by defining
its value at Z € M to be the class of (f(z) — f(2))/e.

Now, having the semiclassical algebra on the fibres at our disposal we can
construct the corresponding index.

PROPOSITION 12.5. If a € C®(*'T*(M/B);hom E) is such that Id +a is ev-

erywhere invertible and A € V_°°(M/B; E) is uniformly properly supported and
has 04(A) = a then for € > 0 sufficiently small, Id+A(e) € G=*°(M/B; E) and
[Id +A] € KY(B) depends only on [Id +a] € KL(T*(M/B) so defining

(12.19) Indg : KL(T*(M/B)) — K.(B).
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PRrROOF. Note that we are making the effort here not to assume that the fibres
are compact — nor does the base need to be compact. The main point is that the
quantized family of operators is invertible for small € > 0 with inverse of the same
type. Indeed, the discussion in Section [?7 shows that there is no problem in con-
structing a semiclassical family which inverts the quantization to infinite order, so
up to an error term which is a standard family of smoothing operators vanishing
to infinte order at ¢ = 0. Here all families are uniformly properly supported and
so such a perturbation of the identity is invertible with inverse of the same form.
Thus it remains only to show that the K-class defined by this invertible section
of G=>°(M/B; E) is independent of choices. Since any two semiclassical quantiza-
tions are homotopic for small enough € > 0, independence of choice and homotopy

invariance under deformatiog 592 ; (%)41%2/49 from the same construction. Stability is

also immediate, so the map(I2.19) 1s well-defined as desired. O

Having defined this ‘odd semiclassical index map’ we note that the e Js,gls0 An
even version, defined using the discussion of projections in Proposition E% [T. Recall
that the K-theory with compact supports of a non-compact space X, in this case
sIT*(M/B), is represented by equivalence classes of smooth families of projections
7 : X — GL(N,C), where 72 = 7 and 7 is constant outside a compact set.
Equivalence of two such projections 7m; corresponds to the existence of maps a,
b: X — M(N,C) also constant outside a compact set and such that amb = 7.
This just means that mobmy is an isomorphism from the range of w5 to the range of
1 with inverse meamy.

PROPOSITION, STbhe semiclassical quantization of projections to projections,
in Proposition 13. ZZ mduces a push-forward, or index, map in even K-theory for
any fibration with compact fibres

(12.20) IndY : KY(T*(M/B)) — K°(B).
PRrROOF. Two semiclassical families of p ?J%C ]()%%S ¥§1th the same symbol are
homotopic through projections so the map (IIZ. 2”; in which the index of 7 is the

formal difference of the pair P S my, of its quantization and the constant projection
‘at infinity’ is well-defined up to homotopy. Finite rank approximation shows that it
defines an element of the K-theory B and it is straightforward to show independence
of choices. O

12.5. Bott periodicity and the semiclassical index

##% Take £ = CV below, since we know we can do this in constructing the
index maps.

In the preceeding section two versions of the index map, as pushforward in
K-theory for a fibration, have been defined. Next we show that they are ‘equal’.

PRrROPOSITION 12.7. For any fibration with compact fibres, the diagramme

(12.21) KL(R x T*(M/B)) " KI(R x B)

llndiso llndiso
Ind?

KT*(M/B)) ———=K(B)
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(-:OWJ ﬂy{fsﬁo%)ﬁ.efgthe vertical maps are the realizations of Bott periodicity discussed

m

The top map is, as indicated, the odd semiclassical index for the fibration M xR —
B x R with an extra factor of R. Clearly the relative cotangent bundle for this
fibration is R x T*(M/B).

Of course the problem with proving such a result is that the vertical map are
defined by isotropic quantization and the horizontal maps by semiclassical quanti-
zation. As usual, the approach adopted here is to construct an algebra of operators
which includes both quantizations naturally (i.e. the correspond to the symbol
maps). In this case this is relatively straightforward because isotropic quantization
is itself rather simple. Thus the algebra U9 (R") arises from a non-commutative
product on C>°(R2"?). Similarly we now the that the algebra of semiclassical oper-
ators on the fibres of M can also be identified with a space of smooth functions on
a manifold, namely

(122

U,*(M/B;E) = e *{A € C®(M3;Hom(E) ® Qr); A= 0 at {e =0} \ ff}.

Here

(12.23) M3 = [[0,1] x M3,{0} x A

is obtained by the blow up of the diagonal at ¢ = 0 in the fibre product.
What we want is really the completed tensor product of these two algebras.
Thus consider

(1224)

U °%U(R" x M/B; E)
- {A € =10 (R x M2; Hom(E) ® Qg): A= 0 at {e = 0}\ff}.

As spaces of amplitudes (i.e. before quantization) we can define the spaces of other
(real or complex) orders by

(1225)  WLTS(RY x M/B;E) = p "W, (R” x M/ B E)

where p € C>°(R?") is a boundary defining function, i.e. a non-vanishing real elliptic
symobl of order —1 in the isotropic calculus.

31.3.2008.592
31.3.2008.593 PROPOSITION 12.8. The space in (12.24% s an algebra under (the continuous

extension of ) the isotropic product on R™ for symbols with values in the smoothing
operators on the fibres of ¢ : M — B. There are two short exact symbol sequences
which are multiplicative

(12.26)

U LT ®(R? x M/B; E)— 0% (R" x M/B; E) —2% ¢>(S*~1; ¥ ;*°(M/B; E)

1S0

e\II?SOiI(R" x M/B; E)(—>\11150751 (R™ x M/B; E)—> % —=S('T*(M/B); ¥ (R™; E))

iso
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which have a common double symbol map
(12.27)

Co (S W™ (M/B; E)

/\

)
W0 (B" x M/B; E) S8 T (M B); hom(E)),

iso —sl
(e}
o

S(*'T*(M/B); V9, (R™; E))

1S0

and combine to give a joint symbol sequence

(12.28) W " (R" x M/B; E) < 02" (R" x M/B; E)

iso — iso —sl

T 0o (g W (M B E)) & ST (M/B); W, (R )

150

which is exact in the centyg ¢ O@agg_;mnge precisely the subspace satisfying the
AZ.Z;%, that

compatibility condition in (
(1229) Os10iso = Oiso0sl-

Proor. I will do this ***. The main point is that these are just smooth
functions and we can do the quantizations separately in each of the spaces treating
the other variables as parameters and then reverse the discussion — really just as
though it is a finiter rather than a completed tensor product. Everything should
work out pretty well. O

31.3.2008.605 o )
PRrROOF OF PrROPOSITION 12.7. Now — and really this is essentially the same
argument as recurs below in the proof of multiplicativity — we consider the quanti-
zation procedure determined by this algebra. Starting with a ‘double symbol’

(12.30) @€ S(R xS'T*(M/B) s.t. (Id+a)~! =1d+b, b €€ S(R x *'T*(M/B),

we take the radial compagﬁ@qg&}g%g the line into S and so realize @ as an element

a of the image space in (I[2.27),
(12.31)
a € S(Sx*'T*(M/B);hom(E)) s.t. (Id+a)~t =1d+b, b € S(Sx*'T*(M/B); hom(E))

we proceed to ‘quantize’ a in two ways. First, we can use semiclassical quantization
to choose a family

(12.32) o € C(S; ¥, (M/B; E)) s.t. og(a’) = a.

Here the circle just consists of parameters which should be added to both the base
and the fibre and so do not contribute at all to the fibre quantization. It follows
that Id 4+’ is invertible for small € > 0 and that, by definition of semiclassical
quantization,

(12.33) Indg ([Id +a]) = [Id +/] € KX(R x B).
Secondly we can proceed in the opposite way and construct a family

(12.34) o € SCIT*(M/B); U2 (R™; E)) s.t. gis0(a) = a.

1S0
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31.3.2008.603

31.3.2008.608

31.3.2008.609

31.3.2008.610

31.3.2008.604

Hilbert-bund

12.6. HILBERT BUNDLES AND PROJECTIONS 323

From the discussion of isotropic quantization, the invertibility of Id +a means that
Id +a’ is a Fredholm family. In fact we know that for N sufficiently large,

(12.35) (Id +a")(Id —m(y) has null space precisley the range of m(yy,

where 7y is the projection onto the span of the first IV eigenspaces of the harmonic
oscillator (extended to act on sections of E ****). Then we can choose a generalized
inverse Id +3" of Id +a/ with

8" € SC'T*(M/B); ¥{,(R"; E)) and
(Id+8")(Id —7")(Id 4+ ) (Id =7 (n)) = (Id =7 (),
(Id +a")(Id —7(x) (Id +B")(Id —') = (Id —7")
n’ =x, 7 — T(N) € S(SIT*(M/B); lho(Rn E)).

(12.36)

Note that I have written things out this way to avoid having to allow the main
families to remain trivial at infinity on *'7*(M/B) — although there has to be non-
triviality there in order to get the errors to be represented by projections in this way.
Then, from the definition of the Bott periodicity map by isotropic quantization,

(12.37) Indiso ([Id +d)) = [m(n) © 7] € KS('T*(M/B))

, . . J31.3.2008.589
is the left vertical map in (2.2 %

So, as it should be, the semiclassical quantization is easier.

Using the properties of the algebra, we can find a common element A €
\I/?SO “U@R™ x M/B; E) such that 0q(A) = o’ and 0i50(A) = /. Moreover, Id +A
has a ‘two-sided parameterix’ Id+B, B € \I/?SO 2 (R™ x M/B; E) which can be
constructed so that, as elements of the semiclassical-isotropic algebra
(Id+B)(Id+A) =1d —m, (Id+A)(Id+B) =1d —mo,

€V " *(M/B;E), n2 =m;, i=1,2.

iso — sl

(12.38)

Now, of necessity
(12.39) os(m1) = 7wy, oa(me) =7’
Now, we claim that for € > 0 small,
Ind(Id+A) = [m1 & m2] = Ind) (7(n), ') = Indy Indf,, (Id +@) and
Ind(Id +4) = Indiso(Id +0') = Indis, Indg (Id +4a).

The first equality on the top line in E"ﬁ[D%wﬁsl% essentially definition of the
index in the isotropic algebra ( gre sxten gd a bit because of the values in the
smoothing algebra) because of ( e second eqnality follows from the defi-
nition of the even semicla; {cgl %egolglap and ( an :;111'151. &lé%l&f is the
combination of this and ETB%—Sﬁﬂarly the second line in TTZIU%C—)WS from

the choice of A as a semiclassical quantization of o'. [

(12.40)

12.6. Hilbert bundles and projections

** This section, or parts of it, may need to be moved back into the K-theory
chapter.

As is well-known, all infinite-dimensional separable Hilbert spaces (here al-
ways over C) are isomorphic. Namely, if one takes as model /o, the space of
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square-summable complex sequences, then an isomorphism to a separable infinite-
dimensional Hilber space, H, corresponds exactly to a choice of complete orthonor-
mal basis in H and such can be constructed by the application of the Gram-Schmidt
orthonormalization procedure to any countable dense subset. The group U(#) of
unitary operators on H is then an infinite-dimensional analogue of U(N), the group
of N x N unitary matrices. However, in contrast the the finite dimensional case,
U(H) is contractible. In the infinite-dimensional setting it is necessary to specify the
topology in which this contractibility is to take place. The ‘serious’ theorem here is
Kuiper’s theorem that the unitary group is contractible in the norm topology. We
will only use the weaker result,

11.4.2008.686 PROPOSITION 12.9. For any infinite-dimensional separable Hilbert space, U(H)
is contractible in the strong topology, meaning there is a map
11.4.2008.687 | (12.41)

UH) x[0,1] 52 (U,t) = U, € UH) s.t. Uyv — v in HVveH, UecUH).

PROOF. One example of an infinite-dimensional separable Hilbert space is
L?([0,1]) with an orthonormal basis given by the exponentials of period 1. Thus it
suffices to prove strong contractibility for this example. For given v € L2([0,1]),
U € U(L*([0,1])) and ¢ € [0,1] set

(Uve)(x/t) 0<a<t

11.4.2008.688| (12.42)  w(x)=v(tz), x € [0,1] and Upv(z) = { () v >t

Thus Uzv(z) is given by the identity operator on [t, 1] and by a rescaled version of
U on [0,1]. Clearly Uy is linear and
11.4.2008.690 | (12.43)

1 t 1 1
[ ww@P = [ oePdss [ oGP =dulie+ [ o) Pds = ol
0 0 t t

so U, is unitary. Similarly
11.4.2008.691 | (12.44)
[Urv=ollr2(jo,17) = [Urv—=llz2(jo,1) < NUevllp2(p0,0)Hull 20,67 < 2l[vllz2o,9 — 0 ast =0

shows that U; — Id strongly.
So, it suffices to check that the continuity of the map

11.4.2008.692 | (12.45) U(H) x H x1[0,1] 3 (Uv) — Uw eH

with respect to the strong topology on U(H). O

. . Jt1.4.2008.688 & . |
Note that the contraction constructed in (IZ.ZIZ% is multiplicative, namely
11.4.2008.695| (12.46) V) = UV,

as follows directly from the definition. This should be useful somewhere!

The main application we need of this contractibility is the existence of finite
rank approximations to the identity for fibre bundles. One way to do this is to note
the following general topological result.

11.4.2008.696 ProrosiTION 12.10. If F': M — B is a topological fibre bundle over a com-
pact manifold and the typical fibre, Z is contractible, then F' has a right inverse,
i.e. the bundle has a section.
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PROOF. Maybe I will put a detailed proof in somewhere. This is pretty easy
using a triangulation but it might be better to have a proof using small geodesic
balls. (]

Thus, for a fibration M — B consider the Hilbert spaces of square-integrable
sections of a vector bundle E over M these combine to give a bundle L?(M/B; E)
over B. Each of the fibres is unitarily equivalent to the fixed Hilbert space L?(Z; E | Z)
and we can consider the bundle P — B with fibre at b

(12.47) Py ={G: L*(Zy; E| ;) — L*(Z; B| ;) unitary

consisting of all such unitary equivalences — this is a principal bundle for the action
of U(L?(Z; E’ ) by composition. In fact the bundle is locally trivial for the norm
topology but we have only Cheﬁﬁﬁi%@s pégétractibility of the fibre for the strong
topology. Applying Proposition T2.10 we conclude that there is a section of B — P
which is strongly continuous — of course if we used Kuiper’s theorem we could show
that there is a norm-continuous section.

PropPOSITION 12.11. For any fibration M — B, Hermitian vector bundle
E over M and choice of smooth positive fibre density, there are sections e; €
C>®(M; E), i € N, which form an orthonormal basis in each fibre.

PROOF. As discussed before the statement of the Proposition, the bundle P has
a strongly continuous section G. Then for any orthonormal basis f; of L?(Z; E | 2)
the sections e, = G=1 f; € C°(B; L?(M/B; E)) are continuous and form an orthonor-
mal basis at each point. Now, we can approximate such continuous-L? sections by
smooth sections e € C*°(M; E) as closely as we wish. In particular we can choose
these smooth sections so that

(12.48) sup e} —el|| <27 i > 1.

beB
Now, we clairg that thfase new sectigng can.in turn be modified to a smooth or-
thonormal basis. Certainly from (I2.48), the operator

1
3
(1249)  Tyu=> (u,e€j(b))e}(b) has ||T, —1d | > < <Z|e; - e;'|2> <1/4
so is invertible. Thus the finite span of the e is certainly dense and they are
independent. Gram-Schmidt orthonormalization therefore gives an orthonormal
basis all elements of which are smooth. [

The main use we put such a smooth orthonormal basis to is the construction
of approximate identities which give uniform, i.e. norm convergent, finite rank ap-
proximations to smoothing operators.

PROPOSITION 12.12. Hawing chosen a smooth orthonormal basis e; € C*°(M; E)
for a fibration M — B (corresponding to a choice of Hermitian structure and
smooth fibre densities) the orthogonal projections T ny onto the span of the first N
elements are such that

(1250) ||7T(N)A7T(N) 7A||L2(M/B;E) —0as N —>o00V A€ \Ilioo(M/B,E)

PrOOF. This follows from the compactness of smoothing operators on L2. O
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12.7. Adiabatic limit

The main content of the K-theory version of the families index theorem of
Atiyah and Singer is that there really is only one way to define an index map,
essentially because this is a push-forward map in K-theory. We start the proof
by showing this in one particular case. Namely we have shown above **** that if
M is a compact manifold which is fibred over B then the K-theory of B can be
realized as the homotopy classes of sections of the bundle of groups G=*°(M/B; E)
for any bundle E over M. That is, instead of maps from B into G~*°(Z) it is fine
to consider the twisted case where Z is the varying fibre of ¢ : M — B. The proof
above is by deformation to finite rank, i.e. in both cases sections can be replaced
by maps into GL(N; C) for some appropriately large N depending on the section.

Now, suppose that the total space M of a fibration is itself the base of another

fibration
(12.51) Z——M
¢
Z——M |9
|
B.

In this setting we will show that the ‘adiabatic calculus’ of smoothing operators
gives a quantization map

(12.52) K'(T*(M/B)) — K*(B)

which is defined in terms of smoothing operators on the fibres of ¢ : M —s M.

To define this we need to investigate the adiabatic algebra of smoothing oper-
ators for a fibration and then for an iterated fibration. First we start with the case
that the overall base, B is a point. Thus M may be replaced by Z and we consider
a fibration, with compact fibres

(1253) Z—v
¢
VA

DEFINITION 12.1. A smooth family of smoothing operators, A € C*((0,1 fé\g_%oo Yg's%‘))

(for a vector bundle over Y') is an adiabatic family for the fibration b in (
if and only if its Schwartz kernel (also denoted A) has the following properties as
640:
(1) If X € C°°(~Y2) has support disjoint from the fibre diagonal {(p,p’) €
Y2 6(p) = o(p)} then

(12.54) YA € 6°C>([0,1]; ¥~>(Y; E))

i.e. is smooth down to 6 = 0 where it vanishes to infinite order.
(2) If x € C>*(Z) has support in a coordinate patch over which ¢ is trivial
(and E reduces to the pull-back of a bundle E over Z) with coordinate z
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then

(12,59

z—2

X(2)Ax(2') = 07" Al (2, S UT(Z: B)),

AeC®R™ xR™ x Z x Z;Hom(E) @ Q(Z)r)
having compact support in the first variable and being Schwartz in the second.

The set space of such operators will be denoted \I/;do(oé)(Y; E).

*#% This is just a quick redefintion of the semiclassical cotangent bundle.

We may define a bundle g : 5'7*Z — Z as the restriction to 6 = 0 of
the bundle over [0,1]s x Z which has global sections of the form «(d, z)/d where
a € C*([0,1];T*Z) is a smooth 1-form on Z (depending smoothly on §.) This
bundle is bundle isomorphic to T*Z (since it is so over (0, 1) x Z) but not naturally
so, however there is a well-defined homotopy class of bundle isomorphisms between
SiT*Z and T*Z. We may then pull the fibration ¥ — Z back to a fibration
7Y — Z which has the same fibre, Z, but now has base 'T*Z. This allows us to
define the smoothing operators on the fibres and also to see that Schwartz sections
are well-defined, giving the algebra S(S!'T*Z; U= (7Y /S!T* Z; E)).

ProroOSITION 12.13. The adiabatic smoothing operators for a fibration form an

algebra of operators on C*>([0,1] x Y; E) with a multiplicative short exact symbol
sequence

(12.50)

0——=00 7 (Vi Ef——=0 " (Y BE)- 24 ST+ 2, U= (n Y /ST Z; E))—0.

PRroOOF. The usual. O

Now, we can extend this construction to the iterated fibration (%ﬁ%ﬁﬁne
a similar algebra \Ila_d%)(M /B:; E) for any bundle E over M. These are just smooth
families with respect to the variables in B with each operator being an adiabatic
family on the fibre above b € B — so for the fibration of ¢~'(Z,) C M over Z, =
#~1(b). Thus when § | 0 additional commutative variables appear in the fibre
sIT*(Zy); combined with the variables in B this means that the adiabatic symbol

has parameters %'&,ZIEZSM /B) as a bundle over M. So the multiplicative short exact

sequence (II2. ecomes

(12,57

00 " (M/B; Ef——W_ (M /B; E)—"">S('T*(M/B); U= (z5M /*T*(M/B); E))

where I dropped off the zeros to save space.

PROPOSITION 12.14. If a € CSC(SZT*(M/B);G‘OO(W:IM/SZT*(M/B);Ei A g.;oos s66

is the sum of the identity and a family in the image of the symbol map in
which has compact support such that the result is always invertible, then any adi-
abatic family A € \I’;d(J;)(M/B;E) with 0.q(A) = a is such that Id+A(0) €

G_‘X’(M/B;E) for 0 1§ < &g for 6o > 0 small enough, and this defines unam-
biguously an index map

(12.58) Indg : K'(T*(M/B)) — K'(B)
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which (as the notation indicates) is equal to the semiclassical index map as previ-
ously defined.

PROOF. The first step is to show homotopy invariance and stability as before.
Then, use the (*** currently non-existent) result above showing that smoothing
operators on a fibration can be uniformly approximated by finite rank families
to deform the symbol a to a finite rank operator i.e. acting on a trivial finite
dimensional bundle of C*°(M/M;E) as a bundle over M, and then just observe
that a semiclassical quantization of this gives an adiabatic quantization. Hence the
maps are the same — the adiabatic quantization is just a more general construction
which is ‘retractible’ to the semiclassical case. (]

12.8. Multiplicativity

. . . L . [25.2.2008.544
One of the crucial properties of the semiclassical index, defined in (IZ.IQ% 1S
that it gives a commutative di raIgine Ei]sder iteration of fibrations. Thus suppose

we are again in the set-up of . e composite map is then a fibration and
we wish to prove that the same (semiclassical) index map arises by quantization in
‘one step’ and in ‘two steps’.

4.3.2008.545
4.3.2008.546 PROPOSITION 12.15. For an iterated fibration as in (T2.51 ;, the semiclassical

index map for 1), the overall fibration, is the composite

(1250) Iy = Indg 0 Tndy )

Notice that the map on the rightmost here is not quite the usual semiclassical index
map for ¢ as a fibration from M to M (with fibre Z), rather it is the semiclassical
index for the pull-back of this fibration to s!'T*(M/B) as a bundle over M to give
a fibration

(12.60) Z ——9T*(M/B) xy M

:
S'7* (M/B).

It is precisely for this purpose that the adiabatic-semiclassical algebra was
discussed earlier. Unfortunately, at the time of writing, the notation in the earlier

discussion has not been reversed — it is here but this is potentially4c81)2f 'nagl.s
So consider the very special case where the iterated fibration (12.61); reverts to

a single fibration, namely B = {pt}. We can then declare M = Z and so write the
single fibration as

(1261 Z—u

So, we proceed to construct the algebra > _ (M; E) of adiabatic-semiclassical
. . . _slad(e) . sclEucl
smoothing operators associated to this fibration. Going back to Section b.ZU we con-
sider 2-parameter families, where the parameters are ¢ > 0 and § > 0 of smoothing
operators on M (acting on sections of E). Thus

(12.62) W% 5 (V5 B) € C((0,1), x (0,1)55 0 (M; E))
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and we only need describe exactly the admissible behaviour of the kernels as € | 0
and ¢ | 0, separately Ed%cciﬁ%icrltly. Of course we do this in terms of the local families
discussed in Section W

Let z;, z; be local coordinates in M with the z; coordinates in the base and Zz;
coordinates in the fibre. In M? we take two copies of such local coordinates with
primed versions in the right factors. The fibre diagonal is the globally well-defined
manifold given locally by z; = z. The assumptions we make on the kernels are

e As 4 | 0 the kernels vanish rapidly with all derivatives in z # 2’
e As e 0 the kernels vanish rapidly with all derivatives in z # 2’ or Z £ 2'.
e Asd ] 0bute>¢ >0, the kernels a of the form

z—2

(12.63) 07 FA(6,¢, 2,7, 2, ) A€C([0,1] x [eo, 1] % U,U',U;S(R¥))

near z = 2z’ (for possibly different coordinate patches U, U’ in the fibres.)
e In € < ¢ for ¢y > 0 sufficiently small, the kernels are uniformly of the
form
s _ 3 S
6.3.2008.553| (12.64) o0 "FA(5 e, 2, %
€ €

near z =2/, 2 = 7.

), A€ C®([00,1] x [0,1] x U,U; S(R™))

*** Describe the two tangent and cotangent bundles, adiabatic and semiclassical-
adiabatic.

The adiabatic-semiclassical calculus corresponds to a modified cotangent bun-
dle 1247 M over M x [0, 1], x [0, 1]5. Namely the fibre at any point is the quotient
of the space of smooth linear combinations

df d ~
6.3.2008.557 | (12.65) —f, —g, fec>®(M), geC>(Z)

€ €
by the corresponding product with the ideal of functions vanishing at that point.
There are canonical isomorphisms

sladpx 17 — sl 27
T"M| , ="T*M,

6.3.2008.558| (12.66) Sedre M|, =*T*M and
ladp* 37 — kN
ST M’e>0,5>0 =T"M.
5.3.2008.549 .
6.3.2008.554 PROPOSITION 12.16. For a fibration (126 ; the space of operators W _ (M; E)

slad ()
forms an alegbra under composition with two multiplicative exact symbol sequences

6.3.2008.555 | (12.67)

—00 T, —o00 T, adoo (gl 1 /sl
BUS, o (VT ) — 3%, - (NI B) —— W (1T (M B) xay 31/T*(M/ B)

—00 T, —00 T Osl
6\Ils,l ad($) (M7 E) \IJSI ad() (M7 E)

> ([o, 1}5;S(SladT*]\Zl)> .

Furthermore the joint symbol map gives a short exact sequence

6.3.2008.556| (12.68) W > - (M E) — W >

~ .O' Oad
slad () 1ad(¢3)(M’ ESB @
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12.9. Analytic index

The analytic index map of Atiyah and Singer is defined for any fibration with
compact fibres

(12.69) Ind, : K{(T*(M/B)) — K°(B).

It starts with the realization of the K-theory as equivalence classes of pairs (E, a) of
a superbundle, i.e. pair or complex vector bundles E = (E+, E7), over M, the total
space of the fibration, and an isomorphism a € C*(S*(M/B); E) between the pull-
backs to S*(M/B), the boundary of the radial compactification of T*(M/B). From
the surjectivity of the symbol map for the algebra of pseudodifferential operators
on the fibres of ¢ : M — B,

(12.70) UO(M/B;E) — C>(S*(M/B);E)
we know there exists a family A € V(M /B;E) with o¢(A) = a.
Since a is assumed to be invertible, A is, by definition, elliptic. Again from
the properties of the calculus we can choose B € VO(M/B;E~), E- = (E~,E™"),
which is a two-sided parameterix for A, so

(12.71) BA=1d-R;, AB=1d-R™, R* € ¥~*(M/B; E¥).
The existence of finite rank exhaustions 73 € C*°(M/B; E¥), for which 5 R* —
R in U~°°(M/B; E*) for any element R of this space, allows A to be stabilized to
have finite rank. Namely, for N large enough, Id —R*(Id —w]f,) is invertible, with
inverse necessarily of the form Id —S, S € U=>°(M/B; E™) and then

(12.72
(Id—RT)(Id —7}) = (Id —R"(Id =7 ))(Id —7%) = (Id —=S)BA(Id —7y) = Id —7p.
From this it follows that A(Id —my) has null space precisely the range of 7wy on
each fibre. In particular its null spaces form a smooth bundle over B and since it
has the same symbol we can replace A with A(Id —7x). Since the numerical index
of a Fredholm family, such as A, is constant, the range of this new choice of A has
a finite dimensional complement of constant rank, which can be identified with the
null space of A* for choices of smooth inner products and a smooth family of fibre
densities. Let 7= € ¥=°°(M/B; E~) be the family of projections onto this finite
dimensional bundle. Then

(12.73) (Id-77)A=A

and B can be replaced by the generalized inverse, which is the inverse of A as a
map from the range of 1d 57 5 té%téllesrange of Id —m extended as zero to the range

of m~. With this choice (2.7 ; is replaced by
(12.74) BA=1Id-nj, AB=1Id—n".

PROPOSITION 12.17 (Analytic index). The class [}, 7~] € K%(B) constructed
above for N large enough depends only on [a] € K9( ﬁ yg{og)e)l and not on the

choices made and gives a well-defined homomorphism (|

Proor. Choices:

(1) a as representative of [a].
(2) A with symbol a

(3) N

(4)

Adjoints, densities
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Increasing N to N’ adds the bundle 7j;, — 7% to the null space of the quan-
tization of the symbol, changing A(Id}) to A(IdY,) and adds the image of this
bundle under A to the complement of the range — i.e. subtracts it from the range.
Thus it leaves the index class unchanged. Stabilizing a by adding the identity on
some bundle F' which is added to both ET and E~ also does not change the index
and bundle isomorphisms of E* do not change the index either. All the other
equivalences can be done by smooth homotopies and this corresponds to adding an
interval (or if you want to be very careful, a circle — by reversing the homotopy
on the other side) to the base. Then the null and conull bundles are defined over
B x [0,1] and it follows that their restrictions to the ends are bundle isomorphic.
Thus the analytic index is well-defined. O

The existence of an invertible family of pseudodifferential operators of any real
order shows that the definition of the index can be extended to elliptic families of
any (fixed) order.

12.10. Analytic and semiclassical index

We have now defined the analytic index in the form given by Atiyah and Singer
and also a similar map using semiclassical quantization of projections. The latter
has also been reduced to the odd semiclassical index by suspension. So the main
remaining step in the proof of the index theorem, in K-theory, of Atiyah and Singer
is the equality of the analytic and semiclassical index maps.

. ) . 2.4.2008.613(31.3.2008.612
THEOREM 12.1 (Analytic=Semiclassical index). The maps (hZTSQ%W—(&TZU%i

are equal.

Obviously we need to ‘put the semiclassical and standard quantizations to-
gether.” Once again we do this by developing (yet) another calculus of operators!
Fortunately in this case it is the semiclassical calculus for symbols of finite order,
rather than the smoothing operators used in the semiclassical calculus, and we have
been carrying this along for some time.

The main difference between the two index maps is the realizations of the
compactly supported K-theory of the fibrewise cotangent bundle on which they are
based. To remove irrelevancies, consider the more general case of a real vector
bundle V' over a compact manifold B. The index may of Atiyah and Singer is based
on the identification of the K-theory with compact supports of V' as the K-theory
of the radial compactification V, relative to its boundary SV = (V' \ 0/R*, together
with the fact that any vector bundle over V is isomorphic to the pull-back of a
bundle over B.

Forgetting the latter fact we consider the more general ‘chain space’ for K-
theory consisting of triples (7+, 77, a) where 7+ € C>(V; M(N,C)) are smooth
families of projections, (7%)? = 7%, over the radial compactification and a €
C>®(SV; M(N,C)) is an identificaiton of their ranges over SV, namely we demand
that

(12.75) ar™ =a, 7~a=a, Nul(a) = (1), Ran(a) = Ran(7").

That is, a is precisely an isomorphism of the range of 7+ to the range of 7= over
the boundary of the radial compactication.
This could be said better!
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PROPOSITION 12.18. The triples (7,77, a) above give KL(V') under the equiv-
alence relations of bundle isomorphism over V for n®, homotopy for a and stabil-
ity, in the sense of taking direct sum with (p,p,1d,) where p € C>(V; M(N’,C))
is some family of projections. Moreover the inclusion of (T, Moo, Too), Where ™ €
C>®(V,M(N,C)) is a family of projections constant near infinity (with constant
value Ts) and of (E,a) by complementing E~ to a trivial bundle, induce retrac-
tions of the chain spaces.

PrRoOOF. Deformation. O

Now the idea is that if we can define a ‘big’ index map from these general triples
(7,7, a) which reduces to the semiclassical and the analytic index maps under
the inclusions of these chain spaces, then we prove the desired equality. In fact we
will simplify the ‘big’ chain space by arranging that

(12.76) xt e M(N,C)
is actually constant. We can do this by stabilizing to a trivial bundle. **** Do

more 2.4.2008.626
To ‘quantize’ a general triple subject to (I2.76), we first use Proposition

to choose a semiclassical family of projections IT~ € W9 (M/B; CY) with

k3kkk

(12.77) oa(II7) =7~ and op(II7) =7~ Ve>0.

5*(M/B)

Then we choose a standard quantization of the family of matrices a, namely A’ €
UO(M/B;CN) with o(A’) = a. For € > 0 but sufficiently small consider the family
of ‘Toeplitz’ operators

(12.78) A=TI"ATI" € ¥(M/B;CN), T = 7" € M(N,C).

Now, let mx be our usualy family of finite rank smooth projecitons approximation
the identity on the fibres of M/B. As in the standard case, we shall check that

(12.79) A(1d —7y) has null space Ran(ry7™)
where by arran, emept, 7@7_/# is a family of projections, so defines a smooth bundle
over B. Now, (;2 (9% is just the usual parametrix argument. Let b be the inverse

! ¢ 353 Wap from Ran(r™) to Ran(7T). Thus it has the same properties as a in
7.75) but with the signs reversed. Then quantize it to B’ € ¥°(M/B;CN) and
g

replace this by B = IITBII~. From the symbol calculus it follows that
(12.80) BA=TYId+RHIIT, TTRTOT = R*

where initially Rt € U~1(M/B;C"). Then taking an asymptotic sum (Id+R),
with R € U~1(M/B;CY) and II*RII* = R of the Ne napy series for (Id +R)
and composing on the leff yrith JI*(Id+R)II* gives (1%?}80%55 error Rt €
U—°(M/B;CN). Then (IZ(:; follows since RT(Id —Iy) — 0 in ¥~°°(M/B; CN).

Once the null space of A has been stabilized to a bundle, i.e. it is replaced
by A(Id —my) for N sufficiently large, it follows that its range inside the range
of the family II~ has finite dimensional complement, given by a smooth family of
projections # € W~°°(M/B;CY with II"#II~ = 7. Then the index in this more
general setting is

(12.81) Ind(rt, 77, A) = [T 7y © 7] € K°(B).
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So, it remains to check that this is independent of the choices made in its
definition and that it reduces to the semiclassical index and the analytic index in
the corresponding special cases. ****

12.11. Atiyah-Singer index theorem in K-theory

2.4.2008.621
In Theorem [T2. e two variants of the index map introduced above, have
been shown to be equal. The index theorem of Atiyah and Singer therefore reduces
to the equality of either of these and the topological index

(12.82) Ind; : KY(T*(M/B)) — K°(B)

which we proceed to define. As the name indicates this map does not involve any
‘analytic constructions’, except 15%134‘5 o4t ,(jriodicity is invg ggdnghich we proved
analytically. This third map (I2.82! for a ﬁbraﬁgﬁ.mﬁned using an
embedding into a trivial fibration as in Proposition [2.T. The Collar Neighbourhood
Theorem shows that for each point in the base b € B the corresponding fibre has
a neighbourhood €, C R which is a bundle over Z, which is diffeomorphic (with

Z, mapped to the zero section) to the normal bundle of Z, C RM. Moverover this
is all smooth in b so that in

(12.83) N<—=Qt—=BxSM

AN

M
B.
the bundle maps are consistent.
Since € is smoothly (although by no means naturally) identified with a bundle
over M it follows that the relative cotangent bundle of €2 as a bundle over B is
smoothly identified as

(12.84) T*(Q/B) ~T*(M/B)® N & N*.

Since N ® N* is a symplectic bundle over M we know from the Thom isomorphism
that

(12.85) K(T*(Q/B)) ~ KY(T*(M/B)).

On the other hand Q < B x RM is an open embedding of fibrations, so there is a
pull-back map for compactly supported K-theory:

(12.86) KY(T*(Q/B)) — K%(T*(RM) x B)

where on the right the relative cotangent bundle of RM x B as a bundle over B is
written out. Finally 7%(RM) = R2M g0 using Bott periodicity combined with the
previous maps we define the topological index as the composite

(12.87) Ind, : K(T*(M/B)) — K%(T*(Q/B)) - K%(T*(R™) x B)) = K°(B).

It is not immediately clear that this map is independent of the embedding of
the fibration which is used to define it. This is not difficult to show directly but
we will instead show that it is equal to something which we already know to be
independent of choices.
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16.4.2008.707
THEOREM 12.2 (Index theorem in K-theory). The topological index map (T2.87

is equal to the analytic index map.
tiyah-Singerl

Proor. We will follow the proof in at least 1 &y%ge. That is, we follow
the semiclassical index through the diagramme (ﬁz@%@&%l%%bat the analytic
index factors through each step. In view of Theorem ;; 1 we can use either the

analytic or the semiclassical index map at each stage.
The first stage is to consider the iterated fibration

(12.88) N——>M—>B.

4.3.2008.546
Here, N is the normal bundle to the embedding of M. Theorem T2.15 applies to

this iterated ﬁbrat‘og 3 %'X_Fs the commutativity of the three maps on the right,
corresponding to (I[2:

(12.) KY(T*(M/B) & (N 6 N*)
Thom \Llndf1
KY(T*(M/B)) | nda

J/Inda

K(B).

Since we know that the analytic index is the inverse of the Thom isomorphism we
conclude that

(12.90) Ind, = Indg o Thom.

16.4.2008.709
The space on the tap.in) (12.89% is diffeomorphic to €2 as a bundle over B so the
same identity (;2'.9(';% holds with %}8648 %éc]?os;ical index map for 2. Thus we have
passed through the first map in (12'.8.7i; to start the commutative digramme
r *
(12.91) KU(T*(M/B)) — KXT*(9/B)) — > KAT*(RM) x B))

Ind;
Ind
Ind, o Tndy

K(B).

jpcp %8834{§ady know excision for the semiclassical index, the right triangle in
(T2:91) also commutes. Then again Bott pe igdit'%i&g j/sighe same as the index map
(nox%t.gp%@lgp%as ‘analytic’) so in fact the (1291 ; shows that the topological index

in (T2 also defines the analytic, or semiclassical, index. O

12.12. Chern character of the index bundle

In the case of the isotropic or Toeplitz index, which is to say the Thom isomor-
phism, we h e ﬁlfgéasd%qbtained a formula for the Chern character of the index in
Proposition [10.24. Starting form this and following the proof above of the index
theorem in K-theory, the computation of the Chern character of the index bundle is
fairly straightforward. The main complication is that we have a plethora of index
maps and we have to keep them a little separated (even though the are all the
same). The simplest, and from the current perspective the most fundamental, is
the semiclassical odd index.



29.4.2008.769

29.4.2008.770

29.4.2008.771

29.4.2008.772
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THEOREM 12.3. For any fibration the Chern character of the semiclassical odd
index map is given by

(12.92) Ch°(Indy(a)) = / Ch°(a) A Td(¢),

T*(M/B)
where the Todd class of the fibration is fibre integral of the Chern class of the Bott
element on the normal bundle to an embedding of the fibration in a trivial bundle
over the base.

Toddclass
PROOF. The index map for a trivial bundle has been shown in §mbe
given by the integration of the Chern character over the fibres, in either the odd or
even cases. The index map itself is shown above to factor through this Thom case
by embedding

(12.93) Ind(a) = Ind(:(a ® BN))

where Sy is the Bott element on the fibres of the normal bundle to the embedding
and ¢ represents the inclusion (‘excision’) map for K-theory with compact supports
in a neighbourhood of the embedding of the total space of the fibration. Thus,
applying the bundle case and then the consistency properties of the Chern character,

ChOdd(Ind(a)) = Cho (Ind((a ® Bn))

— odd _ odd
(12.94) —/RZN Ch UW@BN))—/N@N* Ch°*(a) A Ch(By)

= / Ch°%(a) A Td(¢).
T*(M/B)

Here the Todd class of the bundle is the integral over the fibres of the Bott element
on normal bundle to the embedding. [

Since Td(¢) is an absolute cohomology class on T*(M/B) it can also be identi-
fied, via the ‘easy’ Thom isomorphism, with the pull-back of a cohomology class on
M; this is the usual interpretation. Of course one would like to know that Td(¢) is
determined by ¢ and not by the chosen embedding of M in a trivial bundle. How-
ever, the Todd class, being the Chern character of the Bott element, or harmonic
oscillator, is stabl él&a(élfgs‘ghe addition of trivial bundles — this again follows from
the discussion in §I0.13. Under duality it switches sign, since this is just reversing
the order of N and N*. Since the embedding is into a trivial space we see that the
normal bundle is a summand of the tangent bundle to a trivial bundle. It follows
that its the Todd class is independent of choices. It can of course be identified with
a characteristic class but I will not do this here.

Other cases, even semiclassical and Atiyah-Singer now follow from the previous
identifications.

12.13. Dirac families

The most commonly encountered families of non-self-adjoint elliptic differential
operators, at least in a geometric setting, are Dirac operators. So we discuss these
briefly and derive the index formula in cohomology in that case. Indeed, computa-
tions based on the special properties of Dirac operators can be used to derive the
index formula in general.
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12.14. Spectral sections

Problems

.. [1.12.2007.453
PROBLEM 12.1. Proof of Proposition T2.1.
PrROBLEM 12.2. Embedding manifolds.



APPENDIX A

Bounded operators on Hilbert space

Some of the main properties of bounded operators on a complex Hilbert space,

H, are recalled here; they are assumed at various points in the text.

(1) Boundedness equals continuity, B(H).

2) | AB| < |All|B

3) (A—A)! € B(H) if |\| > [|4].

1) [ A*A] = | AA%] = || AJ1%

5) Compact operators, defined by requiring the closure of the image of the
unit ball to be compact, form the norm closure of the operators of finite
rank.

) Fredholm operators have parametrices up to compact errors.

) Fredholm operators have generalized inverses.

) Fredholm operators for an open subalgebra.

) Hilbert-Schmidt operators?

) Operators of trace class?

) General Schatten class?

Known as Gerard, my PhD advisor
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185
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Friedlander, Friedrich Gerhart (or Fred-
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