
From Microlocal to Global Analysis

Richard Melrose

Massachusetts Institute of Technology
Email address: rbm@math.mit.edu

0.7I; Revised: 15-5-2008; Run: November 25, 2021



2020 Mathematics Subject Classification. All over the shop



Contents

Preface 9

Introduction 11

Chapter 1. Preliminaries: Distributions, the Fourier transform and operators 13
1.1. Schwartz test functions 13
1.2. Linear transformations 15
1.3. Tempered distributions 15
1.4. Two big theorems 17
1.5. Examples 18
1.6. Two little lemmas 19
1.7. Fourier transform 21
1.8. Differential operators 24
1.9. Radial compactification 25
1.10. Problems 26

Chapter 2. Pseudodifferential operators on Euclidean space 31
2.1. Symbols 31
2.2. Pseudodifferential operators 35
2.3. Composition 37
2.4. Reduction 38
2.5. Asymptotic summation 39
2.6. Residual terms 40
2.7. Proof of Composition Theorem 42
2.8. Quantization and symbols 43
2.9. Principal symbol 44
2.10. Ellipticity 46
2.11. Elliptic regularity and the Laplacian 48
2.12. L2 boundedness 49
2.13. Square root and boundedness 50
2.14. Sobolev boundedness 52
2.15. Polyhomogeneity 55
2.16. Topologies and continuity of the product 57
2.17. Linear invariance 58
2.18. Local coordinate invariance 59
2.19. Semiclassical limit 60
2.20. Adiabatic and semiclassical families 65
2.21. Smooth and holomorphic families 67
2.22. Problems 68

3



4 CONTENTS

Chapter 3. Schwartz and smoothing algebras 73
3.1. The residual algebra 74
3.2. The augmented residual algebra 74
3.3. Exponential and logarithm 77
3.4. The residual group 77
3.5. Traces on the residual algebra 78
3.6. Fredholm determinant 81
3.7. Fredholm alternative 84
3.8. Manifolds and functions 84
3.9. Tangent and cotangent bundles 85
3.10. Integration and densities 86
3.11. Smoothing operators 87
3.12. Semiclassical limit algebra 89
3.13. Submanifolds and blow up 90
3.14. Resolution of semiclassical kernels 90
3.15. Quantization of projections 90

Chapter 4. Isotropic calculus 93
4.1. Isotropic operators 93
4.2. Fredholm property 96
4.3. The harmonic oscillator 98
4.4. L2 boundedness and compactness 101
4.5. Sobolev spaces 102
4.6. Representations 104
4.7. Symplectic invariance of the isotropic product 105
4.8. Metaplectic group 107
4.9. Complex order 114
4.10. Resolvent and spectrum 114
4.11. Residue trace 115
4.12. Exterior derivation 118
4.13. Regularized trace 119
4.14. Projections 120
4.15. Complex powers 120
4.16. Index and invertibility 120
4.17. Variation 1-form 122
4.18. Determinant bundle 124
4.19. Index bundle 125
4.20. Index formulæ 125
4.21. Isotropic essential support 125
4.22. Isotropic wavefront set 125
4.23. Isotropic FBI transform 125
4.24. Problems 125

Chapter 5. Microlocalization 129
5.1. Calculus of supports 129
5.2. Singular supports 130
5.3. Pseudolocality 130
5.4. Coordinate invariance 131
5.5. Problems 132



CONTENTS 5

5.6. Characteristic variety 133
5.7. Wavefront set 134
5.8. Essential support 135
5.9. Microlocal parametrices 136
5.10. Microlocality 137
5.11. Explicit formulations 138
5.12. Wavefront set of KA 139
5.13. Hypersurfaces and Hamilton vector fields 139
5.14. Relative wavefront set 141
5.15. Proof of Proposition

22.10.2007.148
5.9 145
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Preface

This semester, Spring 2008, I am trying to get these lectures notes close to a
finished form. They represent accumulated notes from various different ‘Microlocal
Analysis’ courses and seminars at MIT. In particular in the seminar this semester,
which is a continuation of a course (also run as a seminar) last semester, we hope
to complete a proof of the families index theorem of Atiyah and Singer and some
version of Weyl asymptotics for self-adjoint elliptic pseudodifferential operators;
maybe we will also get to Fourier integral operators.

There are many people to thank, including recent participants and people who
have offered corrections and suggestions:

Jacob Bernstein
Benoit Charbonneau
Kaveh Fouladgar
Austin Ford
Sine Rikke Jensen
Mark Joshi
Nikola Kamburov
Jonathan Kaplan
Chris Kottke
Edith Mooers
Vedran Sohinger
Peter Speh
Raul Tataru
Andras Vasy
Fang Wang
Lu Wang
Zuoqin Wang
Raymond Wu
Arthur Huang
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Introduction

I shall assume some familiarity with distribution theory, with basic analysis and
functional analysis and a passing knowledge of the theory of manifolds. Any one or
two of these prerequisites can be easily picked up along the way, but the prospective
student with none of them should perhaps do some preliminary reading:

Distributions: A good introduction is Friedlander’s book
Friedlander2
[6]. For a more ex-

haustive treatment see Volume I of Hörmander’s treatise
Hormander2
[10].

Analysis on manifolds: Most of what we need can be picked up from Munkres’
book

Munkres1
[11] or Spivak’s little book

Spivak1
[14].
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CHAPTER 1

Preliminaries: Distributions, the Fourier
transform and operatorsTempered

Microlocal analysis is a geometric theory of distributions, or a theory of geomet-
ric distributions. Rather than study general distributions – which are like general
continuous functions but worse – we consider more specific types of distributions
which actually arise in the study of differential and integral equations. Distri-
butions are usually defined by duality, starting from very “good” test functions;
correspondingly a general distribution is everywhere “bad”. The conormal dis-
tributions we shall study implicitly for a long time, and eventually explicitly, are
usually good, but like (other) people have a few interesting faults, i.e. singulari-
ties. These singularities are our principal target of study. Nevertheless we need the
general framework of distribution theory to work in, so I will start with a brief in-
troduction. This is designed either to remind you of what you already know or else
to send you off to work it out. (As noted above, I suggest Friedlander’s little book
MR86h:46002
[5] - there is also a newer edition with Joshi as coauthor as a good introduction to
distributions.) Volume 1 of Hörmander’s treatise

Hormander1
[9] has all that you would need;

it is a good general reference. Proofs of some of the main theorems are outlined in
the problems at the end of the chapter.

1.1. Schwartz test functionsS.Schwartz.Test

To fix matters at the beginning we shall work in the space of tempered distribu-
tions. These are defined by duality from the space of Schwartz functions, also called
the space of test functions of rapid decrease. We can think of analysis as starting
off from algebra, which gives us the polynomials. Thus in Rn we have the coordi-
nate functions, x1, . . . , xn and the constant functions and then the polynomials are
obtained by taking (finite) sums and products:

1.11.1 (1.1) φ(x) =
∑
|α|≤k

pαx
α, pα ∈ C, α ∈ Nn0 , α = (α1, . . . , αn),

where xα = xα1
1 . . . xαnn =

n∏
j=1

x
αj
j and N0 = {0, 1, 2, . . . }.

A general function φ : Rn −→ C is differentiable at x̄ if there is a linear function

`x̄(x) = c+
n∑
j=1

(xj − x̄j)dj such that for every ε > 0 there exists δ > 0 such that

1.21.2 (1.2) |φ(x)− `x̄(x)| ≤ ε|x− x̄| ∀ |x− x̄| < δ̄.

The coefficients dj are the partial derivative of φ at the point x̄. Then, φ is said
to be differentiable on Rn if it is differentiable at each point x̄ ∈ Rn; the partial

13



14 1. PRELIMINARIES: DISTRIBUTIONS, THE FOURIER TRANSFORM AND OPERATORS

derivatives are then also functions on Rn and φ is twice differentiable if the partial
derivatives are differentiable. In general it is k times differentiable if its partial
derivatives are k − 1 times differentiable.

If φ is k times differentiable then, for each x̄ ∈ Rn, there is a polynomial of
degree k,

pk(x; x̄) =
∑
|α|≤k

aαi
|α|(x− x̄)α/α!, |α| = α1 + · · ·+ αn,

(the factors of i are inserted just because the have been put into Dj = 1
1
∂
∂zj

) such

that for each ε > 0 there exists δ > 0 such that

1.31.3 (1.3) |φ(x)− pk(x, x̄)| ≤ ε|x− x̄|k if |x− x̄| < δ.

Then we set

1.41.4 (1.4) Dαφ(x̄) = aα.

If φ is infinitely differentiable all the Dαφ are infinitely differentiable (hence con-
tinuous!) functions.

1.5 Definition 1.1. The space of Schwartz test functions of rapid decrease consists
of those φ : Rn −→ C such that for every α, β ∈ Nn0

1.61.6 (1.5) sup
x∈Rn

|xβDαφ(x)| <∞;

it is denoted S(Rn).

From (
1.6
1.5) we construct norms on S(Rn) :

1.71.7 (1.6) ‖φ‖k = max
|α|+|β|≤k

sup
x∈Rn

|xαDβφ(x)|.

It is straightforward to check the conditions for a norm:

(1) ‖φ‖k ≥ 0, ‖φ‖k = 0⇐⇒ φ ≡ 0
(2) ‖tφ‖k = |t|‖φ‖k, t ∈ C
(3) ‖φ+ ψ‖k ≤ ‖φ‖k + ‖ψ‖k ∀ φ, ψ ∈ S(Rn).

The topology on S(Rn) is given by the metric

1.81.8 (1.7) d(φ, ψ) =
∑
k

2−k
‖φ− ψ‖k

1 + ‖φ− ψ‖k
.

See Problem
31.1.2000.260
1.4.

1.9 Proposition 1.1. With the distance function (
1.8
1.7), S(Rn) becomes a complete

metric space (in fact it is a Fréchet space).

Of course one needs to check that S(Rn) is non-trivial; however one can easily
see that

(1.8) exp(−|x|2) ∈ S(Rn).

In fact there are lots of smooth functions of compact support and

1.2.2000.2661.2.2000.266 (1.9) C∞c (Rn) = {u ∈ S(Rn);u = 0 in |x| > R = R(u)} ⊂ S(Rn) is dense.

The two elementary operations of differentiation and coordinate multiplication
give continuous linear operators:

31.1.2000.26331.1.2000.263 (1.10)
xj : S(Rn) −→ S(Rn)

Dj : S(Rn) −→ S(Rn).
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Other important operations we shall encounter include the exterior product,

1.101.10 (1.11)
S(Rn)× S(Rm) 3 (φ, ψ) 7→ φ� ψ ∈ S(Rn+m)

φ� ψ(x, y) = φ(x)ψ(y).

and pull-back or restriction. If Rk ⊂ Rn is identified as the subspace xj = 0, j > k,
then the restriction map

31.1.2000.26431.1.2000.264 (1.12) π∗k : S(Rn) −→ S(Rk), π∗kf(y) = f(y1, . . . , yk, 0, . . . , 0)

is continuous (and surjective).

1.2. Linear transformationsS.Linear.transformations

A linear transformation acts on Rn as a matrix (this is the standard action,
but it is potentially confusing since it means that for the basis elements ej ∈ Rn,

Lej =
n∑
k=1

Lkjek)

1.2.2000.2671.2.2000.267 (1.13) L : Rn −→ Rn, (Lx)j =

n∑
k=1

Ljkxk.

The Lie group of invertible linear transformations, GL(n,R) is fixed by several
equivalent conditions

1.2.2000.2681.2.2000.268 (1.14)

L ∈ GL(n,R)⇐⇒ det(L) 6= 0

⇐⇒ ∃ L−1 s.t. (L−1)Lx = x ∀ x ∈ Rn

⇐⇒ ∃ c > 0 s.t. c|x| ≤ |Lx| ≤ c−1|x| ∀ x ∈ Rn.

Pull-back of functions is defined by

L∗φ(x) = φ(Lx) = (φ ◦ L)(x).

The chain rule for differentiation shows that if φ is differentiable then

1.2.2000.2691.2.2000.269 (1.15) DjL
∗φ(x) = Djφ(Lx) =

n∑
k=1

Lkj(Dkφ)(Lx) = L∗((L∗Dj)φ)(x),

L∗Dj =

n∑
k=1

LkjDk

(so Dj transforms as a basis of Rn as it should, despite the factors of i.) From this
it follows that

1.2.2000.2701.2.2000.270 (1.16) L∗ : S(Rn) −→ S(Rn) is an isomorphism for L ∈ GL(n,R).

1.3. Tempered distributionsS.Tempered.distributions

As well as exterior multiplication (
1.10
1.11) there is the even more obvious multi-

plication operation

1.111.11 (1.17)
S(Rn)× S(Rn) −→ S(Rn)

(φ, ψ) 7→ φ(x)ψ(x)
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which turns S(Rn) into a commutative algebra without identity. There is also
integration

1.121.12 (1.18)

∫
: S(Rn) −→ C.

Combining these gives a pairing, a bilinear map

(1.19) S(Rn)× S(Rn) 3 (φ, ψ) 7−→
∫
Rn

φ(x)ψ(x)dx ∈ C.

If we fix φ ∈ S(Rn) this defines a continuous linear map:

1.131.13 (1.20) Tφ : S(Rn) 3 ψ 7−→
∫
φ(x)ψ(x)dx.

Continuity becomes the condition:

(1.21) ∃ k,Ck s.t. |Tφ(ψ)| ≤ Ck‖ψ‖k ∀ ψ ∈ S(Rn).

We generalize this by denoting by S ′(Rn) the dual space, i.e. the space of all con-
tinuous linear functionals

u ∈ S ′(Rn)⇐⇒ u : S(Rn) −→ C
∃ k,Ck such that |u(ψ)| ≤ Ck‖ψ‖k ∀ ψ ∈ S(Rn).

1.14 Lemma 1.1. The map

1.151.15 (1.22) S(Rn) 3 φ 7−→ Tφ ∈ S ′(Rn)

is an injection.

Proof. For any φ ∈ S(Rn), Tφ(φ) =
∫
|φ(x)|2dx, so Tφ = 0 implies φ ≡ 0. �

If we wish to consider a topology on S ′(Rn) it will normally be the weak topol-
ogy, that is the weakest topology with respect to which all the linear maps

(1.23) S ′(Rn) 3 u 7−→ u(φ) ∈ C, φ ∈ S(Rn)

are continuous. This just means that it is given by the seminorms

1.161.16 (1.24) S ′(Rn) 3 u 7−→ |u(φ)| ∈ R
where φ ∈ S(Rn) is fixed but arbitrary. The sets

1.1011.101 (1.25) {u ∈ S ′(Rn); |u(φj)| < εj , φj ∈ Φ}
form a basis of the neighbourhoods of 0 as Φ ⊂ S(Rn) runs over finite sets and the
εj are positive numbers.

1.17 Proposition 1.2. The continuous injection S(Rn) ↪→ S ′(Rn), given by (
1.15
1.22),

has dense range in the weak topology.

See Problem
P1.4
1.8 for the outline of a proof.

The maps xi, Dj extend by continuity (and hence uniquely) to operators

1.181.18 (1.26) xj , Dj : S ′(Rn) −→ S ′(Rn).

This is easily seen by defining them by duality. Thus if φ ∈ S(Rn) set DjTφ = TDjφ,
then

(1.27) TDjφ(ψ) =

∫
Djφψ = −

∫
φDjψ,
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the integration by parts formula. The definitions

(1.28) Dju(ψ) = u(−Djψ), xju(ψ) = u(xjψ), u ∈ S ′(Rn), ψ ∈ S(Rn)

satisfy all requirements, in that they give continuous maps (
1.18
1.26) which extend the

standard definitions on S(Rn).
To characterize the action of L ∈ GL(n,R) on S ′(Rn) consider the distribution

associated to L∗φ :

1.2.2000.2711.2.2000.271 (1.29) TL∗φ(ψ) =

∫
Rn
φ(Lx)ψ(x)dx

=

∫
Rn
φ(y)ψ(L−1y)|detL|−1dy = Tφ(|detL|−1(L−1)∗ψ).

Since the operator |detL|−1(L−1)∗ is an ismorphism of S(Rn) it follows that if we
take the definition by duality

1.2.2000.2721.2.2000.272 (1.30) L∗u(ψ) = u(|detL|−1(L−1)∗ψ), u ∈ S ′(Rn), ψ ∈ S(Rn), L ∈ GL(n,R)

=⇒ L∗ : S ′(Rn) −→ S ′(Rn)

is an isomorphism which extends (
1.2.2000.270
1.16) and satisfies

1.2.2000.2731.2.2000.273 (1.31)
DjL

∗u = L∗((L∗Dj)u), L∗(xju) = (L∗xj)(L
∗u), u ∈ S ′(Rn), L ∈ GL(n,R),

as in (
1.2.2000.269
1.15).

1.4. Two big theoremsS.Two.big.theorems

The association, by (
1.15
1.22), of a distribution to a function can be extended

considerably. For example if u : Rn −→ C is a bounded and continuous function
then

(1.32) Tu(ψ) =

∫
u(x)ψ(x)dx

still defines a distribution which vanishes if and only if u vanishes identically. Using
the operations (

1.18
1.26) we conclude that for any α, β ∈ Nn0

(1.33) xβDα
xu ∈ S ′(Rn) if u : Rn −→ C is bounded and continuous.

Conversely we have the Schwartz representation Theorem:

1.19 Theorem 1.1. For any u ∈ S ′(Rn) there is a finite collection uαβ : Rn −→ C
of bounded continuous functions, |α|+ |β| ≤ k, such that

(1.34) u =
∑

|α|+|β|≤k

xβDα
xuαβ .

Thus tempered distributions are just products of polynomials and derivatives of
bounded continuous functions. This is important because it says that distributions
are “not too bad”.

The second important result (long considered very difficult to prove, but there
is a relatively straightforward proof using the Fourier transform) is the Schwartz
kernel theorem. To show this we need to use the exterior product (

1.10
1.11). If K ∈

S ′(Rn+m) this allows us to define a linear map

(1.35) OK : S(Rm) −→ S ′(Rn)
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by

(1.36) OK(ψ)(φ) =

∫
K · φ� ψ dxdy.

1.20 Theorem 1.2. There is a 1-1 correspondence between continuous linear oper-
ators

(1.37) A : S(Rm) −→ S ′(Rn)

and S ′(Rn+m) given by A = OK .

Brief outlines of the proofs of these two results can be found in Problems
P2.4
1.15

and
P2.5
1.16.

1.5. ExamplesS.Examples

Amongst tempered distributions we think of S(Rn) as being the ‘trivial’ exam-
ples, since they are the test functions. One can say that the study of the singularities
of tempered distributions amounts to the study of the quotient

(1.38) S ′(Rn)/S(Rn)

which could, reasonably, be called the space of tempered microfunctions.
The sort of distributions we are interested in are those like the Dirac delta

“function”

(1.39) δ(x) ∈ S ′(Rn), δ(φ) = φ(0).

The definition here shows that δ is just the Schwartz kernel of the operator

(1.40) S(Rn) 3 φ 7−→ φ(0) ∈ C = S(R0).

This is precisely one reason it is interesting. More generally we can consider the
maps

(1.41) S(Rn) 3 φ 7−→ Dαφ(0), α ∈ Nn0 .

These have Schwartz kernels (−D)αδ since

1.211.21 (1.42) (−D)αδ(φ) = δ(Dαφ) = Dαφ(0).

If we write the relationship A = OK ←→ K as

(1.43) (Aψ)(φ) =

∫
K(x, y)φ(x)ψ(y)dxdy

then (
1.21
1.42) becomes

(1.44) Dαφ(0) =

∫
(−D)αδ(x)φ(x)dx.

More generally, if K(x, y) is the kernel of an operator A then the kernel of A ·Dα

is (−D)αyK(x, y) whereas the kernel of Dα ◦A is Dα
xK(x, y).



1.6. TWO LITTLE LEMMAS 19

1.6. Two little lemmasS.Two.little.lemmas

Above, some of the basic properties of tempered distributions have been out-
lined. The main “raison d’être” for S ′(Rn) is the Fourier transform which we
proceed to discuss. We shall use the Fourier transform as an almost indispensable
tool in the treatment of pseudodifferential operators. The description of differential
operators, via their Schwartz kernels, using the Fourier transform is an essential
motivation for the extension to pseudodifferential operators.

Partly as simple exercises in the theory of distributions, and more significantly
as preparation for the proof of the inversion formula for the Fourier transform we
consider two lemmas.

First recall that if u ∈ S ′(Rn) then we have defined Dju ∈ S ′(Rn) by

(1.45) Dju(φ) = u(−Djφ) ∀ φ ∈ S(Rn).

In this sense it is a “weak derivative”. Let us consider the simple question of the
form of the solutions to

2.12.1 (1.46) Dju = 0, u ∈ S ′(Rn).

Let Ij be the integration operator:

2.22.2 (1.47)

Ij : S(Rn) −→ S(Rn−1)

Ij(φ)(y1, . . . , yn−1) =

∫
φ(y1, . . . yj−1, x, yj , . . . yn−1)dx.

Then if πj : Rn −→ Rn−1 is the map πj(x) = (x1, . . . , xj−1, xj+1 . . . , xn), we define,
for v ∈ S ′(Rn−1),

(1.48) π∗j v(φ) = v(Ijφ) ∀ φ ∈ S(Rn).

It is clear from (
2.2
1.47) that Ij : S(Rn) −→ S(Rn−1) is continuous and hence π∗j v ∈

S ′(Rn) is well-defined for each v ∈ S ′(Rn−1).

2.3 Lemma 1.2. The equation (
2.1
1.46) holds if and only if u = π∗j v for some v ∈

S ′(Rn−1).

Proof. If φ ∈ S(Rn) and φ = Djψ with ψ ∈ S(Rn) then Ijφ = Ij(Djψ) = 0.
Thus if u = π∗j v then

(1.49) u(φ) = u(−Djψ) = π∗j v(−Djψ) = v(Ij(−Djψ)) = 0.

Thus u = π∗j v does always satisfy (
2.1
1.46).

Conversely suppose (
2.1
1.46) holds. Choose ρ ∈ S(R) with the property

(1.50)

∫
ρ(x)dx = 1.

Then each φ ∈ S(Rn) can be decomposed as

2.42.4 (1.51) φ(x) = ρ(xj)Ijφ(x1, . . . , xj−1, xj+1, . . . xn) +Djψ, ψ ∈ S(Rn).
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Indeed this is just the statement

ζ ∈ S(Rn), Ijζ = 0 =⇒ ψ(x) ∈ S(Rn) where

ψ(x) =

xj∫
−∞

ζ(x1, . . . , xj−1, t, xj+1, . . . , xn)dt

=

xj∫
∞

ζ(x1, . . . , xj−1, t, xj+1, . . . , xn)dt.

Using (
2.4
1.51) and (

2.1
1.46) we have

(1.52) u(φ) = u (ρ(xj)Ijφ(x1, . . . , xj−1, xj+1, . . . xn)) .

Thus if

(1.53) v(ψ) = u (ρ(xj)ψ(x1, . . . , xj−1, xj+1, . . . xn)) ∀ ψ ∈ S(Rn−1)

then v ∈ S ′(Rn−1) and u = π∗j v. This proves the lemma. �

Of course the notation u = π∗j v is much too heavy-handed. We just write
u(x) = v(x1, . . . , xj−1, xj+1, . . . , xn) and regard ‘u as being the distribution v but
in one additional variable’, just as you might for a function.

The second, related, lemma is just a special case of a general result of Schwartz
concerning the support of a distribution. The particular result is:

2.5 Lemma 1.3. Suppose u ∈ S ′(Rn) then from xju = 0, j = 1, . . . n it follows that
u = cδ(x) for some constant c.

Proof. Again we use the definition of multiplication and a dual result for
test functions. Namely, choose ρ ∈ S(Rn) with ρ(x) = 1 in |x| < 1

2 , ρ(x) = 0 in
|x| ≥ 3/4. Then any φ ∈ S(Rn) can be written

2.62.6 (1.54) φ = φ(0) · ρ(x) +

n∑
j=1

xjψj(x), ψj ∈ S(Rn).

This in turn can be proved using Taylor’s formula as I proceed to show. Thus

(1.55) φ(x) = φ(0) +

n∑
j=1

xjζj(x) in |x| ≤ 1, with ζj ∈ C∞.

Then,

(1.56) ρ(x)φ(x) = φ(0)ρ(x) +

n∑
j=1

xjρζj(x)

and ρζj ∈ S(Rn). Thus it suffices to check (
2.6
1.54) for (1 − ρ)φ, which vanishes

identically near 0. Then ζ = |x|−2(1− ρ)φ ∈ S(Rn) and so

(1.57) (1− ρ)φ = |x|2ζ =

n∑
j=1

xj(xjζ)
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finally gives (
2.6
1.54) with ψj(x) = ρ(x)ζj(x) + xjζ(x). Having proved the existence

of such a decomposition we see that if xju = 0 for all j then

(1.58) u(φ) = u(φ(0)ρ(x)) +

n∑
j=1

u(xjψj) = cφ(0), c = u(ρ(x)),

i.e. u = cδ(x). �

1.7. Fourier transformS.Fourier.transform

Our normalization of the Fourier transform will be

2.72.7 (1.59) Fφ(ξ) =

∫
e−iξ·xφ(x)dx.

As you all know the inverse Fourier transform is given by

2.82.8 (1.60) Gψ(x) = (2π)−n
∫
eix·ξψ(ξ)dξ.

Since it is so important here I will give a proof of this invertibility. First however,
let us note some of the basic properties.

Both F and G give continuous linear maps

2.92.9 (1.61) F ,G : S(Rn) −→ S(Rn).

To see this observe first that the integrals in (
2.7
1.59) and (

2.8
1.60) are absolutely con-

vergent:

(1.62) |Fφ(ξ)| ≤
∫
|φ(x)|dx ≤

∫
(1 + |x|2)−ndx× sup

x∈Rn
(1 + |x|2)n|φ(x)|,

where we use the definition of S(Rn). In fact this shows that sup |Fφ| < ∞ if φ ∈
S(Rn). Formal differentiation under the integral sign gives an absolutely convergent
integral:

DjFφ(ξ) =

∫
Dξje

−ixξφ(x)dx =

∫
e−ix·ξ(−xjφ)dx

since sup
x

(1 + |x|2)n|xjφ| <∞. Then it follows that DjFφ is also bounded, i.e. Fφ

is differentiable, and (
2.10
1.7) holds. This argument can be extended to show that Fφ

is C∞,

2.112.11 (1.63) DαFφ(ξ) = F
(
(−x)αφ

)
.

Similarly, starting from (
2.7
1.59), we can use integration by parts to show that

ξjFφ(ξ) =

∫
e−ixξξjφ(x)dx =

∫
e−ix·ξ(Djφ)(x)dx

i.e. ξjFφ = F(Djφ). Combining this with (
2.11
1.63) gives

2.122.12 (1.64) ξαDβ
ξFφ = F

(
Dα · [(−x)βφ]

)
.

Since Dα
x ((−x)βφ) ∈ S(Rn) we conclude

(1.65) sup |ξαDβ
ζFφ| <∞ =⇒ Fφ ∈ S(Rn).

This map is continuous since

sup |ξαDβ
ξFφ| ≤ C · sup

x
|(1 + |x|2)nDα

x [(−x)βφ]

=⇒ ‖Fφ‖k ≤ Ck‖φ‖k+2n, ∀ k.
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The identity (
2.12
1.64), written in the form

2.132.13 (1.66)
F(Djφ) = ξjFφ
F(xjφ) = −DξjFφ

is already the key to the proof of invertibility:

2.14 Theorem 1.3. The Fourier transform gives an isomorphism F : S(Rn) ←→
S(Rn) with inverse G.

Proof. We shall use the idea of the Schwartz kernel theorem. It is important
not to use this theorem itself, since the Fourier transform is a key tool in the
(simplest) proof of the kernel theorem. Thus we consider the composite map

(1.67) G ◦ F : S(Rn) −→ S(Rn)

and write down its kernel. Namely

2.152.15 (1.68)
K(φ) = (2π)−n

∫∫∫
eiy·ξ−ix·ξφ(y, x)dxdξdy

∀ φ ∈ S(Rny × Rnx) =⇒ K ∈ S ′(R2n).

The integrals in (
2.15
1.68) are iterated, i.e. should be performed in the order indicated.

Notice that if ψ, ζ ∈ S(Rn) then indeed

2.162.16 (1.69) (G ◦ F(ψ))(ζ) =

∫
ζ(y)(2π)−n

(∫
eiy·ξ

∫
e−ix·ξψ(x)dxdξ

)
dy

= K(ζ � ψ)

so K is the Schwartz kernel of G ◦ F .
The two identities (

2.13
1.66) translate (with essentially the same proofs) to the

conditions on K :

2.172.17 (1.70)

{
(Dxj +Dyj )K(x, y) = 0

(xj − yj)K(x, y) = 0
j = 1, . . . , n.

Next we use the freedom to make linear changes of variables, setting

2.182.18 (1.71)
KL(x, z) = K(x, x− z), KL ∈ S ′(R2n)

i.e. KL(φ) = K(ψ), ψ(x, y) = φ(x, x− y)

where the notation will be explained later. Then (
2.17
1.70) becomes

2.192.19 (1.72) DxjKL(x, z) = 0 and zjKL(x, z) = 0 for j = 1, . . . n.

This puts us in a position to apply the two little lemmas. The first says KL(x, z) =
f(z) for some f ∈ S ′(Rn) and then the second says f(z) = cδ(z). Thus

(1.73) K(x, y) = cδ(x− y) =⇒ G ◦ F = c Id .

It remains only to show that c = 1. That c 6= 0 is obvious (since F(δ) = 1).
The easiest way to compute the constant is to use the integral identity

(1.74)

∞∫
−∞

e−x
2

dx = π
1
2

to show that1

1See Problem
1.2.2000.278
1.9.
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(1.75)

F(e−|x|
2

) = π
n
2 e−|ξ|

2/4

=⇒ G(e−|ξ|
2/4) = π−

n
2 e−|x|

2

=⇒ G · F = Id .

�

Now (2π)nG is actually the adjoint of F :

1.1031.103 (1.76)

∫
φ(ζ)Fψ(ζ)dζ = (2π)n

∫
(Gφ) · ψdx ∀ φ, ψ ∈ S(Rn).

It follows that we can extend F to a map on tempered distributions

(1.77)
F : S ′(Rn) −→ S ′(Rn)

Fu(φ) = u((2π)nGφ) ∀ φ ∈ S(Rn)

Then we conclude

2.20 Corollary 1.1. The Fourier transform extends by continuity to an isomor-
phism

(1.78) F : S ′(Rn)←→ S ′(Rn)

with inverse G, satisfying the identities (
2.13
1.66).

Although I have not discussed Lebesgue integrability I assume familiarity with
the basic Hilbert space

L2(Rn) ={
u : Rn −→ C; f is measurable and

∫
Rn
|f(x)|2dx <∞

}
/ ∼,

f ∼ g ⇐⇒ f = g almost everywhere.

This also injects by the same integration map (
1.2.2000.274
1.104) with S(Rn) as a dense subset

S(Rn) ↪→ L2(Rn) ↪→ S ′(Rn).

1.102 Proposition 1.3. The Fourier transform extends by continuity from the dense
subspace S(Rn) ⊂ L2(Rn), to an isomorphism

F : L2(Rn)←→ L2(Rn)

satisfying ‖Fu‖L2 = (2π)
1
2n‖u‖L2 .

Proof. Given the density of S(Rn) in L2(Rn), this is also a consequence of
(
1.103
1.76), since setting φ = Fu, for u ∈ S(Rn), gives Parseval’s formula∫

Fu(ζ)Fv(ζ) = (2π)n
∫
u(x)v(x)dx.

Setting v = u gives norm equality (which is Plancherel’s formula).
An outline of the proof of the density statement is given in the problems below.

�
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1.8. Differential operatorsS.Differential.operators

The simplest examples of the Fourier transform of distributions are immediate
consequences of the definition and (

2.13
1.66). Thus

(1.79) F(δ) = 1

as already noted and hence, from (
2.13
1.66),

(1.80) F(Dαδ(x)) = ξα ∀ α ∈ Nn0 .

Now, recall that the space of distributions with support the point 0 is just:

2.212.21 (1.81)
{
u ∈ S ′(Rn); sup(u) ⊂ {0}

}
=
{
u =

∑
finite

cαD
αδ
}
.

Thus we conclude that the Fourier transform gives an isomorphism

2.222.22 (1.82) F :
{
u ∈ S ′(Rn); supp(u) ⊂ {0}

}
←→ C[ξ] = {polynomials in ξ}.

Another way of looking at this same isomorphism is to consider partial differ-
ential operators with constant coefficients:

2.232.23 (1.83)
P (D) : S(Rn) −→ S(Rn)

P (D) =
∑

cαD
α.

The identity becomes

2.242.24 (1.84) F(P (D)φ)(ξ) = P (ξ)F(φ)(ξ) ∀ φ ∈ S(Rn)

and indeed the same formula holds for all φ ∈ S ′(Rn). Using the simpler notation
û(ξ) = Fu(ξ) this can be written

2.252.25 (1.85) ̂P (D)u(ξ) = P (ξ)û(ξ), P (ξ) =
∑

cαξ
α.

The polynomial P is called the (full) characteristic polynomial of P (D); of course
it determines P (D) uniquely.

It is important for us to extend this formula to differential operators with
variable coefficients. Using (

2.7
1.59) and the inverse Fourier transform we get

2.262.26 (1.86) P (D)u(x) = (2π)−n
∫∫

ei(x−y)·ξP (ξ)u(y)dydξ

where again this is an iterated integral. In particular the inversion formula is just
the case P (ξ) = 1. Consider the space

(1.87) C∞∞(Rn) =
{
u : Rn −→ C; sup

x
|Dαu(x)| <∞ ∀ α

}
the space of C∞ function with all derivatives bounded on Rn. Of course

(1.88) S(Rn) ⊂ C∞∞(Rn)

but C∞∞(Rn) is much bigger, in particular 1 ∈ C∞∞(Rn). Now by Leibniz’ formula

(1.89) Dα(uv) =
∑
β≤α

(
α

β

)
Dβu ·Dα−βv

it follows that S(Rn) is a module over C∞∞(Rn). That is,

(1.90) u ∈ C∞∞(Rn), φ ∈ S(Rn) =⇒ uφ ∈ S(Rn).
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From this it follows that if

(1.91) P (x,D) =
∑
|α|≤m

pα(x)Dα, pα ∈ C∞∞(Rn)

then P (x,D) : S(Rn) −→ S(Rn). The formula (
2.26
1.86) extends to

2.272.27 (1.92) P (x,D)φ = (2π)−n
∫
ei(x−y)·ξP (x, ξ)φ(y)dydξ

where again this is an iterated integral. Here

(1.93) P (x, ξ) =
∑
|α|≤m

pα(x)ξα

is the (full) characteristic polynomial of P.

1.9. Radial compactificationSect.radial.compactification

For later purposes, and general propaganda, consider the three standard com-
pactifications of of Rn. They are the one-point, the quadratic and the radial com-
pactifications.

1.9.1. One-point compactification. This is most familiar in the case of R2

as C compactified to the Riemann sphere. However, it works in general by the
stereographic map

6.5.2008.7836.5.2008.783 (1.94) Rn 3 z 7−→
(

4− |z|2

4 + |z|2
,

4z

4 + |z|2

)
. ∈ Sn ⊂ Rn+1

We will mainly consider this in the case of n = 1 when it gives an smooth map
from R into the unit circle. Rotating the axes so that the origin is mapped to the
point (1, 0) (rather than i = (0, 1)) in complex notation this is

6.5.2008.7846.5.2008.784 (1.95) R 3 t 7−→ eiθ(t) ∈ S ⊂ C, θ(t) = arctan(
4t

4 + t2
).

1.9.2. Quadratic compactification. The smooth map

1.1041.104 (1.96) QRC : Rn 3 x 7−→ x

(1 + |x|2)
1
2

∈ Rn

is 1-1 and maps onto the interior of the unit ball, Bn = {|x| ≤ 1}. Consider the
subspace

1.1051.105 (1.97) Ċ∞(Bn) = {u ∈ S(Rn); supp(u) ⊂ Bn}.

This is just the set of smooth functions on Rn which vanish outside the unit ball.
Then the composite (‘pull-back’) map

1.1061.106 (1.98) QRC∗ : Ċ∞(Bn) 3 u 7−→ u ◦QRC ∈ S(Rn)

is a topological isomorphism. A proof is indicated in the problems below.
The dual space of Ċ∞(Bn) is generally called the space of ‘extendible distri-

butions’ on Bn – because they are all given by restricting elements of S ′(Rn) to

Ċ∞(Bn). Thus QRC also identifies the tempered distributions on Rn with the ex-
tendible distributions on Bn. We shall see below that various spaces of functions on
Rn take interesting forms when pulled back to Bn. I often find it useful to ‘bring
infinity in’ in this way.
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Why is this the ‘quadratic’ radial compactification, and not just the radial
compactification? There is a good reason which is discussed in the problems below.

1.9.3. Radial compactification. The actual radial compactification is a closely
related map which identifies Euclidean space, Rn, with the interior of the upper
half of the n-sphere in Rn+1 :

1.2.2000.2751.2.2000.275 (1.99) RC : Rn 3 x 7−→
(

1

(1 + |x|2)
1
2

,
x

(1 + |x|2)
1
2

)
∈ Sn,1 = {X = (X0, X

′) ∈ Rn+1;X0 ≥ 0, X2
0 + |X ′|2 = 1}

Since the half-sphere is diffeomorphic to the ball (as compact manifolds with bound-
ary) these two maps can be compared – they are not the same. However it is true

that RC also identifies S(Rn) with Ċ∞(Sn,1).

1.10. ProblemsS.Problems.1

P1.1 Problem 1.1. Suppose φ : Rn −→ C is a function such that for each point
x̄ ∈ Rn and each k ∈ N0 there exists a constant εk > 0 and a polynomial pk(x; x̄)
(in x) for which

(1.100) |φ(x)− pk(x; x̄)| ≤ 1

εk
|x− x̄|k+1 ∀ |x− x̄| ≤ εk.

Does it follow that φ is infinitely differentiable – either prove this or give a counter-
example.

P1.2 Problem 1.2. Show that the function u(x) = exp(x) cos[ex] ‘is’ a tempered
distribution. Part of the question is making a precise statement as to what this
means!

P1.3 Problem 1.3. Write out a careful (but not necessarily long) proof of the ‘easy’
direction of the Schwartz kernel theorem, that any K ∈ S ′(Rn+m) defines a con-
tinuous linear operator

(1.101) OK : S(Rm) −→ S ′(Rn)

[with respect to the weak topology on S ′(Rn) and the metric topology on S(Rm)]
by

(1.102) OKφ(ψ) = K(ψ � φ).

[Hint: Work out what the continuity estimate on the kernel, K, means when it is
paired with an exterior product ψ � φ.]

31.1.2000.260 Problem 1.4. Show that d in (
1.8
1.7) is a metric on S(Rn). [Hint: If ‖ · ‖ is a

norm on a vector space show that

‖u+ v‖
1 + ‖u+ v‖

≤ ‖u‖
1 + ‖u‖

+
‖v‖

1 + ‖v‖
.]

31.1.2000.261 Problem 1.5. Show that a sequence φn in S(Rn) is Cauchy, resp. converges
to φ, with respect to the metric d in Problem

31.1.2000.260
1.4 if and only if φn is Cauchy, resp.

converges to φ, with respect to each of the norms ‖ · ‖k.
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31.1.2000.262 Problem 1.6. Show that a linear map F : S(Rn) −→ S(Rp) is continuous
with respect to the metric topology given in Problem

31.1.2000.260
1.4 if and only if for each k

there exists N(k) ∈ N a constant Ck such that

‖Fφ‖k ≤ Ck‖φ‖N(k) ∀ φ ∈ S(Rn).

Give similar equivalent conditions for continuity of a linear map f : S(Rn) −→ C
and for a bilinear map S(Rn)× S(Rp) −→ C.

31.1.2000.265 Problem 1.7. Check the continuity of (
31.1.2000.264
1.12).

P1.4 Problem 1.8. Prove Proposition
1.17
1.2. [Hint: It is only necessary to show that

if u ∈ S ′(Rn) is fixed then for any of the open sets in (1.25), B, (with all the εj > 0)
there is an element φ ∈ S(Rn) such that u− Tφ ∈ B. First show that if φ′1, . . . φ

′
p is

a basis for Φ then the set

(1.103) B′ = {v ∈ S ′(Rn); |〈v, φ′j〉| < δj

is contained in B if the δj > 0 are chosen small enough. Taking the basis to be
orthonormal, show that u− ψ ∈ B′ can be arranged for some ψ ∈ Φ.]

1.2.2000.278 Problem 1.9. Compute the Fourier transform of exp(−|x|2) ∈ S(Rn). [Hint:
The Fourier integral is a product of 1-dimensional integrals so it suffices to assume
x ∈ R. Then ∫

e−iξxe−x
2

dx = e−ξ
2/4

∫
e−(x+ i

2 ξ)
2

dx.

Interpret the integral as a contour integral and shift to the new contour where
x+ i

2ξ is real.]

P1.5 Problem 1.10. Show that (
1.13
1.20) makes sense for φ ∈ L2(Rn) (the space of

(equivalence classes of) Lebesgue square-integrable functions and that the resulting
map L2(Rn) −→ S ′(Rn) is an injection.

P1.6 Problem 1.11. Suppose u ∈ L2(Rn) and that

D1D2 · · ·Dnu ∈ (1 + |x|)−n−1L2(Rn),

where the derivatives are defined using Problem
P1.5
1.10. Using repeated integration,

show that u is necessarily a bounded continuous function. Conclude further that
for u ∈ S ′(Rn)

1.2.2000.2741.2.2000.274 (1.104)
Dαu ∈ (1 + |x|)−n−1L2(Rn) ∀ |α| ≤ k + n

=⇒ Dαu is bounded and continuous for |α| ≤ k.

[This is a weak form of the Sobolev embedding theorem.]

P2.1 Problem 1.12. The support of a (tempered) distribution can be defined in
terms of the support of a test function. For φ ∈ S(Rn) the support, supp(φ), is the
closure of the set of points at which it takes a non-zero value. For u ∈ S ′(Rn) we
define

(1.105) supp(u) = O{, O =
⋃
{O′ ⊂ Rn open; supp(φ) ⊂ O′ =⇒ u(φ) = 0} .

Show that the definitions for S(Rn) and S ′(Rn) are consistent with the inclusion
S(Rn) ⊂ S ′(Rn). Prove that supp(δ) = {0}.
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P2.2 Problem 1.13. For simplicity in R, i.e. with n = 1, prove Schwartz theorem
concerning distributions with support the origin. Show that with respect to the
norm ‖ · ‖k the space

(1.106) {φ ∈ S(R);φ(x) = 0 in |x| < ε, ε = ε(φ) > 0}
is dense in

(1.107)
{
φ ∈ S(R);φ(x) = xk+1ψ(x), ψ ∈ S(R)

}
.

Use this to show that

(1.108) u ∈ S ′(R), supp(u) ⊂ {0} =⇒ u =
∑

`, finite

c`D
`
xδ(x).

P2.3 Problem 1.14. Show that if P is a differential operator with coefficients in
C∞∞(Rn) then P is local in the sense that

(1.109) supp(Pu) ⊂ supp(u) ∀ u ∈ S ′(Rn).

The converse of this, for an operator P : S(Rn) −→ S(Rn) where (for simplicity)
we assume

(1.110) supp(Pu) ⊂ K ⊂ Rn

for a fixed compact set K, is Peetre’s theorem. How would you try to prove this?
(No full proof required.)

P2.4 Problem 1.15. (Schwartz representation theorem) Show that, for any p ∈ R
the map

2.282.28 (1.111) Rp : S(Rn) 3 φ 7−→ (1 + |x|2)−p/2F−1[(1 + |ξ|2)−p/2Fφ] ∈ S(Rn)

is an isomorphism and, using Problem
P1.6
1.11 or otherwise,

(1.112) p ≥ n+ 1 + k =⇒ ‖Rpφ‖k ≤ Ck‖φ‖L2 , ∀ φ ∈ S(Rn).

Let Rtp : S ′(Rn) −→ S ′(Rn) be the dual map (defined by Rtpu(φ) = u(Rpφ)). Show

that Rtp is an isomorphism and that if u ∈ S ′(Rn) satisfies

(1.113) |u(φ)| ≤ C‖φ‖k, ∀ φ ∈ S(Rn)

then Rtpu ∈ L2(Rn), if p ≥ n+ 1 + k, in the sense that it is in the image of the map

in Problem
P1.5
1.10. Using Problem

P1.6
1.11 show that Rn+1(Rtn+1+ku) is bounded and

continuous and hence that

2.292.29 (1.114) u =
∑

|α|+|β|≤2n+2+k

xβDαuα,β

for some bounded continuous functions uα,β .

P2.5 Problem 1.16. (Schwartz kernel theorem.) Show that any continuous linear
operator

T : S(Rmy ) −→ S ′(Rnx)

extends to a continuous linear operator

T : (1 + |y|2)−k/2Hk(Rmy ) −→ (1 + |x|2)−q/2Hq(Rnx)

for some k and q. Deduce that the operator

T̃ = (1 + |Dx|2)(−n−1−q)/2(1 + |x|2)q/2 ◦ T ◦ (1 + |y|2)k/2(1 + |D|2)−k/2 :

L2(Rm) −→ C∞(Rn)
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is continuous with values in the bounded continuous functions on Rn. Fixing a point
x ∈ Rn, u 7−→ (T̃ u)(x) defines a bounded linear functional on L2(Rm) to which

Riesz’ representation theorem can be applied. It follows that T̃ has Schwartz’
kernel a bounded continuous map from Rn to L2(Rm, ) i.e. in C∞(Rn;L2(Rm)) ⊂
S ′(Rn+m) and hence that T itself has a tempered Schwartz kernel.

1.2.2000.301 Problem 1.17. Radial compactification and symbols.

PolyDouble Problem 1.18. Series of problems discussing double polyhomogeneous sym-
bols.





CHAPTER 2

Pseudodifferential operators on Euclidean spaceC.Euclidean

Formula (
2.27
1.92) for the action of a differential operator (with coefficients in

C∞∞(Rn)) on S(Rn) can be written

3.13.1 (2.1)

P (x,D)u = (2π)−n
∫
ei(x−y)·ξP (x, ξ)u(y)dydξ

= (2π)−n
∫
eix·ξP (x, ξ)û(ξ)dξ

where û(ξ) = Fu(ξ) is the Fourier transform of u. We shall generalize this formula
by generalizing P (x, ξ) from a polynomial in ξ to a symbol, which is to say a smooth
function satisfying certain uniformity conditions at infinity. In fact we shall also
allow the symbol, or rather the amplitude, in the integral (

3.1
2.1) to depend in addition

on the ‘incoming’ variables, y :

3.23.2 (2.2) A(x,D)u = (2π)−n
∫
ei(x−y)·ξa(x, y, ξ)u(y)dydξ, u ∈ S(Rn).

Of course it is not immediately clear that this integral is well-defined.
To interpret (

3.2
2.2) we first look into the definition and properties of symbols.

Then we show how this integral can be interpreted as an oscillatory integral and
that it thereby defines an operator on S(Rn). We then investigate the properties of
these pseudodifferential operators at some length.

2.1. SymbolsS.Symbols

A polynomial, p, in ξ, of degree at most m, satisfies a bound

3.33.3 (2.3) |p(ξ)| ≤ C(1 + |ξ|)m ∀ ξ ∈ Rn.

Since successive derivatives, Dα
ξ p(ξ), are polynomials of degree m − |α|, for any

multiindex α, we get the family of estimates

3.43.4 (2.4) |Dα
ξ p(ξ)| ≤ Cα(1 + |ξ|)m−|α| ∀ ξ ∈ Rn, α ∈ Nn0 .

Of course if |α| > m then Dα
ξ p ≡ 0, so we can even take the constants Cα to be

independent of α. If we consider the characteristic polynomial P (x, ξ) of a differ-
ential operator of order m with coefficients in C∞∞(Rn) (i.e. all derivatives of the
coefficients are bounded) (

3.4
2.4) is replaced by

3.53.5 (2.5)
∣∣Dα

xD
β
ξ P (x, ξ)

∣∣ ≤ Cα,β(1 + |ξ|)m−|β| ∀ (x, ξ) ∈ Rn × Rn, α, β ∈ Nn0 .

There is no particular reason to have the same number of x variables as of ξ vari-
ables, so in general we define:

31
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3.6 Definition 2.1. The space Sm∞(Rp;Rn) of symbols of order m (with coefficients
in C∞∞(Rp)) consists of those functions a ∈ C∞(Rp×Rn) satisfying all the estimates

3.73.7 (2.6)
∣∣Dα

zD
β
ξ a(z, ξ)

∣∣ ≤ Cα,β(1 + |ξ|)m−|β| on Rp × Rn ∀ α ∈ Np0, β ∈ Nn0 .

For later reference we even define Sm∞(Ω;Rn) when Ω ⊂ Rp and Ω ⊂ clos(int(Ω))
as consisting of those a ∈ C∞(int(Ω)×Rn) satisfying (

3.7
2.6) for (z, ξ) ∈ int(Ω)×Rn.

The estimates (
3.7
2.6) can be rewritten

3.83.8 (2.7)
∥∥a∥∥

N,m
= sup
z∈int(Ω)
ξ∈Rn

max
|α|+|β|≤N

(1 + |ξ|)−m+|β|∣∣Dα
zD

β
ξ a(z, ξ)

∣∣ <∞.
With these norms Sm∞(Ω;Rn) is a Fréchet space, rather similar in structure to
C∞∞(Rn). Thus the topology is given by the metric

3.93.9 (2.8) d(a, b) =
∑
N≥0

2−N
‖a− b‖N,m

1 + ‖a− b‖N,m
, a, b ∈ Sm∞(Ω;Rn).

The subscript ‘∞’ here is not standard notation. It refers to the assumption of
uniform boundedness of the derivatives of the ‘coefficients’. More standard notation
would be just Sm(Ω×Rn), especially for Ω = Rp, but I think this is too confusing.

A more significant issue is: Why this class precisely? As we shall see below,
there are other choices which are not only possible but even profitable to make.
However, the present one has several virtues. It is large enough to cover most
of the straightforward things we want to do (at least initially) and small enough
to ‘work’ easily. It leads to what I shall refer to as the ‘traditional’ algebra of
pseudodifferential operators.

Now to some basic properties. First notice that

(2.9) (1 + |ξ|)m ≤ C(1 + |ξ|)m
′
∀ ξ ∈ Rn ⇐⇒ m ≤ m′.

Thus we have an inclusion

3.103.10 (2.10) Sm∞(Ω;Rn) ↪→ Sm
′

∞ (Ω;Rn) ∀ m′ ≥ m.

Moreover this inclusion is continuous, since from (
3.8
2.7), ‖a‖N,m′ ≤ ‖a‖N,m if a ∈

Sm(Ω;Rn) and m′ ≥ m. Since these spaces increase with m we think of them as a
filtration of the big space

3.113.11 (2.11) S∞∞(Ω;Rn) =
⋃
m

Sm∞(Ω;Rn).

Notice that the two ‘∞s’ here are quite different. The subscript refers to the fact
that the ‘coefficients’ are bounded and stands for L∞ whereas the superscript ‘∞’
stands really for R. The residual space of this filtration is

3.123.12 (2.12) S−∞∞ (Ω;Rn) =
⋂
m

Sm∞(Ω;Rn).

In fact the inclusion (
3.10
2.10) is never dense if m′ > m. Instead we have the following

rather technical, but nevertheless very useful, result.

3.13 Lemma 2.1. For any m ∈ R and any a ∈ Sm∞(Ω;Rn) there is a sequence in
S−∞∞ (Ω;Rn) which is bounded in Sm∞(Ω;Rn) and converges to a in the topology

of Sm
′

∞ (Ω;Rn) for any m′ > m; in particular S−∞∞ (Ω;Rn) is dense in the space

Sm∞(Ω;Rn) in the topology of Sm
′

∞ (Ω;Rn) for m′ > m.
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The reason one cannot take m′ = m here is essentially the same reason that un-
derlies the fact that S(Rn) is not dense in C∞∞(Rn). Namely any uniform limit
obtained from a converging Schwartz sequence must vanish at infinity. In particu-
lar the constant function 1 ∈ S0

∞(Rp;Rn) cannot be in the closure in this space of
S−∞∞ (Rp;Rn) if n > 0.

Proof. Choose φ ∈ C∞c (Rn) with 0 ≤ φ(ξ) ≤ 1, φ(ξ) = 1 if |ξ| < 1, φ(ξ) = 0 if
|ξ| > 2 and consider the sequence

(2.13) ak(z, ξ) = φ(ξ/k)a(z, ξ), a ∈ Sm∞(Ω;Rn).

We shall show that ak ∈ S−∞∞ (Ω,Rn) is a bounded sequence in Sm∞(Ω;Rn) and that

ak −→ a in Sm
′

∞ (Ω;Rn) for any m′ > m. Certainly for each N

(2.14) |ak(z, ξ)| ≤ CN,k(1 + |ξ|)−N

since φ has compact support. Leibniz’ formula gives

1.2.2000.3531.2.2000.353 (2.15) Dα
zD

β
ξ ak(z, ξ) =

∑
β′≤β

(
β′

β

)
k−|β

′|(Dβ′φ)(ξ/k)Dα
zD

β−β′
ξ a(z, ξ).

On the support of φ(ξ/k), |ξ| ≤ k so, using the symbol estimates on a, it follows
that ak is bounded in Sm∞(Ω;Rn). We easily conclude that

(2.16)
∣∣Dα

zD
β
ξ ak(z, ξ)

∣∣ ≤ CN,α,β,k(1 + |ξ|)−N ∀ α, β,N, k.

Thus ak ∈ S−∞∞ (Ω;Rn).
So consider the difference

3.143.14 (2.17) (a− ak)(z, ξ) = (1− φ)(ξ/k) a(z, ξ).

Now, |(1 − φ)(ξ/k)| = 0 in |ξ| ≤ k so we only need estimate the difference in
|ξ| ≥ k where this factor is bounded by 1. In this region 1 + |ξ| ≥ 1 + k so, since
−m′ +m < 0,

(2.18) (1 + |ξ|)−m
′ ∣∣(a− ak)(z, ξ)

∣∣ ≤
(1 + k)−m

′+m sup
z,ξ
|(1 + |ξ|)−m|a(z, ξ)| ≤ (1 + k)−m

′+m‖a‖0,m −→ 0.

This is convergence with respect to the first symbol norm.
Next consider the ξ derivatives of (

3.14
2.17). Using Leibniz’ formula

Dβ
ξ (a− ak) =

∑
γ≤β

(
β

γ

)
Dβ−γ
ξ (1− φ)(

ξ

k
) ·Dγ

ξ a(z, ξ)

= (1− φ)(
ξ

k
) ·Dβ

ξ a(z, ξ)−
∑
γ<β

(
β

γ

)(
Dβ−γφ

)
(
ξ

k
) · k−|β−γ|Dγ

ξ a(z, ξ).

In the first term, Dβ
ξ a(z, ξ) is a symbol of order m− |β|, so by the same argument

as above

(2.19) sup
ξ

(1 + |ξ|)−m
′+|β||(1− φ)(

ξ

k
)Dβ

ξ a(x, ξ)| −→ 0

as k −→∞ if m′ > m. In all the other terms, (Dβ−γφ)(ζ) has compact support, in
fact 1 ≤ |ζ| ≤ 2 on the support. Thus for each term we get a bound

(2.20) sup
k≤|ξ|≤2k

(1 + |ξ|)−m
′+|β| · k−|β−γ|C · (1 + |ξ|)m−|γ| ≤ Ck−m

′+m.
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The variables z play the rôle of parameters so we have in fact shown that

(2.21) sup
z∈Ω
ξ∈Rn

(1 + |ξ|)−m
′+|β|∣∣Dα

zD
β
ξ (a− ak)

∣∣ −→ 0 as k −→∞.

This means ak −→ a in each of the symbol norms, and hence in the topology of
Sm

′

∞ (Rp;Rn) as desired. �

In fact this proof suggests a couple of other ‘obvious’ results. Namely

3.173.17 (2.22) Sm∞(Ω;Rn) · Sm
′

∞ (Ω;Rn) ⊂ Sm+m′

∞ (Ω;Rn).

This can be proved directly using Leibniz’ formula:

sup
ξ

(1 + |ξ|)−m−m
′+|β|∣∣Dα

zD
β
ξ (a(z, ξ) · b(z, ξ))

∣∣
≤
∑
µ≤α
γ≤β

(
α

µ

)(
β

γ

)
sup
ξ

(1 + |ξ|)−m+|γ|∣∣Dµ
zD

γ
ξ a(z, ξ)

∣∣
× sup

ξ
(1 + |ξ|)−m

′+|β−γ|∣∣Dα−µ
z Dβ−γ

ξ b(z, ξ)
∣∣ <∞.

We also note the action of differentiation:

3.183.18 (2.23)
Dα
z : Sm∞(Ω;Rn) −→ Sm∞(Ω;Rn) and

Dβ
ξ : Sm∞(Ω;Rn) −→ Sm−|β|∞ (Ω;Rn).

In fact, while we are thinking about these things we might as well show the impor-
tant consequence of ellipticity. A symbol a ∈ Sm∞(Ω;Rn) is said to be (globally)
elliptic if

3.193.19 (2.24) |a(z, ξ)| ≥ ε(1 + |ξ|)m − C(1 + |ξ|)m−1, ε > 0

or equivalently1

3.203.20 (2.25) |a(z, ξ)| ≥ ε(1 + |ξ|)m in |ξ| ≥ Cε, ε > 0.

3.21 Lemma 2.2. If a ∈ Sm∞(Ω;Rn) is elliptic there exists b ∈ S−m∞ (Ω;Rn) such that

3.223.22 (2.26) a · b− 1 ∈ S−∞∞ (Ω;Rn).

Proof. Using (
3.20
2.25) choose φ as in the proof of Lemma

3.13
2.1 and set

3.233.23 (2.27) b(z, ξ) =

{
1−φ(ξ/2C)
a(z,ξ) |ξ| ≥ C

0 |ξ| ≤ C.

Then b is C∞ since b = 0 in C ≤ |ξ| ≤ C + δ for some δ > 0. The symbol estimates
follow by noting that, in |ξ| ≥ C,

1.2.2000.2771.2.2000.277 (2.28) Dα
zD

β
ξ b = a−1−|α|−|β| ·Gαβ

where Gαβ is a symbol of order (|α|+ |β|)m−|β|. This may be proved by induction.
Indeed, it is true when α = β = 0. Assuming (

1.2.2000.277
2.28) for some α and β, differentiation

of (
1.2.2000.277
2.28) gives

DzjD
α
zD

β
ξ b = Dzja

−1−|α|−|β| ·Gαβ = a−2−|α|−|β|G′,

G′ = (−1− |α| − |β|)(Dzja)Gαβ + aDzjGαβ .

1Note it is required that ε be chosen to be independent of z here, so this is a notion of uniform
ellipticity.
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By the inductive hypothesis, G′ is a symbol of order (|α|+1+ |β|)m−|β|. A similar
argument applies to derivatives with respect to the ξ variables. �

2.2. Pseudodifferential operatorsS.Pseudodifferential.operators

Now we proceed to discuss the formula (
3.2
2.2) where we shall assume that, for

some w,m ∈ R,

3.243.24 (2.29)
a(x, y, ξ) = (1 + |x− y|2)w/2ã(x, y, ξ)

ã ∈ Sm∞(R2n
(x,y);R

n
ξ ).

The extra ‘weight’ factor (which allows polynomial growth in the direction of x−y)
turns out, somewhat enigmatically, to both make no difference and be very useful!
Notice2 that if a ∈ C∞(R2n × Rn) then a ∈ (1 + |x − y|2)w/2Sm(R2n;Rn) if and
only if

3.323.32 (2.30) |Dα
xD

β
yD

γ
ξ a(x, y, ξ)| ≤ Cα,β,γ(1 + |x− y|)w(1 + |ξ|)m−|γ| ∀ α, β, γ ∈ Nn0 .

If m < −n then, for each u ∈ S(Rn), the integral in (
3.2
2.2) is absolutely convergent,

locally uniformly in x, since

(2.31)
|a(x, y, ξ)u(y)| ≤ C(1 + |x− y|)w(1 + |ξ|)m(1 + |y|)−N

≤ C(1 + |x|)w(1 + |ξ|)m(1 + |y|)m, m < −n.
Here we have used the following simple consequence of the triangle inequality

(1 + |x− y|) ≤ (1 + |x|)(1 + |y|)
from which it follows that

19.2.1998.10219.2.1998.102 (2.32) (1 + |x− y|)w ≤

{
(1 + |x|)w(1 + |y|)w if w > 0

(1 + |x|)w(1 + |y|)−w if w ≤ 0.

Thus we conclude that, provided m < −n,
3.333.33 (2.33) A : S(Rn) −→ (1 + |x|2)w/2C0

∞(Rn).

To show that, for general m, A exists as an operator, we prove that its Schwartz
kernel exists.

3.25 Proposition 2.1. The map, defined for m < −n as a convergent integral,
3.263.26 (2.34)

(1 + |x− y|2)w/2Sm∞(R2n;Rn) 3 a 7−→ I(a) =

(2π)−n
∫
ei(x−y)·ξa(x, y, ξ)dξ ∈ (1 + |x|2 + |y|2)w/2C0

∞(R2n)

extends by continuity to

1.2.2000.3021.2.2000.302 (2.35) I : (1 + |x− y|2)w/2Sm∞(R2n;Rn) −→ S ′(R2n)

for each w, m ∈ R in the topology of Sm
′

∞ (R2n;Rn) for any m′ > m.

Proof. Since we already have the density of S−∞∞ (R2n;Rn) in Sm∞(R2n;Rn)

in the toplogy of Sm
′

∞ (R2n;Rn) for any m′ > m, we only need to show the conti-
nuity of the map (

3.26
2.34) on this residual subspace with respect to the topology of

Sm
′

∞ (R2n;Rn) for any m′, which we may as well write as m. What we shall show

2See Problem
1.2.2000.276
2.5.
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is that, for each w,m ∈ R, there are integers N, k ∈ N such that, in terms of the
norms in (

3.8
2.7) and (

1.7
1.6)

3.273.27 (2.36)
∣∣I(a)(φ)

∣∣ ≤ C‖ã‖N,m‖φ‖k ∀ φ ∈ S(R2n),

a = (1 + |x− y|2)w/2ã, ã ∈ S−∞∞ (R2n;Rn).

To see this we just use integration by parts.
Set φ̃(x, y) = (1 + |x− y|2)w/2φ(x, y). Observe that

(1 + ξ ·Dx)ei(x−y)·ξ = (1 + |ξ|2)ei(x−y)·ξ

(1− ξ ·Dy)ei(x−y)·ξ = (1 + |ξ|2)ei(x−y)·ξ.

Thus we can write, for ã ∈ S−∞∞ , with a = (1 + |x− y|2)w/2ã and for any q ∈ N

I(a)(φ) =

∫∫
(2π)−n

∫
ei(x−y)·ξ(1 + |ξ|2)−2q

(1− ξ ·Dx)q(1 + ξ ·Dy)q
[
ã(x, y, ξ)φ̃(x, y)

]
dξdxdy

=
∑
|γ|≤2q

∫∫ ( ∫
ei(x−y)·ξa(q)

γ (x, y, ξ)dξ
)
Dγ

(x,y)φ̃(x, y)dxdy.

3.283.28 (2.37)

Here the a
(q)
γ arise by expanding the powers of the operator

(1− ξ ·Dx)q(1 + ξ ·Dx)q =
∑

|µ|,|ν|≤q

Cµ,νξ
µ+νDµ

xD
ν
y

and applying Leibniz’ formula. Thus a
(q)
γ arises from terms in which 2q−|γ| deriva-

tives act on ã so it is of the form

aγ = (1 + |ξ|2)−2q
∑

|µ|≤|γ|,|γ|≤2q

Cµ,γξ
γDµ

(x,y)ã

=⇒ ‖aγ‖N,m ≤ Cm,q,N‖ã‖N+2q,m+2q ∀ m,N, q.

So (for given m) if we take −2q + m < −n, e.g. q > max(n+m
2 , 0) and use the

integrability of (1 + |x|+ |y|)−2n−1 on R2n, then

(2.38)
∣∣I(a)(φ)

∣∣ ≤ C‖ã‖2q,m‖φ̃‖2q+2n+1 ≤ C‖ã‖2q,m‖φ‖2q+w+2n+1.

This is the estimate (
3.27
2.36), which proves the desired continuity. �

In showing the existence of the Schwartz’ kernel in this proof we do not really
need to integrate by parts in both x and y; either separately will do the trick.
We can use this observation to show that these pseudodifferential operator act on
S(Rn).

3.29 Lemma 2.3. If a ∈ (1 + |x − y|2)w/2Sm∞(R2n;Rn) then the operator A, with
Schwartz kernel I(a), is a continuous linear map

3.303.30 (2.39) A : S(Rn) −→ S(Rn).

We shall denote by Ψm
∞(Rn) the linear space of operators (

3.30
2.39), corresponding

to (1 + |x − y|2)−w/2a ∈ Sm∞(R2n;Rn) for some w. I call them pseudodifferential
operators ‘of traditional type’ – or type ‘1,0’.3

3The meaning of which is explained in Problem
1.2.2000.279
2.16.
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Proof. Proceeding as in (
3.28
2.37) but only integrating by parts in y we deduce

that, for q large depending on m,

Au(ψ) =
∑
γ≤2q

(2π)−n
∫∫ ∫

ei(x−y)·ξaγ(x, y, ξ)Dγ
yu(y)dξψ(x)dydx,

aγ ∈ (1 + |x− y|2)w/2Sm−q(R2n;Rn) if a ∈ (1 + |x− y|2)w/2Sm(R2n;Rn).

The integration by parts is justified by continuity from S−∞∞ (R2n;Rn). Taking −q+
m < −n− |w|, this shows that Au is given by the convergent integral

1.2.2000.2821.2.2000.282 (2.40) Au(x) =
∑
γ≤2q

(2π)−n
∫∫

ei(x−y)·ξaγ(x, y, ξ)Dγ
yu(y)dξdy,

A : S(Rn) −→ (1 + |x|2)
|w|
2 C0
∞(Rn)

which is really just (
3.33
2.33) again. Here C0

∞(Rn) is the Banach space of bounded
continuous functions on Rn, with the supremum norm. The important point is
that the weight depends on w but not on m. Notice that

DxjAu(x) = (2π)−n
∑
|γ|≤2q

∫∫
ei(x−y)·ξ(ξj +Dxj

)
aγ ·Dγ

yu(y)dydξ

and

xjAu(x) = (2π)n
∑
|γ|≤2q

∫∫
ei(x−y)·ξ(−Dξj + yj

)
aγ ·Dγ

yu(y)dydξ.

Proceeding inductively (
3.30
2.39) follows from (

3.33
2.33) or (

1.2.2000.282
2.40) since we conclude that

xαDβ
xAu ∈ (1 + |x|2)

|w|
2 C0
∞(Rn), ∀ α, β ∈ Nn0

and this implies that Au ∈ S(Rn). �

2.3. CompositionS.Composition

There are two extreme cases of I(a), namely where a is independent of either
x or of y. Below we shall prove:

3.31 Theorem 2.1 (Reduction). Each A ∈ Ψm
∞(Rn) can be written uniquely as

I(a′) where a′ ∈ Sm∞(Rnx ;Rnξ ).

This is the main step in proving the fundamental result of this Chapter, which is
that two pseudodifferential operators can be composed to give a pseudodifferential
operator and that the orders are additive. Thus our aim is to demonstrate the
fundamental

4.1 Theorem 2.2. [Composition] The space Ψ∞∞(Rn) is an order-filtered ∗-algebra
on S(Rn).

We have already shown that each A ∈ Ψ∞∞(Rn) defines a continuous linear map
(
3.30
2.39). We now want to show that

A ∈ Ψm
∞(Rn) =⇒ A∗ ∈ Ψm

∞(Rn)4.354.35 (2.41)

A ∈ Ψm
∞(Rn), B ∈ Ψm′

∞ (Rn) =⇒ A ◦B ∈ Ψm+m′

∞ (Rn),4.34.3 (2.42)

since this is what is meant by an order-filtered (the orders add on composition)
∗-algebra (meaning (

4.35
2.41) holds). In fact we will pick up some more information

along the way.
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2.4. ReductionS.Reduction

We proceed to prove Theorem
3.31
2.1, which we can restate as:

4.4 Proposition 2.2. The range of (
3.26
2.34) (for any w) is the same as the range

of I restricted to the image of the inclusion map

Sm∞(Rn;Rn) 3 a 7−→ a(x, ξ) ∈ Sm∞(R2n
(x,y);R

n).

Proof. Suppose a ∈
(
1 + |x− y|2

)w/2
S−∞∞ (R2n;Rn) for some w, then

4.54.5 (2.43) I
(
(xj − yj)a

)
= I
(
−Dξja

)
j = 1, . . . , n.

Indeed this is just the result of inserting the identity

Dξje
i(x−y)·ξ = (xj − yj)ei(x−y)·ξ

into (
3.26
2.34) and integrating by parts. Since both sides of (

4.5
2.43) are continuous on(

1 + |x − y|2
)w/2

S∞∞(R2n;Rn) the identity holds in general. Notice that if a is of
order m then Dξja is of order m−1, so (

4.5
2.43) shows that even though the operator

with amplitude (xj − yj)a(x, y, ξ) appears to have order m, it actually has order
m− 1.

To exploit (
4.5
2.43) consider the Taylor series (with Legendre’s remainder) for

a(x, y, ξ) around x = y :

4.64.6 (2.44) a(x, y, ξ) =
∑

|α|≤N−1

(−i)|α|

α!
(x− y)α

(
Dα
y a
)
(x, x, ξ)

+
∑
|α|=N

(−i)|α|

α!
(x− y)α ·RN,α(x, y, ξ).

Here,

4.74.7 (2.45) RN,α(x, y, ξ) =

1∫
0

(1− t)N−1
(
Dα
y a
)
(x, (1− t)x+ ty, ξ)dt.

Now,

(2.46) (x− y)α
(
Dα
y a
)
(x, y, ξ) ∈

(
1 + |x− y|2

) (w+|α|)
2 Sm∞(R2n;Rn).

Applying (
4.5
2.43) repeatedly we see that if A is the operator with kernel I(a) then

4.84.8 (2.47) A =

N−1∑
j=0

Aj +RN , Aj ∈ Ψm−j
∞ (Rn), RN ∈ Ψm−N

∞ (Rn)

where the Aj have kernels

4.94.9 (2.48) I
(∑
|α|=j

i|α|

α!

(
Dα
yD

α
ξ a
)
(x, x, ξ)

)
.

To proceed further we need somehow to sum this series. Of course we cannot really
do this, but we can come close!
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2.5. Asymptotic summationS.Asymptotic.summation

Suppose aj ∈ Sm−j∞ (Rp;Rn). The fact that the orders are decreasing means
that these symbols are getting very small, for |ξ| large. The infinite series

(2.49)
∑
j

aj(z, ξ)

need not converge. However we shall say that it converges asymptotically, or since
it is a series we say it is ‘asymptotically summable,’ if there exists a ∈ Sm∞(Rp;Rn)
such that,

4.104.10 (2.50) for every N, a−
N−1∑
j=0

aj ∈ Sm−N∞ (Rp;Rn).

We write this relation as

4.114.11 (2.51) a ∼
∞∑
j=0

aj .

4.12 Proposition 2.3. Any series aj ∈ Sm−j∞ (Rp;Rn) is asymptotically summable,
in the sense of (

4.10
2.50), and the asymptotic sum is well defined up to an additive

term in S−∞∞ (Rp;Rn).

Proof. The uniqueness part is easy. Suppose a and a′ both satisfy (
4.10
2.50).

Taking the difference

4.134.13 (2.52) a− a′ =
(
a−

N−1∑
j=0

aj
)
−
(
a′ −

N−1∑
j=0

aj) ∈ Sm−N∞ (Rp;Rn).

Since S−∞∞ (Rp;Rn) is just the intersection of the S−N∞ (Rp;Rn) over N it follows
that a− a′ ∈ S−∞∞ (Rp;Rn), proving the uniqueness.

So to the existence of an asymptotic sum. To construct this (by Borel’s method)
we cut off each term ‘near infinity in ξ’. Thus fix φ ∈ C∞(Rn) with φ(ξ) = 0 in
|ξ| ≤ 1, φ(ξ) = 1 in |ξ| ≥ 2, 0 ≤ φ(ξ) ≤ 1. Consider a decreasing sequence

4.144.14 (2.53) ε0 > ε1 > · · · > εj ↓ 0.

We shall set

4.154.15 (2.54) a(z, ξ) =

∞∑
j=0

φ(εjξ)aj(z, ξ).

Since φ(εjξ) = 0 in |ξ| < 1/εj → ∞ as j → ∞, only finitely many of these terms
are non-zero in any ball |ξ| ≤ R. Thus a(z, ξ) is a well-defined C∞ function. Of
course we need to consider the seminorms, in Sm∞(Rp;Rn), of each term.

The first of these is

4.164.16 (2.55) sup
z

sup
ξ

(1 + |ξ|)−m
∣∣φ(εjξ)

∣∣ ∣∣aj(z, ξ)∣∣.
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Now |ξ| ≥ 1
εj

on the support of φ(εjξ)aj(z, ξ) and since aj is a symbol of order

m− j this allows us to estimate (
4.16
2.55) by

sup
z

sup
|ξ|≥ 1

εj

(1 + |ξ|)−j ·
[(

1 + |ξ|
)−m+j∣∣aj(z, ξ)∣∣]

≤
(
1 +

1

εj

)−j · Cj ≤ εjj · Cj
where the Cj ’s are fixed constants, independent of εj .

Let us look at the higher symbol estimates. As usual we can apply Leibniz’
formula:

sup
z

sup
ξ

(1 + |ξ|)−m+|β|∣∣Dα
zD

β
ξ φ(εjξ)aj(z, ξ)

∣∣
≤
∑
µ≤β

sup
z

sup
ξ

(1 + |ξ|)|β|−|µ|−jε|β|−|µ|j

∣∣(Dβ−µφ
)
(εjξ)

∣∣
×(1 + |ξ|)−m+j+|µ|∣∣Dα

zD
µ
ξ aj(z, ξ)

∣∣.
The term with µ = β we estimate as before and the others, with µ 6= β are supported
in 1

εj
≤ |ξ| ≤ 2

εj
. Then we find that for all j

4.174.17 (2.56) ‖φ(εjξ)aj(z, ξ)‖N,m ≤ CN,jεjj
where CN,j is independent of εj .

So we see that for each given N we can arrange that, for instance,

‖φ(εjξ)aj(z, ξ)‖N,m ≤ CN
1

j2

by choosing the εj to satify

CN,jε
j
j ≤

1

j2
∀ j ≥ j(N).

Notice the crucial point here, we can arrange that for each N the sequence of norms
in (

4.17
2.56) is dominated by CN j

−2 by fixing εj < εj,N for large j. Thus we can arrange
convergence of all the sums ∑

j

‖φ(εjξ)aj(z, ξ)‖N,m

by diagonalization, for example setting εj = 1
2εj,j . Thus by choosing εj ↓ 0 rapidly

enough we ensure that the series (
4.15
2.54) converges. In fact the same argument allows

us to ensure that for every N

4.184.18 (2.57)
∑
j≥N

φ(εjξ)aj(z, ξ) converges in Sm−N∞ (Rp;Rn).

This certainly gives (
4.10
2.50) with a defined by (

4.15
2.54). �

2.6. Residual termsS.Residual.terms

Now we can apply Proposition
4.12
2.3 to the series in (

4.9
2.48), that is we can find

b ∈ Sm∞(Rnx ;Rnξ ) satisfying

4.194.19 (2.58) b(x, ξ) ∼
∑
α

i|α|

α!

(
Dα
y a
)
(x, x, ξ).
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Let B = I(b) be the operator defined by this amplitude (which is independent of
y). Now (

4.8
2.47) says that

A−B =

N−1∑
j=0

Aj +RN −B

and from (
4.10
2.50) applied to (

4.19
2.58)

B =

N−1∑
j=0

Aj +R′N , R
′
N ∈ Ψm−N

∞ (Rn)

Thus

4.204.20 (2.59) A−B ∈ Ψ−∞∞ (Rn) =
⋂
N

ΨN
∞(Rn).

Notice that, at this stage, we do not know that A − B has kernel I(c) with
c ∈ S−∞∞ (R2n,Rn), just that it has kernel I(cN ) with cN ∈ SN∞(R2n;Rn) for each
N.

However:

4.21 Proposition 2.4. An operator A : S(Rn) −→ S ′(Rn) is an element of the
space Ψ−∞∞ (Rn) if and only if its Schwartz kernel is C∞ and satisfies the estimates

4.224.22 (2.60)
∣∣Dα

xD
β
yK(x, y)

∣∣ ≤ CN,α,β(1 + |x− y|)−N ∀ α, β,N.

Proof. Suppose first that A ∈ Ψ−∞∞ (Rn), which means that A ∈ ΨN
∞(Rn) for

every N. The Schwartz kernel, KA, of A is therefore given by (
3.26
2.34) with the am-

plitude aN ∈ SN∞(R2n;Rn). For N << −n− 1− p the integral converges absolutely
and we can integrate by parts to show that

(x− y)αDβ
xD

γ
yKA(x, y)

= (2π)−N
∫
ei(x−y)·ξ(−Dξ)

α(Dx + iξ)β(Dy − iξ)γaN (x, y, ξ)dξ

which converges absolutely, and uniformly in x, y, provided |β|+ |γ|+N−|α| < −n.
Thus

sup
∣∣(x− y)αDβ

xD
γ
yK
∣∣ <∞ ∀ α, β, γ

which is another way of writing (
4.22
2.60) i.e.

sup
(
1 + |x− y|2

)N ∣∣Dβ
xD

γ
yK
∣∣ <∞ ∀ β, γ,N.

Conversely suppose that (
4.22
2.60) holds. Define

4.234.23 (2.61) g(x, z) = K(x, x− z).

The estimates (
4.22
2.60) become

4.244.24 (2.62) sup
∣∣Dα

x z
γDβ

z g(x, z)
∣∣ <∞ ∀ α, β, γ.

That is, g is rapidly decreasing with all its derivatives in z. Taking the Fourier
transform,

4.254.25 (2.63) b(x, ξ) =

∫
e−iz·ξg(x, z)dz
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the estimate (
4.24
2.62) translates to

4.264.26 (2.64)
sup
x,ξ

∣∣Dα
x ξ

βDγ
ξ b(x, ξ)

∣∣ <∞ ∀ α, β, γ
⇐⇒ b ∈ S−∞∞ (Rnx ;Rnξ ).

Now the inverse Fourier transform in (
4.25
2.63), combined with (

4.23
2.61) gives

4.274.27 (2.65) K(x, y) = g(x, x− y) = (2π)−n
∫
ei(x−y)·ξb(x, ξ)dξ

i.e. K = I(b). This certainly proves the proposition and actually gives the stronger
result.

4.1274.127 (2.66) A ∈ Ψ−∞∞ (Rn)⇐⇒ A = I(c), c ∈ S−∞∞ (Rnx ;Rnξ ).

�

This also finishes the proof of Proposition
4.4
2.2 since in (

4.19
2.58), (

4.20
2.59) we have

shown that

4.284.28 (2.67) A = B +R, B = I(b), R ∈ Ψ−∞∞ (Rn)

so in fact

4.294.29 (2.68) A = I(e), e ∈ Sm∞(Rnx ;Rnξ ), e ∼
∑
α

i|α|

α!

(
Dα
yD

α
ξ a
)
(x, x, ξ).

�

2.7. Proof of Composition TheoremS.Proof.of.Composition.Theorem

First consider the adjoint formula. If

A : S(Rn) −→ S(Rn)

the adjoint is the operator

A∗ : S ′(Rn) −→ S ′(Rn)

defined by duality:

4.304.30 (2.69) A∗u(φ̄) = u(Aφ) ∀ φ ∈ S(Rn).

Certainly A∗u ∈ S ′(Rn) if u ∈ S ′(Rn) since

4.314.31 (2.70) A∗u(ψ) = u(Aψ) and S(Rn) 3 ψ 7−→ Aψ̄ ∈ S(Rn)

is clearly continuous. In terms of Schwartz kernels,

4.324.32 (2.71)

Aφ(x) =

∫
KA(x, y)φ(y)dy, φ ∈ S(Rn)

A∗u(x) =

∫
KA∗(x, y)u(y)dy, u ∈ S(Rn).

We then see that

4.334.33 (2.72)

∫
KA∗(x, y)u(y)φ(x)dydx =

∫
KA(x, y)φ(y)dyu(x)dx

=⇒ KA∗(x, y) = KA(y, x)

where we are using the uniqueness of Schwartz’ kernels.
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This proves (
4.35
2.41) since

4.344.34 (2.73)

KA(y, x) =
[ 1

(2π)n

∫
ei(y−x)·ξa(y, x, ξ)dξ

]
=

1

(2π)n

∫
ei(x−y)·ξā(y, x, ξ)dξ

i.e. A∗ = I(ā(y, x, ξ)). Thus one advantage of allowing general operators (
3.26
2.34) is

that closure under the passage to adjoint is immediate.
For the composition formula we need to apply Proposition

4.4
2.2 twice. First to

A ∈ Ψm
∞(Rn), to write it with symbol a(x, ξ)

Aφ(x) = (2π)−n
∫
ei(x−y)·ξa(x, ξ)φ(y)dydξ

= (2π)−n
∫
eix·ξa(x, ξ)φ̂(ξ)dξ.

Then we also apply Proposition
4.4
2.2 to B∗,

B∗u(x) = (2π)−n
∫
eix·ξ b̄(x, ξ)û(ξ)dξ.

Integrating this against a test function φ ∈ S(Rn) gives

21.2.1998.11221.2.1998.112 (2.74)

〈Bφ, u〉 = 〈φ,B∗u〉 = (2π)−n
∫ ∫

e−ix·ξφ(x)b(x, ξ)û(ξ)dξdx

=⇒ B̂φ(ξ) =

∫
e−iy·ξb(y, ξ)φ(y)dy.

Inserting this into the formula for Aφ shows that

=⇒ AB(u) = (2π)−n
∫
ei(x−y)·ξa(x, ξ)b(y, ξ)u(y)dydξ.

Since a(x, ξ)b(y, ξ) ∈ Sm+m′

∞
(
R2n

(x,y);R
n
ξ ) this shows that AB ∈ Ψm+m′

∞ (Rn) as

claimed.

2.8. Quantization and symbolsS.Quantization.and.symbols

So, we have now shown that there is an ‘oscillatory integral’ interpretation of

5.15.1 (2.75) K(x, y) = (2π)−n
∫
ei(x−y)·ξa(x, y, ξ)dξ = I(a)

which defines, for any w ∈ R, a continuous linear map

I : (1 + |x− y|2)
w
2 S∞∞(R2n;Rn) −→ S ′(R2n)

the range of which is the space of pseudodifferential operators on Rn;

5.25.2 (2.76)
A ∈ Ψm

∞(Rn)⇐⇒ A : S(Rn) −→ S ′(Rn) and

∃ w s.t. KA(x, y) = I(a), a ∈
(
1 + |x− y|2

)w
2 Sm∞

(
R2n;Rn

)
.

Furthermore, we have shown in Proposition
4.4
2.2 that the special case, w = 0 and

∂ya ≡ 0, gives an isomorphism

5.35.3 (2.77) Ψm
∞(Rn)

σL−→←−
qL

Sm∞(Rn;Rn).
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The map here, qL = I on symbols independent of y, is the left quantization map and
its inverse σL is the left full symbol map. Next we consider some more consequences
of this reduction theorem.

As well as the left quantization map leading to the isomorphism (
5.3
2.77) there is

a right quantization map, similarly derived from (
5.1
2.75):

5.45.4 (2.78) qR(a) = (2π)−n
∫
ei(x−y)·ξa(y, ξ)dξ, a ∈ Sm∞ (Rn;Rn) .

In fact using the adjoint operator, ∗, on operators and writing as well ∗ for complex
conjugation of symbols shows that

5.55.5 (2.79) qR = ∗ · qL · ∗

is also an isomorphism, with inverse σR
4

5.65.6 (2.80) Ψm
∞(Rn)

σR−→←−
qR

Sm∞ (Rn;Rn) .

Using the proof of the reduction theorem we find:

5.7 Lemma 2.4. For any a ∈ Sm∞ (Rn;Rn) ,

5.85.8 (2.81) σL (qR(a)) (x, ξ) ∼
∑
α

i|α|

α!
Dα
xD

α
ξ a(x, ξ) ∼ ei<Dx,Dξ>a.

For the moment the last asymptotic equality is just to help in remembering the
formula, which is the same as given by the formal Taylor series expansion at the
origin of the exponential.

Proof. This follows from the general formula (
4.29
2.68). �

2.9. Principal symbolS.Principal.symbol

One important thing to note from (
5.8
2.81) is that

(2.82) Dα
xD

α
ξ a(x, ξ) ∈ Sm−|α|∞ (Rn;Rn)

so that for any pseudodifferential operator

(2.83) A ∈ Ψm
∞(Rn) =⇒ σL(A)− σR(A) ∈ Sm−1

∞ (Rn;Rn) .

For this reason we consider the general quotient spaces

(2.84) Sm−[1]
∞ (Rp;Rn) = Sm∞ (Rp;Rn)

/
Sm−1
∞ (Rp;Rn)

and, for a ∈ Sm∞(Rp;Rn), write [a] for its image, i.e. equivalence class, in the quotient

space S
m−[1]
∞ (Rp;Rn) . The ‘principal symbol map’

5.95.9 (2.85)
σm : Ψm

∞(Rn) −→ Sm−[1]
∞ (Rn;Rn)

is defined by σm(A) = [σL(A)] = [σR(A)].

As distinct from σL or σR, σm depends on m, i.e. one needs to know that the order
is at most m before it is defined.

The isomorphism (
5.3
2.77) is replaced by a weaker (but very useful) exact se-

quence.

4This involves the left and right symbols, see Problem
P5.1
5.1 for another the more centrist ‘Weyl’

quantization.
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5.10 Lemma 2.5. For every m ∈ R

0 ↪→ Ψm−1
∞ (Rn) ↪→ Ψm

∞(Rn)
σm−→ Sm−[1]

∞ (Rn;Rn) −→ 0

is a short exact sequence (the ‘principal symbol sequence’ or simply the ‘symbol
sequence’).

Proof. This is just the statement that the range of each map is the null space
of the next i.e. that σm is surjective, which follows from (

5.3
2.77), and that the null

space of σm is just Ψm−1
∞ (Rn) and this is again (

5.3
2.77) and the definition of σm. �

The fundamental result proved above is that

5.115.11 (2.86) Ψm
∞(Rn) ·Ψm′

∞ (Rn) ⊂ Ψm+m′

∞ (Rn).

In fact we showed that if A = qL(a), a ∈ Sm∞ (Rn;Rn) and B = qR(b), b ∈
Sm

′

∞ (Rn;Rn) then the composite operator has Schwartz kernel

KA·B(x, y) = I (a(x, ξ)b(y, ξ))

Using the formula (
4.29
2.68) again we see that

5.125.12 (2.87) σL(A ·B) ∼
∑
α

i|α|

α!
Dα
ξ

[
a(x, ξ)Dα

x b(x, ξ)
]
.

Of course b = σR(B) so we really want to rewrite (
5.12
2.87) in terms of σL(B).

5.13 Lemma 2.6. If A ∈ Ψm
∞(Rn) and B ∈ Ψm′

∞ (Rn) then A ◦B ∈ Ψm+m′

∞ (Rn) and

σm+m′(A ◦B) = σm(A) · σm′(B),5.145.14 (2.88)

σL(A ◦B) ∼
∑
α

i|α|

α!
Dα
ξ σL(A) ·Dα

xσL(B).5.155.15 (2.89)

Proof. The simple formula (
5.14
2.88) is already immediate from (

5.12
2.87) since all

terms with |α| ≥ 1 are of order m+m′−|α| ≤ m+m′− 1. To get the ‘full’ formula
(
5.15
2.89) we can insert into (

5.12
2.87) the inverse of (

5.8
2.81), namely

σR(x, ξ) ∼
∑
α

(−i)|α|

α!
Dα
ξD

α
xσL(x, ξ) ∼ e−i<Dx,Dξ>σL(x, ξ).

This gives the double sum (still asymptotically convergent)

σL(A ◦B) ∼
∑
β

∑
α

i|α|

α!
Dα
ξ

[
σL(A)Dα

x

i|β|

β!
Dβ
xD

β
ξ σL(B)

]
.

Setting γ = α+ β this becomes

σL(A ◦B) ∼
∑
γ

i|γ|

γ!

∑
0≤α≤γ

γ!(−1)|γ−α|

α!(γ − α)!
Dα
ξ

[
σL(A)×Dγ−α

ξ Dγ
xσL(B)

]
.

Then Leibniz’ formula shows that this sum over α can be rewritten as

σL(A ◦B) ∼
∑
γ

i|γ|

γ!
Dγ
ξ σL(A) ·Dγ

xσL(B)

∼ ei<Dy,Dξ>σL(A)(x, ξ)σL(B)(y, η)
∣∣
y=x,η=ξ

.

This is just (
5.15
2.89). �
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The simplicity of (
5.14
2.88) over (

5.15
2.89) is achieved at the expense of enormous loss

of information. Still, many problems can be solved using (
5.14
2.88) which we can think

of as saying that the principal symbol maps give a homomorphism, for instance

from the filtered algebra Ψ0
∞(Rn) to the commutative algebra S

0−[1]
∞ (Rn;Rn) .

2.10. EllipticityS.Ellipticity

We say that an element of Ψm
∞(Rn) is elliptic if it is invertible modulo an error

in Ψ−∞∞ (Rn) with the approximate inverse of order −m i.e.

5.165.16 (2.90)
A ∈ Ψm

∞(Rn) is elliptic

⇐⇒ ∃ B ∈ Ψ−m∞ (Rn) s.t. A ◦B − Id ∈ Ψ−∞∞ (Rn).

Thus ellipticity, here by definition, is invertibility in Ψm
∞(Rn)

/
Ψ−∞∞ (Rn), so the

inverse lies in Ψ−m∞ (Rn)
/

Ψ−∞∞ (Rn). The point about ellipticity is that it is a phe-
nomenon of the principal symbol.

5.17 Theorem 2.3. The following conditions on A ∈ Ψm
∞(Rn) are equivalent

A is elliptic5.185.18 (2.91)

∃ [b] ∈ S−m−[1]
∞ (Rn;Rn) s.t. σm(A) · [b] ≡ 1 in S0−[1]

∞ (Rn;Rn)5.195.19 (2.92)

∃ b ∈ S−m∞ (Rn;Rn) s.t. σL(A) · b− 1 ∈ S−∞∞ (Rn;Rn)5.205.20 (2.93)

∃ ε > 0 s.t.
∣∣σL(A)(x, ξ)

∣∣ ≥ ε(1 + |ξ|)m in |ξ| > 1

ε
.5.215.21 (2.94)

Proof. We shall show

5.225.22 (2.95) (
5.18
2.91) =⇒ (

5.19
2.92) =⇒ (

5.20
2.93)⇐⇒ (

5.21
2.94) =⇒ (

5.18
2.91).

In fact Lemma
3.21
2.2 shows the equivalence of (

5.20
2.93) and (

5.21
2.94). Since we know that

σ0(Id) = 1 applying the identity (
5.14
2.88) to the definition of ellipticity in (

5.16
2.90) gives

5.445.44 (2.96) σm(A) · σ−m(B) ≡ 1 in S0−[1]
∞ (Rn,Rn),

i.e. that (
5.18
2.91) =⇒ (

5.19
2.92).

Now assuming (
5.44
2.96) (i.e. (

5.19
2.92)), and recalling that σm(A) = [σL(A)] we find

that a representative b1 of the class [b] must satisfy

5.235.23 (2.97) σL(A) · b1 = 1 + e1, e1 ∈ S−1
∞ (Rn;Rn),

this being the meaning of the equality of residue classes. Now for the remainder,
e1 ∈ S−1

∞ (Rn;Rn), the Neumann series

(2.98) f ∼
∑
j≥1

(−1)jej1

is asymptotically convergent, so f ∈ S−1
∞ (Rn;Rn) exists, and

5.245.24 (2.99) (1 + f) · (1 + e1) = 1 + e∞, e∞ ∈ S−∞∞ (Rn;Rn).

Then multiplying (
5.23
2.97) by (1 + f) gives

5.255.25 (2.100) σL(A) · {b1(1 + f)} = 1 + e∞

which proves (
5.20
2.93), since b = b1(1 + f) ∈ S−m∞ (Rn;Rn). Of course

(2.101) sup(1 + |ξ|)N |e∞| <∞ ∀ N
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so

(2.102) ∃ C s.t. |e∞(x, ξ)| < 1

2
in |ξ| > C.

From (
5.25
2.100) this means

5.265.26 (2.103)
∣∣σL(A)(x, ξ)

∣∣ · ∣∣b(x, ξ)∣∣ ≥ 1

2
, |ξ| > C.

Since |b(x, ξ)| ≤ C(1 + |ξ|)−m (being a symbol of order −m), (
5.26
2.103) implies

5.275.27 (2.104) inf
|ξ|≥C

∣∣σL(A)(x, ξ)
∣∣(1 + |ξ|)−m ≥ C > 0.

which shows that (
5.20
2.93) implies (

5.21
2.94).

Conversely, as already remarked, (
5.21
2.94) implies (

5.20
2.93).

Now suppose (
5.20
2.93) holds. Set B1 = qL(b) then from (

5.14
2.88) again

(2.105) σ0(A ◦B1) = [qm(A)] · [b] ≡ 1.

That is,

5.295.29 (2.106) A ◦B1 − Id = E1 ∈ Ψ−1
∞ (Rn).

Consider the Neumann series of operators

(2.107)
∑
j≥1

(−1)jEj1.

The corresponding series of (left-reduced) symbols is asymptotically summable so
we can choose F ∈ Ψ−1

∞ (Rn) with

5.455.45 (2.108) σL(F ) ∼
∑
j≥1

(−1)jσL(Ej1).

Then

5.305.30 (2.109) (Id +E1)(Id +F ) = Id +E∞, E∞ ∈ Ψ−∞∞ (Rn).

Thus B = B1(Id +F ) ∈ Ψ−m∞ (Rn) satisfies (
5.16
2.90) and it follows that A is elliptic.

�

In the definition of ellipticity in (
5.16
2.90) we have taken B to be a ‘right paramet-

rix’, i.e. a right inverse modulo Ψ−∞∞ (Rn). We can just as well take it to be a left
parametrix.

5.31 Lemma 2.7. A ∈ Ψm
∞(Rn) is elliptic if and only if there exists B′ ∈ Ψ−m∞ (Rn)

such that

5.325.32 (2.110) B′ ◦A = Id +E′, E′ ∈ Ψ−∞∞ (Rn)

and then if B satisfies (
5.16
2.90), B −B′ ∈ Ψ−∞∞ (Rn).

Proof. Certainly (
5.32
2.110) implies σ−m(B′) ·σm(A) ≡ 1, and the multiplication

here is commutative so (
5.19
2.92) holds and A is elliptic. Conversely if A is elliptic we

get in place of (
5.29
2.106)

B1 ◦A− Id = E′1 ∈ Ψ−1
∞ (Rn).

Then defining F ′ as in (
5.45
2.108) with E′1 in place of E1 we get (Id +F ′)(Id +E′1) =

Id +E′∞ and then B′ = (Id +F ′) ◦ B1 satisfies (
5.32
2.110). Thus ‘left’ ellipticity as in

(
5.32
2.110) is equivalent to right ellipticity. Applying B to (

5.32
2.110) gives

5.335.33 (2.111) B′ ◦ (Id +E) = B′ ◦ (A ◦B) = (Id +E′) ◦B
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which shows that B −B′ ∈ Ψ−∞∞ (Rn). �

Thus a left parametrix of an elliptic element of Ψm
∞(Rn) is always a right, hence

two-sided, parametrix and such a parametrix is unique up to an additive term in
Ψ−∞∞ (Rn).

2.11. Elliptic regularity and the Laplacian
S.The.LaplacianS.Elliptic.regularity

One of the main reasons that the ‘residual’ terms are residual is that they are
smoothing operators.

5.42 Lemma 2.8. If E ∈ Ψ−∞∞ (Rn) then

5.435.43 (2.112) E : S ′(Rn) −→ S ′(Rn) ∩ C∞(Rn).

Proof. This follows from Proposition
4.21
2.4 since we can regard the kernel as a

C∞ function of x taking values in S(Rny ). �

Directly from the existence of parametrices for elliptic operators we can deduce
the regularity of solutions to elliptic (pseudodifferential) equations.

20.2.1998.103 Proposition 2.5. If A ∈ Ψm
∞(Rn) is elliptic and u ∈ S ′(Rn) satifies Au = 0

then u ∈ C∞(Rn).

Proof. Let B ∈ Ψ−m∞ (Rn) be a parametrix for A. Then B ◦ A = Id +E,
E ∈ Ψ−∞∞ (Rn). Thus,

5.415.41 (2.113) u = (BA− E)u = −Eu
and the conclusion follows from Lemma

5.42
2.8. �

Suppose that gij(x) are the components of an ‘∞-metric’ on Rn, i.e.

5.345.34 (2.114)

gij(x) ∈ C∞∞(Rn), i, j = 1, . . . , n∣∣ n∑
i,j=1

gij(x)ξiξj
∣∣ ≥ ε|ξ|2 ∀ x ∈ Rn, ξ ∈ Rn, ε > 0.

The Laplacian of the metric is the second order differential operator

5.355.35 (2.115) ∆g =

n∑
i,j=1

1
√
g
Dxig

ij√gDxj

where

g(x) = det gij(x), gij(x) = (gij(x))
−1
.

The Laplacian is determined by the integration by parts formula

5.375.37 (2.116)

∫
Rn

∑
i,j

gij(x)Dxiφ ·Dxjψdg =

∫
∆gφ · ψdg ∀ φ, ψ ∈ S(Rn)

where

5.385.38 (2.117) dg =
√
gdx.

Our assumption in (
5.34
2.114) shows that ∆ = ∆g ∈ Diff2

∞(Rn) ⊂ Ψ2
∞(Rn) is in

fact elliptic, since

5.395.39 (2.118) σ2(∆) =
∑
i,j=1

gijξiξj .
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Thus ∆ has a two-sided parametrix B ∈ Ψ−2
∞ (Rn)

5.405.40 (2.119) ∆ ◦B ≡ B ◦∆ ≡ Id mod Ψ−∞∞ (Rn).

In particular we see from Proposition
20.2.1998.103
2.5 that ∆u = 0, u ∈ S ′(Rn) implies u ∈

C∞(Rn).

2.12. L2 boundednessS.L2.boundedness

So far we have thought of pseudodifferential operators, the elements of Ψm
∞(Rn)

for some m, as defining continuous linear operators on S(Rn) and, by duality, on
S ′(Rn). Now that we have proved the composition formula we can use it to prove
other ‘finite order’ regularity results. The basic one of these is L2 boundedness:

6.1 Proposition 2.6. [Boundedness] If A ∈ Ψ0
∞(Rn) then, by continuity from

S(Rn), A defines a bounded linear operator

6.26.2 (2.120) A : L2(Rn) −→ L2(Rn).

Our proof will be in two stages, the first part is by direct estimation. Namely,
Schur’s lemma gives a useful criterion for an integral operator to be bounded on
L2.

5.50 Lemma 2.9 (Schur). If K(x, y) is locally integrable on R2n and is such that

5.515.51 (2.121) sup
x∈Rn

∫
Rn
|K(x, y)|dy, sup

y∈Rn

∫
Rn
|K(x, y)|dx <∞

then the operator K : φ 7−→
∫
Rn K(x, y)φ(y)dy is bounded on L2(Rn).

Proof. Since S(Rn) is dense5 in L2(Rn) we only need to show the existence
of a constant, C, such that

6.46.4 (2.122)

∫ ∣∣Kφ(x)
∣∣2dx ≤ C ∫ |φ|2 ∀ φ ∈ S(Rn).

Writing out the integral on the left

6.56.5 (2.123)

∫ ∣∣ ∫ K(x, y)φ(y)dy
∣∣2dx

=

∫∫∫
K(x, y)K(x, z)φ(y)φ(z) dydzdx

is certainly absolutely convergent and∫ ∣∣Kφ(x)
∣∣2dx

≤
(∫∫∫ ∣∣K(x, y)K(x, z)

∣∣φ(y)
∣∣2dydxdz) 1

2

×
(∫∫∫ ∣∣K(x, y)K(x, z)

∣∣φ(z)
∣∣2dzdxdy) 1

2

.

These two factors are the same. Since∫ ∣∣K(x, y)||K(x, z)|dxdz ≤ sup
x∈Rn

∫ ∣∣K(x, z)
∣∣dz · sup

y∈Rn

∫ ∣∣K(x, y
∣∣dx

(
6.4
2.122) follows. Thus (

5.51
2.121) gives (

6.4
2.122). �

5See Problem
1.2.2000.280
2.18
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This standard lemma immediately implies the L2 boundedness of the ‘residual
terms.’ Thus, if K ∈ Ψ−∞∞ (Rn) then its kernel satisfies (

4.22
2.60). This in particular

implies ∣∣K(x, y)
∣∣ ≤ C (1 + |x− y|)−n−1

and hence that K satisfies (
5.51
2.121). Thus

5.525.52 (2.124) each K ∈ Ψ−∞∞ (Rn) is bounded on L2(Rn).

2.13. Square root and boundednessS.Square.root
S.Proof.of.Boundedness

To prove the general result, (
6.2
2.120), we shall use the clever idea, due to Hör-

mander, of using the (approximate) square root of an operator. We shall say that

an element [a] ∈ Sm−[1]
∞ (Rn;Rn) is positive if there is some 0 < a ∈ Sm(Rn;Rn) in

the equivalence class.

6.6 Proposition 2.7. Suppose A ∈ Ψm
∞(Rn), m > 0, is self-adjoint, A = A∗, and

elliptic with a positive principal symbol, then there exists B ∈ Ψ
m/2
∞ (Rn), B = B∗,

such that

6.76.7 (2.125) A = B2 +G, G ∈ Ψ−∞∞ (Rn).

Proof. This is a good exercise in the use of the symbol calculus. Let a ∈
Sm∞(Rn;Rn), a > 0, be a positive representative of the principal symbol of A. Now6

6.86.8 (2.126) b0 = a
1
2 ∈ Sm/2∞ (Rn;Rn).

Let B0 ∈ Ψ
m/2
∞ (Rn) have principal symbol b0. We can assume that B0 = B∗0 , since

if not we just replace B0 by 1
2 (B0 +B∗0) which has the same principal symbol.

The symbol calculus shows that B2
0 ∈ Ψm

∞(Rn) and

σm(B2
0) =

(
σm/2(B0)

)2
= b20 = a0 mod Sm−1

∞ .

Thus

6.96.9 (2.127) A−B2
0 = E1 ∈ Ψm−1

∞ (Rn).

Then we proceed inductively. Suppose we have chosen Bj ∈ Ψ
m/2−j
∞ (Rn), with

B∗j = Bj , for j ≤ N such that

6.106.10 (2.128) A−

 N∑
j=0

Bj

2

= EN+1 ∈ Ψm−N−1
∞ (Rn).

Of course we have done this for N = 0. Then see the effect of adding BN+1 ∈
Ψ
m/2−N−1
∞ (Rn) :

6.116.11 (2.129) A−

N+1∑
j=0

Bj

2

= EN+1 −

 N∑
j=0

Bj

BN+1

−BN+1

 N∑
j=0

Bj

−B2
N+1.

6See Problem
1.2.2000.281
2.19 for an outline of the proof
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On the right side all terms are of order m−N − 2, except for

6.126.12 (2.130) EN+1 −B0BN+1 −BN+1B0 ∈ Ψm−N−1
∞ (Rn).

The principal symbol, of order m−N − 1, of this is just

6.136.13 (2.131) σm−N−1(EN+1)− 2 b0 · σm2 −N−1(BN+1).

Thus if we choose BN+1 ∈ Ψ
m
2 −N−1
∞ (Rn) with

σm/2−N−1(BN+1) =
1

2

1

b0
· σm−N−1(EN+1)

and replace BN+1 by 1
2 (BN+1 +B∗N+1), we get the inductive hypothesis for N + 1.

Thus we have arranged (
6.10
2.128) for every N. Now define B = 1

2 (B′ + (B′)∗) where

6.146.14 (2.132) σL(B′) ∼
∞∑
j=0

σL(Bj).

Since all the Bj are self-adjoint B also satisfies (
6.14
2.132) and from (

6.10
2.128)

(2.133) A−B2 = A−

 N∑
j=0

Bj +B(N+1)

2

∈ Ψm−N−1
∞ (Rn)

for every N, since B(N+1) = B−
N∑
j=0

Bj ∈ Ψ
m/2−N−1
∞ (Rn). Thus A−B2 ∈ Ψ−∞∞ (Rn)

and we have proved (
6.7
2.125), and so Proposition

6.6
2.7. �

Here is Hörmander’s argument to prove Proposition
6.1
2.6. We want to show that

6.156.15 (2.134) ‖Aφ‖ ≤ C‖φ‖ ∀ φ ∈ S(Rn)

where A ∈ Ψ0
∞(Rn). The square of the left side can be written∫

Aφ ·Aφdx =

∫
φ · (A∗Aφ)dx.

So it suffices to show that

6.166.16 (2.135) 〈φ,A∗Aφ〉 ≤ C‖φ‖2.

Now A∗A ∈ Ψ0
∞(Rn) with σ0(A∗A) = σ0(A)σ0(A) ∈ R. If C > 0 is a large constant,

C > sup
x,ξ

∣∣σL(A∗A)(x, ξ)
∣∣

then C−A∗A has a positive representative of its principal symbol. We can therefore
apply Proposition

6.6
2.7 to it:

6.176.17 (2.136) C −A∗A = B∗B +G, G ∈ Ψ−∞∞ (Rn).

This gives

6.186.18 (2.137)
〈φ,A∗Aφ〉 =C〈φ, φ〉 − 〈φ,B∗Bφ〉 − 〈φ,Gφ〉

=C‖φ‖2 − ‖Bφ‖2 − 〈φ,Gφ〉.

The second term on the right is negative and, since G ∈ Ψ−∞∞ (Rn), we can use the
residual case in (

5.52
2.124) to conclude that∣∣〈φ,Gφ〉∣∣ ≤ C ′‖φ‖2 =⇒ ‖Aφ‖2 ≤ C‖φ‖2 + C ′‖φ‖2,

so (
6.2
2.120) holds and Proposition

6.1
2.6 is proved.
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2.14. Sobolev boundednessS.Sobolev.boundedness

Using the basic boundedness result, Proposition
6.1
2.6, and the calculus of pseu-

dodifferential operators we can prove more general results on the action of pseudo-
differential operators on Sobolev spaces.

Recall that for any positive integer, k,

6.196.19 (2.138) Hk(Rn) =
{
u ∈ L2(Rn); Dαu ∈ L2(Rn) ∀ |α| ≤ k

}
.

Using the Fourier transform we find

6.206.20 (2.139) u ∈ Hk(Rn) =⇒ ξαû(ξ) ∈ L2(Rn) ∀ |α| ≤ k.

Now these finitely many conditions can be written as just the one condition

6.216.21 (2.140)
(
1 + |ξ|2

)k/2
û(ξ) ∈ L2(Rn).

Notice that a(ξ) = (1 + |ξ|2)k/2 = 〈ξ〉k ∈ Sk∞(Rn). Here we use the notation

6.226.22 (2.141) 〈ξ〉 =
(
1 + |ξ|2

) 1
2

for a smooth (symbol) of the size of 1 + |ξ|, thus (
6.21
2.140) just says

6.236.23 (2.142) u ∈ Hk(Rn)⇐⇒ u ∈ S ′(Rn) and 〈D〉ku ∈ L2(Rn).

For negative integers

6.246.24 (2.143) Hk(Rn) =
{
u ∈ S ′(Rn);u =

∑
|β|≤−k

Dβuβ , uβ ∈ L2(Rn)
}
, −k ∈ N.

The same sort of discussion applies, showing that

6.256.25 (2.144) u ∈ Hk(Rn)⇐⇒ u ∈ S ′(Rn) and 〈D〉ku ∈ L2(Rn), k ∈ Z.

In view of this we define the Sobolev space Hm(Rn), for any real order, by

6.266.26 (2.145) u ∈ Hm(Rn)⇐⇒ u ∈ S ′(Rn) and 〈D〉mu ∈ L2(Rn).

It is a Hilbert space with

6.276.27 (2.146) ‖u||2m = ‖〈D〉mu‖2L2 =

∫
(1 + |ξ|2)m|û(ξ)|2dξ.

Clearly we have

6.286.28 (2.147) Hm(Rn) ⊇ Hm′(Rn) if m′ ≥ m.

Notice that it is rather unfortunate that these spaces get smaller as m gets bigger,
as opposed to the spaces Ψm

∞(Rn) which get bigger with m. Anyway that’s life and
we have to think of

6.296.29 (2.148)

H
∞(Rn) =

⋂
m
Hm(Rn) as the residual space

H−∞(Rn) =
⋃
m
Hm(Rn) as the big space.

It is important to note that

6.306.30 (2.149) S(Rn)  H∞(Rn)  H−∞(Rn)  S ′(Rn).

In particular we do not capture all the tempered distributions in H−∞(Rn). We
therefore consider weighted versions of these Sobolev spaces:

6.316.31 (2.150) 〈x〉qHm(Rn) =
{
u ∈ S ′(Rn); 〈x〉−qu ∈ Hm(Rn)

}
.
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6.32 Theorem 2.4. For each q,m,M ∈ R each A ∈ ΨM
∞(Rn) defines a continuous

linear map

6.336.33 (2.151) A : 〈x〉qHm(Rn) −→ 〈x〉qHm−M (Rn).

Proof. Let us start off with q = 0, so we want to show that

6.346.34 (2.152) A : Hm(Rn) −→ Hm−M (Rn), A ∈ ΨM
∞(Rn).

Now from (
6.26
2.145) we see that

6.356.35 (2.153) u ∈ Hm(Rn)⇐⇒ 〈D〉mu ∈ L2(Rn)

⇐⇒ 〈D〉m−M 〈D〉Mu ∈ L2(Rn)⇐⇒ 〈D〉Mu ∈ Hm−M (Rn) ∀ m,M.

That is,

6.366.36 (2.154) 〈D〉M : Hm(Rn)←→ Hm−M (Rn) ∀ m,M.

To prove (
6.34
2.152) it suffices to show that

6.376.37 (2.155) B = 〈D〉−M+m ·A · 〈D〉−m : L2(Rn) −→ L2(Rn)

since then A = 〈D〉−m+M ·B · 〈D〉m maps Hm(Rn) to Hm−M (Rn) :

6.386.38 (2.156) Hm(Rn)

〈D〉m

��

A // Hm−M (Rn)

〈D〉m−M

��
L2(Rn)

B
// L2(Rn).

Since B ∈ Ψ0
∞(Rn), by the composition theorem, we already know (

6.37
2.155).

Thus we have proved (
6.34
2.152). To prove the general case, (

6.33
2.151), we proceed

in the same spirit. Thus 〈x〉q is an isomorphism from Hm(Rn) to 〈x〉qHm(Rn), by
definition. So to get (

6.33
2.151) we need to show that

6.396.39 (2.157) Q = 〈x〉−q ·A · 〈x〉q : Hm(Rn) −→ Hm−M (Rn),

i.e. satisfies (
6.34
2.152). Consider the Schwartz kernel of Q. Writing A in left-reduced

form, with symbol a,

6.406.40 (2.158) KQ(x, y) = (2π)−n
∫
ei(x−y)·ξ〈x〉−qa(x, ξ)dξ · 〈y〉q.

Now if we check that

6.416.41 (2.159) 〈x〉−q〈y〉qa(x, ξ) ∈
(
1 + |x− y|2

) |q|
2 SM∞

(
R2n;Rn

)
then we know that Q ∈ ΨM

∞(Rn) and we get (
6.39
2.157) from (

6.34
2.152). Thus we want

to show that

6.426.42 (2.160) 〈x− y〉−|q| 〈y〉
q

〈x〉q
a(x, ξ) ∈ SM∞ (R2n;Rn)

assuming of course that a(x, ξ) ∈ SM∞ (Rn;Rn). By interchanging the variables x
and y if necessary we can assume that q < 0. Consider separately the two regions

6.436.43 (2.161)

{
(x, y); |x− y| < 1

4
(|x|+ |y|)

}
= Ω1{

(x, y); |x− y| > 1

8
(|x|+ |y|)

}
= Ω2.
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In Ω1, x is “close” to y, in the sense that

(2.162) |x| ≤ |x− y|+ |y| ≤ 1

4
(|x|+ |y|) + |y| =⇒ |x| ≤ 4

3
· 5

4
|y| ≤ 2|y|.

Thus

6.446.44 (2.163) 〈x− y〉−q · 〈x〉
−q

〈y〉−q
≤ C in Ω1.

On the other hand in Ω2,

(2.164) |x|+ |y| < 8|x− y| =⇒ |x| < 8|x− y|

so again

6.456.45 (2.165) 〈x− y〉−q 〈x〉
−q

〈y〉−q
≤ C.

In fact we easily conclude that

6.466.46 (2.166) 〈x− y〉−q 〈y〉
q

〈x〉q
∈ C∞∞(Rn) ∀ q,

since differentiation by x or y makes all terms “smaller”. This proves (
6.42
2.160), hence

(
6.41
2.159) and (

6.39
2.157) and therefore (

6.33
2.151), i.e. the theorem is proved. �

We can capture any tempered distribution in a weighted Sobolev space; this is
really Schwartz’ representation theorem which says that any u ∈ S ′(Rn) is of the
form

(2.167) u =
∑
finite

xαDβ
xuαβ , uαβ bounded and continuous.

Clearly C0
∞(Rn) ⊂ 〈x〉1+nL2(Rn). Thus as a special case of Theorem

6.32
2.4,

Dβ
x : 〈x〉1+nL2(Rn) −→ 〈x〉1+nH−|β|(Rn)

so

6.47 Lemma 2.10.

(2.168) S ′(Rn) =
⋃
M

〈x〉MH−M (Rn).

The elliptic regularity result we found before can now be refined:

6.48 Proposition 2.8. If A ∈ Ψm
∞(Rn) is elliptic then

6.496.49 (2.169)
Au ∈ 〈x〉pHq(Rn), u ∈ 〈x〉p

′
Hq′(Rn)

=⇒ u ∈ 〈x〉p
′′
Hq′′(Rn), p′′ = max(p, p′), q′′ = max(q +m, q′).

Proof. The existence of a left parametrix for A, B ∈ Ψ−m∞ (Rn),

B ·A = Id +G, G ∈ Ψ−∞∞ (Rn)

means that

6.506.50 (2.170) u = B(Au) +Gu ∈ 〈x〉pHq+m(Rn) + 〈x〉p
′
H∞(Rn) ⊂ 〈x〉p

′′
Hq+m(Rn).

�
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2.15. PolyhomogeneityS.Polyhomogeneity

So far we have been considering operators A ∈ Ψm
∞(Rn) which correspond,

via (
3.2
2.2), to amplitudes satisfying the symbol estimates (

3.7
2.6), i.e. in Sm∞(R2n;Rn).

As already remarked, there are many variants of these estimates and corresponding
spaces of pseudodifferential operators. Some weakening of the estimates is discussed
in the problems below, starting with Problem

1.2.2000.279
2.16. Here we consider a restriction

of the spaces, in that we define

eq:P.1eq:P.1 (2.171) Smph(Rp;R) ⊂ Sm∞(Rp;Rn).

The definition of the subspace (
eq:P.1
2.171) is straightforward. First we note that if

a ∈ C∞(Rp;Rn) is homogeneous of degree m ∈ C in |ξ| ≥ 1, then

eq:P.2eq:P.2 (2.172) a(z, tξ) = tma(z, ξ), |t|, |ξ| ≥ 1

where for complex m we always mean the principal branch of tm for t > 0. If it also
satisfies the uniform regularity estimates

eq:P.3eq:P.3 (2.173) sup
z∈Rn, |ξ|≤2

|Dα
zD

β
ξ a(z, ξ)| <∞ ∀ α, β,

then in fact

eq:P.4eq:P.4 (2.174) a ∈ S<m∞ (Rp;Rn).

Indeed, (
eq:P.3
2.173) is exactly the restriction of the symbol estimates to z ∈ Rp, |ξ| ≤ 2.

On the other hand, in |ξ| ≥ 1, a(z, ξ) is homogeneous so

|Dα
zD

β
ξ a(z, ξ)| = |ξ|m−|β||Dα

zD
β
ξ a(z, ξ̂)|, ξ̂ =

ξ

|ξ|
from which the symbol estimates follow.

Definition 2.2. For any m ∈ C, the subspace of (one-step)7 polyhomogeneous
symbols is defined as a subset (

eq:P.1
2.171) by the requirement that a ∈ Smph(Rp;Rn) if

and only if there exist elements am−j(z, ξ) ∈ S<m∞ (Rp;Rn) which are homogeneous
of degree m− j in |ξ| ≥ 1, for j ∈ N0, such that

eq:P.5eq:P.5 (2.175) a ∼
∑
j

am−j .

Clearly

eq:P.6eq:P.6 (2.176) Smph(Rp;Rn) · Sm
′

ph (Rp;Rn) ⊂ Sm+m′

ph (Rp;Rn),

since the asymptotic expansion of the product is given by the formal product of the
asymtotic expansion. In fact there is equality here, because

eq:P.7eq:P.7 (2.177) (1 + |ξ|2)m/2 ∈ Smph(Rp;Rn)

and multiplication by (1 + |ξ|2)m/2 is an isomorphism of the space S0
ph(Rp;Rn)

onto Smph(Rp;Rn). Furthermore differentiation with respect to zj or ξl preserves
asymptotic homogeneity so

Dxj : Smph(Rp;Rn) −→ Smph(Rp;Rn)

Dξl : Smph(Rp;Rn) −→ Sm−1
ph (Rp;Rn)

∀j = 1, . . . , n.

7For a somewhat more general class of polyhomogeneous symbols, see problem
prob:MM
2.8.
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It is therefore no great surprise that the polyhomogeneous operators form a subal-
gebra.

Proposition 2.9. The spaces Ψm
ph(Rn) ⊂ Ψm

∞(Rn) defined by the condition

that the kernel of A ∈ Ψm
ph(Rn) should be of the form I(a) for some

eq:P.9eq:P.9 (2.178) a ∈ (1 + |x− y|2)w/2Smph(R2n;Rn),

are such that

1.10.2007.961.10.2007.96 (2.179) Ψm
ph(Rn) ◦Ψm′

ph (Rn) = Ψm+m′

ph (Rn), (Ψm
ph(Rn))∗ = Ψm̄

ph(Rn)

for all m,m′ ∈ C.

Proof. Since the definition shows that

Ψm
ph(Rn) ⊂ Ψ<m∞ (Rn)

we know already that

Ψm
ph(Rn) ·Ψm′

ph (Rn) ⊂ Ψ<(m+m′)
∞ (Rn).

To see that products are polyhomogeneous it suffices to use (
eq:P.6
2.176) and (

eq:P.8
2.178)

which together show that the asymptotic formulæ describing the left symbols of
A ∈ Ψm

ph(Rn) and B ∈ Ψm′

ph (Rm), e.g.

σL(A) ∼
∑
α

i|α|

α!
Dα
ξD

α
y a(x, y, ξ)|y=x

imply that σL(A) ∈ Smph(Rn;Rn), σL(B) ∈ Smph(Rn;Rn). Then the asymptotic for-

mula for the product shows that σL(A ·B) ∈ Sm+m′

ph (Rn;Rn).

The proof of ∗-covariance is similarly elementary, since if A = I(a) then A∗ =

I(b) with b(x, y, z) = a(y, x, ξ) ∈ Smph(R2n;Rn). �

In case m is real this subspace is usually denoted simply Ψm(Rn) and its el-
ements are often said to be ‘classical’ pseudodifferential operators. As a small
exercise in the use of the principal symbol map we shall show that

eq:P.10eq:P.10 (2.180)
A ∈ Ψm

ph(Rn), A (uniformly) elliptic =⇒ ∃ a parametrix

B ∈ Ψ−mph (Rn), A ·B − Id, B ·A− Id ∈ Ψ−∞∞ (Rn).

In fact we already know that B ∈ Ψ−m∞ (Rn) exists with these properties, and even
that it is unique modulo Ψ−∞∞ (Rn). To show that B ∈ Ψ−mph (Rn) we can use the
principal symbol map.

For elements A ∈ Ψm
ph(Rn) the principal symbol σm(A) ∈ S<m−[1]

∞ (Rn;Rn) has
a preferred class of representatives, namely the leading term in the expansion of
σL(A)

σm(A) = σ(ξ)am(x, ξ) mod Sm−1
ph (Rn;Rn)

where σ|ξ| = 1 in |ξ| ≥ 1, σ|ξ| = 0 in |ξ| ≤ 1/2. It is even natural to identify the
principal symbol with am(x, ξ) as a homogeneous function. Then we can see that

eq:P.11eq:P.11 (2.181) A ∈ Ψ<m∞ (Rn), σ<m(A) homogeneous of degree m

⇐⇒ Ψm
ph(Rn) + Ψ<m−1

∞ (Rn).

Indeed, we just subtract from A an element A1 ∈ Ψm
ph(Rn) with σ<m(A1) =

σ<m(A), then σ<m(A−A1) = 0 so A−A1 ∈ Ψm−1
∞ (Rn).
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So, returning to the proof of (
eq:P.10
2.180) note straight away that

σ−<m(B) = σ<m(A)−1

has a homogeneous representative, namely am(x, ξ)−1. Thus we have shown that
for j = 1

eq:P.12eq:P.12 (2.182) B ∈ Ψ−mph (Rn) + Ψ−m−j∞ (Rn).

We take (
eq:P.12
2.182) as an inductive hypthesis for general j. Writing this decomposition

B = B′ +Bj it follows from the identity (
eq:P.10
2.180) that

A ·B = A ·B′ +ABj = Id mod Ψ−∞∞ (Rn)

so
A ·Bj = Id−AB′ ∈ Ψ0

ph(Rn) ∩Ψ−j∞ (Rn) = Ψ−jph (Rn).

Now applying B on the left, or using the principal symbol map, it follows that
Bj ∈ Ψ−m−jph (Rn) + Ψ−m−j−1

∞ (Rn) which gives the inductive hypothesis (
eq:P.12
2.182) for

j + 1.
It is usually the case that a construction in Ψ∗∞(Rn), applied to an element of

Ψ∗ph(Rn) will yield an element of Ψ∗ph(Rn) and when this is the case it can generally

be confirmed by an inductive argument like that used above to check (
eq:P.10
2.180).

2.16. Topologies and continuity of the product

As a subspace8

Smph(Rp;Rn) ⊂ Sm∞(Rp;Rn)

is not closed. Indeed, since it contains S−∞∞ (Rp;Rn), its closure contains all of

Sm
′

∞ (Rp;Rn) for m′ < m. In fact it is a dense subspace.9 To capture its properties
we can strengthen the topology Smph(Rp;Rn) inherits from Sm∞(Rp;Rn).

As well as the symbol norms ‖ · ‖N,m in (
3.8
2.7) we can add norms on the terms

in the expansions in (
eq:P.5
2.175)

eq:P.14eq:P.14 (2.183) ‖Dα
xD

β
ξ am−j(x, ξ)‖L∞(G), G = Rp × {1 ≤ |ξ| ≤ 2}.

We can further add the symbol norms ensuring (
eq:P.5
2.175), i.e.,

eq:P.15eq:P.15 (2.184) ‖a−
k∑
j=0

am−j‖m−k−1,N ∀ k,N.

Together these give a countable number of norms on Smph(Rp;Rn). With respect to

the metric topology defined as in (
3.9
2.8) the spaces Smph(Rp;Rn) are then complete.10.

Since we have shown that the left symbol map is a linear isomorphism Ψm
∞(Rn) −→

Sm∞(Rn;Rn) we give Ψm
∞(Rn) a topology by declaring this to be a topological iso-

morphism. Similarly we declare

eq:P.16eq:P.16 (2.185) σL : Ψm
ph(Rn)←→ Smph(Rn;Rn)

to be a topological isomorphism.
Having given the spaces Ψm

∞(Rn) and Ψm
∞(Rn) topologies it is natural to ask

about the continuity of the operations on them.

8Polyhomogeneous symbols may seem to be quite sophisticated objects but they are really

smooth functions on manifolds with boundary; see Problems
prob:MM
2.8–

prob:NN
2.7.

9See Problem
prob:DD
2.9.

10See Problem
prob:CC
2.10.



58 2. PSEUDODIFFERENTIAL OPERATORS ON EUCLIDEAN SPACE

7.12.2007.445 Proposition 2.10. The adjoint and product maps are continuous

7.12.2007.4467.12.2007.446 (2.186)
Ψm
∞(Rn)

∗−→ Ψm
∞(Rn),

Ψm
∞(Rn)×Ψm′

∞ (Rn) −→ Ψm+m′

∞ (Rn)

and similarly for the polyhomogeneous spaces.

Proof. Note that we have put metric topologies on these spaces so it suffices
to check sequential continuity. Now the commutative product is continuous, as
follows from direct estimation,

7.12.2007.4477.12.2007.447 (2.187) Sm∞(Rp;Rn)× Sm
′

∞ (Rp;Rn) −→ Sm+m′

∞ (Rp;Rn)

as is the ‘commutative adjoint’, a(x, y, ξ) 7−→ a(y, xξ) on Sm. The same is true for
the polyhomogeneous spaces. From this it follows that it is only necessary to show
the continuity of the reduction map

7.12.2007.4487.12.2007.448 (2.188) Sm∞(R2n;Rn) 3 a 7−→ σL(I(a)) ∈ Sm∞(Rn;Rn).

Recall that this map is accomplished in two steps, first taking the Taylor series
at y = x, integrating by parts and taking an asymptotic sum. This constructs
b ∈ Sm∞(Rn;Rn) so that qL(b) − I(a) ∈ Ψ−∞∞ (Rn). Then the case m = −∞ is
done directly by estimation. Given a convergent sequence in Sm∞(R2n;Rn), each of
the terms in the Taylor series converges and it follows that the asymptotic sums
can be arranged to converge, that is if an → a in Sm∞(R2n;Rn) then there exists
bn → b ∈ Sm(Rn;Rn) such that qL(bn) − I(an) → qL(b) − I(a) ∈ Ψ−∞∞ (Rn).
Combined with the case m = −∞ this shows that reduction to the left symbol is
continuous. �

A result which will be useful later follows from the same argument.

15.12.2007.466 Lemma 2.11. Suppose φi ∈ C∞c (Rn), i = 1, 2, and φ1 = 1 on supp(φ2) then

15.12.2007.46715.12.2007.467 (2.189) Sm∞(Rn;Rn) 3 a 7−→ σL(φ1qL(a)(1− φ2)) ∈ S−∞∞ (Rn;Rn)

is continuous.

Since we have given topologies to the spaces of pseudodifferential operators the
notion of continuous dependence on parameters is well defined. Indeed the same
is true of smooth dependence on parameters, since a map a : [0, 1] −→ Ψm

∞(Rn)
is C1 if it is continuous, the difference quotients (a(t + s) − a(t))/s are continu-
ous down to s = 0, and the resulting derivative is smooth. Then smoothness is
just iterative regularity in this sense. Essentially by definition this means that A ∈
C∞([0, 1]ε; Ψm

∞(Rn)) is the left-reduced symbol a = σL(A(ε)) ∈ C∞([0, 1];Sm∞(Rn;Rn)).

2.17. Linear invarianceS.Linear.invariance

It is rather straightforward to see that the algebra Ψ∞∞(Rn) is invariant under
affine transformations of Rn. In particular if Tax = x+a, for a ∈ Rn, is translation
by a and

T ∗a f(x) = f(x+ a), T ∗a : S(Rn) −→ S(Rn)

is the isomorphism on functions then a new operator is defined by

T ∗aAaf = AT ∗a f and A ∈ Ψm
∞(Rn) =⇒ Aa ∈ Ψm

∞(Rn).

In fact the left-reduced symbols satisfy

σL(Aa)(x, ξ) = σL(A)(x+ a, ξ), Aa = T ∗−aAT
∗
a .
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Similarly if T ∈ GL(n) is an invertible linear transformation of Rn and AT f =
T ∗A(T ∗)−1f then

1.10.2007.601.10.2007.60 (2.190)

AT f(x) = (2π)−n
∫
ei(Tx−y)·ξa(Tx, ξ)f(T−1y)dξdy

= (2π)−n
∫
ei(Tx−Ty)·ξa(Tx, ξ)f(y)|det(T )|dξdy

so changing dual variable to (T t)−1ξ shows that

21.2.1998.10421.2.1998.104 (2.191) A ∈ Ψm
∞(Rn) =⇒ AT ∈ Ψm

∞(Rn)

and σL(AT )(x, ξ) = σL(A)(Tx, (T t)−1ξ)

where T t is the transpose of T (so Tx · ξ = x · T tξ) and the determinant factors
cancel. Thus it suffices to check that

1.10.2007.611.10.2007.61 (2.192) Sm∞(Rq;Rn) 3 a 7−→ a′ = a(Tx,Aξ) ∈ Sm(Rq;Rn)

for any linear tranformation T on Rq and invertible linear tranformation A on Rn.
Clearly the derivatives of a′ are linear combinations of derivatives of a at the image
point so it the symbol estimates for a′ follow from those for a and the invertibility
of A which implies that

1.10.2007.621.10.2007.62 (2.193) c|ξ| ≤ |Aξ| ≤ C|ξ|, c, C > 0.

This invariance means that we can define the spaces Ψm
∞(V ) and Ψm

ph(V ) for

any vector space V (or even affine space) as operators on S(V ).

2.18. Local coordinate invariance
Loc.coord

To transfer the definition of pseudodifferential operators to manifolds we need
to show not only invariance under linear transformations but also under a diffemor-
phism F : Ω −→ Ω′ between open subsets of Rn. For this to make sense we need to
consider an operator on Rn which acts on functions defined in Ω′. Thus, consider

1.10.2007.931.10.2007.93 (2.194) Ψm
c (Ω′) = {A ∈ Ψm

∞(Rn) has kernel satisfying supp(A) b Ω′ × Ω′} .

There are plenty of such operators if Ω′ 6= ∅ since if φ, ψ ∈ C∞c (Ω′) and B ∈ Ψm
∞(Rn)

then A = φBψ ∈ Ψm
c (Ω′) since it satisfies (

1.10.2007.93
2.194). It follows that if a ∈ Sm(Rn;Rn)

has support in K × Rn for some K b Ω′ then there exists A ∈ Ψm
c (Ω′) such that

σL(A) ≡ a modulo S−∞(Rn;Rn) – simply take some B with this symbol and then
set A = φBφ where φ ∈ C∞c (Ω′) but φ = 1 in a neighbourhood of K.

1.10.2007.94 Proposition 2.11. If F : Ω −→ Ω′ is a diffeomorphism then for A ∈ Ψm
c (Ω′),

1.10.2007.951.10.2007.95 (2.195) AFu = F ∗A(F−1)∗(u
∣∣
Ω

) defines an isomorphism Ψm
c (Ω′) −→ Ψm

c (Ω).

Proof. Since A ∈ Ψm
∞(Rn),

7.407.40 (2.196) KA(x, y) = (2π)−n
∫
ei(x−y)·ξa(x, ξ)dξ

for some a ∈ Sm∞(Rn;Rn). Now choose ψ ∈ C∞c (Ω) such that ψ(x)ψ(y) = 1 on
supp(KA), which is possible by (

1.10.2007.93
2.194). Then

7.417.41 (2.197) KA = I (ψ(x)ψ(y)a(x, ξ)) .
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In fact suppose µε(x, y) ∈ C∞(R2n) and µ ≡ 1 in |x− y| < ε for ε > 0, µ(x, y) = 0
in |x− y| > 2ε. Then if

7.427.42 (2.198) KAε = I (µε(x, y)ψ(x)ψ(y)a(x, ξ))

we know that if

7.437.43 (2.199) A′ε = A−Aε then KA′ε
= (1− µε(x, y))KA ∈ Ψ−∞∞ (Rn).

Then A′ε ∈ Ψ−∞c (Ω′) and

7.447.44 (2.200) (A′ε)F ∈ Ψ−∞∞ (Rn).

So we only need to consider Aε defined by (
7.42
2.198). Now

7.457.45 (2.201) K(Aε)F (x, y) = (2π)−n
∫
ei(G(x)−G(y))·ξb(G(x), G(y), ξ)

∣∣∂G
∂y

∣∣dξ
where b(x, y, ξ) = µε(x− y)ψ(x)ψ(y)a(x, ξ). Applying Taylor’s formula,

7.467.46 (2.202) G(x)−G(y) = (x− y) · T (x, y)

where T (x, y) is an invertible C∞ matrix on K ×K ∩ {|x − y| < ε} for ε < ε(K),
where ε(K) > 0 depends on the compact set K b Ω′. Thus we can set

(2.203) η = T t(x, y) · ξ
and rewrite (

7.45
2.201) as

7.477.47 (2.204)

K(Aε)F (x, y) = (2π)−n
∫
ei(x−y)·ηc(x, y, η)dη

c(x, y, η) = b
(
G(x), G(y), (T t)−1(x, y)η

) ∣∣∂G
∂y

∣∣ · ∣∣detT (x, y)
∣∣−1

.

So it only remains to show that c ∈ Sm∞(R2n;Rn) and the proof is complete. We
can drop all the C∞ factors, given by

∣∣∂G/∂y∣∣ etc. and proceed to show that

(2.205)
∣∣Dα

xD
β
yD

γ
ξ a (G(x), G(y), S(x, y)ξ)

∣∣ ≤ C(1 + |ξ|)m−|γ| on K ×K × Rn

where K ⊂⊂ Ω′ and S is C∞ with |detS| ≥ ε. The estimates with α = β = 0 follow
easily and the general case by induction:

Dα
xD

β
yD

γ
ξ a (G(x), G(y), S(x, y)ξ)

=
∑

|µ|≤|α|+|β|+|γ|
|α′|≤|α|,|β|≤|β|
|ν|+|γ|≤|µ|

Mα′,ρ′,µ′

α,β,γ,ν (x, y)ξν
(
Dα′Dβ′Dµa

)
(G(x), G(y), Sξ)

where the coefficients are C∞ and the main point is that |ν| ≤ |µ|. �

2.19. Semiclassical limit
Euclidean-scl

Let us at least pretend to go back to the beginning once more in order to
understand the following ‘problem’. From the origins of quantum mechanics the
relationship between the quantum and related classical system has always been a
primary interest. In classical Hamiltonian mechanics the ‘energy’ (I will keep to
one dimension for the moment in the interest only of simplicity) is the sum of the
kinetic and potential energies,

28.11.2007.38728.11.2007.387 (2.206) E(x, ξ) =
1

2
~ξ2 + V (x)
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Here ~ is a ‘small parameter’ which represents either a coupling constant (the fine
structure constant relating the energy change in an atom to the frequence of the
light emitted) or else a small ‘mass’. The ‘corresponding’ (one has to be careful
about this, the process of quantization does not really work this way) quantum
system is

28.11.2007.38828.11.2007.388 (2.207) qL(E) = −1

2
~
d2

dx2
+ V (x).

For ~ > 0 – which is really the case – this is a perfectly good elliptic (at least
locally) differential operator. However something singular clearly happens as ~ ↓ 0
(although you might ask how a constant is supposed to go to zero; fortunately we
have other less frivolous reasons for looking at this).

If we simply set ~ = ε2 then we can rewrite (
28.11.2007.388
2.207) in the form

28.11.2007.38928.11.2007.389 (2.208) −1

2
(ε
d

dx
)2 + V (x).

This suggests that to generalize the structure in (
28.11.2007.389
2.208) to ‘arbitrary symbols’ in

place of (
28.11.2007.387
2.206) we should simply consider operators of the form

28.11.2007.39028.11.2007.390 (2.209)

Aεu(x) = (2π)−n
∫
R2n

ei(x−y)·ξa(ε, x, y, εξ)u(y)dydξ

= (2πε)−n
∫
R2n

ei(x−y)·η/εa(ε, x, y, η)u(y)dydη

where the second version follows from the first by changing variable to η = εξ and
a ∈ C∞([0, 1]ε;S

m
∞(R2n;Rn) is a symbol in the usual sense which may also depend

smoothly on ε.

28.11.2007.391 Definition 2.3. Let Ψm
sl-∞(Rn) ⊂ C∞((0, 1]; Ψm

∞(Rn) (resp. Ψm
sl (Rn)) ⊂ C∞((0, 1]; Ψm

ph(Rn))
be the subspace consisting of those 1-parameter families which are of the form
(
28.11.2007.390
2.209) for some a ∈ C∞([0, 1];Sm∞(R2n;Rn)) (resp. a ∈ C∞([0, 1];Smph(R2n;Rn)).

There is no question about the form of the kernels of these operators. Namely,
directly from the second form of the definition

28.11.2007.39228.11.2007.392 (2.210) Aε has kernel of the form ε−nKε(x,
x− y
ε

)

where Kε(x, x− y) is the kernel of a smooth family of pseudodifferential operators
in the usual sense, namely

28.11.2007.39328.11.2007.393 (2.211) Kε(x, x− y) is the kernel of I(aε).

So, as ε ↓ 0 the kernel very much ‘bunches up’ around the diagonal. This rather
explicit description does not tell us directly about the composition properties of
these 1-parameter families of operators. However we can work this out fairly easily.
First check what happens for the operators of order −∞.

28.11.2007.394 Proposition 2.12. The space Ψ−∞sl (Rn) = Ψ−∞sl-∞(Rn) is closed under compo-
sition and adjoints and there is a short exact multiplicative sequence

28.11.2007.39528.11.2007.395 (2.212) εΨ−∞sl (Rn) −→ Ψ−∞sl (Rn)
σsl−→ S−∞∞ (Rn;Rn).
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Proof. Already from (
28.11.2007.390
2.209) it follows directly that the residual algebra is

given by symbols of order −∞, that is

28.11.2007.39628.11.2007.396 (2.213) Aε ∈
⋂
m

Ψm
sl-∞(Rn)⇐⇒

Aε is of the form (
28.11.2007.390
2.209) with a ∈ C∞([0, 1];S−∞∞ (R2n;Rn))

since the kernel Kε(x, x − y) is uniquely determined by Aε. This also shows that
the ‘residual space’ is the same for the classical and non-classical cases.

Thus if Aε ∈ Ψ−∞sl (Rn) then there exists Kε ∈ C∞∞([0, 1]×Rn;S(Rn)) such that

28.11.2007.39728.11.2007.397 (2.214) Aε has kernel ε−nKε(ε, x,
x− y
ε

).

So the composite – really only for ε > 0 – of two such (families of) operators Aε
and Bε, where the kernel of Bε is given by (

28.11.2007.397
2.214) for a different function Lε, has

kernel

28.11.2007.39828.11.2007.398 (2.215)

ε−nJε(x,
x− y
ε

) = ε−2n

∫
Rn
K(x,

x− z
ε

)Lε(z,
z − y
ε

)dz

= ε−n
∫
Rn
K(x, t)Lε(x− εt,

x− y
ε

+ t)dt

where t = (x − z)/ε. Thus changing independent variable to Z = (x − y)/ε the
kernel of the product (for ε > 0) becomes

28.11.2007.39928.11.2007.399 (2.216) Jε(x, Z) =

∫
Rn
Kε(x, t)Lε(x− εt, Z + t)dt.

Now, it is easy to see that Jε(x, Z) ∈ C∞∞([0, 1]ε × Rn;S(Rn)). The rapid decay in
t in the first factor in the integrand gives rapid convergence of the integral and
overall boundness of Jε. Rapid decay in Z follows from the estimate

28.11.2007.40028.11.2007.400 (2.217) |Z| ≤ |t|+ |Z + t|
and differentiating with respect to any of the independent variables gives a similar
integral with similar bounds.

This shows that the composite is also in Ψ−∞sl (Rn). Notice that at ε = 0,

28.11.2007.40128.11.2007.401 (2.218) J0(x, Z) =

∫
Rn
K0(x, t)L0(x, Z + t)dt =⇒ c(0, x, ξ) = a(0, x, ξ)b(0, x, ξ).

by taking the Fourier transform in Z. Thus (
28.11.2007.395
2.212) is satisfied by the map

28.11.2007.40228.11.2007.402 (2.219) σsl(Aε) = a(0, x, ξ) ∈ S−∞∞ (Rn;Rn) = C∞∞(Rn;S(Rn)).

�

It is important to contrast the behaviour of this ‘semiclassical symbol’ with the
usual symbol – with which it is closely related of course. Namely the semiclassical
symbol describes in rather complete detail the leading behaviour of the operator
at ε = 0 and is multiplicative. What this really shows is the basic property of the
semiclassical limit, namely that these operators ‘become commutative’ at ε = 0
(where they also fail to exist in the usual sense).11 As with the principal symbol
rather fine results can be proved by iteration. Thus

15.12.2007.46815.12.2007.468 (2.220) Aε ∈ Ψ−∞sl (Rn) and σsl(Aε) = 0 =⇒ Aε = εA(1)
ε , A(1)

ε ∈ Ψ−∞sl (Rn).

11See Problem
28.11.2007.403
2.22.
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Then if one can arrange repeatedly that σsl(A
(1)
ε ) = 0 and so on, one may finally

conclude that12

15.12.2007.46915.12.2007.469 (2.221) Aε ∈
⋂
N

εNΨ−∞sl (Rn)⇐⇒ Aε ∈ C∞([0, 1]; Ψ−∞sl (Rn)) and
dk

dεk
Aε
∣∣
ε=0

= 0.

Now we proceed to show that this result extends directly to the operators of
finite order.

28.11.2007.405 Theorem 2.5. The semiclassical families in Ψm
sl-∞(Rn) (or Ψm

sl (Rn)) form an
order-filtered ∗-algebra with two multiplicative symbol maps, one a uniform (perhaps
better to say ‘rescaled’) version of the usual symbol and the second a finite order
version of the semiclassical symbol in (

28.11.2007.402
2.219):

28.11.2007.40628.11.2007.406 (2.222)
σ̃m : Ψm

sl (Rn) −→ C∞([0, 1]××Rn × (Rn \ 0)), σ̃m(Aε)(x, η) = σm(Aε)(x, η/ε),

σsl : Ψm
sl (Rn) −→ Smph(Rn × Rn);

they are separately surjective and are jointly subject only to the compatibility con-
dition

28.11.2007.40728.11.2007.407 (2.223) σsl(Aε) = σ̃m(Aε)
∣∣
ε=0

in Sm−[1]
∞ (Rn;Rn).

Proof. By definition Aε ∈ Ψm
sl-∞(Rn) means precisely that there is a smooth

family aε ∈ C∞([0, 1];Sm∞(Rn;Rn)) such that if Kε(x, x− y) is the family of kernels
of qL(aε) then (

28.11.2007.392
2.210) holds. Thus the two maps in the statement of the theorem,

with

15.12.2007.47115.12.2007.471 (2.224)
σ̃m(Aε) = [aε] ∈ C∞([0, 1];Sm−[1]

∞ (Rn;Rn)) and

σsl(Aε) = a0 ∈ Sm∞(Rn;Rn)

are certainly well-defined and subject only to the stated compatibility condition.
Thus the main issue is multiplicativity. Since aε can be smoothly approximated

by symbols of order −∞ we can use continuity in the symbol topology and start
from (

28.11.2007.399
2.216). For ε = 1

15.12.2007.47315.12.2007.473 (2.225)

J(x, Z) =

∫
Rn
K(x, t)L(x− t, Z + t)dt,

K(x, t) = (2π)−n
∫
eit·ξb(x, ξ)dξ,

L(x, t) = (2π)−n
∫
eit·ξa(x, ξ)dξ,

c(x, ξ) =

∫
e−iZ·ξJ(x, Z)dZ

reproduces the usual composition formula. Thus we know that this formula extends
by continuity to define the jointly continuous product map

15.12.2007.47215.12.2007.472 (2.226) Sm∞(Rn;Rn)× Sm
′

∞ (Rn;Rn) −→ Sm+m′

∞ (Rn;Rn).

Now, we can simplify this by assuming that a is constant-coefficient, i.e. is inde-
pendent of the base variable. The to evaluate c(0, ξ) we only need to know J(0, Z)

12See Problem
15.12.2007.470
2.24 for an outline of the proof.
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which is given by the (extension by continuity of) the simplified formula, which
therefore, by restriction, defines a continuous map

15.12.2007.47515.12.2007.475 (2.227)

J(0, Z) =

∫
Rn
K(t)L(−t, Z + t)dt, Sm∞(Rn)× Sm

′

∞ (Rn;Rn) −→ Sm+m′

∞ (Rn).

Now, from (
15.12.2007.473
2.225)

15.12.2007.47615.12.2007.476 (2.228) L(−t, Z) = (2π)−n
∫
eiZ·ξa(−t, ξ)dξ

so in the corresponding formula with ε varying

15.12.2007.47715.12.2007.477 (2.229) J(0, Z) =

∫
Rn
K(t)L(−εt, Z + t)dt

L(−εt, Z + t) corresponds to the symbol a(−εt, ξ) ∈ C∞([0, 1];Sm
′

∞ (Rn;Rn)) as
follows easily by direct differentiation. Thus if we fix x in (

28.11.2007.399
2.216) at any point in

Rn this shows that the product extends by continuity to the finite order symbol
spaces. Then, using the bilinearity, the smooth dependence on x as a parameter
can be restored. Thus in fact the same results on composition follow as in the
smoothing case, that

15.12.2007.47815.12.2007.478 (2.230)
σ̃m+m′(AεBε) = σ̃m(Aε)σ̃m′(Bε) and

σsl-∞(AεBε) = σsl-∞(Aε)σsl-∞(Bε).

�

Of course the uniform symbol σ̃m(A) is not quite the usual symbol precisely
because of rescaling but is equivalent to it for ε > 0. Namely

7.12.2007.4447.12.2007.444 (2.231) σm(Aε)(x, ξ) = σ̃m(Aε)(ε, x, εξ).

Maybe you like to have things written out explicitly as short exact sequences.
There are in fact three such (or more if you allow polyhomogeneous/∞ variants),
all of which are also multiplicative. Thus

7.12.2007.4437.12.2007.443 (2.232)

Ψm−1
sl (Rn) −→ Ψm

sl (Rn)
σ̃m−→ C∞([0, 1];S

m−[1]
ph (Rn;Rn)),

εΨm
sl (Rn) −→ Ψm

sl (Rn)
σsl−→ Smph(Rn;Rn),

εΨm−1
sl (Rn) −→

Ψm
sl (Rn)

(σ̃m,σsl)−→{
(ã, a) ∈ Smph(Rn;Rn)⊕ C∞([0, 1];S

m−[1]
ph (Rn;Rn)); ã = a

∣∣
ε=0

in S
m−[1]
ph (Rn;Rn)

}
.

We also want to check coordinate invariance. Note that the semiclassical alge-
bras are mapped into themselves by multiplication of the kernel by an element of
C∞∞(R2n

x,y). In particular we may freely localize on the left or the right by a smooth
function of compact support and stay in the algebra. The coordinate invariance of
the semiclassical algebra then follows from that of the usual algebra.

28.11.2007.411 Proposition 2.13. If Aε ∈ Ψm
sl-∞(Rn) has kernel with compact support in Ω×

Ω for some open Ω ⊂ Rn and F : Ω −→ Ω′ is a diffeomorphism then AF,ε =
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(F−1)∗AεF
∗ ∈ Ψm

sl-∞(Rn) and

28.11.2007.41228.11.2007.412 (2.233)
σ̃m(AF,ε) = (F ∗)∗σ̃m(Aε)

σsl(AF,ε) = (F ∗)∗σsl(Aε).

Note that F ∗ is linear on the fibres so commutes with the rescaling map.
We will also need some boundedness properties of semiclassical families. The

following will suffice for our purposes.

7.12.2007.441 Proposition 2.14. For Aε ∈ Ψ0
sl-∞(Rn),

7.12.2007.4427.12.2007.442 (2.234) sup
0<ε≤1

‖Aε‖L2(Rn) <∞.

Proof. It is only the uniformity in (
7.12.2007.442
2.234) that is at issue, since we know the

boundedness for 1 ≥ ε ≥ δ for any δ > 0. The argument we give is essentially
the same as for boundedness. Namely for C > 0 large enough we can extract an
approximate square-root

1.12.2007.4391.12.2007.439 (2.235) C −A∗εAε = B2
ε + Eε, B ∈ Ψ0

sl(Rn), E ∈ ε∞C∞([0, 1; Ψ−∞(Rn)).

This can be seen using essentially the same symbolic computation as before but
now for both symbols. Thus if C > σ0(A)∗σ0(A) and C > σsl(A)∗σsl(A) (and note
that the second can well be larger than the first) then be can choose B ∈ Ψ0

sl(Rn)
with B∗ = B, σ0(B)2 = C − σ0(A)∗σ0(A), σsl(B)2 = Cσsl(A)∗σsl(A) (because the
consistency condition is satisfied) and hence

1.12.2007.4401.12.2007.440 (2.236) C −A∗A = B2 + E1, E1 ∈ εΨ−1
sl (Rn).

Then the construction can be iterated as before to construct a solution to (
1.12.2007.439
2.235).

The uniform boundedness of Eε is clear – in fact its norm vanishes rapidly as ε ↓ 0
so the uniform boundedness follows. �

2.20. Adiabatic and semiclassical families
AdsclEucl

In the preceeding section semiclassical families of smoothing operators were
discussed. Later we need to consider similar families with two parameters. So, here
the local case is analysed. Consider a decomposition of Euclidean space into two
factors,

21.2.2008.121.2.2008.1 (2.237) Rn+ñ = Rn × Rñ.

It is straightforward to consider an ‘adiabatic’ analogue of the semiclassical calcu-
lus above. Namely if consider smooth families of kernels of smoothing operators
in Ψ−∞∞ (Rn+ñ as before. Now however then ‘compress’ them as for the semiclas-
sical calculus, but only in the second set of variables and consider the families of
smoothing operators for δ > 0,

21.2.2008.221.2.2008.2 (2.238)

B : S(Rn+ñ) −→ C∞((0, 1];S(Rn+ñ),

Bf(δ, z, z̃) = δ−ñ
∫
Rn+ñ

B(δ, z, z − z′, z̃, z̃ − z̃
′

δ
)f(z′, z̃′)dz′dz̃′,

B(δ, z, z − z′, z̃, z̃ − z̃′) ∈ C∞([0, 1]; Ψ−∞∞ (Rn+ñ)).
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21.2.2008.3 Proposition 2.15. The collection of families of operators of the form (
21.2.2008.2
2.238)

forms an algebra, denoted Ψ−∞∞ ad(Rn;Rñ) under composition with adiabatic symbol
map

21.2.2008.521.2.2008.5 (2.239) B 7−→ σad(B)(z, z − z′, z̃, ζ) =

∫
Rñ
e−iZζB(z, z − z′, z̃, Z)dZ,

giving a multiplicative short exact sequence

21.2.2008.421.2.2008.4 (2.240) δΨ−∞∞ ad(Rn;Rñ) //Ψ−∞∞ ad(Rn;Rñ)
σad//S−∞∞ (Rñ;Rñ; Ψ−∞∞ (Rn))

Of course the algebra depends on set of variables in which the ‘adiabatic limit’
is taken. The semiclassical calculus corresponds to n = 0, meaning no ‘non-
commutative’ variables survive.

Proof. Following the discussion above of the semiclassical limit, simply change
variables in the composition formula which holds in δ > 0 defining the left side

21.2.2008.621.2.2008.6 (2.241) δ−ñC(δ; z, z − z′′, z̃, z̃ − z̃
′′

δ
)

= δ−2ñ

∫
Rn×Rñ

A(δ; z, z − z′, z̃, z̃ − z̃
′

δ
)B(δ; z′, z′ − z′′, z̃′, z̃

′ − z̃′′

δ
)dz′dz̃′

by introducing Z̃ = (z̃ − z̃′′)/δ and Z̃ ′ = (z̃ − z̃′)/δ so that
21.2.2008.721.2.2008.7 (2.242)

C(δ; z, z−z′′, z̃, Z) =

∫
Rn×Rñ

A(δ; z, z−z′, z̃, Z̃ ′)B(δ; z′, z′−z′′, z̃−δZ̃ ′, Z̃−Z̃ ′)dz′dZ̃ ′.

In this form the same argument as in the semiclassical case shows that the composite
is of the same type. Moreover, when δ = 0 the composite kernel is given just by
convolution in the second variables, with z̃ just a parameter, and still by operator
composition in the first variables. Thus gives the multiplicativity of the adiabatic
symbol map in (

21.2.2008.4
2.240). �

As well as this adiabatic calculus we need to consider a two parameter calculus
in which both the overall semiclassical limit and the adiabatic limit just consid-
ered occur. Thus, still starting with the same types of kernels, but now with two
parameters,

21.2.2008.821.2.2008.8 (2.243) A ∈ C∞([0, 1]ε × [0, 1]δ; Ψ−∞∞ (Rn+ñ)

we consider the families of operators with kernels

21.2.2008.921.2.2008.9 (2.244) ε−n−ñδ−ñB(z,
z − z
ε

, z̃,
z̃ − z̃′

εδ
).

21.2.2008.10 Proposition 2.16. The space of operators two-parameter familes of opera-
tors with kernels of the form (

21.2.2008.9
2.244) forms an algebra under composition, denoted

Ψ−∞∞ sl ad(Rn;Rñ) which has two multiplicative ‘symbol’ maps

21.2.2008.1121.2.2008.11 (2.245)

σslΨ
−∞
∞ sl ad(Rn;Rñ) −→ C∞([0, 1]δ;S

−∞
∞ (Rn+ñ;Rn+ñ)),

σsl(B) =

∫
e−iZζ−iZ̃ζ̃B(0, δ, z, Z, z̃, Z̃),

σadΨ−∞∞ sl ad(Rn;Rñ) −→ S−∞∞ (Rñ;Rñ; Ψ−∞∞ sl(R
n))

σad(B) = ε−ñ
∫
e−iz̃ζ̃B(ε, 0, z,

z − z′

ε
, z̃, Z̃).
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The proof of this is easy, as before, the main problem is to take in what it actually
means! Passing to δ = 0 we get a family depending on ε which is just on Rn, the
first variables, and is undergoing an adiabatic limit as ε ↓ 0. Passing to ε = 0 for
δ > 0 we are simply doing a semiclassical limit in which δ appears as a parameter
and in an appropriate sense is uniform down to δ = 0. Of course the limits at
ε = δ = 0 should match up independently of the order in which the variables go to
zero. This is encapsulated in the identity

21.2.2008.1221.2.2008.12 (2.246) σsl(B)
∣∣
δ=0

= σsl(σad(B)).

Proof. Writing down the composition formula for C = A ◦B as before, when
ε > 0 and δ > 0 and changing variables we find that

21.2.2008.1321.2.2008.13 (2.247)

C(ε, δ, z, Z, z̃, Z̃) =∫
Rn×Rñ

A(ε, δ; z, Z ′, z̃, Z̃ ′)B(ε, δ; z − εZ ′, Z − Z ′, z̃ − εδZ̃ ′, Z̃ − Z̃ ′)dZdZ̃ ′.

Again it if straightforward to check that C is a family of kernels of smoothing
operators. Moreover setting δ = 0 gives the adiabatic symbol, which from (

21.2.2008.13
2.247)

undergoes the composition law for the the semiclassical composition in the first
variables under composition of operators. On the other hand, setting ε = 0 gives the
same semiclassical composition formula as before, although the scaling of variables
involved in the definitions is different. �

The definitions of the symbols show that there are two short exact sequences
21.2.2008.1421.2.2008.14 (2.248)

δΨ−∞∞ sl ad(Rn;Rñ) //Ψ−∞∞ sl ad(Rn;Rñ)
σad//S−∞∞ (Rñ;Rñ; Ψ−∞∞ sl(Rn))

εΨ−∞∞ sl ad(Rn;Rñ) //Ψ−∞∞ sl ad(Rn;Rñ)
σsl//C∞([0, 1]δ;S

−∞
∞ (Rn+ñ;Rn+ñ))

Moreover, the combined symbol map σsl ⊕ σad has null space εδΨ−∞∞ sl ad(Rn;Rñ)
and range the direct sum of the ranges, subject just to the compatibility condition
(
21.2.2008.12
2.246).

2.21. Smooth and holomorphic families

I have gone through the description of ‘classical’ pseudodifferential operators of
complex order here, even though it might seem rather strange – I want to emphasize
that these really do arise in practice. In particular we will want to consider the
notion of a holomorphic family of complex order f(z) where f is holomorphic.

First consider the issue of continuous or smooth dependence on parameters.
Since we have at least implicitly given Ψm

∞(Rn) and Ψm
ph(Rn) topologies, this is

already defined. In fact of course it is just the continuous or smooth dependence of
the left-reduced symbol on the parameters, say in some open or smoothly-bounded
subset of Rp. Tracking back through the arguments above, it can be seen that the
product theorem actually gives continuous dependence of the symbol of a product
on the symbols of the factors, although a little thought is needed here because of
the asymptotic summation involved see Problem

28.11.2007.413
2.25 for a little more on this point.

It is important that the product is unique. For homolormophy say of an element of
Ψm
∞(Rn) in terms of a complex variable s ∈ U ⊂ C open the discussion is essentially

the same. Namely a (strongly) holomorphic function into a fixed topological vector
space is just a continuous function which satisfies Cauchy criterion, that it integrates
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to zero around any closed contour. This is actually equivalent to smoothness in s
and

1.10.2007.971.10.2007.97 (2.249) ∂A(s) = 0.

So, there is nothing very interesting going on here. For polyhomogeneous op-
erators of a fixed order the story is the same, with the spaces of operators and
symbols altered appropriately. However if the order itself is allowed to vary then a
different notion of ‘holomorphy’ arises. Namely if F : U −→ C is itself a holomor-
phic function, we may consider polyhomogeneous symbols which are of order f(s).
As noted above this can be simplified by writing the (left-reduced) symbol in the
form

1.10.2007.981.10.2007.98 (2.250) a(s, x, ξ) =< ξ >f(s) b(s, x, ξ)

where b ∈ S0
ph(Rn;Rb). Then by holomorphy in this new sense we mean holomorphy

of b in the usual sense, as a polyhomogeneous symbol of order 0. We can write

Ψf
hol(Rn) for this linear space of operators. Note that we drop the ‘ph’ since this

does not make much sense without it!

1.10.2007.99 Proposition 2.17. If A(s) ∈ Ψf
hol(Rn) and B ∈ Ψg

hol(Rn) for two holomorphic
functions f, g : U −→ C,

1.10.2007.1001.10.2007.100 (2.251) A ◦B ∈ Ψf+g
hol (Rn).

Proof. I suppose I should write one! �

Why bother with such operators? Globally in this sense on Rn it is difficult
to come up with sensible examples but on a compact manifold or for the better
‘global’ calculi on Rn discussed below there are natural examples. For instance,
getting very much ahead of myself here, if A ∈ Ψ1

ph(M) is self-adjoint and elliptic
on a compact manifold M then the complex powers Az for an entire family, so
complex in the sense above for z ∈ C. This was first proved by Seeley and is the
starting point for many interesting developments, see Chapters

I.cal
4,

Pse-man
6 and

Scat
7 below.

2.22. ProblemsS.Chapter.2.Problems

P3.1 Problem 2.1. Show, in detail, that for each m ∈ R

(2.252) (1 + |ξ|2)
1
2m ∈ Sm∞(Rp;Rn)

for any p. Use this to show that

Sm∞(Rp;Rn) · Sm
′

∞ (Rp;Rn) = Sm+m′

∞ (Rp;Rn).

P3.2 Problem 2.2. Consider w = 0 and n = 2 in the definition of symbols and
show that if a ∈ S1

∞(R2) is elliptic then for r > 0 sufficiently large the integral

2π∫
0

1

2π

1

a(reiθ)

d

dθ
a(reiθ)dθ =

1

2π

∫ 2π

0

d

dθ
log a(reiθ)dθ,

exists and is an integer independent of r, where z = ξ1 + iξ2 is the complex variable
in R2 = C. Conclude that there is an elliptic symbol, a on R2, such that there does
not exist b, a symbol with

(2.253) b 6= 0 on R2 and a(ξ) = b(ξ) for |ξ| > r

for any r.
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22.2.1998.139 Problem 2.3. Show that a symbol a ∈ Sm∞(Rpz;Rnξ ) which satisfies an estimate

22.2.1998.14022.2.1998.140 (2.254) |a(z, ξ)| ≤ C(1 + |ξ|)m
′
, m′ < m

is necessarily in the space Sm
′+ε
∞ (Rpz;Rnξ ) for all ε > 0.

22.2.1998.142 Problem 2.4. Show that if φ ∈ C∞c (Rpz ×Rn) and ψ ∈ C∞c (Rn) with ψ(ξ) = 1
in |ξ| < 1 then

22.2.1998.14322.2.1998.143 (2.255) cφ(z, ξ) = φ(z,
ξ

|ξ|
)(1− ψ)(ξ) ∈ S0(Rpz;Rnξ ).

If a ∈ Sm∞(Rpz;Rnξ ) define the cone support of a in terms of its complement

22.2.1998.14422.2.1998.144 (2.256) cone supp(a){ = {(z̄, ξ̄) ∈ Rpz × (Rnξ \ {0});∃
φ ∈ C∞c (Rpz;Rn), φ(z̄, ξ̄) 6= 0, such that cφa ∈ S−∞∞ (Rp;Rn)}.

Show that if a ∈ Sm∞(Rpz;Rnξ ) and b ∈ Sm′∞ (Rpz;Rnξ ) then

27.1.2003.3027.1.2003.30 (2.257) cone supp(ab) ⊂ cone supp(a) ∩ cone supp(b).

If a ∈ Sm∞(Rpz;Rnξ ) and cone supp(a)∅ does it follow that a ∈ S−∞∞ (Rpz;Rnξ )?

1.2.2000.276 Problem 2.5. Prove that (
3.32
2.30) is a characterization of functions a ∈ (1 +

|x − y|2)w/2Sm(R2n;Rn). [Hint: Use Liebniz’ formula to show instead that the
equivalent estimates

|Dα
xD

β
yD

γ
ξ a(x, y, ξ)| ≤ Cα,β,γ(1 + |x− y|2)w/2(1 + |ξ|)m−|γ| ∀ α, β, γ ∈ Nn0

characterize this space.]

P3.3 Problem 2.6. Show that A ∈ Ψ−∞∞ (Rn) if and only if its Schwartz kernel is
C∞ and satisfies all the estimates

(2.258) |Dα
xD

β
y a(x, y)| < Cα,β,N (1 + |x− y|)−N

for multiindices α, β ∈ Nn0 and N ∈ N0.

prob:NN Problem 2.7. Polyhomogeneous symbols as smooth functions.

prob:MM Problem 2.8. General polyhomogeneous symbols and operators.

prob:DD Problem 2.9. Density of polyhomogeneous symbols in L∞ symbols of the
same order.

prob:CC Problem 2.10. Completeness of the spaces of polyhomogeneous symbols.

prob:FF Problem 2.11. Fourier transform??

Problem 2.12. Show that the kernel of any element of Ψ∞∞(Rn) is C∞ away
from the diagonal. Hint: Prove that (x− y)αK(x, y) becomes increasingly smooth
as |α| increases.

21.2.1998.117 Problem 2.13. Show that for any m ≥ 0 the unit ball in Hm(Rn) ⊂ L2(Rn)
is not precompact, i.e. there is a sequence fj ∈ Hm(Rn) which has ‖fj‖m ≤ 1 and
has no subsequence convergent in L2(Rn).
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21.2.1998.118 Problem 2.14. Show that for any R > 0 there exists N > 0 such that the
Hilbert subspace of HN (Rn)

21.2.1998.11921.2.1998.119 (2.259) {u ∈ HN (Rn);u(x) = 0 in |x| > R}
is compactly included in L2(Rn), i.e. the intersection of the unit ball in HN (Rn)
with the subspace (

21.2.1998.119
2.259) is precompact in L2(Rn). Hint: This is true for any

N > 0, taking N >> 0 will allow you to use the Sobolev embedding theorem and
Arzela-Ascoli.

21.2.1998.120 Problem 2.15. Using Problem
21.2.1998.118
2.14 (or otherwise) show that for any ε > 0

(1 + |x|)εHε(Rn) ↪→ L2(Rn)

is a compact inclusion, i.e. any infinite sequence fn such that (1+|x|2)−ε is bounded
in Hε(Rn) has a subsequence convergent in L2(Rn). Hint: Choose φ ∈ C∞c (Rn)
with φ(x) = 1 in |x| < 1 and, for each k, consider the sequence φ(x/k)fj . Show
that the Fourier transform converts this into a sequence which is bounded in (1 +

|ξ|2)−
1
2 εHN (Rnξ ) for any N. Deduce that it has a convergent subsequence in L2(Rn).

By diagonalization (and using the rest of the assumption) show that fj itself has a
convergent subsequence.

1.2.2000.279 Problem 2.16. About ρ and δ.

Problem 2.17. Prove the formula (
21.2.1998.104
2.191) for the left-reduced symbol of the

operator AT obtained from the pseudodifferential operator A by linear change of
variables. How does the right-reduced symbol transform?

1.2.2000.280 Problem 2.18. Density of S(Rn) in L2(Rn).

1.2.2000.281 Problem 2.19. Square-root of a positive elliptic symbol is a symbol.

21.2.1998.108 Problem 2.20. Write out a proof to Proposition
21.2.1998.107
4.2. Hint (just to do it el-

egantly, it is straightforward enough): Write A in right-reduced form as in (
21.2.1998.112
2.74)

and apply it to û; this gives a formula for Âu.

21.2.1998.110 Problem 2.21. Show that any continuous linear operator

S ′(Rn) −→ S(Rn)

has Schwartz kernel in S(R2n).

28.11.2007.403 Problem 2.22. Show that if Aε and Bε are as in Proposition
28.11.2007.394
2.12 then they

have unique representations as in (
28.11.2007.390
2.209) with left-reduced symbols, respectively a,

b and for the composite c all in C∞∞([0, 1] × Rn;S(Rn)) and where in the sense of
Taylor series at ε = 0,

28.11.2007.40428.11.2007.404 (2.260) c(ε, x, η) '
∑
α

ε|α|

α!
∂αη a(ε, x, ξ) · ∂αx b(ε, x, η).

28.11.2007.409 Problem 2.23. Give the details of the reduction argument in the semiclassical
setting. Here are some suggestions. First use integration by parts based on the
identity

28.11.2007.41028.11.2007.410 (2.261) ε2∆ηe
i(x−y)·η/ε = |x− y|2ei(x−y)·η/ε

to show that the kernel of a semiclassical family Aε is smooth in |x− y| > δ > 0 in
all variables, including ε, as a funtion of x and x−y, with all x derivatives bounded
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and rapidly decaying in x − y – that is smoothly cut off in |x − y > δ > 0 it is
in C∞([0, 1]ε; Ψ−∞∞ (Rn) and vanishes with all its derivatives at ε = 0. Next use the
left reduction argument and asymptotic summation to treat the part of the kernel
supported in |x− y| < δ.

15.12.2007.470 Problem 2.24. Proof of (
15.12.2007.469
2.221).

28.11.2007.413 Problem 2.25. Asymptotic summation of holomorphic families of symbols.





CHAPTER 3

Schwartz and smoothing algebras

C.residual
The standard algebra of operators discussed in the previous chapter is not really

representative, in its global behaviour, of the algebra of pseudodifferential operators
on a compact manifold. Of course this can be attributed to the non-compactness
of Rn. However, as we shall see below in the discussion of the isotropic algebra, and
then again in the later discussion of the scattering algebra, there are closely related
global algebras of pseudodifferential operators on Rn which behave much more as
in the compact case.

The ‘non-compactness’ of the algebra Ψ∞∞(Rn) is evidenced by the fact the
the elements of the ‘residual’ algebra Ψ−∞∞ (Rn) are not all compact as operators
on L2(Rn), or any other interesting space on which they act. In this chapter we
consider a smaller algebra of operators in place of Ψ−∞∞ (Rn). Namely

23.2.2003.3123.2.2003.31 (3.1) A ∈ Ψ−∞iso (Rn)⇐⇒ A : S(Rn) −→ S(Rn),

Aφ(x) =

∫
Rn
A(x, y)φ(y)dy, A ∈ S(R2n).

The notation here, as the residual part of the isotropic algebra – which has not yet
been defined – is rather arbitrary but it seems better than introducing a notation
which will be retired later; it might be better to think of Ψ−∞iso (Rn) as the ‘Schwartz
algebra.’

After discussing this ‘Schwartz algebra’ at some length we will turn to the
corresponding algebra of smoothing operators on a compact manifold (even with
corners). This requires a brief introduction to manifolds, with which however I will
assume some familiarity, including integration of densities. Then essentially all the
results discussed here for operators on Rn are extended to the more general case, and
indeed the Schwartz algebra itself is realized as one version of this generalization.

By definition then, Ψ−∞iso (Rn) is the algebra which corresponds to the non-
commutative product on S(R2n) given by

23.2.2003.3223.2.2003.32 (3.2) A ◦B(x, y) =

∫
Rn
A(x, z)B(z, y)dz.

The properties we discuss here have little direct relation to the ‘microlocal’ concepts
which are discussed in the preceeding chapter. Rather they are more elementary, or
at least familiar, results which are needed (and in particular are generalized) later
in the discussion of global properties. This formula, (

23.2.2003.32
3.2) extends to smoothing

operators on manifolds and gives C∞(M2), where M is a compact manifold, the
structure of a non-commutative algebra.

In the discussion of the semiclassical limit of smoothing operators at the end
of this chapter the relationship between this non-commutative product and the
commutative product on T ∗M is discussed. This is used extensively later.
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3.1. The residual algebraS.Residual.isotropic

The residual algebra in both the isotropic and scattering calculi, discussed
below, has two important properties not shared by the residual algebra Ψ−∞∞ (Rn),
of which it is a subalgebra (and in fact in which it is an ideal). The first is that as
operators on L2(Rn) the residual isotropic operators are compact.

1.2.2000.309 Proposition 3.1. Elements of Ψ−∞iso (Rn) are characterized amongst continu-
ous operators on S(Rn) by the fact that they extend by continuity to define contin-
uous linear maps

1.2.2000.3561.2.2000.356 (3.3) A : S ′(Rn) −→ S(Rn).

In particular the image of a bounded subset of L2(Rn) under an element of Ψ−∞iso (Rn)
is contained in a compact subset.

Proof. The kernels of elements of Ψ−∞iso (Rn) are in S(R2n) so the mapping
property (

1.2.2000.356
3.3) follows.

The norm sup|α|≤1 |〈x〉n+1Dαu(x)| is continuous on S(Rn). Thus if S ⊂ L2(Rn)

is bounded and A ∈ Ψ−∞iso (Rn) the continuity of A : L2(Rn) −→ S(Rn) implies that
A(S) is bounded with respect to this norm. The theorem of Arzela-Ascoli shows
that any sequence in A(S) has a strongly convergent subsequence in 〈x〉nC0

∞(Rn)
and such a sequence converges in L2(Rn). Thus A(S) has compact closure in L2(Rn)
which means that A is compact. �

The second important property of the residual algebra is that it is ‘bi-ideal’ or
a ‘corner’ in the bounded operators on L2(Rn). Note that it is not an ideal.

1.2.2000.310 Lemma 3.1. If A1, A2 ∈ Ψ−∞iso (Rn) and B is a bounded operator on L2(Rn)
then A1BA2 ∈ Ψ−∞iso (Rn).

Proof. The kernel of the composite C = A1BA2 can be written as a distri-
butional pairing

1.2.2000.3211.2.2000.321 (3.4)

C(x, y) =

∫
R2n

B(x′, y′)A1(x, x′)A2(y′, y)dx′dy′ = (B,A1(x, ·)A2(·, y)) ∈ S(R2n).

Thus the result follows from the continuity of the exterior product, S(R2n) ×
S(R2n) −→ S(R4n). �

In fact the same conclusion, with essentially the same proof, holds for any
continuous linear operator B from S(Rn) to S ′(Rn).

3.2. The augmented residual algebraS.Isotropic.ring

Recall that a bounded operator is said to have finite rank if its range is finite
dimensional. If we consider a bounded operator B on L2(Rn) which is of finite rank
then we may choose an orthonormal basis fj , j = 1, . . . , N of the range BL2(Rn).
The functionals u 7−→ 〈Bu, fj〉 are continuous and so define non-vanishing elements
gj ∈ L2(Rn). It follows that the Schwartz kernel of B is

1.2.2000.3111.2.2000.311 (3.5) B =

N∑
j=1

fj(x)gj(y).
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If B ∈ Ψ−∞iso (Rn) then the range must lie in S(Rn) and similarly for the range of
the adjoint, so the functions fj are linearly dependent on some finite collection of
functions f ′j ∈ S(Rn) and similarly for the gj . Thus it can be arranged that the fj
and gj are in S(Rn).

1.2.2000.312 Proposition 3.2. If A ∈ Ψ−∞iso (Rn) then Id +A has, as an operator on L2(Rn),
finite dimensional null space and closed range which is the orthocomplement of the
null space of Id +A∗. There is an element B ∈ Ψ−∞iso (Rn) such that

1.2.2000.3221.2.2000.322 (3.6) (Id +A)(Id +B) = Id−Π1, (Id +B)(Id +A) = Id−Π0

where Π0, Π1 ∈ Ψ−∞iso (Rn) are the orthogonal projections onto the null spaces of
Id +A and Id +A∗ and furthermore, there is an element A′ ∈ Ψ−∞iso (Rn) of rank
equal to the dimension of the null space such that Id +A + sA′ is an invertible
operator on L2(Rn) for all s 6= 0.

Proof. Most of these properties are a direct consequence of the fact that A
is compact as an operator on L2(Rn).

We have shown, in Proposition
1.2.2000.309
3.1 that each A ∈ Ψ−∞iso (Rn) is compact. It

follows that

1.2.2000.3271.2.2000.327 (3.7) N0 = Nul(Id +A) ⊂ L2(Rn)

has compact unit ball. Indeed the unit ball, B = {u ∈ Nul(Id +A)} satisfies
B = A(B), since u = −Au on B. Thus B is closed (as the null space of a continuous
operator) and precompact, hence compact. Any Hilbert space with a compact unit
ball is finite dimensional, so Nul(Id +A) is finite dimensional.

Now, let R1 = Ran(Id +A) be the range of Id +A; we wish to show that this is a
closed subspace of L2(Rn). Let fk → f be a sequence in R1, converging in L2(Rn).
For each k there exists a unique uk ∈ L2(Rn) with uk ⊥ N0 and (Id +A)uk = fk. We
wish to show that uk → u. First we show that ‖uk‖ is bounded. If not, then along
a subsequent vj = uk(j), ‖vj‖ → ∞. Set wj = vj/‖vj‖. Using the compactness
of A, wj = −Awj + fk(j)/‖vj‖ must have a convergent subsequence, wj → w.
Then (Id +A)w = 0 but w ⊥ N0 and ‖w‖ = 1 which are contradictory. Thus the
sequence uk is bounded in L2(Rn). Then again uk = −Auk + fk has a convergent
subsequence with limit u which is a solution of (Id +A)u = f ; hence R1 is closed.
The orthocomplement of the range of a bounded operator is always the null space
of its adjoint, so R1 has a finite-dimensional complement N1 = Nul(Id +A∗). The
same argument applies to Id +A∗ so gives the orthogonal decompositions

1.2.2000.3281.2.2000.328 (3.8)
L2(Rn) = N0 ⊕R0, N0 = Nul(Id +A), R0 = Ran(Id +A∗)

L2(Rn) = N1 ⊕R1, N1 = Nul(Id +A∗), R1 = Ran(Id +A).

Thus we have shown that Id +A induces a continuous bijection Ã : R0 −→ R1.
From the closed graph theorem the inverse is a bounded operator B̃ : R1 −→ R0.
In this case continuity also follows from the argument above.1 Thus B̃ is the
generalized inverse of Id +A in the sense that B = B̃ − Id satisfies (

1.2.2000.322
3.6). It only

remains to show that B ∈ Ψ−∞iso (Rn). This follows from (
1.2.2000.322
3.6), the identities in which

1We need to show that ‖B̃f‖ is bounded when f ∈ R1 and ‖f‖ = 1. This is just the
boundedness of u ∈ R0 when f = (Id +A)u is bounded in R1.
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show that

1.2.2000.3291.2.2000.329 (3.9) B = −A−AB −Π1, −B = A+BA+ Π0

=⇒ B = −A+A2 +ABA−Π1 +AΠ0.

All terms here are in Ψ−∞iso (Rn); for ABA this follows from Proposition
1.2.2000.310
3.1.

It remains to show the existence of the finite rank perturbation A′. This is
equivalent to the vanishing of the index, that is

1.2.2000.3231.2.2000.323 (3.10) Ind(Id +A) = dim Nul(Id +A)− dim Nul(Id +A∗) = 0.

Indeed, let fj and gj , j = 1, . . . , N, be respective bases of the two finite dimensional
spaces Nul(Id +A) and Nul(Id +A∗). Then

1.2.2000.3241.2.2000.324 (3.11) A′ =

N∑
j=1

gj(x)fj(y)

is an isomorphism of N0 onto N1 which vanishes on R0. Thus Id +A + sA′ is the
direct sum of Id +A as an operator from R0 to R1 and sA′ as an operator from N0

to N1, invertible when s 6= 0.
There is a very simple proof2 of the equality (

1.2.2000.323
3.10) if we use the trace func-

tional discussed in Section
S.Traces.residual
3.5 below; this however is logically suspect as we use

(although not crucially) approximation by finite rank operators in the discussion of
the trace and this in turn might appear to use the present result via the discussion
of ellipticity and the harmonic oscillator. Even though this is not really the case
we give a clearly independent, but less elegant proof.

Consider the one-parameter family of operators Id +tA, A ∈ Ψ−∞iso (Rn). We
shall see that the index, the difference in dimension between Nul(Id +tA) and
Nul(Id +tA∗) is locally constant. To see this it is enough to consider a general
A near the point t = 1. Consider the pieces of A with respect to the decompositions
L2(Rn) = Ni ⊕Ri, i = 0, 1, of domain and range. Thus A is the sum of four terms
which we write as a 2× 2 matrix

A =

[
A00 A01

A10 A11

]
.

Since Id +A has only one term in such a decomposition, Ã in the lower right, the
solution of the equation (Id +tA)u = f can be written

1.2.2000.3251.2.2000.325 (3.12) (t− 1)A00u0 + (t− 1)A01u⊥ = f1, (t− 1)A10u0 + (A′+ (t− 1)A11)u⊥ = f⊥

Since Ã is invertible, for t − 1 small enough the second equation can be solved
uniquely for u⊥. Inserted into the first equation this gives

1.2.2000.3261.2.2000.326 (3.13) G(t)u0 = f1 +H(t)f⊥,

G(t) = (t− 1)A00 − (t− 1)2A01(A′ + (t− 1)A11)−1A10,

H(t) = −(t− 1)A01(A′ + (t− 1)A11)−1.

2Namely the trace of a finite rank projection, such as either Π0 or Π1, is its rank, hence
the dimension of the space onto which it projects. From the identity satisfied by the generalized

inverse we see that

Ind(Id +A) = Tr(Π0)− Tr(Π1) = Tr ((Id +B)(Id +A)− (Id +A)(Id +B)) = Tr([B,A]) = 0

from the basic property of the trace.
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The null space is therefore isomorphic to the null space of G(t) and a complement
to the range is isomorphic to a complement to the range of G(t). Since G(t) is
a finite rank operator acting from N0 to N1 the difference of these dimensions is
constant in t, namely equal to dimN0 − dimN1, near t = 1 where it is defined.

This argument can be applied to tA so the index is actually constant in t ∈ [0, 1]
and since it certainly vanishes at t = 0 it vanishes for all t. In fact, as we shall note
below, Id +tA is invertible outside a discrete set of t ∈ C. �

1.2.2000.330 Corollary 3.1. If Id +A, A ∈ Ψ−∞iso (Rn) is injective or surjective on L2(Rn),
in particular if it is invertible as a bounded operator, then it has an inverse of the
form Id +Ψ−∞iso (Rn).

1.2.2000.333 Corollary 3.2. If A ∈ Ψ−∞iso (Rn) then as an operator on S(Rn) or S ′(Rn),
Id +A is Fredholm in the sense that its null space is finite dimensional and its range
is closed with a finite dimensional complement.

Proof. This follows from the existence of the generalized inverse of the form
Id +B, B ∈ Ψ−∞iso (Rn). �

3.3. Exponential and logarithm

1.2.2000.350 Proposition 3.3. The exponential

1.2.2000.3511.2.2000.351 (3.14) exp(A) =
∑
j

1

j!
Aj : Ψ−∞iso (Rn) −→ Id +Ψ−∞iso (Rn)

is a globally defined, entire, function with range containing a neighbourhood of the
identity and with inverse on such a neighbourhood given by the analytic function

1.2.2000.3521.2.2000.352 (3.15) log(Id +A) =
∑
j

(−1)j

j
Aj , A ∈ Ψ−∞iso (Rn), ‖A‖L2 < 1

3.4. The residual groupsec:TG

By definition, G−∞iso (Rn) is the set (if you want to be concrete you can think of
them as operators on L2(Rn)) of invertible operators in Id +Ψ−∞iso (Rn). If we identify
this topologically with Ψ−∞iso (Rn) then, as follows from Corollary

1.2.2000.330
3.1, G−∞iso (Rn) is

open. We will think of it as an infinite-dimensional manifold modeled, of course, on
the linear space Ψ−∞iso (Rn) ' S(R2n). Since I have no desire to get too deeply into
the general theory of such Fréchet manifolds I will keep the discussion as elementary
as possible.

The dual space of S(Rp) is S ′(Rp). If we want to think of S(Rp) as a manifold
we need to consider smooth functions and forms on it. In the finite-dimensional
case, the exterior bundles are the antisymmetric parts of the tensor powers of the
dual. Since we are in infinite dimensions the tensor power needs to be completed
and the usual choice is the ‘projective’ tensor product. In our case this is something
quite simple, namely the k-fold completed tensor power of S ′(Rp) is just S ′(Rkp).
Thus we set

TG.1TG.1 (3.16) ΛkS(Rp) = {u ∈ S ′(Rkp); for any permutation

e, u(xe(1), . . . xe(h)) = sgn(e)u(x1, . . . xk)}.
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In view of this it is enough for us to consider smooth functions on open sets
F ⊂ S(Rp) with values in S ′(Rp) for general p. Thus

TG.2TG.2 (3.17) v : F −→ S ′(Rp), F ⊂ S(Rn) open

is continuously differentiable on F if there exists a continuous map

v′ : F −→ S ′(Rn+p) and each u ∈ F has a neighbourhood U

such that for each N ∃ M with

‖v(u+ u′)− v(u)− v′(u;u′)‖N ≤ C‖u′‖2M , ∀ u, u+ u′ ∈ U.
Then, as usual we define smoothness as infinite differentiability by iterating this
definition. The smoothness of v in this sense certainly implies that if f : X −→
S(Rn) is a smooth from a finite dimensional manifold then v ◦ F is smooth.

Thus we define the notion of a smooth form on F ⊂ S(Rn), an open set, as a
smooth map

TG.3TG.3 (3.18) α : F → ΛkS(Rp) ⊂ S ′(Rkp).
In particular we know what smooth forms are on G−∞iso (Rn).

The de Rham differential acts on forms as usual. If v : F → C is a function
then its differential at f ∈ F is dv : F −→ S ′(Rn) = Λ1S(Rn), just the derivative.
As in the finite-dimensional case d extends to forms by enforcing the condition that
dv = 0 for constant forms and the distribution identity over exterior products

TG.5TG.5 (3.19) d(α ∧ β) = (dα) ∧ β + (−1)degαα ∧ dβ.

3.5. Traces on the residual algebraS.Traces.residual

The algebras we are studying are topological algebras, so it makes sense to
consider continuous linear functionals on them. The most important of these is the
trace. To remind you what it is we consider first its properties for matrix algebras.

Let M(N ;C) denote the algebra of N × N complex matrices. We can simply
define

eq:1eq:1 (3.20) Tr : M(N ;C)→ C, Tr(A) =

N∑
i=1

Aii

as the sum of the diagonal entries. The fundamental property of this functional is
that

eq:2eq:2 (3.21) Tr([A,B]) = 0 ∀ A,B ∈M(N ;C).

To check this it is only necessary to write down the definition of the composition
in the algebra. Thus

(AB)ij =

N∑
k=1

AikBkj .

It follows that

Tr(AB) =

N∑
i=1

(AB)ii =

N∑
i,k=1

AikBki

=

N∑
k=1

N∑
i=1

BkiAik =

N∑
k=1

(BA)kk = Tr(BA)
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which is just (
eq:2
3.21).

Of course any multiple of Tr has the same property (
eq:2
3.21) but the normalization

condition

eq:3eq:3 (3.22) Tr(Id) = N

distinguishes it from its multiples. In fact (
eq:2
3.21) and (

eq:3
3.22) together distinguish

Tr ∈ M(N ;C)′ as a point in the N2 dimensional linear space which is the dual of
M(N ;C).

lem:trace Lemma 3.2. If F : M(N ;C) → C is a linear functional satisfying (
eq:2
3.21) and

B ∈M(N ;C) is any matrix such that F (B) 6= 0 then F (A) = F (B)
Tr(B) Tr(A).

Proof. Consider the basis of M(N ;C) given by the elementary matrices Ejk,
where Ejk has jk-th entry 1 and all others zero. Thus

EjkEpq = δkpEjq.

If j 6= k it follows that

EjjEjk = Ejk, EjkEjj = 0.

Thus

F ([Ejj , Ejk]) = F (Ejk) = 0 if j 6= k.

On the other hand, for any i and j

EjiEij = Ejj , EijEji = Eii

so

F (Ejj) = F (E11) ∀ j.
Since the Ejk are a basis,

F (A) = F (

N∑
j,k=1

AijEij)

=
N∑

j,l=1

AjjF (Eij)

= F (E11)

N∑
j=1

Ajj = F (E11) Tr(A).

This proves the lemma. �

For the isotropic smoothing algebra we have a similar result.

isotropic trace Proposition 3.4. If F : Ψ−∞iso (Rn) ' S(R2n) −→ C is a continuous linear
functional satisfying

eq:4eq:4 (3.23) F ([A,B]) = 0 ∀ A,B ∈ Ψ−∞iso (Rn)

then F is a constant multiple of the functional

eq:5eq:5 (3.24) Tr(A) =

∫
Rn
A(x, x)dx.
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Proof. Recall that Ψ−∞iso (Rn) ⊂ Ψ∞iso(Rn) is an ideal so A ∈ Ψ−∞iso (Rn) and
B ∈ Ψ∞iso(Rn) implies that AB, BA ∈ Ψ−∞iso (Rn) and it follows that the equality
F (AB) = F (BA), or F ([A,B]) = 0, is meaningful. To see that it holds we just
use the continuity of F. We know that if B ∈ Ψ∞iso(Rn) then there is a sequence
Bn → B in the topology of Ψm

iso(Rn) for some m. Since this implies ABn → AB,
BnA→ BA in Ψ−∞iso (Rn) we see that

F ([A,B]) = lim
n→∞

F ([A,Bn]) = 0.

We use this identity to prove (
eq:5
3.24). Take B = xj or Dj , j = 1, . . . , n. Thus

for any A ∈ Ψ−∞iso (Rn)

F ([A, xj ]) = F ([A,Dj ]) = 0.

Now consider F as a distribution acting on the kernel A ∈ S(R2n). Since the kernel
of [A, xj ] is A(x, y)(yj − xj) and the kernel of (A,Dj) is −(Dyj + Dxj )A(x, y) we

conclude that, as an element of S ′(R2n), F satisfies

(xj − yj)F (x, y) = 0, (Dxj +Dyj )F (x, y) = 0.

If we make the linear change of variables to pi = xi+yi
2 , qi = xi − yi and set

F̃ (p, q) = F (x, y) these conditions become

Dqi F̃ = 0, piF̃ = 0, i = 1, . . . , N.

As we know from Lemmas
2.3
1.2 and

2.5
1.3, this implies that F̃ = cδ(p) so

F (x, y) = cδ(x− y)

as a distribution. Clearly δ(x− y) gives the functional Tr defined by (
eq:5
3.24), so the

proposition is proved. �

We still need to justify the use of the same notation, Tr, for these two func-
tionals. However, if L ⊂ S(Rn) is any finite dimensional subspace we may choose
an orthonal basis ϕi ∈ L, i = 1, . . . , l,∫

Rn
|ϕi(x)|2dx = 0,

∫
Rn
ϕi(x)ϕj(x)dx = 0, i 6= j.

Then if aij is an l × l matrix,

A =
∑̀
i,j=1

aijϕi(x)ϕj(y) ∈ Ψ−∞iso (Rn).

From (
eq:5
3.24) we see that

Tr(A) =
∑
ij

aij Tr(ϕiϕ̄j)

=
∑
ij

aij

∫
Rn
ϕi(x)ϕj(x)dx

=

n∑
i=1

aii = Tr(a).

Thus the two notions of trace coincide. In any case this already follows, up to a
constant, from the uniqueness in Lemma

lem:trace
3.2.
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3.6. Fredholm determinant

For N ×N matrices, the determinant is a multiplicative polynomial map

1.2.2000.4041.2.2000.404 (3.25) det : M(N ;C) −→ C, det(AB) = det(A) det(B), det(Id) = 1.

It is not quite determined by these conditions, since det(A)k also satisfies then. The
fundamental property of the determinant is that it defines the group of invertible
elements

1.2.2000.4051.2.2000.405 (3.26) GL(N,C) = {A ∈M(N ;C); det(A) 6= 0}.

A reminder of a direct definition is given in Problem
1.2.2000.406
4.7.

The Fredholm determinant is an extension of this definition to a function on
the ring Id +Ψ−∞iso (Rn). This can be done in several ways using the density of finite
rank operators, as shown in Corollary

1.2.2000.407
4.2. We proceed by generalizing the formula

relating the determinant to the trace. Thus, for any smooth curve with values in
GL(N ;C) for any N,

1.2.2000.4081.2.2000.408 (3.27)
d

ds
det(As) = det(As) tr(A−1

s

As
ds

).

In particular if (
1.2.2000.404
3.25) is augmented by the normalization condition

iml.1iml.1 (3.28)
d

ds
det(Id +sA)

∣∣
s=0

= tr(A) ∀ A ∈M(N ;C)

then it is determined.
A branch of the logarithm can be introduced along any curve, smoothly in the

parameter, and then (
1.2.2000.408
3.27) can be rewritten

1.2.2000.4091.2.2000.409 (3.29) d log det(A) = tr(A−1dA).

Here GL(N ;C) is regarded as a subset of the linear space M(N ;C) and dA is
the canonical identification, at the point A, of the tangent space to M(N,C) with
M(N,C) itself. This just arises from the fact that M(N,C) is a linear space.
Thus dA( dds (A + sB)

∣∣
s=0

= B. This allows the expression on the right in (
1.2.2000.409
3.29)

to be interpreted as a smooth 1-form on the manifold GL(N ;C). Note that it is
independent of the local choice of logarithm.

To define the Fredholm determinant we shall extend the 1-form

iml.2iml.2 (3.30) α = Tr(A−1dA)

to the group G−∞iso (Rn) ↪→ Id +Ψ−∞iso (Rn). Here dA has essentially the same meaning
as before, given that Id is fixed. Thus at any point A = Id +B ∈ Id +Ψ−∞iso (Rn) it
is the identification of the tangent space with Ψ−∞iso (Rn) using the linear structure:

dA(
d

ds
(Id +B + sE)

∣∣
s=0

) = E, E ∈ Ψ−∞iso (Rn).

Since dA takes values in Ψ−∞iso (Rn), the trace functional in (
iml.2
3.30) is well defined.

The 1-form α is closed. In the finite-dimensional case this follows from (
1.2.2000.409
3.29).

For (
iml.2
3.30) we can compute directly. Since d(dA) = 0, essentially by definition, and

iml.4iml.4 (3.31) dA−1 = −A−1dAA−1

we see that

iml.5iml.5 (3.32) dα = −Tr(A−1(dA)A−1(dA)) = 0.
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Here we have used the trace identity, and the antisymmetry of the implicit wedge
product in (

iml.5
3.32), to conlcude that dα = 0. For a more detailed discussion of this

point see Problem
iml.6
4.8.

From the fact that dα = 0 we can be confident that there is, locally near any
point of G−∞iso (Rn), a function f such that df = α; then we will define the Fredholm
determinant by detFr(A) = exp(f). To define detFr globally we need to see that this
is well defined.

iml.9 Lemma 3.3. For any smooth closed curve γ : S1 −→ G−∞iso (Rn) the integral

iml.10iml.10 (3.33)

∫
γ

α =

∫
S1
γ∗α ∈ 2πiZ.

That is, α defines an integral cohomology class, [ α2πi ] ∈ H
1(G−∞iso (Rn);Z).

Proof. This is where we use the approximability by finite rank operators.
If πN is the orthogonal projection onto the span of the eigenspaces of the small-
est N eigenvalues of the harmonic oscillator then we know from Section

S.Harmonic.oscillator
4.3 that

πNEπN → E in Ψ−∞iso (Rn) for any element. In fact it follows that for the smooth
curve that γ(s) = Id +E(s) and EN (s) = πNE(s)πN converges uniformly with all
s derivatives. Thus, for some N0 and all N > N0, Id +EN (s) is a smooth curve in
G−∞iso (Rn) and hence γN (s) = IdN +EN (s) is a smooth curve in GL(N ;C). Clearly

iml.11iml.11 (3.34)

∫
γN

α −→
∫
γ

α as N →∞,

and for finite N it follows from the identity of the trace with the matrix trace (see
Section

S.Traces.residual
3.5) that

∫
N
γ∗Nα is the variation of arg log det(γN ) around the curve. This

gives (
iml.10
3.33). �

Now, once we have (
iml.10
3.33) and the connectedness of G−∞iso (Rn) we may define

iml.12iml.12 (3.35) detFr(A) = exp(

∫
γ

α), γ : [0, 1] −→ G−∞iso (Rn), γ(0) = Id, γ(1) = A.

Indeed, Lemma
iml.9
3.3 shows that this is independent of the path chosen from the

identity to A. Notice that the connectedness of G−∞iso (Rn) follows from the connect-
edness of the GL(N,C) and the density argument above.

The same arguments and results apply to G−2n−ε
∞−iso (Rn) using the fact that the

trace functional extends continuously to Ψ−2n−ε
∞−iso (Rn) for any ε > 0.

iml.13 Proposition 3.5. The Fredholm determinant, defined by (
iml.12
3.35) on G−∞iso (Rn)

(or G−2n−ε
iso (Rn) for ε > 0) and to be zero on the complement in Id +Ψ−∞iso (Rn) (or

Id +Ψ−2n−ε
iso (Rn)) is an entire function satisfying

iml.14iml.14 (3.36) detFr(AB) = detFr(A) detFr(B), A,B ∈ Id +Ψ−∞iso (Rn)

(or Id +Ψ−2n−ε
iso (Rn)), detFr(Id) = 1.

Proof. We start with the multiplicative property of detFr on G−∞iso (Rn). Thus
is γ1(s) is a smooth curve from Id to A1 and γ2(s) is a smooth curve from Id to A2

then γ(s) = γ1(s)γ2(s) is a smooth curve from Id to A1A2. Consider the differential
on this curve. Since

d(A1(s)A2(s))

ds
=
dA1(s)

ds
A2(s) +A1(s)

dA2(s)

ds
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the 1-form becomes

iml.15iml.15 (3.37) γ∗(s)α(s) = Tr(A2(s)−1 dA2(s)

ds
) + Tr(A2(s)−1A1(s)−1 dA2(s)

ds
A2(s)).

In the second term on the right we can use the trace identity, since Tr(GA) =
Tr(AG) if G ∈ ΨZ

iso(Rn) and A ∈ Ψ−∞iso (Rn). Thus (
iml.15
3.37) becomes

γ∗(s)α(s) = γ∗1α+ γ∗2α.

Inserting this into the definition of detFr gives (
iml.14
3.36) when both factors are in

G−∞iso (Rn). Of course if either factor is not invertible, then so is the product and
hence both detFr(AB) and at least one of detFr(A) and detFr(B) vanishes. Thus
(
iml.14
3.36) holds in general when detFr is extended to be zero on the non-invertible

elements.
Thus it remains to establish the smoothness. That detFr(A) is smooth in any

real parameters in which A ∈ G−∞iso (Rn) depends, or indeed is holomorphic in holo-
morphic parameters, follows from the definition since α clearly depends smoothly,
or holomorphically, on parameters. In fact the same follows if holomorphy is exam-
ined as a function of E, A = Id +E, for E ∈ Ψ−∞iso (Rn). Thus it is only smoothness
across the non-invertibles that is at issue. To prove this we use the multiplicativity
just established.

If A = Id +E is not invertible, E ∈ Ψ−∞iso (Rn) then it has a generalized inverse
Id +E′ as in Proposition

21.3.1998.169
4.3. Since A has index zero, we may actually replace E′ by

E′+E′′, where E′′ is an invertible linear map from the orthocomplement of the range
of A to its null space. Then Id +E′+E′′ ∈ G−∞iso (Rn) and (Id +E′+E′′)A = Id−Π0.
To prove the smoothness of detFr on a neighbourhood of A it is enough to prove the
smoothness on a neighbourhood of Id−Π0 since Id +E′+E′′ maps a neighbourhood
of the first to a neighbourhood of the second and detFr is multiplicative. Thus
consider detFr on a set Id−Π0 + E where E is near 0 in Ψ−∞iso (Rn), in particular
we may assume that Id +E ∈ G−∞iso (Rn). Thus

detFr(Id +E −Π0) = det(Id +E) det(Id−Π0 + (GE − Id)Π0)

were GE = (Id +E)−1 depends holomorphically on E. Thus it suffices to prove the
smoothness of detFr(Id−Π0 +HΠ0) where H ∈ Ψ−∞iso (Rn)

Consider the deformation Hs = Π0HΠ0 +s(Id−Π0)HΠ0, s ∈ [0, 1]. If Id−Π0 +
Hs is invertible for one value of s it is invertible for all, since its range is always
the range of Id−Π0 plus the range of Π0HΠ0. It follows that detFr(Id−Π0 + Hs)
is smooth in s; in fact it is constant. If the family is not invertible this follows
immediately and if it is invertible then

ddetFr(Id−Π0 +Hs)

ds

= detFr(Id−Π0 +Hs) Tr
(
(Id−Π0 +Hs)

−1(Id−Pi0)HΠ0)
)

= 0

since the argument of the trace is finite rank and off-diagonal with respect to the
decomposition by Π0.

Thus finally it is enough to consider the smoothness of detFr(Id−Π0 +Π0HΠ0)
as a function of H ∈ Ψ−∞iso (Rn). Since this is just det(Π0HΠ0), interpreted as a
finite rank map on the range of Π0 the result follows from the finite dimensional
case. �
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3.7. Fredholm alternativeS.Fredholm.alternative

Since we have shown that detFr : Id +Ψ−∞iso (Rn) −→ C is an entire function,
we see that G−∞iso (Rn) is the complement of a (singular) holomorphic hypersurface,
namely the surface {Id +E; detFr(Id +E) = 0}. This has the following consequence,
which is sometimes call the ‘Fredholm alternative’ and also part of ‘analytic Fred-
holm theory’.

iml.21 Lemma 3.4. If Ω ⊂ C is an open, connected set and A : Ω −→ Ψ−∞iso (Rn) is a
holomorphic function then either Id +A(z) is invertible on all but a discrete subset
of Ω and (Id +A(z)) is meromorphic on Ω with all residues of finite rank, or else
it is invertible at no point of Ω.

Proof. Of course the point here is that detFr(Id +A(z)) is a holomorphic
function on Ω. Thus, either detFr(A(z)) = 0 is a discrete set, D ⊂ Ω or else
detFr(Id +A(z)) ≡ 0 on Ω; this uses the connectedness of Ω. Since this corresponds
exactly to the invertibility of Id +A(z) the main part of the lemma is proved. It
remains only to show that, in the former case, (Id +A(z))−1 is meromorphic. Thus
consider a point p ∈ D. Thus the claim is that near p

iml.22iml.22 (3.38) (Id +A(z))−1 = Id +E(z) +

N∑
j=1

z−jEj , Ej ∈ Ψ−∞iso (Rn) of finite rank

and where E(z) is locally holomorphic with values in Ψ−∞iso (Rn).
If N is sufficiently large and ΠN is the projection onto the first N eigenspaces

of the harmonic oscillator then B(z) = Id +E(z)−ΠNE(z)ΠN is invertible near p
with the inverse being of the form Id +F (z) with F (z) locally holomorphic. Now

(Id +F (z))(Id +E(z)) = Id +(Id +F (z))ΠNE(z)ΠN

= (Id−ΠN ) + ΠNM(z)ΠN + (Id−ΠN )M ′(z)ΠN .

It follows that this is invertible if and only if M(z) is invertible as a matrix on
the range of ΠN . Since it must be invertible near, but not at, p, its inverse is a
meromorphic matrix K(z). It follows that the inverse of the product above can be
written

iml.23iml.23 (3.39) Id−ΠN + ΠNK(z)ΠN − (Id−ΠN )M ′(z)ΠNK(z)ΠN .

This is meromorphic and has finite rank residues, so it follows that the same is true
of A(z)−1. �

3.8. Manifolds and functions

Here is a version of the standard definition of a manifold (with corners). First
let M be a Hausdorff topological space. That is, we already have the ‘topology’ of
open subsets of M, closed under arbitrary intersections and finite unions. We then
know which real-functions on M are continuous – namely those f : M −→ R such
that f−1(a, b) ⊂ M is open for every a < b. The Hausdorff condition is that these
continuous functions separate points, so if p1 6= p2 are two points in M then there
is a continuous function f on M such that f(p1) 6= f(p2). We also assume that M
is second countable, that the topology has a countable basis – there is a countable
collection of open subsets such that every open subset is a union of these particular
open subsets.
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A C∞ structure on M can be taken to be a subset C∞(M) ⊂ C0(M) of the space
of continuous functions which has the following properties. First, it is a subalgebra.
Second it generates (product) coordinate systems. That is there is a countable open
cover of M by subsets Ui for each of which there are n elements fi,j ∈ C∞(M) such
that Fi = (f1,1, . . . , fi,n) restricts to Ui to give a topological isomorphism

6.2.2008.4796.2.2008.479 (3.40) Fi
∣∣
Ui

: Ui −→ [0, 1)k × (−1, 1)n−k ⊂ Rn

and such that if g ∈ C∞c (Rn) has support in (−1, 1)n then

6.2.2008.4806.2.2008.480 (3.41) g′ =

{
F ∗i g on Ui

0 on M \ Ui
∈ C∞(M),

and that these functions form an ideal in C∞(M). Thirdly we require that C∞(M)
is maximal in the sense that if g : M 7−→ R and for each i, g

∣∣
Ui

= F ∗i hi for some

hi ∈ C∞((−1)n) then g ∈ C∞(M).
In fact I would call a manifold as defined in the preceeding paragraph a t-

manifold. It has various problems. One is that I have not insisted that the local
dimension n is not fixed. This is not a serious problem, but it means that M
may be up to even a countable union of compoents, each of which is a connected
manifold, in the same sense, and hence has fixed dimension. Often this is required
anyway, at at least it is how most people think – that a manifold is connected.
Apart from that there are more serious problems with the boundary when k, which
is the local boundary codimension, takes the value 2 or greater. This is not really
imortant here but I usually insist on an additional condition, that the boundary
faces be embedded. This is actually a combinatorial condition and means that
each boundary hypersurface, defined as the closure of a component of the set of
boundary points of ‘codimension one’ (meaning the union of the the inverse images
of the subsets, in the coordinate patches, of [0, 1)k × (−1, 1)n−k where exactly one
of the first k variables vanishes), is embedded. One way of thinking about this is
that some neighbourhood of each point in the closure of such a boundary point
meets the component of the codimension one boundary in a connected set.

A map between manifolds, f : M −→ N is smooth if and only if the composite
u ◦ f ∈ C∞(M) for every y ∈ C∞(N). It is usual to write this as a pull-back map

7.2.2008.4927.2.2008.492 (3.42) f∗ : C∞(N) −→ C∞(M), f∗u = u ◦ f.

The discussion above is not a good way to learn about manifolds – I am as-
suming you will look things up somewhere if you don’t know about them. The only
real virtue of this definition is that it is short. 3

3.9. Tangent and cotangent bundles
TanCotan

From one manifold we can make others. The most basic examples of this is
the passage to a boundary face of a manifold with corners and taking products
of manifolds. A more sophisticated example, blow up, is discussed briefly below
and we have already described to compactification of Euclidean space to a ball.
However the most frequently encountered ‘derived’ manifold below is the cotangent

3In case you, gentle reader, really want to learn the elementary theory of manifolds for yourself
and are unable to pick up an appropriate book I have added (or will add) lots of ‘problems’ to

guide, or remind, you a little.
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bundle. Once again the approach I give here is not really introductory, its main
virtue is brevity.

On Euclidean space of a smooth function near a point, z̄, can always be de-
composed in terms of coordinate functions

6.2.2008.4816.2.2008.481 (3.43) f(z) = f(z̄) +

n∑
j=1

fj(z)(zj − z̄j)

where the coefficient functions fj are smooth near z̄. The fj are not determined
by this Taylor expansion but their values at z̄, namely the derivatives of f at z̄,
are determined. We can capture these derivatives, collectively, as elements of the
vector space

6.2.2008.4826.2.2008.482 (3.44)

J (z̄)/J (z̄)2, J (z̄) = {f ∈ C∞(Rn); f(z̄) = 0}, J (z̄)2 = {
∑
finite

figi, fi, gi ∈ J (z̄)}.

Thus f(z)− f(z̄) ∈ J (z̄) and J (z̄)/J (z̄)2 is an n-dimensional vector space. In fact
it is only necessary for f to be defined and smooth in some neighbourhood of z̄ for
this to be well defined since if φ is a cutoff, supported sufficiently close to z̄ and
equal to 1 in some neighbourhood, then the class of fφ − f(z̄) in J (z̄)/J (z̄)2 is
independent of the choice of φ. Of course this is the deRham differential. Moreover
the discussion extends immediately to smooth manifold and defines

7.2.2008.4837.2.2008.483 (3.45) df(p) ∈ T ∗pM = J (p)/J (p)2,

the cotangent space at each point p ∈ M. This is a vector space of dimension n
which is spanned by the differentials of any coordinate system in a neighbourhood
of p.

The union of the cotangent fibres has a natural structure as a manifold

7.2.2008.4847.2.2008.484 (3.46) T ∗M =
⋃
p∈M

T ∗pM
π−→M.

Namely a coordinate system on an open set U ⊂M gives a global coordinate system
on the open subset π−1(U) identifying it (by definition smoothly) with U × Rn.

The tangent bundle can be defined as the dual of T ∗M or directly in terms of
vector fields; taking the first approach

7.2.2008.4857.2.2008.485 (3.47) TpM = {v : T ∗pM −→ R, linear}, TM =
⋃
p∈M

TpM
π−→M.

Coordinate systems on M again give coordinate systems on TM.

3.10. Integration and densities

There is no natural notion equivalent to the Lebesgue integral on a manifold,
the problem being that the ‘measure’ part is changes by a positive smooth multi-
ple under coordinate transformations, namely by the Jacobian determinant. It is
therefore necessary either to make a choice of ‘density’ or else to include the density
in the integrand, and integrate only densities. The latter approach is taken here
and this requires the introduction of the density bundle, which is a simple example
of a trivial line bundle which is not canonically trivial.
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7.2.2008.486 Problem 3.1. Show that the smooth functions on Rn \ {0} which are ‘posi-
tively’ homogeneous of some complex degree s, meaning the satify

7.2.2008.4877.2.2008.487 (3.48) f(rz) = rsf(z), ∀ r > 0, z ∈ Rn \ {0}
(where rs is the standard branch) is a trivial, but not canonically trivial, line bundle
over Sn−1, except in the case s = 0 when it is canonically trivial.

At each point of a manifold consider the 1-dimensional, real, vector space of
totally antisymmetric absolutely homogeneous n-multilinear functions

7.2.2008.4887.2.2008.488 (3.49)
ΩpM = {ν : TpM×· · ·×TpM −→ R, ν(ve(1), . . . , ve(n)) = sgn eν(v1, . . . , vn), ν(tv1, . . . , vn) = |t|ν(v1, . . . , vn), t ∈ R,
where vi ∈ TpM, i = 1, . . . , n are arbitrary and e is any permutation. It is straight-
forward to check that this is a linear space (it seems a little strange if view of the
absolute value of t in the last identity but it is true). If zi are local coordinates in
a neighbourhood of p then the differentials dzi define a density

7.2.2008.4897.2.2008.489 (3.50) ν(v1, . . . , vn) = |det dzi(vj)|.
This is the local coordinate representative of Lebesgue measure at the point.

As for the tangent bundle above, the union of the fibres Ωp form a manifold,

7.2.2008.4907.2.2008.490 (3.51) ΩM =
⋃
p∈M

ΩpM
π−→M.

A section of ΩM, meaning a smooth map ν : M −→ ΩM such that πν = IdM , is
by definition a smooth density on M. The linear space of such sections is denoted
C∞(M ; Ω) and the behaviour of integrals under coordinate transformation reduces
directly to the existence of a well defined integral:

7.2.2008.4917.2.2008.491 (3.52)

∫
M

: C∞(M ; Ω) −→ R.

Checking that this is well-defined reduces to the usual change-of-variable formula
fo Lebesgue (or Riemann) integral in local coordinates.

3.11. Smoothing operators

Now, we come to the point of interest in this chapter. If M is a compact mani-
fold then the algebra of smoothing operators on M behaves in very much the same
was as the Schwartz algebra on Rn. In fact it is isomorphic to it as an algebra (if the
dimension of M is positive) although there is no natural isomorphism. As we shall
see later, the smoothing operators form the residual part of the pseudodifferential
algebra on a manifold and are important for that reason. However they also play a
crucial role in the index theorem as presented here.

By definition we can take a smoothing operator to be an integral operator with
smooth kernel:-

7.2.2008.4937.2.2008.493 (3.53) A : C∞(M) −→ C∞(M), Au(z) =

∫
M

A(z, z′)u(z′), A ∈ C∞(M2;π∗RΩ).

Here π :R M2 3 (z, z′) 7−→ z′ ∈ M is the ‘right’ projection. Thus A, the kernel
(where we use the same letter for kernel and operator because they determine each
other and so to use a separate notation is rather wasteful) is just a smooth function
on M2 which ‘carries along with it’ a smooth denisty on the right factor of M. If
one prefers to do so, one can simply choose a positive denisty 0 < ν ∈ C∞(M ; Ω)
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and then the kernel becomes A = A′ν(z′) where A′ ∈ C∞(M2). I prefer the more
invariant approach of hiding the density in the kernel.

7.2.2008.494 Proposition 3.6. The smoothing operators on a compact manifold form an
algebra, denoted Ψ−∞(M), under operator composition.

Proof. Indeed if A and B are smoothing operators on M with kernels having
the same names then, by Fubini’s theorem,

7.2.2008.4957.2.2008.495 (3.54)

(AB)u(x) = A(Bu)(z) =

∫
M

A(z, z′′)(Bu)(z′′) =

∫
M

A(z, z′′)

∫
M

B(z′′, z′)u(z′)Mso

(AB)(z, z′) =

∫
M

A(z, z′′)B(z′′, z′).

Thus this formula defines an associative algebra structure (because composition of
operators is associative) on Ψ−∞(M) = C∞(M2;π∗RΩ) as claimed. �

A moments thought will show that this argument, and the composition law ,
carry over perfectly well to any compact manifold with corners. This more general
case is interesting in part because of the subalgebras (but not ideals) that then arise
in Ψ−∞(M).

7.2.2008.496 Proposition 3.7. If M is a compact manifold with corners and H ⊂ M is a
boundary face then the subspace of Ψ−∞(M) consisting of kernels which vanish to
order k at H ×M and M ×H is a subalgebra.

The case of k =∞ and H = ∂Bn for a ball is of particular interest since if the ball
is interpreted as the radial compactification Rn of Rn, then

7.2.2008.4977.2.2008.497 (3.55) Ψ−∞iso (Rn) = {A ∈ Ψ−∞(Rn);A ≡ 0 at (∂Rn × Rn) ∪ (Rn × ∂Rn).}
Here ≡ stands for equality in Taylor series.

7.2.2008.498 Problem 3.2. Prove the equality in (
7.2.2008.497
3.55). Let me use the notation

Ċ∞(M) = {u ∈ C∞(M);u ≡ 0 at ∂M} ⊂ C∞(M)

for the space of smooth functions on a manifold with corners which vanish to infinite
order at each boundary point. Then the identity (

7.2.2008.497
3.55) becomes

Ċ∞(Rn × Rn) = S(Rn × Rn) = S(R2n)

under radial compactification. First check the single space version

7.2.2008.5017.2.2008.501 (3.56) Ċ∞(Rn) = S(Rn)

and then generalize (or use a clever argument) to pass to (
7.2.2008.500
3.2).

We remark on some related simple properties of smoothing operators. If U ⊂M
is a coordinate neighbourhood, with coordinate map F : U −→ U ′ ⊂ Rn and ψ,
ψ′ ∈ C∞(M) has supp(ψ) ∪ supp(ψ′) ⊂ U then

7.2.2008.5057.2.2008.505 (3.57)
Aψ,ψ′,F : S(Rn) 3 f 7−→ (F−1)∗

(
ψA(F ∗((F−1)∗ψ′ · f))

)
∈ S(Rn)

is an element of Ψ−∞iso (Rn).

Indeed, the kernel of Aψ,F is
7.2.2008.5067.2.2008.506 (3.58)

(F−1)∗ψ(z)((F−1)∗×(F−1)∗A)(z, z′)(F−1)∗ψ′(z′) = B|dz′|, B ∈ C∞c (R2n) ⊂ S(R2n).
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*****
Extension of the results above for the residual isotropic algebra on Euclidean

space to smoothing operators on compact manifolds.
*****

3.12. Semiclassical limit algebra

Now we next want to extend the discussion of semiclassical smoothing operators
on Rn, in §

Euclidean-scl
2.19 , to smoothing operators on compact manifolds; later we will extend

this to pseudodifferential operators. Initially at least let M be a compact manifold
without boundary. Let ∆ ⊂M2 be the diagonal,

7.2.2008.5047.2.2008.504 (3.59) ∆ = {(z, z) ∈M2; z ∈M}.
7.2.2008.502 Definition 3.1. An element of Ψ−∞sl (M), the space of semiclassical families

of smoothing operators on a compact manifold (without boundary) M, is a smooth
family of smoothing operators Aε ∈ C∞((0, 1] ×M2;π∗LΩ) such that as ε ↓ 0 the
kernel satisfies the two conditions:

7.2.2008.5037.2.2008.503 (3.60)

Aεφ(z, z′) ∈ Ċ∞([0, 1)×M2;π∗RΩ) if φ ∈ C∞(M2), supp(φ) ∩∆ = ∅.
For a covering of M by coordinate systems Fj : Uj −→ U ′j

and any elements ψj , ψ
′
j ∈ C∞(M), supp(ψ) ∪ supp(ψ′j) ⊂ Uj ,

(Aε)ψj ,ψ′j ,Fj ∈ Ψ−∞sl (Rn).

This is just supposed to say that Aε ∈ Ψ−∞sl (M) reduces to a semiclassical family on
Rn in local coordinates. We do not really need quite as much as in the second part
of the defintion, which involves all pairs of smooth functions ψj , ψ

′
j with compact

support in a covering by coordinate patches. There is an equivalent and more
geometric characterizations of the kernels of these semiclassical families below.

For the moment we note the following more useful description of the local
behaviour of these operators.

7.2.2008.507 Proposition 3.8. On a compact manifold M,

7.2.2008.5087.2.2008.508 (3.61) {A ∈ C∞([0, 1]ε ×M2;π∗LΩ);A ≡ 0 at {ε = 0}} ⊂ Ψ−∞sl (M).

If F : U −→ U ′ ∈ Rn is a coordinate patch on M and A ∈ Ψ−∞sl (Rn) has kernel
with support in [0, 1]ε ×K ×K, K ⊂ U ′ compact then

7.2.2008.5097.2.2008.509 (3.62)
AF ∈ Ψ−∞sl (M) where

(AF )ε : C∞(M) −→ C∞(M), (AFu) = F ∗(A(F−1)∗u).

Moreover any element of Ψ−∞sl (M) is the sum of a family of the first type and a
finite sum, over any covering by coordinate patches, of operators as in (

7.2.2008.509
3.62).

Proof. For the moment, see the proof of the corresponding theorem for pseu-
dodifferential operators, Lemmas

1.10.2007.70
6.1 and

1.10.2007.68
6.2. The present result is is a bit easier;

I will move the proof here and change it a bit. �

We can capture the ‘semiclassical symbol’ by oscillatory testing.

7.2.2008.510 Lemma 3.5. If Aε ∈ Ψ−∞sl (M) then there exists a function σsl(Aε) ∈ S(T ∗M)
such that whenever f : M −→ R and ψ ∈ C∞(M) are such that df 6= 0 on supp(ψ)
then

7.2.2008.5117.2.2008.511 (3.63) Aεe
−if/εψ = e−if/εb, b ∈ C∞([0, 1]×M), b

∣∣
ε=0

= σsl(Aε) ◦ df.
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I need to define S(T ∗M) first!

Proof. Do the local, Euclidean, and then patch. �

7.2.2008.512 Proposition 3.9. The semiclassical symbol of an element of Ψ−∞sl (M) is de-
termined by (

7.2.2008.511
3.63) and gives a short exact, multiplicative, sequence

7.2.2008.5137.2.2008.513 (3.64) 0 //εΨ−∞sl (M) //Ψ−∞sl (M) //S(T ∗M) //0

Later, after discussing pseudodifferential operators on manifolds, we will also
discuss semiclassical families of pseudodifferential operators, generalizing the discus-
sion here. However there is one case which is very elementary. Namely the identity
operator can be considered as a semiclassical family, even though it is independent
of the parameter ε. By fiat its semiclassical symbol is declared to be the constant
function 1 on the cotangent bundle. This is consistent with the multiplicativity of
the semiclassical symbol, since of course for any family Aε ∈ Ψ−∞sl (M),

7.2.2008.5147.2.2008.514 (3.65) σsl(Aε) = σsl(Id ◦Aε) = 1× σsl(Aε).

We can also immediately allow the algebra Ψ−∞sl (M) to be ‘valued in matrices’,

just by taking matrices of operators; we will denote this algebra as Ψ−∞sl (M ;CN )
since the act on N -vectors of smooth functions on M. The symbol is then also
valued in matrices.

7.2.2008.515 Proposition 3.10. If a ∈ S(T ∗M ;M(N,C)) is such that IdN×N −a is invert-
ible at every point of T ∗M then any semiclassical family Aε ∈ Ψ−∞sl (M ;CN ) with
σsl(Aε) = a is such that Id−Aε is invertible for small ε > 0 with inverse of the
form Id−Bε for some Bε ∈ Ψ−∞sl (M ;CN ).

3.13. Submanifolds and blow up

A brief description of blow up of a submanifold, enough to introduce the semi-
classical resolution of [0, 1]×M2 in the next section.

3.14. Resolution of semiclassical kernels

3.15. Quantization of projections

7.2.2008.516 Proposition 3.11. If a ∈ S(T ∗M ;M(N,C)) is such that for a constant projec-
tion π0 ∈M(N,C), i.e. such that π2

0 = π0, π0 +a is a smooth family of projections,
(π0 + a)2 = π0 + a then there exists a semiclassical family Aε ∈ Ψ−∞sl (M ;CN ) such
that σsl(Aε) = a and such that

7.2.2008.5177.2.2008.517 (3.66) (π0 +Aε)
2 = π0 +Aε

is a semiclassical family of projections.

Proof. Just ‘quantizing’ a by choosing a semiclassical familyA′ε ∈ Ψ−∞sl (M ;Cn)
with σsl(A

′
ε) = a ensures that

10.2.2008.51810.2.2008.518 (3.67) (π0 +A′ε)
2 − (πo +A′ε) = εE(1)

ε , E(1)
ε ∈ Ψ−∞sl (M ;CN ).

We proceed to show, inductively, that there is a series of ‘correction terms’ A(j) ∈
Ψ−∞sl (M ;CN ) such that for all l,

10.2.2008.51910.2.2008.519 (3.68)

(π0 +A′ε +

l∑
k=1

εkA(k)
ε )2 − (πo +A′ε

l∑
k=1

εkA(k)
ε ) = εl+1E(l+1)

ε , E(l)
ε ∈ Ψ−∞sl (M ;CN ).
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Composing on the left and on the right with πo + A′ε
l∑

k=1

εkA
(k)
ε and using the

associativity of the product it follows that

10.2.2008.52010.2.2008.520 (3.69) π0σsl(E
(l+1)
ε ) = σsl(E

(l+1)
ε )π0.

This in turn means that if A
(l+1)
ε ∈ Ψ−∞sl (M ;CN ) satisfies

10.2.2008.52110.2.2008.521 (3.70) σsl(A
(l+1)
ε ) = (2π0 − Id)σsl(E

(l+1)
ε )

then the next identity, (
10.2.2008.519
3.68), for l + 1, holds.

Now, if A′′ε is an asymptotic sum of the series then

10.2.2008.52210.2.2008.522 (3.71) (π0 +A′′ε )2 − π0 +A′′ε ∈ {A ∈ C∞([0, 1]; Ψ−∞(M ;CN );A ≡ 0 at {ε = 0}}.

To correct this family of ‘projections to infinite order’ P ′ε = π0 + A′′ε to a true
projection we may use the holomorphic calculus of smoothing operators. Thus, the
family

10.2.2008.52310.2.2008.523 (3.72) Q(s) = s−1(Id−P ′) + (s− 1)−1P ′, s ∈ C \ {0, 1}

satisfies the ‘resolvent identity’ to infinite order in ε :
10.2.2008.52410.2.2008.524 (3.73)

(s Id−P ′)Q(s) = (s(Id−P ′)− (1− s)P ′) (Q(s) =

(Id−P ′)2 + (P ′)2 + s−1(s− 1)(Id−P ′)P ′ + (s− 1)−1sP ′(Id−P ′) = Id +R(s)

where Rε(s) is a family of smoothing operators vanishing to infinite order at ε = 0
and depending holomorphically on s ∈ C \ {0, 1}. Thus in any region |s| ≥ δ,
|1 − s| ≥ δ, that is away from s = 0 and s = 1, R(s) has uniformly small norm as
ε→ 0. It follows that (Id +R(s))−1 = Id +M(s) exists in this region, for ε > 0 small,
and M(s) is a holomorphic family of smoothing operators vanishing to infinite order
at ε = 0.

Thus the resolvent exists in this region and

20.2.2008.52620.2.2008.526 (3.74) (s Id−P ′)−1 = Q(s) +M ′(s)

where M ′(s) is another holomorphic family of smoothing operators vanishing to
infinite order at ε = 0.

To ‘correct’ P ′ to a family of projections we simply define

20.2.2008.52720.2.2008.527 (3.75) P =
1

2πi

∮
|1−s|= 1

2

(s− P ′(s))−1ds.

From the decomposition (
20.2.2008.526
3.74) and (

10.2.2008.523
3.72) we see immediately that

20.2.2008.52820.2.2008.528 (3.76) P = P ′ +M, M =
1

2πi

∮
|1−s|= 1

2

M(s)ds ∈ ε∞Ψ−∞sl (M).

Moreover it follows from (
20.2.2008.527
3.75) that P is a projection. First, using Cauchy’s the-

orem, we can shift the contour away from s = 1 a little, to |s − 1| = γ for some
γ > 0, small. Then

20.2.2008.52920.2.2008.529 (3.77) P 2 =
1

2πi

∮
|1−s|= 1

2

1

2πi

∮
|1−t|= 1

2 +γ

(t− P ′(t))−1(s− P ′(s))−1dsdt.

The resolvent identity

20.2.2008.53020.2.2008.530 (3.78) (t− P ′(t))−1(s− P ′(s))−1 = (s− t)−1
(
(t− P ′(t))−1 − (s− P ′(s))−1

)
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allows the integral to be split into two. In the first double integral there are no
singularities in s within |1 − s| ≤ 1

2 since |1 − t| = 1
2 + γ, so by Cauchy’s theorem

this evaluates to zero. In the remaining term the t integral can be evaluated by
residues, with the only singular point being at t = s so

20.2.2008.53120.2.2008.531 (3.79)

P 2 = − 1

2πi

∮
|1−s|= 1

2

1

2πi

∮
|1−t|= 1

2 +γ

(s− t)−1(s− P ′(s))−1dsdt

=
1

2πi

∮
|1−s|= 1

2

(s− P ′(s))−1ds = P.

Thus P is a semiclassical quantization of the projection-valued symbol to a family
of projections. �

We will show below that this same argument works in other contexts.



CHAPTER 4

Isotropic calculusI.cal

The algebra of ‘isotropic’ pseudodifferential operators on Rn has global proper-
ties very similar to the algebra of pseudodifferential operators on a compact man-
ifold discussed below. There are several reasons for the extensive discussion here.
First it is pretty! Second it is useful in the sense that it embeds the harmonic
oscillator in a broader context. Thirdly, many of the global constructions here
carry over almost unchanged to the case of compact manifolds and it may help to
see them in a somewhat simpler setting. Finally, it is useful in a geometric and
topological sense as may become clearer below in the discussion of K-theory.

4.1. Isotropic operatorsS.Sect.isotropic.calculus

As noted in the discussion in Chapter
C.Euclidean
2, there are other sensible choices of the

class of amplitudes which can be admitted in the definition of a space of pseudo-
differential operators rather than the basic case of Sm∞(R2n;Rn) discussed there.
One of the smallest such choices is the class which is completely symmetric in the
variables x and ξ and consists of the symbols on R2n. Thus, a ∈ Sm(R2n

x,ξ) satisfies
the estimates

1.2.2000.3041.2.2000.304 (4.1) |Dα
xD

β
ξ a(x, ξ)| ≤ Cα,β(1 + |x|+ |ξ|)m−|α|−|β|

for all multiindices α and β. Recall that there is a subspace of ‘classical’ or poly-
homogeneous symbols

26.10.2007.20126.10.2007.201 (4.2) Smph(R2n) ⊂ Sm(R2n)

defined by the condition that its elements are asymptotic sums of terms aj ∈
Sm(R2n) with aj positively homogeneous of degree m− j in |(x, ξ)| ≥ 1.

If m ≤ 0, it follows that a ∈ Sm∞(Rnx ;Rnξ ); if m > 0 this is not true, however,

1.2.2000.303 Lemma 4.1. For any p and n

8.2.1998.988.2.1998.98 (4.3) Sm(Rp+n) ⊂


⋂

0≥r≥m
(1 + |x|2)r/2Sm−r∞ (Rpx;Rnξ ) m ≤ 0

(1 + |x|2)m/2Sm∞(Rpx;Rnξ ), m > 0.

Proof. This follows from (
1.2.2000.304
4.1) and the inequalities

1 + |x|+ |ξ| ≤ (1 + |x|)(1 + |ξ|),
1 + |x|+ |ξ| ≥ (1 + |x|)t(1 + |ξ|)1−t, 0 ≤ t ≤ 1.

�

In view of these estimates the following definition makes sense.

93
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1.2.2000.313 Definition 4.1. For any m ∈ R we define

1.2.2000.3141.2.2000.314 (4.4) Ψm
iso(Rn) ⊂ Ψm

∞−iso(Rn) ⊂ 〈x〉m+Ψm
∞(Rn)

as the subspaces determined by

1.2.2000.3151.2.2000.315 (4.5)
A ∈ Ψm

iso(Rn)⇐⇒ σL(A) ∈ Smph(R2n)

A ∈ Ψm
∞−iso(Rn)⇐⇒ σL(A) ∈ Sm(R2n).

Note however that the notation has been switched here. The space with the absence
of any subscript corresponds to classical symbols, whereas the ‘∞− iso’ subscript
refers to the symbols with ‘bounds’ as in (

1.2.2000.304
4.1).

As in the discussion in Chapter
C.Euclidean
2 the ‘residual’ algebra consists just of the

intersection

26.10.2007.20226.10.2007.202 (4.6) Ψ−∞iso (Rn) = Ψ−∞∞−iso(Rn) =
⋂
m

Ψm
∞−iso(Rn).

From the discussion above, an element of either space on the left has left-reduced
symbol in S−∞(R1n) = S(R2n) so its kernel is also in S(R2n) and conversely. This
justifies the apparently different sense in which this notation is used in Chapter

C.residual
3.

As in the discussion of the traditional algebra in Chapter
C.Euclidean
2 we show the ∗-

invariance and composition properties of these spaces of operators by proving an
appropriate ‘reduction’ theorem. However there is a small difficulty here. Namely it
might be supposed that it is enough to analyse I(a) for a ∈ Sm(R3n). This however
is not the case. Indeed the definition above is in terms of left-reduced symbols.
If a ∈ Sm(R2n) is regarded as a function on R3n which is independent of one of
the variables then it is in general not an element of Sm(R3n) (it is an element of
Sm∞(Rny ;R2n) since it is constant in the first variables). For this reason we need to
consider some more ‘hybrid’ estimates.

Consider a subdivision of R3n into two closed regions:

1.2.2000.3161.2.2000.316 (4.7)
R1(ε) = {(x, y, ξ) ∈ R3n; |x− y| ≤ ε(1 + |x|2 + |y|2 + |ξ|2)

1
2 }

R2(ε) = {(x, y, ξ) ∈ R3n; |x− y| ≥ ε(1 + |x|2 + |y|2 + |ξ|2)
1
2 }.

If a ∈ C∞(R3n) consider the estimates

1.2.2000.3171.2.2000.317 (4.8) |Dα
xD

β
yD

γ
ξ a(x, y, ξ)| ≤ Cα,β,γ

{
〈(x, y, ξ)〉m−|α|−|β|−|γ| in R1( 1

8 )

〈(x, y)〉m+〈ξ〉m−|γ| in R2( 1
8 ).

The choice ε = 1
8 here is rather arbitrary. However if ε is decreased, but kept

positive the same estimates continue to hold for the new subdivision, since the
estimates in R1 are stronger than those in R2 (which is increasing at the expense
of R1 as ε decreases). Notice too that these estimates do in fact imply that a ∈
〈x〉m+〈y〉m+Sm∞(R2n;Rn) and hence they do define operators in the weighted spaces
– in principle 〈x〉2m+Ψm

∞(Rn) although actually 〈x〉m+Ψm
∞(Rn) – that were analysed

in Chapter
C.Euclidean
2.

1.2.2000.318 Proposition 4.1. If a ∈ C∞(R3n) satisfies the estimates (
1.2.2000.317
4.8) then A =

I(a) ∈ Ψm
∞−iso(Rn) and (

4.19
2.58) holds for σL(A).

Proof. We separate a into two pieces. Choose χ ∈ C∞c (R) with 0 ≤ χ ≤ 1,
with support in [− 1

8 ,
1
8 ] and with χ ≡ 1 on [− 1

9 ,
1
9 ]. Then consider the cutoff function
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on R3n

1.2.2000.3191.2.2000.319 (4.9) ψ(x, y, ξ) = χ

(
|x− y|
〈(x, y, ξ)〉

)
.

Clearly, ψ has support in R1( 1
8 ) and ψ ∈ S0

∞(R3n). It follows then that a′ = ψa ∈
Smiso(R3n). On the other hand, a′′ = (1 − ψ)a has support in R2( 1

9 ). In this region
|x − y|, 〈(x, y)〉 and 〈(x, y, ξ)〉 are bounded by constant multiples of each other.
Thus a′′ satisfies the estimates

1.2.2000.3201.2.2000.320 (4.10) |Dα
xD

β
yD

γ
ξ a
′′(x, y, ξ)| ≤ Cα,β,γ |x− y|m+〈ξ〉m−|γ|

≤ C ′α,β,γ〈(x, y, ξ)〉m+〈ξ〉m−|γ|, supp(a′′) ⊂ R2(
1

9
).

First we check that I(a′′) ∈ S(R2n). On R2( 1
9 ) it is certainly the case that

|x− y| ≥ 1
9 〈(x, y)〉 and by integration by parts

|x− y|2pDα
xD

β
y I(a′′) = I(|Dξ|2pDα

xD
β
y a
′′).

For all sufficiently large p it follows from (
1.2.2000.320
4.10) that this is the product of 〈(x, y)〉m+

and a bounded continuous function. Thus, I(a′′) ∈ S(R2n) is the kernel of an
operator in Ψ−∞iso (Rn).

So it remains only to show that A′ = I(a′) ∈ Ψm
∞−iso(Rn). Certainly this is

an element of 〈x〉m+Ψm
∞(Rn). The left-reduced symbol of A′ has an asymptotic

expansion, as ξ →∞, given by the usual formula, namely (
4.19
2.58). Each of the terms

in this expansion

aL(A′) ∼
∑
α

i|α|

α!
Dα
yD

α
ξ a(x, x, ξ)

is in the space Sm−2|α|(R2n). Thus we can actually choose an asymptotic sum in
the stronger sense that

b′ ∈ Sm(R2n), bN = b′ −
∑
|α|<N

i|α|

α!
Dα
xD

α
ξ a(x, ξ) ∈ Sm−2N (R2n) ∀ N.

Consider the remainder term in (
4.8
2.47), given by (

4.6
2.44) and (

4.7
2.45). Integrating by

parts in ξ to remove the factors of (x− y)α the remainder, RN , can be written as
a pseudodifferential operator with amplitude

rN (x, y, ξ) =
∑
|α|=N

i|α|

α!

∫ 1

0

dt(1− t)N (Dα
ξD

α
y a)((1− t)x+ ty, ξ).

This satisfies the estimates (
1.2.2000.317
4.8) with m replaced by m − 2N. Indeed from the

symbol estimates on a′ the integrand satisfies the bounds

|Dβ
xD

γ
yD

δ
ξD

α
ξD

α
y a
′((1− t)x+ ty, ξ)|

≤ C(1 + |(x+ t(x− y)|+ |ξ|)m−2N−|β|−|γ|−|δ|.

In R1( 1
8 ), |x − y| ≤ 1

8 〈(x, y, ξ)〉 so |x + t(x − y)| + |ξ| ≥ 1
2 〈(x, y, ξ)〉 and these

estimates imply the full symbol estimates there. On R2 we immediately get the
weaker estimates in (

1.2.2000.316
4.7).

Thus, for large N, the remainder term gives an operator in 〈x〉m2 −NΨ
m
2 −N∞ (Rn).

The difference between A′ and the operator B′ ∈ Ψm
∞−iso(Rn), which is RN plus an

operator in Ψm−2N
∞−iso (Rn) for anyN is therefore in Ψ−∞iso (Rn). Thus A ∈ Ψm

iso(Rn). �
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This is a perfectly adequate replacement in this context for our previous reduc-
tion theorem, so now we can show the basic result.

8.2.1998.99 Theorem 4.1. The spaces Ψm
∞−iso(Rn) (resp. Ψm

iso(Rn)) of isotropic (resp.
polyhomogeneous isotropic) pseudodifferential operators on Rn, defined by (

1.2.2000.315
4.5)

form an order-filtered ∗-algebra with residual space Ψ−∞iso (Rn) = S(R2n) (resp. the
same) as spaces of kernels.

Proof. The condition that a continuous linear operator A on S(Rn) be an
element of Ψm

∞−iso(Rn) is that it be an element of (1 + |x|2)m/2Ψm
∞(Rn) if m ≥ 0

or Ψm
∞(Rn) if m < 0 with left-reduced symbol an element of Sm(R2n

x,ξ) :

8.2.1998.1018.2.1998.101 (4.11) ql : Sm∞(R2n)←→ Ψm
∞−iso(Rn).

Thus A∗ has right-reduced symbol in Sm∞(R2n). This satisfies the estimates (
1.2.2000.317
4.8) as

a function of x, y and ξ. Thus Proposition
1.2.2000.318
4.1 shows that A∗ ∈ Ψm

∞−iso(Rn), since

its left-reduced symbol is in Sm(R2n), proving the ∗-invariance. Moreover it also

follows that any B ∈ Ψm′

∞−iso(Rn) has right-reduced symbol in Sm
′
(R2n). Thus if

A ∈ Ψm
∞−iso(Rn) and B ∈ Ψm′

∞−iso(Rn) then using this result to right-reduce B we

see that the composite operator has kernel I(aL(x, ξ)bR(y, ξ)) where aL ∈ Sm∞(R2n)

and bR ∈ Sm
′

∞ (R2n). Now it again follows that this product satisfies the estimates
(
1.2.2000.317
4.8) of order m + m′. Hence, again applying Proposition

1.2.2000.318
4.1, we conclude that

A ◦B ∈ Ψm+m′

∞−iso(Rn). This proves the theorem for Ψ∗∞−iso(Rn).
The proof for the polyhomogeneous space Ψm

iso(Rn) follows immediately, since
the symbol expansions all preserve polyhomogeneity. �

One further property of the isotropic calculus that distinguishes it strongly
from the traditional calculus is that it is invariant under Fourier transformation.

21.2.1998.107 Proposition 4.2. If A ∈ Ψm
∞−iso(Rn) (resp. Ψm

iso(Rn)) then Â ∈ Ψm
∞−iso(Rn)

(resp. Ψm
iso(Rn)) where

̂̂
Au = Aû with û being the Fourier transform of u ∈ S(Rn).

The proof of this is outlined in Problem
21.2.1998.108
2.20.

Also note that asymptotic completeness then carries over from the symbol
spaces. If Bj ∈ Ψm−j

∞−iso(Rn) then there exists

26.10.2007.20526.10.2007.205 (4.12) B ∈ Ψm
∞−iso(Rn), B ∼

∑
j

Bj that is B −
N−1∑
j=0

Bj ∈ Ψm−N
∞−iso(Rn) ∀ N.

4.2. Fredholm propertyS.Fredholm.property

An element A ∈ Ψm
∞−iso(Rn) is said to be elliptic (of order m in the isotropic

calculus) if its left-reduced symbol is elliptic in Sm(R2n).

21.2.1998.106 Theorem 4.2. Each elliptic element A ∈ Ψm
∞−iso(Rn) has a two-sided para-

metrix B ∈ Ψ−m∞−iso(Rn) in the sense that

1.2.2000.3651.2.2000.365 (4.13) A ◦B − Id, B ◦A− Id ∈ Ψ−∞iso (Rn)

which is unique up to an element of Ψ−∞iso (Rn) and it follows that any u ∈ S ′(Rn)
satisfying Au ∈ S(Rn) is an element of S(Rn); if A ∈ Ψm

iso(Rn) is elliptic then its
parametrix is in Ψ−miso (Rn).
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Proof. This is just the inductive argument used to prove Lemma
5.31
2.7. Never-

theless we repeat it here.
The ellipticity of σm(A) means that it has a two-sided inverse b ∈ S−m(R2n)

modulo S−∞(R2n) = S(R2n). This in turn means that the equation σk(A)c = d

always has a solution c ∈ S−m+m′−[1](R2n) for given d ∈ Sm
′−[1](R2n) namely

c = bd. This in turn means that given Cj ∈ Ψj
∞−iso(Rn) there always exists Bj ∈

Ψj−m
∞−iso(Rn) such that ABj − Cj ∈ Ψj−1

∞−iso(Rn). Choosing B0 ∈ Ψ−m∞−iso(Rn) to

have σ−m(B0) = b we can define C1 = Id−AB0 ∈ Ψ−1
∞−iso(Rn). Then, proceeding

inductively we may assume that Bj for j < l have been chosen such that A(B0 +

· · · + Bl−1) − Id = −Cl ∈ Ψ−l∞−iso(Rn). Then using the solvability we may choose

Bl so that ABl − Cl = −Cl+1 ∈ Ψ−l−1
∞−iso(Rn) which completes the induction, since

A(B0 + · · ·+Bl)− Id = ABl−Cl = −Cl+1. Finally by the asymptotic completeness
we may choose B ∼ B0 +B1 + . . . which is a right parametrix.

The existence of a left parametrix follows from the ellipticity of A∗ and the
argument showing that a right parametrix is a two-sided parametrix is essentially
the same as in Lemma

5.31
2.7. �

Combining the earlier symbolic discussion and these analytic results we can see
that elliptic operators are Fredholm as an operator

26.10.2007.20626.10.2007.206 (4.14) A : S(Rn) −→ S(Rn) or A : S ′(Rn) −→ S ′(Rn).

21.3.1998.169 Proposition 4.3. If A ∈ Ψm
∞−iso(Rn) is elliptic then it has a generalized in-

verse B ∈ Ψ−m∞−iso(Rn) satisfying

21.3.1998.17021.3.1998.170 (4.15) AB − Id = Π1, BA− Id = Π0 ∈ Ψ−∞iso (Rn)

where Π1 and Π0 are the finite rank orthogonal (in L2(Rn)) projections onto the
null spaces of A∗ and A.

Proof. As discussed above, A has a parametrix B′ ∈ Ψ−miso (Rn) modulo
Ψ−∞iso (Rn). Thus

AB′ = Id−ER, ER ∈ Ψ−∞iso (Rn),

B′A = Id−EL, EL ∈ Ψ−∞iso (Rn).

Using Proposition
1.2.2000.312
3.2 it follows that the null space of A is contained in the null space

of B′A = Id−EL, hence is finite dimensional. Similarly, the range of A contains
the range of AB′ = Id−ER so is closed with a finite codimensional complement.
Defining B as the linear map which vanishes on Nul(A∗), and inverts A on Ran(A)
with values in Ran(A∗) = Nul(A)⊥ gives (

21.3.1998.170
4.15). Furthermore these identities show

that B ∈ Ψ−m∞−iso(Rn) since applying B′ gives

1.2.2000.3311.2.2000.331 (4.16) B − ELB = B′AB = B′ −B′Π1, B −BER = BAB′ = B′ −Π0B
′ =⇒

B = B′ −B′Π1 + ELB
′ + ELBER − ELΠ0B

′ ∈ Ψ−m∞−iso(Rn)

where we use the fact that EBE′ ∈ Ψ−∞iso (Rn) for any continuous linear operator
B on S(Rn) and elements E ∈ Ψ−∞iso (Rn). �

1.2.2000.332 Corollary 4.1. If A ∈ Ψm
iso(Rn) is elliptic then its generalized inverse lies in

Ψ−miso (Rn).
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4.3. The harmonic oscillatorS.Harmonic.oscillator

The harmonic oscillator is the differential operator on Rn

H =

n∑
j=1

(D2
j + x2

j ) = ∆ + |x|2.

This is an elliptic element of Ψ2
iso(Rn). The main immediate interest is in the spec-

tral decomposition of H. The ellipticity of H − λ, λ ∈ C, shows that

eq:HO.1eq:HO.1 (4.17) (H − λ)u = 0, u ∈ S ′(Rn) =⇒ u ∈ S(Rn).

Since H is (formally) self-adjoint, i.e., H∗ = H, there are no non-trivial tempered
solutions of (H − λ)u = 0, λ 6∈ R. Indeed if (H − λ)u = 0,

eq:HO.2eq:HO.2 (4.18) 0 = 〈Hu, u〉 − 〈u,Hu〉 = (λ− λ)〈u, u〉 =⇒ u = 0.

As we shall see below in more generality, the spectrum of H is a discrete subset of
R. In this case we can compute it explicitly.

The direct computation of eigenvalues and eigenfunctions is based on the prop-
erties of the creation and annihilation operators

eq:HO.3eq:HO.3 (4.19) Cj = Dj + ixj , C
∗
j = Aj = Dj − ixj , j = 1, . . . , n.

These satisfy the elementary identities

[Cj , Ck] = [Aj , Ak] = 0, [Aj , Ck] = 2δjk, j, k = 1, . . . , n30.10.2007.24330.10.2007.243 (4.20)

H =

n∑
j=1

CjAj + n, [Cj , H] = −2Cj , [Aj , H] = 2Aj .eq:HO.4eq:HO.4 (4.21)

Now, if λ is an eigenvalue, Hu = λu, then

eq:HO.5eq:HO.5 (4.22)
H(Cju) = Cj(Hu+ 2u) = (λ+ 2)Cju,

H(Aju) = Aj(Hu− 2u) = (λ− 2)Aju.

prop:HO.6 Proposition 4.4. The eigenvalues of H are

eq:HO.7eq:HO.7 (4.23) σ(H) = {n, n+ 2, n+ 4, . . .}.

Proof. We already know that eigenvalues must be real and from the decom-
position of H in (

eq:HO.4
4.21) it follows that, for u ∈ S(Rn),

eq:HO.9eq:HO.9 (4.24) 〈Hu, u〉 =
∑
j

‖Aju‖2 + n‖u‖2.

Thus if λ ∈ σ(H) is an eigenvalue then λ ≥ n.
By direct computation we see that n is an eigenvalue with a 1-dimensional

eigenspace. Indeed, from (
eq:HO.9
4.24), Hu = nu iff Aju = 0 for j = 1, . . . , n. In each

variable separately

Aju(xj) = 0⇔ u(xj) = c1 exp

(
−
x2
j

2

)
.

Thus the only tempered solutions of Aju = 0, i = 1, . . . , n are the constant multiples
of

eq:HO.10eq:HO.10 (4.25) u0 = exp

(
−|x|

2

2

)
,

which is often called the ground state.
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Now, if λ is an eigenvalue with eigenfunction u ∈ S(Rn) it follows from (
eq:HO.5
4.22)

that λ− 2 is an eigenvalue with eigenfunction Aju. Since all the Aju cannot vanish
unless u is the ground state, it follows that the eigenvalues are contained in the
set in (

eq:HO.7
4.23). We can use the same argument to show that if u is an eigenfunction

with eigenvalue λ then Cju is an eigenfunction with eigenvalue λ + 2. Moreover,
Cju ≡ 0 would imply u ≡ 0 since Cjv = 0 has no non-trivial tempered solutions,
the solution in each variable being exp(x2

j/2). �

Using the creation operators we can parameterize the eigenspaces quite explic-
itly.

prop:HO.11 Proposition 4.5. For each k ∈ N0 there is an isomorphism

eq:HO.12eq:HO.12 (4.26) {Polynomials, homogeneous of degree k on Rn} 3 p

7−→ p(C) exp

(
−|x|

2

2

)
∈ Ek

where Ek is the eigenspace of H with eigenvalue n+ 2k.

Proof. Notice that the Cj , j = 1, . . . , n are commuting operators, so p(C) is
well-defined. By iteration from (

eq:HO.5
4.22),

eq:HO.13eq:HO.13 (4.27) HCαu0 = Cα(H + 2|α|)u0 = (n+ 2|α|)Cαu0.

Thus (
eq:HO.12
4.26) is a linear map into the eigenspace as indicated.

To see that (
eq:HO.12
4.26) is an isomorphism consider the action of the annihilation

operators. Again from (
eq:HO.5
4.22)

eq:HO.14eq:HO.14 (4.28) |β| = |α| =⇒ AβCαu0 =

{
0 β 6= α

2|α|α!u0 β = α.

This allows us to recover the coefficients of p from p(C)u0, so (
eq:HO.12
4.26) is injective.

Conversely if v ∈ Ek ⊂ S(Rn) is orthogonal to all the Cαu0 then

eq:HO.15eq:HO.15 (4.29) 〈Aαv, u0〉 = 〈v, Cαu0〉 = 0 ∀ |α| = k.

From (
eq:HO.5
4.22), the Aαv are all eigenfunctions of H with eigenvalue n, so (

eq:HO.15
4.29) implies

that Aαv = 0 for all |α| = k. Proceeding inductively in k we see that Aα
′
Ajv = 0

for all |α′| = k − 1 and Ajv ∈ Ek−1 implies Ajv = 0, j = 1, . . . , n. Since v ∈ Ek,
k > 0, this implies v = 0 so Proposition

prop:HO.11
4.5 is proved. �

Thus H has eigenspaces as described in (
eq:HO.12
4.26). The same argument shows that

for any integer p, positive or negative, the eigenvalues of Hp are precisely (n+ 2k)p

with the same eigenspaces Ek. For p < 0, Hp is a compact operator on L2(Rn);
this is obvious for large negative p. For example, if p ≤ −n− 1 then

eq:HO.16eq:HO.16 (4.30) xβi D
α
j H ∈ Ψ0

iso(Rn), |α| ≤ n+ 1, |β| ≤ n+ 1

are all bounded on L2. If S ⊂ L2(Rn) is bounded this implies that H−n−1(S) is
bounded in 〈x〉n+1C1

∞(Rn), so compact in 〈x〉nC0
∞(Rn) and hence in L2(Rn). It is

a general fact that for compact self-adjoint operators, such as H−n−2, the eigen-
functions span L2(Rn). We give a brief proof of this for the sake of ‘completeness’.

lem:HO.17 Lemma 4.2. The eigenfunction of H, uα = π−
n
4 (2|α|α!)−1/2Cαu0 form an or-

thonormal basis of L2(Rn).
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Proof. Let V ⊂ L2(Rn) be the closed subspace consisting of the orthocom-
plements of all the uα’s. Certainly H−n−2 acts on it as a compact self-adjoint
operator. Since we have found all the eigenvalues of H, and hence of H−n−1, it has
no eigenvalue in V. We wish to conclude that V = {0}. Set

τ = ‖H−n−1‖V = sup{‖H−n−1ϕ‖;ϕ ∈ V, ‖ϕ‖ = 1}.

Then there is a weakly convergent sequence ϕj ⇀ ϕ, ‖ϕj‖ = 1, so ‖ϕ‖ ≤ 1, with
‖H−n−1ϕj‖ → τ. The compactness of H−n−2 allows a subsequence to be chosen
such that H−n−1ϕj → ψ in L2(Rn). So, by the continuity of H−n−1, H−n−1ϕ = ψ
and ‖H−n−1ϕ‖ = τ, ‖ϕ‖ = 1. If ϕ′ ∈ V, ϕ′ ⊥ ϕ, ‖ϕ′‖ = 1 then

τ2 ≥ ‖H−n−2

(
ϕ+ tϕ′√

1 + t2

)
‖2 = τ2 + 2t〈H−2n−2ϕ,ϕ′〉+ 0(t2)

=⇒ 〈H−2n−2ϕ,ϕ′〉 = 0 =⇒ H−2n−2ϕ = τ2ϕ.

This contradicts the fact that H−2n−2 has no eigenvalues in V, so V = {0} and the
eigenbasis is complete. �

Thus, if u ∈ L2(Rn)

eq:HO.18eq:HO.18 (4.31) u =
∑
α

cαuα, cα = 〈u, uα〉

with convergence in L2.

lem:HO.19 Lemma 4.3. If u ∈ S(Rn) the convergence in (
eq:HO.18
4.31) is rapid, i.e., |cα| ≤

CN (1 + |α|)−N for all N and the series converges in S(Rn).

Proof. Since u ∈ S(Rn) implies HNu ∈ L2(Rn) we see that

CN ≥ |〈HNu, uα〉| = |〈u,HNuα〉| = (n+ 2|α|)N |cα| ∀ α.

Furthermore, 2ixj = Cj − Aj and 2Dj = Cj + Aj so the polynomial derivatives of
the uα can be estimated (using the Sobolev embedding theorem) by polynomials
in α; this implies that the series converges in S(Rn). �

1.2.2000.407 Corollary 4.2. Finite rank elements are dense in Ψ−∞iso (Rn) in the topology
of S(R2n).

Proof. Consider the approximation (
eq:HO.18
4.31) to the kernel A of an element of

Ψ−∞iso (Rn) as an element of S(R2n). In this case the ground state is

U0 = exp

(
−|x|

2

2
− |y|

2

2

)
= exp

(
−|x|

2

2

)
exp

(
−|y|

2

2

)
and so has rank one as an operator. The higher eigenfunctions

CαU0 = Qα(x, y)U0

are products of U0 and a polynomial, so are also of finite rank. �
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4.4. L2 boundedness and compactness

The results above have obvious extension to the case of N × N matrices of
operators, which we denote by Ψ0

∞−iso(Rn;CN ) since they act on CN valued func-

tions. Recall that Ψ0
∞−iso(Rn) ⊂ Ψ0

∞(Rn) so, by Proposition
6.1
2.6, these operators

are bounded on L2(Rn). Using the same argument the bound on the L2 norm can
be related to the norm of the principal symbol as an N ×N matrix.

1.2.2000.357 Proposition 4.6. If A ∈ Ψ0
iso(Rn;CN ) has homogeneous principal symbol

a = σL(A)
∣∣
S2n−1 ∈ C∞(S2n−1;M(N,C))

then

1.2.2000.3581.2.2000.358 (4.32) inf
E∈Ψ−∞iso (Rn;CN )

‖A+ E‖B(L2(Rn;CN )) = sup
p∈S2n−1

‖a(p)‖.

A similar result is true without the assumption that the principal symbol is homo-
geneous. It is simply necessary to replace the supremum on the right by

30.10.2007.24430.10.2007.244 (4.33) lim
R→∞

sup
|(x,ξ)|≥R

‖σL(A)(x, ξ)‖

where the norm on the symbol is the Euclidean norm on N ×N matrices.

Proof. It suffices to prove (
1.2.2000.358
4.32) for all single operators A ∈ Ψ0

iso(Rn). Indeed
if jv(z) = zv is the linear map from C to CN defined by v ∈ CN then

1.2.2000.3631.2.2000.363 (4.34) ‖A‖B(L2(R;CN )) = sup
{v,w∈CN ;‖v‖=‖w‖=1}

‖j∗wAjv‖B(L2(R)).

Since the symbol of j∗wAjv is just j∗wσ(A)jv, (
1.2.2000.358
4.32) follows from the corresponding

equality for a single operator:

1.2.2000.3641.2.2000.364 (4.35) inf
E∈Ψ−∞iso (Rn)

‖A+ E‖B(L2(Rn) ≤ sup
p∈S2n−1

|a(p)|, a = σL(A)
∣∣
S2n−1 .

The construction of the approximate square-root of C−A∗A in Proposition
6.6
2.7

only depends on the existence of a positive smooth square-root for C − |a|2, so can
be carried out for any

1.2.2000.3591.2.2000.359 (4.36) C > sup
p∈S2n−1

|a(p)|2.

Thus we conclude that with such a value of C

‖Au‖2 ≤ C‖u‖2 + ‖〈Gu, u〉| ∀ u ∈ L2(Rn),

where G ∈ Ψ−∞iso (Rn). Since G is an isotropic smoothing operator, for any δ > 0
there is a finite dimensional subspace W ⊂ S(Rn) such that

1.2.2000.3601.2.2000.360 (4.37) ‖〈Gu, u〉‖ ≤ δ‖u‖2 ∀ u ∈W⊥.

Thus if we replace A by A(Id−ΠW ) = A+E where E is a (finite rank) smoothing
operator we see that

‖(A+ E)u‖2 ≤ (C + δ)‖Gu‖2 ∀ u ∈ L2(Rn) =⇒ ‖(A+ E)‖ ≤ (C + δ)
1
2 .

This proves half of the desired estimate (
1.2.2000.363
4.34), namely

1.2.2000.3621.2.2000.362 (4.38) inf
E∈Ψ−∞iso (Rn)

‖A+ E‖B(L2(Rn) ≤ sup
p∈S2n−1

|a(p)|.
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To prove the opposite inequality, leading to (
1.2.2000.358
4.32), it is enough to arrive at

a contradiction by supposing to the contrary that there is some A ∈ Ψ0
iso(Rn)

satisfying the strict inequality

‖A‖B(L2(Rn)) < sup
p∈S2n−1

|a(p)|.

From this it follows that we may choose c > 0 such that c = |a(p)|2 for some p ∈
S2n−1 and yet A′ = A∗A−c has a bounded inverse, B. By making an arbitrariy small
perturbation of the full symbol of A′ we may assume that it vanishes identically
near p. By (

1.2.2000.362
4.38) we may choose G ∈ Ψ0

iso(Rn) with arbitrariy small L2 such

that Ã = A′ + B has left symbol rapidly vanishing near p. When the norm of the
perturbation is small enough, Ã will still be invertible, with inverse B̃ ∈ B(L2(Rn)).
Now choose an element G ∈ Ψ0

iso(Rn) with left symbol supported sufficiently near

p, so that G ◦ Ã ∈ Ψ−∞iso (Rn) but yet the principal symbol of G should not vanish
at p. Thus

G = G ◦ Ã ◦ B̃ : L2(Rn) −→ S(Rn),

G∗ = G = B̃∗ ◦ Ã∗ ◦G∗ : S ′(Rn) −→ L2(Rn).

It follows that G∗G : S ′(Rn) −→ S(Rn) is an isotropic smoothing operator. This
is the expected contradiction, since G, and hence G∗G, may be chosen to have
non-vanishing principal symbol at p. Thus we have proved (

1.2.2000.362
4.38) and hence the

Proposition. �

It is then easy to characterize the compact operators amongst the polyhomo-
geneous isotropic operators as those of negative.

1.2.2000.366 Lemma 4.4. If A ∈ Ψ0
iso(Rn;CN ) then, as an operator on L2(Rn;CN ), A is

compact if and only if it has negative order.

Proof. The necessity of the vanishing of the principal symbol for compact-
ness follows from Proposition

1.2.2000.357
4.6 and the sufficiency follows from the density of

Ψ−∞iso (Rn;CN ) in Ψ−1
iso (Rn;CN ) in the topology of Ψ

− 1
2

∞−iso(Rn;CN ) and hence in
the topology of bounded operators. Thus, such an operator is the norm limit of
compact operators so itself is compact. �

Also as a consequence of Proposition
1.2.2000.357
4.6 we can see the necessity of the as-

sumption of ellipticity in Proposition
21.3.1998.169
4.3.

1.2.2000.367 Corollary 4.3. If A ∈ Ψ0
iso(Rn;CN ) then A is Fredholm as an operator on

L2(Rn;CN ) if and only if it is elliptic.

4.5. Sobolev spaces

The space of square-integrable functions plays a basic rôle in the theory of
distributions; one reason for this is that it is associated with the embedding of
S(Rn) in S ′(Rn). We know that pseudodifferential operators of order 0 are bounded
on L2(Rn). There is also a natural collection of Sobolev spaces associated to the
isotropic calculus. The isotropic Sobolev space of order m may be defined as the
collection of distributions mapped into L2(Rn) by any one elliptic operator of order
−m.

Note that a differential operator P (x,Dx) on Rn is an isotropic pseudodif-
ferential operator if and only if its coefficients are polynomials. The fundamental
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symmetry between coefficients and differentiation suggest that the isotropic Sobolev
spaces of non-negative integral order be defined by

1.2.2000.3371.2.2000.337 (4.39) Hk
iso(Rn) = {u ∈ L2(Rn);xαDβ

xu ∈ L2(Rn) if |α|+ |β| ≤ k}, k ∈ N.
The norms

1.2.2000.3391.2.2000.339 (4.40) ‖u‖2k,iso =
∑

|α|+|β|≤k

∫
Rn
|xαDβ

xu|2dx

turn these into Hilbert spaces. For negative integral orders we identify the isotropic
Sobolev spaces with the duals of these spaces

1.2.2000.3401.2.2000.340 (4.41) Hk
iso(Rn) = (H−kiso (Rn))′ ↪→ S ′(Rn), k ∈ −N.

The (continuous) injection into tempered distributions here arises from the density
of the image of the inclusion S(Rn) −→ Hk

iso(Rn).

1.2.2000.338 Lemma 4.5. For any k ∈ Z,

1.2.2000.3411.2.2000.341 (4.42) Hk
iso(Rn) =

{
u ∈ S ′(Rn);Au ∈ L2(Rn) ∀ A ∈ Ψ−kiso

}
=
{
u ∈ S ′(Rn);∃ A ∈ Ψ−kiso elliptic and such that Au ∈ L2(Rn)

}
and S(Rn) ↪→ Hk

iso(Rn) is dense for each k ∈ Z.

Proof. 1 For k ∈ N, the functions xαξβ for |α| + |β| = k are ‘collectively
elliptic’ in the sense that

1.2.2000.3441.2.2000.344 (4.43) qk(x, ξ) =
∑

|α|+|β|=k

(xαξβ)2 ≥ c(|x|2 + |ξ|2)k, c > 0.

Thus Qk =
∑

|α|+|β|≤k
(DβxαxαDβ) ∈ Ψ2k

iso(Rn), which has principal reduced symbol

qk, has a left parameterix Ak ∈ Ψ−2k
iso (Rn). This gives the identity

1.2.2000.3451.2.2000.345 (4.44)
∑

|α|+|β|≤k

Rα,βx
αDβ = AkQk = Id +E, where

Rα,β = AkD
βxα ∈ Ψ

−2k+|α|+|β|
iso (Rn), E ∈ Ψ−∞iso (Rn).

Thus if A ∈ Ψk
iso(Rn)

Au = −AEu+
∑

|α|+|β|≤k

ARα,βx
αDβu.

If u ∈ Hk
iso(Rn) then by definition xαDβu ∈ L2(Rn). By the boundedness of oper-

ators of order 0 on L2, all terms on the right are in L2(Rn) and we have shown the
inclusion of Hk

iso(Rn) in the first space space on the right in (
1.2.2000.341
4.42). The converse is

immediate, so this proves the first equality in (
1.2.2000.341
4.42) for k > 0. Certainly the third

space in (
1.2.2000.341
4.42) contains in the second. The existence of an elliptic parametrix B

for the ellipic operator A proves the converse since any isotropic pseudodifferential
operator of order A′ of order k can be effectively factorized as

A′ = A′(BA+ E) = B′A+ E′, B′ ∈ Ψ0
∞−iso(Rn), E′ ∈ Ψ−∞iso (Rn).

Thus, Au ∈ L2(Rn) implies that A′u ∈ L2(Rn).

1This is an essentially microlocal proof.
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It also follows from second identification that S(Rn) is dense in Hk
loc(Rn). Thus,

if Au ∈ L2(Rn) and we choose fn ∈ S(Rn) with fn → Au in L2(Rn) then, with B a
parametrix for A, u′n = Bfn → BAu = u+ Eu. Thus un = u′n − Eu ∈ S(Rn)→ u
in L2(Rn) and Aun → u in L2(Rn) proving the density.

The Riesz representation theorem shows that v ∈ S ′(Rn) is in the dual space,

H−kiso (Rn), if and only if there exists v′ ∈ Hk
iso(Rn) such that

1.2.2000.3431.2.2000.343 (4.45) v(u) = 〈u, v′〉k,iso = 〈u,Q2kv
′〉L2 , ∀ u ∈ S(Rn) ↪→ Hk

iso(Rn)

with Q2k =
∑

|α|+|β|≤k

Dβx2αDβ .

This shows that Q2k is an isomorphism of Hk
iso(Rn) onto H−kiso (Rn) as subspaces of

S ′(Rn). Notice that Q2k ∈ Ψ2k
iso(Rn) is elliptic, self-adjoint and invertible, since it

is strictly positive. This now gives the same identification (
1.2.2000.341
4.42) for k < 0.

The case k = 0 follows directly from the L2 boundedness of operators of order
0 so the proof is complete. �

In view of this identification we define the isotropic Sobolev spaces or any real
order the same way

1.2.2000.3471.2.2000.347 (4.46) Hs
iso(Rn) =

{
u ∈ S ′(Rn);Au ∈ L2(Rn) ∀ A ∈ Ψ−siso

}
, s ∈ R.

These are Hilbertable spaces, with the Hilbert norm being given by ‖Au‖L2(Rn for
any A ∈ Ψs

iso(Rn) which is elliptic and invertible.

1.2.2000.346 Proposition 4.7. Any element A ∈ Ψm
∞−iso(Rn), m ∈ R, defines a bounded

linear operator

1.2.2000.3481.2.2000.348 (4.47) A : Hs
iso(Rn) −→ Hs−m

iso (Rn), ∀ s ∈ R.

This operator is Fredholm if and only if A is elliptic. For any s ∈ R, S(Rn) ↪→
Hs

iso(Rn) is dense and H−siso (Rn) may be identified as the dual of Hs
iso(Rn) with

respect to the continuous extension of the L2 pairing.

Proof. A straightforward application of the calculus, with the exception of the
necessity of ellipticity for an isotropic pseudodifferential operator to be Fredholm.
This is discussed in the problems beginning at Problem

1.2.2000.349
4.10. �

4.6. RepresentationsS.Representations

In §
Sect.radial.compactification
1.9 the compactification of Euclidean space to a ball, or half-sphere, is

described. We make the following definition, recalling that ρ ∈ C∞(Sn,+) is a
boundary defining function.

28.2.1998.153 Definition 4.2. The space of of ‘Laurent functions’ on the half-sphere is

28.2.1998.15428.2.1998.154 (4.48) L(Sn,+) =
⋃
k∈N0

ρ−kC∞(Sn,+),

ρ−kC∞(Sn,+) = {u ∈ C∞(int(Sn,+)); ρku ∈ C∞(Sn,+).

More generally if m ∈ R we denote by ρmC∞(Sn,+) the space of functions which
can be written as products u = ρmv, with v ∈ C∞(Sn,+); again it can be identified
with a subspace of the space of C∞ functions on the open half-sphere.
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28.2.1998.155 Proposition 4.8. The compactification map (
1.104
1.96) extends from (

1.106
1.98) to

give, for each m ∈ R, an identification of ρ−mC∞(Sn,+) and Smcl (Rn).

Thus, the fact that the ΨZ
iso(Rn) form an order-filtered ∗-algebra means that

ρZC∞(S2n,+) has a non-commutative product defined on it, with C∞(S2n,+) a sub-
algebra, using the left symbol isomorphism, followed by compactification.

4.7. Symplectic invariance of the isotropic productS.Symplectic.invariance

The composition law for the isotropic calculus, and in particular for it smooth-
ing part, is derived from its identification as a subalgebra of the (weighted) spaces
of pseudodifferential operator on Rn. There is a much more invariant formulation
of the product which puts into evidence more of the invariance properties.

Let W be a real symplectic vector space. Thus, W is a vector space equipped
with a real, antisymmetic and non-degenerate bilinear form

23.3.1998.17423.3.1998.174 (4.49) ω : W ×W −→ R, ω(w1, w2) + ω(w2, w1) = 0 ∀ w1, w2 ∈W,
ω(w1, w) = 0 ∀ w ∈W =⇒ w1 = 0.

A Lagrangian subspace of W is a vector space V ⊂ W such that ω vanishes when
restricted to V and such that 2 dimV = dimW.

23.3.1998.175 Lemma 4.6. Every symplectic vector space has a Lagrangian subspace and for
any choice of Lagrangian subspace U1 there is a second Lagrangian subspace U2

such that W = U1 ⊕ U2 is a Lagrangian decomposition.

Proof. First we show that there is a Lagrangian subspace. If dimW > 0 then
the antisymmetry of ω shows that any 1-dimensional vector subspace is isotropic,
that is ω vanishes when restricted to it. Let V be a maximal isotropic subspace,
that is an isotropic subspace of maximal dimension amongst isotropic subspaces.
Let U be a complement to V in W. Then

23.3.1998.17623.3.1998.176 (4.50) ω : V × U −→ R

is a non-degenerate pairing. Indeed u ∈ U and ω(v, u) = 0 for all v ∈ V then
V +R{u} is also isotropic, so u = 0 by the assumed maximality. Similarly if v ∈ V
and ω(v, u) = 0 for all u ∈ U then, recalling that ω vanishes on V, ω(v, w) = 0 for
all w ∈ W so v = 0. The pairing (

23.3.1998.176
4.50) therefore identifies U with V ′, the dual of

V. In particular dimw = 2 dimV.
Now, choose any Lagrangian subspace U1. We proceed to show that there is a

complementary Lagrangian subspace. Certainly there is a 1-dimensional subspace
which does not meet U1. Let V be an isotropic subspace which does not meet U1 and
is of maximal dimension amongst such subspaces. Suppose that dimV < dimU1.
Choose w ∈ W with w /∈ V ⊕ U1. Then V 3 v −→ ω(w, v) is a linear functional
on U1. Since U1 can be completed to a complement, any such linear functional
can be written ω(u1, v) for some u1 ∈ U1. It follows that ω(w − u1, v) = 0 for all
v ∈ V. Thus V ⊕R{w−u1} a non-trivial isotropic extension of V, contradicting the
assumed maximality. Thus V = U2 is a complement of U1. �

Given such a Lagrangian decomposition of the symplectic vector space W, let
X1, . . . Xn be a basis for the dual of U1, and let Ξ1, . . . ,Ξn be the dual basis, of U1

itself. The pairing (
23.3.1998.176
4.50) with U = U1 and V = U2 identifies U2 = U ′1 so the Ξi
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can also be regarded as a basis of the dual of U2. Thus X1 . . . Xn,Ξ1, . . . ,Ξn gives
a basis of W ′ = U ′1 ⊕ U ′2. The symplectic form can then be written

23.3.1998.17823.3.1998.178 (4.51) ω(w1, w2) =

n∑
i=1

(Ξi(w1)Xi(w2)− Ξi(w2)Xi(w1)).

This is the Darboux form of ω. If the Xi, Ξi are thought of as linear functions
xi, ξi on W now considered as a manifold then these are Darboux coordinates in
which(

23.3.1998.178
4.51) becomes

23.3.1998.17923.3.1998.179 (4.52) ω =

n∑
i=1

dξi ∧ dxi.

The symplectic form ω defines a volume form on W, namely the n-fold wedge
product ωn. In Darboux coordinates this is just, up to sign, the Lebesgue form
dξdx.

23.3.1998.180 Proposition 4.9. On any symplectic vector space, W, the bilinear map on
S(W ),

23.3.1998.18123.3.1998.181 (4.53)

a#b(w) = (2π)−2n

∫
W 2

eiω(w1,w2)a(w + w1)b(w + w2)ωn(w1)ω2(w2), dimW = 2n

defines an associative product isomorphic to the composition of Ψ−∞iso (U1) for any
Lagrangian decomposition W = U1 ⊕ U2.

23.3.1998.182 Corollary 4.4. Extended by continuity in the symbol space (
23.3.1998.181
4.53) defines a

filtered product on S∞(W ) which is isomorphic to the isotropic algebra on R2n and
is invariant under symplectic linear transformation of W.

Proof. Written in the form (
23.3.1998.181
4.53) the symplectic invariance is immediate.

That is, if F is a linear transformation of W which preserves the symplectic form,
ω(Fw1, Fw2) = ω(w1, w2) then

23.3.1998.18323.3.1998.183 (4.54) F ∗(a#b) = (F ∗a)#(F ∗b) ∀ a, b ∈ S(W ).

The same result holds for general symbols once the continuity is established.
Let us start from the Weyl quatization of the isotropic algebra. As usual

for computations we may assume that the amplitudes are of order −∞. Thus,
A ∈ Ψ−∞iso (Rn) may be written

23.3.1998.18423.3.1998.184 (4.55) Au(x) =

∫
A(x, y)u(y) = (2π)−n

∫
ei(x−y)·ξa(

1

2
(x+ y), ξ)u(y)dydξ.

Both the kernel A(x, y) and the amplitude a(x, ξ) are elements of S(R2n). The
relationship (

23.3.1998.184
4.55) and its inverse may be written

23.3.1998.18523.3.1998.185 (4.56)

A(s+
t

2
, s− t

2
) = (2π)−n

∫
eit·ξa(s, ξ)dξ,

a(x, ξ) =

∫
e−it·ξA(x+

t

2
, x− t

2
)dt.
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If A has Weyl symbol a and B has Weyl symbol b let c be the Weyl symbol of
the composite A ◦B. Using (

23.3.1998.185
4.56) and (

23.3.1998.184
4.55)

c(s, ζ) =

∫
e−it·ζA(s+

t

2
, z)B(z, s− t

2
)dt

= (2π)−2n

∫ ∫ ∫
dtdzdξdηeiΦa(

s

2
+
t

4
+
z

2
, ξ)a(

z

2
+
s

2
− t

4
, η)

where Φ = −t · ζ + (s+
t

2
− z) · ξ + (z − s+

t

2
) · η.

Changing variables of integration to X = z
2 + t

4 −
s
2 , Y = z

2 −
t
4 −

s
2 , Ξ = ξ− ζ and

H = η − ζ this becomes

c(s, ζ) = (2π)−2n4n
∫ ∫ ∫

dY dXdΞdH

e2i(X·H−Y ·Ξ)a(X + s,Ξ + ζ)a(Y + s,H + ζ).

This reduces to (
23.3.1998.181
4.53), written out in Darboux coordinates, after the change of

variable H ′ = 2H, Ξ′ = 2Ξ and ζ ′ = 2ζ. Thus the precise isomorphism with the
product in Weyl form is given by

23.3.1998.18623.3.1998.186 (4.57) A(x, y) = (2π)−n
∫
ei(x−y)·ξaω(

1

2
(x+ y), 2ξ)u(y)dydξ

so that composition of kernels reduces to (
23.3.1998.181
4.53). �

4.8. Metaplectic group

The discussion of the metaplectic group in this section might, or might not,
be relevant for later material. For the moment you can freely ignore it, but it is
amusing enough. The operators constructed here are ‘Fourier integral operators’
in the isotropic sense – but by no means all such Fourier integral operator. In
particular they correspond to linear symplectic transformations of the underlying
space, rather than more general homogeneous symplectic diffeomorphisms.

As we shall see below the discussion of the metaplectic group reduces to the
computation of some constants, these are bound up with the standard formula for
the Fourier transform of ‘Gaussians’. Namely, if z ∈ C has positive real part then

4.11.2007.2634.11.2007.263 (4.58) F(exp(−zx2)) =

√
π√
z

exp(− 1

4z
ξ2)

where the square-root is the standard branch, having positive real part for z in
this half-plane. One can carry out the integrals directly. In fact both sides are
holomorphic in <z > 0 so it suffices to check the formula on the positive real axis
in z where it is easy.

Now, recall that the symplectic group on R2n, denoted Sp(2n), is the group
of linear transformations preserving a given non-degenerate antisymmetric bilinear
form. We will take the standard (well, standard up to sign and maybe constants)
Darboux form

2.11.2007.2462.11.2007.246 (4.59) ωD((x, ξ), (x′, ξ′)) = ξ′ · x− ξ · x′.

Recall that this is not a restriction in the sense that
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2.11.2007.247 Lemma 4.7 (Linear Darboux Theorem). If ω is a non-degenerate antisymetric
real bilinear form on a (necessarily even-dimensional) real vector space then there
is a linear isomorphism to R2n reducing ω to the Darboux form (

2.11.2007.246
4.59).

Brief proof. Construct a basis by induction. First choose a non-zero element
e1 and then a second element e2 such that ω(e1, e2) = 1, which is possible by
the assumed non-degeneracy. Then look at the subspace spanned by those vector
satisfying ω(e1, f) = ω(e2, f) = 0. This is complementary to the span of e1, e2 and
ω is the direct sum of ωD for n = 1 on the span of e1, e2 and ω on this complement.
After a finite number of steps one arrives at (

2.11.2007.246
4.59) with the x’s corresponding to

the odd basis elements and the ξ’s to the even ones. �

We will need properties of the symplectic group below, but I will just work
them out as the need arises.

Let me define a group of operators on L2(Rn) which also map S(Rn) to itself,
by the crude method of taking products of some obvious invertible operators. The
basic list is:-

(F.1) Multiplication by constants.
(F.2) Multiplication by functions eiq(x) where q is a real quadratic form,
(F.3) The Fourier transforms in each variable

27.10.2007.20727.10.2007.207 (4.60)

Fju(x′, τ, x′′) =

∫
e−tτu(x′, t, x′′)dt, x′ = (x1, . . . , xj), x

′′ = (xj+1, . . . , xn).

(F.4) Pull-back under any linear isomorphism

27.10.2007.20827.10.2007.208 (4.61) T ∗u(x) = u(Tx), T ∈ GL(n,R).

Obviously the multiples of the identity in (F.1) commute with the other operators.
Moreover

27.10.2007.20927.10.2007.209 (4.62) eiq(x)T ∗ = T ∗eiq
′(x), q′(x) = q((T t)−1x)

so (F.2) and (F.4) may be interchanged.
In fact it is convenient to reorganize the products of these elements. Observe

that conjugation by the Fourier transform (in all variables) of an operator (F.2)

2.11.2007.2482.11.2007.248 (4.63) F−1eiq(·)Fu(x) = (2π)−n
∫
ei(x−y)·ξeiq(ξ)u(u)dydξ.

gives a convolution operator which we can, and will, denote eiq(D). Then the oper-
ators in this list which are ‘close to the identity’ are

(S.1) Multiplication by constants near 1
(S.2) Multiplication by functions eiq(x) where q is a small real quadratic form,
(S.3) Application of eiq(D) where q is a small real quadratic form and
(S.4) Pull-back under any linear isomorphism close to the identity.

For definiteness sake:-

27.10.2007.210 Definition 4.3. Let M(2n) denote the space of operators on S(Rn) which are
finite products of elements of the form

27.10.2007.21127.10.2007.211 (4.64) M = ceiq2L∗2FIeiq1FIL∗1
where FI denotes the product of the Fourier transforms in the variables correspond-
ing to i ∈ I for some subset I ⊂ {1, . . . , n}.
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As we shall see, these operators form a Lie group; it contains but is not equal to the
metaplectic group. The products of elements in (S.1) – (S.4) give a neighbourhood
of the identity in this group.

First we need to see how these operators are related to the symplectic group.

27.10.2007.212 Lemma 4.8. If M is of the form (
27.10.2007.211
4.64) then

27.10.2007.21327.10.2007.213 (4.65)

M(xju) = (
∑
i

Akjxk +
∑
k

BkjDk)Mu,

M(Dju) = (
∑
i

iCkjxk +
∑
k

DkjDk)Mu

where A, B, C and D are real n× n matrices and

27.10.2007.21427.10.2007.214 (4.66) S(M) =

(
A C
B D

)
∈ Sp(2n).

Furthermore all symplectic matrices arise this way and all symplectic matrices close
to the identity arise from products operators in (S.1) – (S.4) (one of each of type).

Proof. To prove (
27.10.2007.214
4.66) we will check that it holds for each of the factors in

(
27.10.2007.211
4.64). Then from (

27.10.2007.213
4.65)

4.11.2007.2494.11.2007.249 (4.67) S(M1M2) = S(M1)S(M2),

i.e. this will be a group homomorphism.
For (F.1), (

27.10.2007.213
4.65) and (

27.10.2007.214
4.66) are obvious, with the matrix being the identity. For

M as in (F.2), A = Id, B = 0, D = Id and Cx = −q′(x) is given by the derivative
of q and

27.10.2007.21527.10.2007.215 (4.68) S(M) =

(
Id C
0 Id

)
∈ Sp(2n) for any symmetric C.

The matrix for Fl is the identity outside the 2 × 2 block corresponding to xl and
Dl where it is just

27.10.2007.21627.10.2007.216 (4.69)

(
0 Id
− Id 0

)
which is certainly symplectic. Finally the matrix for L∗ is just

27.10.2007.21727.10.2007.217 (4.70)

(
L 0
0 (L−1)t

)
.

So this gives a group homomorphism, we proceed to check the surjectivity of
this map to Sp(2n). By the conjugation result (

27.10.2007.209
4.62) an operator of the form (

27.10.2007.211
4.64)

remains so under conguation by some L∗. This in particular conjugates the upper
left block A in S to L−1AL. The rank of the matrix is a complete invariant under
conjugation by GL(n,R) so we may arrange that

27.10.2007.21927.10.2007.219 (4.71) A = πk projection onto the first k components

without affecting the overall problem. The symplectic condition then implies that

27.10.2007.21827.10.2007.218 (4.72) S =

(
πk C ′

B′ D′

)
, πkB

′(Id−πk) = 0
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and where (Id−πk)B′(Id−πk) must be an isomorphism on the range of Id−πk to
preserve invertibility. Thus a further choice of L1, not affecting the special form of
A allows us to arrange that

27.10.2007.22027.10.2007.220 (4.73) S =

(
πk C ′

−(Id−πk) +B′′ D′

)
, B′′πk = B′′.

Again from the symplectic condition it follows that B′′ is symmetric. Now choosing
I to be the first k elements arranges that A = Id . For the new matrix, B must be
symmetric. �

To proceed further consider the operators of the form (
27.10.2007.211
4.64) for which S(M) =

Id .

27.10.2007.223 Proposition 4.10. The space of operatorsM defined by (
27.10.2007.211
4.64) is a group with

a multiplicative short exact sequence

27.10.2007.22427.10.2007.224 (4.74) C∗ −→M −→ Sp(2n).

Proof. Consider the elements of M such that S(M) = Id . By definition of
S(M) these have the property that they commute with xk and Dj for all j. Recalling
the proof of the invertibility of the Fourier transform, this shows that the kernel of
M satisfies the differential equations

27.10.2007.22127.10.2007.221 (4.75) (xj − yj)M(x, y) = 0, (Dxj +Dyj )M(x, y) = 0 =⇒M(x, y) = cδ(x, y)

for some constant c. Thus

27.10.2007.22227.10.2007.222 (4.76) ker(S :M−→ Sp(2n)) = C∗ Id .

Now Lemma
27.10.2007.212
4.8 combined with this argument shows thatM actually consists

of the operators of the form (
27.10.2007.211
4.64), without having to take further products. Indeed,

given a finite product M1M2 . . .Mp, of elements of M we can use Lemma
27.10.2007.212
4.8 to

find a single element M ∈ M such that S(M) = S(M1) . . . S(Mp). Composing on
the right with M gives a product M−1M1 . . .Mp which commutes with xj and Dj

as above, so is a multiple of the identity, which proves that M1 . . .Mp is of the form
(
27.10.2007.211
4.64). The inverse of an element ofM(2n), as an operator is not quite of the same

form directly, but the same argument applies. �

Thus M is two real dimensions larger than Sp(2n). Notice that all the ele-
ments in the products (

27.10.2007.211
4.64) are unitary up to positive constant multiples – and all

multiples occur. So we can kill one dimension by looking at the unitary elements

27.10.2007.22527.10.2007.225 (4.77) S −→ (M(2n) ∩U(L2(Rn)) −→ Sp(2n) is exact.

In fact we can do more than this, namely we can define in a reasonably natural
way a lift of a neighbourhood of the identity in Sp(2n) into M ∩ U(L2(Rn). If
S ∈ Sp(2n) is close to the identity then it has a ‘generating function’. Namely if
we write

27.10.2007.22727.10.2007.227 (4.78) S(x, ξ) = (x′, ξ′) then
∂ξ′(x, ξ)

∂ξ
is invertible

since it is close to the identity. So, the corresponding linear map is invertible, and
x and ξ′ may be introduced as linear coordinates on the graph

27.10.2007.22827.10.2007.228 (4.79) ξ = Ξ(x, ξ′), x′ = X ′(x, ξ′) on the graph of S.
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Now the symplectic condition can be rewritten as

27.10.2007.22927.10.2007.229 (4.80) −dξ′∧dx′+dξ∧dx = d(Ξ ·dx+X ′ ·dξ′) = 0 =⇒ Ξ ·dx+X ′ ·dξ = dΦ(x, ξ′)

where Φ is a quadratic form (since there is no 1-dimensional cohomolgy in R2n such
a smooth function exists but by homogeneity we may replace it by its quadratic
part at the origin) such that

27.10.2007.23027.10.2007.230 (4.81) Ξ(x, ξ′) =
∂Φ(x, ξ′

∂x
, X ′(x, ξ′) =

∂Φ(x, ξ′

∂ξ′
defines S′.

So now we ‘lift’ S to the element

27.10.2007.23127.10.2007.231 (4.82) M(S)u(x) = c(S)

∫
eiΦ(x,η)û(η)dη

defined by the construction of the generating function above.

27.10.2007.232 Proposition 4.11. For S in a small neighbourhood of the identity in Sp(2n)
here is a unique choice of c(S) > 0 in (

27.10.2007.231
4.82) such that M ∈ M ∩ U(L2(Rn) and

this choice is smooth in S, the subgroup of Mp(2n) ⊂M(2n) generated by the finite
products of these elements is a Lie group giving a 2-fold cover

27.10.2007.23327.10.2007.233 (4.83) Z2 −→ Mp(2n) −→ Sp(2n).

This is either the metaplectic group or else is a faithful representation of it, de-
pending on your attitude; I will call it the metaplectic group!

Proof. For S close to the identity the discussion above shows that Φ is close
to x · η as a quadratic form, meaning that

27.10.2007.23427.10.2007.234 (4.84) ΦS(x, η) = q2(x) + Lx · η + q1(η), L ∈ GL(n,R).

In fact L is close to the identity. The definition of M(S) in (
27.10.2007.231
4.82) can therefore be

rewritten

27.10.2007.23527.10.2007.235 (4.85) M(S) = c(S)eiq2L∗F−1eiq1F .

The desired unitarity then fixes c(S) > 0 and in fact

4.11.2007.2504.11.2007.250 (4.86) c(S) =
√
|detT |

and it follows that M(S) depends smoothly on S ∈ Sp(2n), near Id .
The next important thing to check is that this lift is multiplicative near the

identity, i.e. gives a local Lie group. From the discussion above we know that

4.11.2007.2514.11.2007.251 (4.87) M(S1)M(S2) = eiθM(S1S2), S1, S2 ∈ Sp(2n) near Id

up to the possibility of factor of absolute value 1 – we proceed to show that there
is no such factor locally, although as we shall see there is one globally.

27.10.2007.239 Lemma 4.9. If qi, i = 1, 2, are real quadratic forms which are sufficiently small
and L ∈ GL(n,R) is sufficiently close to the identity then there exist unique small
quadratic forms q′i, i = 1, 2 and L′ ∈ GL(n,R) close to the identity such that

27.10.2007.24027.10.2007.240 (4.88) eiq1(x)Leiq2(D) = δ′eiq
′
2(D)eiq

′
1(x)L′, δ′ > 0.
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Proof. We can move the linear transformations to the left, so it suffices to
show the existence of q′i and L′ such that

27.10.2007.24127.10.2007.241 (4.89) M = eiq1(x)eiq2(D) = δeiq
′
2(D)eiq

′
1(x)L′, δ > 0

under the same hypotheses. By making an overal orthogonal transformation, we
may suppose that q2 is a non-degenerate quadratic form in the duals of the first
variables in a splitting x = (x′, x′′) and is trivial in the second variables. Since
eiq2 is a product of terms in each of the variables, it suffices (by renumbering the
coordinates) to consider the case that q2 = ξ2

1 . Then, after another orthogonal
transformation close to the identity, we may suppose that q1 = ax2 + bxy where a,
b and c are all small and we are reduced to two variables which we denote x and y
with q = cξ2. Now we will show directly that

4.11.2007.2564.11.2007.256 (4.90) eibxy+cb2y2eicD
2
x = eicD

2
xeibxyT ∗, T ∗x = x− 2cby, T ∗y = y

where, up to a constant of absolute value one, this comes from the computation
of the corresponding symplectic transformations. To see (

4.11.2007.256
4.90) insert the Fourier

transform on the right and change variables

4.11.2007.2574.11.2007.257 (4.91)

(eicD
2
xeibxyT ∗)u(x, y)

= (2π)−1

∫
eicξ

2+i(x−x′)ξeibx
′yu(x′ − 2cby, y)dx′dξ

= eibxy(2π)−1

∫
eicξ

2+i(x−x′′−2cby)ξ+ib(x′′+2cby)y)u(x′′, y)dx′′dξ

= eibxy+cb2y2(2π)−1

∫
eic(ξ−by)2+i(x−x′′)(ξ−by)u(x′′, y)dx′′dξ

= eibxy+cb2y2(2π)−1

∫
eic(ξ

′)2+i(x−x′′)ξ′u(x′′, y)dx′′dξ′

= eibxy+cb2yeicD
2
xu.

where x′′ = x′ − 2cby and ξ′ = ξ − by. Whilst these are really oscillatory integrals,
the formal manipulation is easily justified by regularization, as usual.

Since (
4.11.2007.256
4.90) can be rewritten

4.11.2007.2584.11.2007.258 (4.92)

eibxy+cb2y2eicD
2
x = eibxyeicD

2
xecb

2y2 = eicD
2
xeibxyT ∗ =⇒ eibxyeicD

2
x = eicD

2
xeibxy−icb

2y2T ∗

we are reduced to the case q1 = ax2, q2 = cξ2 which is purely one-dimensional. By
a similar computation it can be checked that

4.11.2007.2594.11.2007.259 (4.93) eiax
2

eicD
2
x = DT ∗eic

′D2

eia
′x2

if a′ =
a

1− 4ac
, c′ = c(1− 4ac), T ∗x = (1− 4ac)x, D = 1− 4ac

where again the basic formula comes from comparing the symplectic transforma-
tions, namely under the operator on the left

4.11.2007.2604.11.2007.260 (4.94) x 7−→ (1− 4ac)x+ 2xDx, Dx 7−→ Dx − 2ax

and on the right, before the application of T ∗,

4.11.2007.2614.11.2007.261 (4.95) x 7−→ x+ 2cDx, Dx 7−→ (1− 4a′c′)Dx − 2a′x.

Comparing these leads to (
4.11.2007.259
4.93). Thus we know that the sides are equal up to a

multiplicative constant and this can be computed by applying the operators to one
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non-trivial function. For example applying the operators to e−x
2

, and using (
4.11.2007.263
4.58),

the right side gives

4.11.2007.2624.11.2007.262 (4.96)
D√

A
√

1− ia′
exp(−(

1

4A
− ia)(1− 4ac)2x2)

=
2D√

1− 4ac
√

1− 4ic
exp(−Bx2),

since A =
1

4(1− ia′)
− ic′ = (1− 4ac)

1− 4ic

4(1− ia′)

and on the left

4.11.2007.2644.11.2007.264 (4.97)
2√

1− 4ic
exp(−Bx2), B =

1− 4ac− ia
1− 4ic

which gives the formula for D and shows most significantly that it is positive. �

Returning to the proof of the Propostion, we have now checked that the lift is
well-defined near the identity and defines a local group. In fact it follows from this
discussion that all the operators of the form

4.11.2007.2674.11.2007.267 (4.98) M = eiq1(x)Leiq2(D), detL > 0,

where we no longer assume that the quadratic forms are small, are products of
elements from a neighbourhood of the identity, and hence are in Mp(2n) and have
a unique representation (

4.11.2007.267
4.98). Indeed, we can certainly connect such an element

to the identity by connecting L to the identity by a curve Lt ∈ GL(n,R) and
replacing q1 and q2 by tq1 and tq2. The corresponding element Mt ∈ Mp(2n) for
small t and by continuity it follows that it is in Mp(2n) for all t ∈ [0, 1]. Indeed, let
T be the supremum of those t for which it remains in the group, and is therefore
a finite product of elements in a fixed small neighbourhood of the identity for each
t < T. Consider the image curve S(Mt) in Sp(2n). For 0 ≤ s < ε for some ε > 0,
S(Mt) = RsS(Mt−ε+s) where [0, ε] 3 s 7−→ Rs is a curve starting at the identity in
Sp(2n). Thus, from the discussion above, Rs has a unique lift Ns as in Lemma

27.10.2007.239
4.9.

The uniqueness of the representation shows that Mt−ε+s = NsMt−ε for s < ε and
since Mt−ε has a finite product representation, so does Mt for t ≤ ε and so this
is true of MT . Thus, Mt ∈ Mp(2n) and the unqueness follows from the earlier
discussion.

In fact we can now check that the metaplectic group, defined by iterated com-
position of the elements near the identity just discussed, consists precisely of the
unitary operators of the form

4.11.2007.2654.11.2007.265 (4.99) ±D exp
(
i
π

2
(1− sgn det(T )− |I|)

)
eiq1(x)eiq2(D)T ∗FI , D > 0.

Notice that if I = 0, so no explicit partial Fourier transforms are present, then the
complex factor is ±i if detT < 0 and ±1 if detT > 0 which shows that M is a
double cover of Sp(2n). �

4.11.2007.266 Theorem 4.3. The metaplectic group of operators on S(Rn) acts by conjuga-
tion on Ψk

iso(Rn) and gives an action of Sp(2n) as a group of outer automorphisms
of the algebra.
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4.9. Complex orderS.Complex.order

The identification of polyhomogeneous symbols of order zero on R2n with the
smooth functions on the radial compactification allows us to define the isotropic
operators of a given complex order z ∈ C. Namely, we use the left quantization
map to identify

1.2.2000.3341.2.2000.334 (4.100) Ψz
iso(Rn) = ρ−zC∞(S2n,1) ⊂ Ψ<z∞−iso(Rn).

Here, ρ ∈ C∞(S2n,1) is a boundary defining function. Any other boundary defining
function is of the form aρ with 0 < a ∈ C∞(S2n,1). It follows that the definition is
independent of the choice of ρ since az ∈ C∞(S2n,1) for any z ∈ Z.

In fact it is even more useful to consider holomorphic families. Thus if Ω ⊂ C
is an open set and h : Ω −→ C is holomorphic then we may consider holomorphic
families of order h as elements of

1.2.2000.3351.2.2000.335 (4.101) Ψ
h(z)
iso (R2n) =

{
A : Ω −→ Ψ∞∞−iso(R2n);

Ω 3 z 7−→ ρh(z)A(z) ∈ C∞(S2n,1) is holomorphic.
}

Note that a map from Ω ⊂ C into C∞(S2n1,) is said to be holomorphic it is defines
an element of C∞(Ω × S2n,1) which satisies the Cauchy-Riemann equation in the
first variable.

1.2.2000.336 Proposition 4.12. If h and g are holomorphic functions on an open set Ω ⊂ C
and A(z), B(z) are holomorphic familes of isotropic operators of orders h(z) and
g(z) then the composite family A(z) ◦B(z) is holomorphic of order h(z) + g(z).

Proof. It suffices to consider an arbitrary open subset Ω′ ⊂ Ω with com-
pact closure inside Ω. Then h and g have bounded real parts, so A(z), B(z) ∈
ΨM
∞−iso(R2n) for z ∈ Ω′ for some fixedM. It follows that the composite A(z)◦B(z) ∈

Ψ2M
∞−iso(R2n). The symbol is given by the usual formula. Furthermore �

4.10. Resolvent and spectrum

One direct application of analytic Fredholm theory is to the resolvent of an
elliptic operator of positive order. For simplicity we assume that A ∈ Ψm

iso(Rn;CN )
with m ∈ N, although the case of non-integral positive order is only slightly more
complicated.

iml.25 Proposition 4.13. If A ∈ Ψm
iso(Rn;CN ), m ∈ N, and there exists one point

λ′ ∈ C such that A− λ′ and A∗ − λ′ both have trivial null space, then

iml.26iml.26 (4.102) (A− λ)−1 ∈ Ψ−miso (Rn;CN )

is a meromorphic family with all residues finite rank smoothing operators; the span
of the ranges of the residues at any λ̃ is the linear space of generalized eigenvalues,
the solutions of

iml.27iml.27 (4.103) (A− λ̃)pu = 0 for some p ∈ N.

Proof. Since A is elliptic and of positive integral order, m, A− λ ∈ Ψm
iso(Rn)

is and entire elliptic family. By hypothesis, its inverse exists for some λ′ ∈ C. Thus,
by Proposition

iml.24
?? (A− λ)−1 ∈ Ψ−miso (Rn) is a meromorphic family in the complex

plane, with all residues finite rank smoothing operators.
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Let λ̃ be a pole of A − λ. Since we can replace A by A − λ̃ we may suppose
without loss of generality that λ̃ = 0. Thus, for some k the product λk(A− λ)−1 is
holomorphic near λ = 0. Differentiating the identities

(A− λ)[λk(A− λ)−1] = λk Id = [λk(A− λ)−1](A− λ)

up to k times gives the relations

iml.28iml.28 (4.104) A ◦Rk−j = Rk−j ◦A = Rk−j+1, j = 0, · · · , k − 1,

A ◦R0 = R0 ◦A = Id +R1, where

(A− λ)−1 = Rkλ
−k +Rk−1λ

−k+1 + · · ·+R0 + · · · , Rk+1 = 0.

Thus Ap ◦ Rk−p+1 = 0 = Rk−p+1 ◦ Ap for 0 < p ≤ k, which shows that all the
residues, Rj , 1 ≤ j ≤ k, have ranges in the generalized eigenfunctions. �

Notice also from (
iml.28
4.104) that the range of Rk−j+1 is contained in the range of

Rk−j for each j = 0, . . . , k − 1, and conversely for the null spaces

Ran(Rk) ⊂ Ran(Rk−1) ⊂ · · · ⊂ Ran(R1)

Nul(Rk) ⊃ Nul(Rk−1) ⊃ · · · ⊃ Nul(R1).

Thus,

iml.29iml.29 (4.105) u ∈ Ran(Rp), p ≥ 1⇐⇒ ∃ u1 ∈ Ran(R1) s.t. Ap−1u1 = u.

4.11. Residue traceS.Residue.trace

We have shown, in Proposition
isotropic trace
3.4, the existence of a unique trace functional on

the residual algebra Ψ−∞iso (Rn). We now follow ideas originating with Seeley,
Seeley1
[13],

and developed by Guillemin
Guillemin2
[7],

Guillemin3
[8] and Wodzicki

Wodzicki1
[16],

Wodzicki7
[15] to investigate the traces

on the full algebra ΨZ
iso(Rn) of polyhomogeneous operators of integral order. We

will prove the existence of a trace but defer until later the proof of its uniqueness.
Observe that for A ∈ Ψ−∞iso (Rn) the kernel can be written

A(x, y) = (2π)−n
∫
ei(x−y)ξaL(x, ξ)dξ

and hence the trace, from (
eq:5
3.24), becomes

Feb.17.2000.eq:1Feb.17.2000.eq:1 (4.106) Tr(A) = (2π)−n
∫
R2n

aL(x, ξ)dxdξ,

just the integral of the left-reduced symbol. In fact this is true for any amplitude
(of order −∞) representing A :

Feb.17.2000.eq:2Feb.17.2000.eq:2 (4.107) A = (2π)−n
∫
ei(x−y)a(x, y, ξ)dξ =⇒ Tr(A) = (2π)−n

∫
R2n

a(x, x, ξ)dxdξ.

The integral in (
Feb.17.2000.eq:1
4.106) extends by continuity to aL ∈ Sm∞(R2n) provided m <

−2n. Thus, as a functional,

Feb.17.2000.eq:3Feb.17.2000.eq:3 (4.108) Tr : Ψ−2n−ε
∞,iso (Rn)→ C, for any ε > 0.

To extend it further we need somehow to regularize the resultant divergent integral
in (

Feb.17.2000.eq:1
4.106) (and to pay the price in terms of properties). One elegant way to do

this is to use a holomorphic family as discussed in Section
S.Complex.order
4.9. Notice that we are

passing from the algebra-with-bounds in (
Feb.17.2000.eq:3
4.108) to polyhomogeneous operators.
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Lemma 4.10. If A(z) ∈ Ψz
iso(Rn) is a holomorphic family then f(z) = Tr(A(z)),

defined by (
Feb.17.2000.eq:2
4.107) when <(z) < −2n, extends to a meromorphic function of z with

at most simple poles on the divisor

{−2n,−2n+ 1, . . . ,−1, 0, 1, . . .} ⊂ C.

Proof. We know that A(z) ∈ Ψz
iso(Rn) is a holomorphic family if and only if

its left-reduced symbol is of the form

σL(A(z)) = (1 + |x|2 + |z|2)z/2a(z;x, ξ)

where a(z;x, y) is an entire function with values in S0
phg(Rn). For <z < −2n the

trace of A(z) is

f(z) = (2π)−n
∫
R2n

(1 + |x|2 + |ξ|2)z/2a(z;x, ξ)dxdξ.

Consider the part of this integral on the ball

f1(z) = (2π)−n
∫
|x|2+|ξ|2≤1

(1 + |x|2 + |ξ|2)z/2a(z, x, y)dxdξ.

This is clearly an entire function of z, since the integrand is entire and the domain
compact.

To analyze the remaining part f2(z) = f(z) − f1(z) let us introduce polar
coordinates

r = (|x|2 + |ξ|2)1/2, θ =
(x, ξ)

r
∈ S2n−1.

The integral, convergent in <z < −2n, becomes

f2(z) = (2π)−n
∫ ∞

1

∫
S2n−1

(1 + r2)z/2ã(z; r, θ)dθr2n−1dr.

Let us now pass to the radical compactification of R2n or more prosaically, introduce
t = 1/r ∈ [0, 1] as variable of integration, so

f2(z) = (2π)−n
∫ 1

0

∫
S2n−1

t−z(1 + t2)z/2ã(z;
1

t
, θ)dθt−2n dt

t
.

Now the definition of S0
phg(R2n) reduces to the statement that

Feb.17.2000.eq:4Feb.17.2000.eq:4 (4.109) b(z; t, θ) = (1 + t2)z/2ã(z;
1

t
, θ) ∈ C∞(C× [0, 1]× S2n−1)

is holomorphic in z.
If we replace b by its Taylor series at t = 0 to high order,

Feb.17.2000.eq:5Feb.17.2000.eq:5 (4.110) b(z; t, θ) =

k∑
j=0

tj

j!
bj(z; θ) + tk+1b(k)(z; t, θ),

where b(k)(z; t, θ) has the same regularity (
Feb.17.2000.eq:4
4.109), then f2(z) is decomposed as

f2(z) = (2π)−n
k∑
j=0

∫ 1

0

∫
S2n−1

t−z+j

j!
bj(z; θ)t

−2n dt

t
+ f

(k)
2 (z).Feb.17.2000.eq:6 (4.111)
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The presence of this factor tk in the remainder in (
Feb.17.2000.eq:5
4.110) shows that f

(k)
2 (z) is

holomorphic in <z < −2n+ k. On the other hand the individual terms in the sum
in (

Feb.17.2000.eq:6
4.111) can be computed (for <z < −2n) as

(2π)−n
[

t−z+j−2n

(−z + j − 2n)

]1

0

∫
S2n−1

bj(z, θ)
dθ

j!

= (2π)−n
1

(z − j + 2n)

∫
S2n−1

bj(z, θ)
dθ

j!
.

Each of these terms extends to be meromorphic in the entire complex plane, with
a simple pole (at most) at z = −2n+ j. This shows that f(z) has a meromorphic
continuation as claimed. �

By this argument we have actually computed the residues of the analytic con-
tinuation of Tr(A(z)) as

1.2.2000.2831.2.2000.283 (4.112) lim
z→−2n+j

(z − j + 2n) Tr(A(z)) = (2π)−n
∫
S2n−1

aj(θ)dθ

when aj(θ) ∈ C∞(S2n−1) is the function occurring in the asymptotic expansion of
the left symbol of A(z):

Feb.17.2000.eq:7Feb.17.2000.eq:7 (4.113) σL(A(z)) ∼
∞∑
j=0

(|x|2 + |ξ|2)z/2−j ãj(z, θ)

|x|2 + |ξ|2 →∞, θ =
(x, ξ)

(|x|2 + |ξ|2)1/2
, aj(θ) = ãj(−2n+ j, θ).

More generally, if m ∈ Z and A(z) ∈ Ψm+z
iso (Rn) is a holomorphic family then

Tr(A(z)) is meromorphic with at most

simple poles at − 2n−m+ N0.

Indeed this just follows by considering the family A(z −m).
We are especially interested in the behavior at z = 0. Since the residue there

is an integral of the term of order −2n, we know that

Feb.24.2000.eq:2Feb.24.2000.eq:2 (4.114)
A(z) ∈ Ψm+z

iso (Rn) holomorphic with A(0) = 0

=⇒ Tr(A(z)) is regular at z = 0.

This allows us to make the following definition:

TrRes(A) = lim
z→0

zTr(A(z)) if

A(z) ∈ Ψm+z
iso (Rn) is holomorphic with A(0) = A.

We know that such a holomorphic family exists, since we showed in Section
S.Complex.order
4.9 the

existence of a holomorphic family F (z) ∈ Ψz
iso(Rn) with F (0) = Id; A(z) = AF (z)

is therefore an example. Similarly we know that TrRes(A) is independent of the
choice of holomorphic family A(z) because of (

Feb.24.2000.eq:2
4.114) applied to the difference,

which vanishes at zero.

Lemma 4.11. The residue functional TrRes(A), A ∈ ΨZ
iso(Rn), is a trace:

Feb.24.2000.eq:4Feb.24.2000.eq:4 (4.115) TrRes([A,B]) = 0 ∀ A,B ∈ ΨZ
iso(Rn)
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which vanishes on Ψ−2n−1
iso (Rn) and is given explicitly by

Feb.24.2000.eq:5Feb.24.2000.eq:5 (4.116) TrRes(A) = (2π)−n
∫
S2n−1

a−2n(θ)dθ

where a−2n(θ) is the term of order −2n in the expansion of the left (or right) symbol
of a.

Proof. We have already shown that TrRes(A) is well-defined and (
Feb.24.2000.eq:5
4.116) fol-

lows from (
1.2.2000.283
4.112) with a−2n(θ) the term of order −2n in the left-reduced symbol

of A = A(0). On the other hand, the same argument applies for the right-reduced
symbol.

To see (
Feb.24.2000.eq:4
4.115) just note that if A(z) and B(z) are holomorphic families with

A(0) = A, and B(0) = B then C(z) = [A(z), B(z)] is a holomorphic family with
C(0) = [A,B]. On the other hand, Tr(C(z)) = 0 when <z � 0, so the analytic
continuation of Tr(C(z)) vanishes identically and (

Feb.24.2000.eq:4
4.115) follows. �

As we shall see below, TrRes is the unique trace (up to a multiple of course) on
ΨZ

iso(Rn).

4.12. Exterior derivation

Let A(z) ∈ Ψz
iso(Rn) be a holomorphic family with A(0) = Id . Then

G(z) = A(z) ·A(−z) ∈ Ψ0
iso(Rn)

is a holomorphic family of fixed order with G(0) = Id . By analytic Fredholm theory

1.2.2000.2841.2.2000.284 (4.117) G−1(z) ∈ Ψ0
iso(Rn) is a meromorphic family with finite rank poles.

It follows that A−1(z) = A(−z)G−1(z) is a meromorphic family of order −z with
at most finite rank poles and regular near 0. Set

1.2.2000.2861.2.2000.286 (4.118) Ψm
iso(Rn) 3 B 7→ A(z)BA−1(z) = B(z).

Thus B(z) is a meromorphic family of order m with B(0) = B. The derivative gives
a linear map.

1.2.2000.2851.2.2000.285 (4.119) Ψm
iso(Rn) 3 B 7→ DAB =

d

dz
A(z)BA−1(z)|z=0 ∈ Ψm

iso(Rn).

Proposition 4.14. For any holomorphic family of order z, with A(0) = Id, the
map (

1.2.2000.285
4.119), defined through (

1.2.2000.286
4.118), is a derivation and for two choices of A(z)

the derivations differ by an inner derivation.

Proof. Since

A(z)B1B2A
−1(z) = A(z)B1A

−1(z)A(z)B2A
−1(z)

it follows that
d

dz
A(z)B1B2A

−1(z)|z=0 = (DAB1) ◦B2 +B1 ◦ (DAB2).

If A1(z) and A2(z) are two holomorphic families of order z with A1(0) = A2(0) = Id
then

A2(z) = A1(z)G(z)

when G(z) ∈ Ψ∞iso(Rn) is a meromorphic family, with finite rank poles. Thus

A2(z)BA−1
2 (z) = A1(z)G(z)BG−1(z)A−1

1 (z)

= A1(z)BA−1(z) + zA1(z)H(z)A−1
1 (z).
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Here H(z) = (G(z)BG−1(z) − B)/z is a holomorphic family of degree m with
H(0) = G′(0)B −BG′(0). Thus

d

dz
A2(z)BA−1

2 (z)|z=0 =
d

dz
A1(z)BA−1(z)|z=0 + [G′(0), B]

which shows that the two derivations differ by an inner derivation, which is to say
commutation with an element of Ψ0

iso(Rn). �

Note that in fact

DA : Ψm
iso(Rn)→ Ψm−1

iso (Rn) ∀ m
since the symbol of A(z)BA−1(z) is equal to the principal symbol of B for all z.

For the specific choice of A(z) = H(z) given by

σL(H(z)) = (1 + |x|2 + |ξ|2)z/2

we shall set
DAB = DHB.

Observe that 1
2 log(1 + |x|2 + |ξ|2) ∈ Sε∞(R2n) ∀ ε > 0. Thus log(1 + |x|2 + |ξ|2),

defined by Weyl quantization, is an element of Ψ−ε∞−iso(Rn) for all ε > 0. By differ-
entiation the symbols satisfy

DHB = [
1

2
log(1 + |x|2 + |D|2), B] + [G,B]

where G ∈ Ψ−1
iso (Rn). Thus DH is not itself an interior derivation. It is therefore

an exterior derivation.

4.13. Regularized traceS.Regularized.trace

In Section
S.Residue.trace
4.11 we defined the residue trace of B as the residue at z = 0 of the

analytic continuation of Tr(BA(z)), where A(z) is a holomorphic family of order z
with A(0) = Id . Next we consider the functional

Feb.24.2000.eq:EFeb.24.2000.eq:E (4.120) TrA(B) = lim
z=0

(Tr(BA(z))− 1

z
TrRes(B)).

In contrast to the residue trace, TrA(z) does depend on the choice of analytic
family A(z).

Lemma 4.12. If Ai(z), i = 1, 2, are two holomorphic families of order z with
Ai(0) = Id and G′(0) = d

dzA2(z)A−2
1 (z)|z=0 then

Feb.24.2000.eq:FFeb.24.2000.eq:F (4.121) TrA2
(B)− TrA1

(B) = TrRes(BG
′(0)).

Proof. Writing G(z) = A2(z)A−1
1 (z), which is a meromorphic family of order

0 with G(0) = Id,

Tr(BA2(z)) = Tr(BG(z)A1(z))

= Tr(BA1(z)) + zTr(BG′(0)A1(z)) + z2 Tr(H(z)A1(z))

where H(z) = B
z2 (G(z) − Id−zG′(0)) is then meromorphic with only finite rank

poles and is regular near z = 0. Thus the analytic continuation of z2 Tr(H(z)A(z))
vanishes at zero from which (

Feb.24.2000.eq:F
4.121) follows. �

This regularized trace TrA(B) therefore only depends on the first order, in z,
term in A(z) at z = 0. It is important to note that it is not itself a trace.
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Lemma 4.13. If B1, B2 ∈ ΨZ
iso(Rn) then

Feb.24.2000.eq:GFeb.24.2000.eq:G (4.122) TrA([B1, B2]) = TrRes(B2DAB1).

Proof. Since TrA([B1, B2]) is the regularized value at 0 of the analytic con-
tinuation of the trace of

Feb.24.2000.eq:HFeb.24.2000.eq:H (4.123) B1B2A(z)−B2B1A(z) = B2[A(z), B1] + [B1, B2A(z)]

= B2([A(z), B]A−1(z))A1(z) + [B1B2A(z)].

The second term on the right in (
Feb.24.2000.eq:H
4.123) has zero trace before analytic contin-

uation. Thus TrA([B1, B2]) is the regularized value of the analytic continuation of
the trace of Q(z)A(z) where

Q(z) = B2[A(z), B1]A−1(z) = zDAB1 + z2L(z)

with L(z) meromorphic of fixed order and regular at z = 0. Thus (
Feb.24.2000.eq:G
4.122) follows.

�

Note that

Feb.24.2000.eq:H1Feb.24.2000.eq:H1 (4.124) TrRes(DAB) = 0 ∀ B ∈ ΨZ
iso(Rn)

and any family A. Indeed the residue trace is the residue of z = 0 of the analytic
continuation of Tr(H(z)A(z)) when A(z) is any meromorphic family of fixed order
with H(0) = DAB. In particular we can take

H(z) = 1
z (A(z)BA−1(z)−B).

Then H(z)A(z) = 1
z [A(z), B] so the trace vanishes before analytic continuation.

4.14. Projections

4.15. Complex powers

4.16. Index and invertibilityS.Index.and.invertibility

We have already seen that the elliptic elements

1.2.2000.3691.2.2000.369 (4.125) E0
iso(Rn;CN ) ⊂ Ψ0

iso(Rn;CN ) ↪→ B(L2(Rn;CN ))

define Fredholm operators. The index of such an operator

1.2.2000.3701.2.2000.370 (4.126) Ind(A) = dim Nul(A)− dim Nul(A∗)

is a measure of its non-invertibility. Set

1.2.2000.3711.2.2000.371 (4.127) E0
iso,k(Rn;CN ) =

{
A ∈ E0

iso(Rn;CN ); Ind(A) = k
}
, k ∈ Z.

1.2.2000.372 Proposition 4.15. If A ∈ E0
iso(Rn;CN ) and Ind(A) = 0 then there exists

E ∈ Ψ−∞iso (Rn;CN ) such that A+E is invertible in B(L2(Rn;CN )) and the inverse
then lies in Ψ0

iso(Rn;CN ).

Proof. Let B be the generalized inverse of A, assumed to be elliptic. The
assumption that Ind(A) = 0 means that Nul(A) and Nul(A∗) have the same di-
mension. Let e1, · · · , ep ∈ S(Rn;CN ) and f1, · · · , fp ∈ S(Rn;CN ) be bases of
Nul(A) and Nul(A∗). Then consider

1.2.2000.3751.2.2000.375 (4.128) E =

p∑
j=1

fj(x)ej(y) ∈ Ψ−∞iso (Rn;CN ).
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By construction E is an isomorphism (in fact an arbitrary one) between Nul(A) and
Nul(A∗). Thus A+E is continuous, injective and surjective, hence has an inverse in
B(L2(Rn;CN )). Indeed this inverse is B +E−1 where E−1 is the inverse of E as a
map from Nul(A) to Nul(A∗). This shows that A can be perturbed by a smoothing
operator to be invertible. �

Let

1.2.2000.3741.2.2000.374 (4.129) G0
iso(Rn;CN ) ⊂ E0

iso,0(Rn;CN ) ⊂ E0
iso(Rn;CN ) ⊂ Ψ0iso(Rn;CN )

denote the group of the invertible elements (invertibility being either in B(L2(R;CN )
or in Ψ0

iso(Rn;CN )) in the ring of elliptic elements of index 0.

1.2.2000.373 Corollary 4.5. The first inclusion in (
1.2.2000.374
4.129) is dense in the topology of

Ψ0
iso(Rn;CN ).

Proof. This follows from the proof of Proposition
1.2.2000.372
4.15, since A + sE is in-

vertible for all s 6= 0. �

We next derive some simple formulæ for the index of an element of E0
iso(Rn;CN ).

First observe that the trace of a finite dimensional projection is its rank, the di-
mension of its range. Thus

1.2.2000.3761.2.2000.376 (4.130) Ind(A) = Tr(ΠNul(A))− Tr(ΠNul(A∗))

where the trace may be reinterpreted as the trace on smoothing operators. The
identities, (

21.3.1998.170
4.15), satisfied by the generalized inverse of A shows that this can be

rewritten

1.2.2000.3771.2.2000.377 (4.131) Ind(A) = −Tr(BA− Id) + Tr(AB − Id) = Tr([A,B]).

Here [A,B] = ΠNul(A)−ΠNul(A∗) is a smoothing operator, even though both A and
B are elliptic of order 0.

1.2.2000.378 Lemma 4.14. If A ∈ E0
iso(Rn;CN ) the identity (

1.2.2000.377
4.131), which may be rewritten

1.2.2000.3791.2.2000.379 (4.132) Ind(A) = Tr([A,B]),

holds for any parametrix B.

Proof. If B′ is a parametrix and B is the generalized inverse then B′ −B =
E ∈ Ψ−∞iso (Rn;CN ). Thus

[A,B′] = [A,B] + [A,E].

Since Tr([A,E] = 0, one of the arguments being a smoothing operator, (
1.2.2000.379
4.132)

follows in general from the particular case (
1.2.2000.377
4.131). �

Note that it follows from (
1.2.2000.379
4.132) that Ind(A) = Ind(A+E) if E is smoothing.

In fact the index is even more stable than this as we shall see, since it is locally
constant on E0

iso(Rn;CN ). In any case this shows that

1.2.2000.3811.2.2000.381 (4.133) Ind : E0
iso(Rn;CN ) −→ Z, Ind(a) = Ind(A) if a = [A],

E0
iso(Rn;CN ) = E0

iso(Rn;CN )/Ψ−∞iso (Rn;CN )

⊂ A0
iso(Rn;CN ) = Ψ0

iso(Rn;CN )/Ψ−∞iso (Rn;CN )

is well-defined.
The argument of the trace functional in (

1.2.2000.379
4.132) is a smoothing operator, but

we may still rewrite the formula in terms of the regularized trace, with respect to
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the standard regularizer H(z) with left symbol (1 + |x|2 + |ξ|2)
z
2 . The advantage

of doing so is that we can then use the trace defect formula (
Feb.24.2000.eq:G
4.122). Thus for any

elliptic isotropic operator of order 0

1.2.2000.3801.2.2000.380 (4.134) Ind(A) = TrRes(BDHA).

Here B is a parametrix for A. The residue trace is actually a functional

TrRes : AZ
iso(Rn;CN ) −→ C,

so if we write a−1 for the inverse of a in the ring E0
iso(Rn;CN ) then

1.2.2000.3821.2.2000.382 (4.135) Ind(a) = TrRes(a
−1DHa), DH : A0

iso(Rn;CN ) −→ A0
iso(Rn;CN )

being the induced derivation (since DH clearly preserves the ideal Ψ−∞iso (Rn;CN ).
From this simple formula we can easily deduce two elementary properties of

elliptic operators. These actually hold in general for Fredholm operators, although
the proofs here are not valid in that generality. Namely

Ind : E0
iso(Rn;CN ) −→ Z is locally constant and1.2.2000.3831.2.2000.383 (4.136)

Ind(a1a2) = Ind(a1) + Ind(a2) ∀ a1, a2 ∈ E0
iso(Rn;CN ).1.2.2000.3841.2.2000.384 (4.137)

The first of these follows the continuity of the formula (
1.2.2000.382
4.135) since under deforma-

tion of a in E0
iso(Rn;CN ) the inverse a−1 varies continuously, so Ind is continuous

and integer-valued, hence locally constant. Similarly the second, logarithmic addi-
tivity, property follows from the fact that DH is a derivation, so

DH(a1a2) = (DHa1)a2 + a1DHa2

and the the trace property of TrRes which shows that

1.2.2000.3851.2.2000.385 (4.138)

Ind(a1a2) = TrRes((a1a2)−1DH(a1a2) = Tr(a−1
2 a−1

1 ((DHa1)a2 + a1DHa2)

= Tr(a−1
2 a−1

1 (DHa1)a2) + Tr(a−1
2 DHa2) = Ind(a1) + Ind(a2).

4.17. Variation 1-form

In the previous section we have seen that the index

1.2.2000.3861.2.2000.386 (4.139) Ind : E0
iso(Rn;CN ) −→ Z

is a multiplicative map which is the obstruction to perturbative invertibility. In the
next two sections we will derive a closely related obstruction to the perturbative
invertibility of a family of elliptic operators. Thus, suppose

1.2.2000.3871.2.2000.387 (4.140) Y 3 y 7−→ Ay ∈ E0
iso,0(Rn;CN )

is a family of elliptic operators depending smoothly on a parameter in the compact
manifold Y. We are interested in the families perturbative invertibility question.
That is, does there exist a smooth family

1.2.2000.3881.2.2000.388 (4.141) Y 3 y 7−→ Ey ∈ Ψ−∞iso (Rn;CN ) such that (Ay + Ey) ∈ G0
iso(Rn;CN ) ∀ y.

We have assumed that the operators have index zero since this is necessary (and
sufficient) for Ey to exist for any one y ∈ Y. Thus the issue is the smoothness (really
just the continuity) of the perturbation Ey.

We shall start by essentially writing down such a putative obstruction directly
and then subsequently we shall investigate its topological origins.
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1.2.2000.389 Proposition 4.16. If a smooth family (
1.2.2000.387
4.140), parameterized by a compact

manifold Y, is perturbatively invariant in the sense that there is a smooth family as
in (

1.2.2000.388
4.141), then the closed 2-form on Y

1.2.2000.3901.2.2000.390 (4.142) β =
1

2
TrRes(a

−1
y dyay ∧ a−1

y dyay · a−1
y DHay) ∈ C∞(Y ; Λ2),

ay = [Ay] ∈ E0
iso,0(Rn;CN ),

is exact.

Proof. Note first that β is indeed a smooth form, since the full symbolic
inverse depends smoothly on parameters. Next we show that β is always closed.
The 1-forms a−1

y dyaya
−1
y and day are exact so differentiating directly gives

1.2.2000.3911.2.2000.391 (4.143)

dβ =
1

2
TrRes(a

−1
y dyay ∧ a−1

y dyay ∧ d(a−1
y DHay))

= −1

2
TrRes(a

−1
y dyay ∧ a−1

y dyay ∧ a−1
y dya

−1
y DHay))

+
1

2
TrRes(a

−1
y dyay ∧ a−1

y dyay ∧ a−1
y DH(day))

=
1

2
TrRes(a

−1
y dyay ∧ a−1

y dyay ∧DH(a−1
y day)).

Using the trace property and the commutativity of a 2-form with other forms the
last expression can be written

1.2.2000.3921.2.2000.392 (4.144)
1

6
TrRes(DH(a−1

y dyay ∧ a−1
y dyay ∧ a−1

y day)) = 0

by property (
Feb.24.2000.eq:H1
4.124) of the residue trace.

Now, suppose that a smooth perturbation as in (
1.2.2000.388
4.141) does exist. We can

replace Ay by Ay +Ey without affecting β, since the residue trace vanishes on the
ideal of smoothing operators. Thus we can assume that Ay itself is invertible. Then
consider the 1-form defined using the regularized trace

1.2.2000.3931.2.2000.393 (4.145) α = TrH(A−1
y dyAy).

This is an extension of the 1-form d log detF on G−∞iso (Rn;CN ). The extension is not
in general closed, because the regularized trace does not satisfy the trace condition.
Using the stanadard formula for the variation of the inverse, dA−1

y = −A−1
y dAyA

−1
y ,

the exterior derivative is the 2-form

1.2.2000.3941.2.2000.394 (4.146) dα = −TrH(A−1
y (dyA)A−1

y dyAy).

The 2-form argument is a commutator. Indeed, in terms of local coordinates we
can write

A−1
y (dyA)A−1

y dyAy =

p∑
j,k=1

A−1
y (

∂A

∂yj
)A−1

y (
∂A

∂yk
)dyj ∧ dyk

=
1

2

p∑
j,k=1

(
A−1
y (

∂A

∂yj
)A−1

y (
∂A

∂yk
)−A−1

y (
∂A

∂yk
)A−1

y (
∂A

∂yj
)

)
dyj ∧ dyk

=
1

2

p∑
j,k=1

[A−1
y (

∂A

∂yj
), A−1

y (
∂A

∂yk
)]dyj ∧ dyk
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Applying the trace defect formula (
Feb.24.2000.eq:G
4.122) shows that

1.2.2000.3951.2.2000.395 (4.147) dα = −1

2
TrRes

(
A−1
y dyAy ∧DH(A−1

y dyAy)
)
,

locally and hence globally.
Expanding the action of the derivation DH gives

1.2.2000.3961.2.2000.396 (4.148) dα = β − 1

2
TrRes

(
A−1
y dyAy ∧A−1

y dy(DHAy)
)

= β − dγ, where

γ =
1

2
TrRes

(
A−1
y dyAy ∧ .A−1

y DHAy
)
.

We conclude that if Ay has an invertible lift then β is exact. �

Note that the form γ in (
1.2.2000.396
4.148) is well-defined as a form on E0

iso,0(Rn;CN ),
and is independent of the perturbation. Thus the cohomology class which we have
constructed as the obstruction to perturbative invertibility can be written

1.2.2000.3971.2.2000.397 (4.149) [β] = [β − dγ] ∈ H2(E0
iso,0(Rn;CN )).

4.18. Determinant bundle

To better explain the topological origin of the cohomology class (
1.2.2000.397
4.149) we con-

struct the determinant bundle. This was originally introduced for families of Dirac
operators by Quillen

Quillen1
[12]. Recall that the Fredholm determinant is a character

1.2.2000.3981.2.2000.398 (4.150) detFr : Id +Ψ−2n−1
iso (Rn;CN ) −→ C,

detFr(AB) = detFr(A) detFr(B)∀ A, B ∈ Id +Ψ−2n−1
iso (Rn;CN ).

As we shall see, it is not possible to extend the Fredholm determinant as a mul-
tiplicative function to G0

iso(Rn;CN ), essentially because of the non-extendibility of
the trace.

However in trying to extend the determinant we can consider the possible values
it would take on a point A ∈ G0

iso(Rn;CN ) as the set of pairs (A, z), z ∈ C. Thus
we simple consider the product

1.2.2000.3991.2.2000.399 (4.151) D0 = G0 × C,

where from now on we simplify the notation and write G0 = Giso(Rn;CN ) etc.
Although it is not reasonable to expect full multiplicative of the determinant, it is
more reasonable to expect the determinant of A(Id +B), B ∈ Ψ−2n−1 to be related
to the product of determinants. Thus it is natural to identify pairs in D0,

1.2.2000.4001.2.2000.400 (4.152)
(A, z) ∼p (A′, z′) if

A,A′ ∈ G0, A′ = A(Id +B), z′ = detFr(Id +B)z, B ∈ Ψp, p < −2n.

The equivalence relations here are slightly different, depending on p. In all cases
the action of the determinant is linear, so the quotient is a line bundle.

1.2.2000.401 Lemma 4.15. For any integer p < −2n, and also p = −∞, the quotient

1.2.2000.4021.2.2000.402 (4.153) D0
p = D0/ ∼p

is a smooth line bundle over G0
p = G0/Gp.
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Proof. The projection is just the quotient in the first factor and this clearly
defines a commutative square

1.2.2000.4031.2.2000.403 (4.154) D0
[∼p] //

π

��

D0
p

π

��
G0

/Gp // G0
p .

�

4.19. Index bundle

4.20. Index formulæ

4.21. Isotropic essential support

4.22. Isotropic wavefront set

4.23. Isotropic FBI transform

4.24. ProblemsS.Problems.3

21.2.1998.121 Problem 4.1. Define the isotropic Sobolev spaces of integral order by
21.2.1998.12221.2.1998.122 (4.155)

Hk
iso(Rn) =


{
u ∈ L2(Rn);xαDβ

xu ∈ L2(Rn) ∀ |α|+ |β| ≤ k
}

k ∈ N{
u ∈ S ′(Rn);u =

∑
|α|+|β|≤−k

xαDβ
xuα,β , uα,β ∈ L2(Rn)

}
k ∈ −N.

Show that if A ∈ Ψp
iso(Rn) with p an integer, then A : Hk

iso(Rn) −→ Hk−p
iso (Rn) for

any integral k. Deduce (using the properties of elliptic isotropic operators) that the
general definition

21.2.1998.12321.2.1998.123 (4.156) Hm
iso(Rn) =

{
u ∈ S ′(Rn);Au ∈ L2(Rn), ∀ A ∈ Ψ−miso (Rn)

}
, m ∈ R

is consistent with (
21.2.1998.122
4.155) and has the properties

A ∈ ΨM
iso(Rn) =⇒ A : Hm

iso(Rn) −→ Hm−M
iso (Rn),21.2.1998.12421.2.1998.124 (4.157) ⋂

m

Hm
iso(Rn) = S(Rn),

⋃
m

Hm
iso(Rn) = S ′(Rn)21.2.1998.12621.2.1998.126 (4.158)

A ∈ Ψm
iso(Rn), u ∈ S ′(Rn), Au ∈ Hm′(Rn) =⇒ u ∈ Hm′−m(Rn),21.2.1998.12521.2.1998.125 (4.159)

21.2.1998.127 Problem 4.2. Show that if ε > 0 then

Hε
iso(Rn) ( (1 + |x|)−εL2(Rn) ∩Hε(Rn)

Deduce that Hε
iso(Rn) ↪→ L2(Rn) is a compact inclusion.

21.2.1998.128 Problem 4.3. Using Problem
21.2.1998.127
4.2, or otherwise, show that each element of

Ψ−εiso(Rn), ε > 0, defines a compact operator on L2(Rn).

21.2.1998.129 Problem 4.4. Show that if E ∈ Ψ−∞iso (Rn) then there exists F ∈ Ψ−∞iso (Rn)
such that

(Id +E)(Id +F ) = IdG with G ∈ Ψ−∞iso (Rn) of finite rank,

that is, G · S(Rn) is finite dimensional.
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21.2.1998.130 Problem 4.5. Using Problem
21.2.1998.129
4.4 show that an elliptic element A ∈ Ψm

iso(Rn)
has a parametrix B ∈ Ψ−miso (Rn) up to finite rank error ; that is, such that A◦B−Id
and B ◦ A− Id are finite rank elements of Ψ−∞iso (Rn). Deduce that such an elliptic
A defines a Fredholm operator

A : HM
iso(Rn) −→ HM−m

iso (Rn)

for any M. [The requirements for an operator A between Hilbert spaces to be
Fredholm are that it be bounded, have finite-dimensional null space and closed
range with a finite-dimensional complement.]

21.2.1998.111 Problem 4.6. [The harmonic oscillator] Show that the ‘harmonic oscillator’

H = |D|2 + |x|2, Hu =

n∑
j=1

D2
ju+ |x|2u,

is an elliptic element of Ψ2
iso(Rn). Consider the ‘creation’ and ‘annihilation’ opera-

tors

21.2.1998.13121.2.1998.131 (4.160) Cj = Dj + ixj , Aj = Dj − ixj = C∗j ,

and show that

21.2.1998.13221.2.1998.132 (4.161) H =

n∑
j=1

CjAj + n =

n∑
j=1

AjCj − n,

[Aj , H] = 2Aj , [Cj , H] = −2Cj , [Cl, Cj ] = 0, [Al, Aj ] = 0, [Al, Cj ] = 2δlk Id,

where [A,B] = A ◦B −B ◦ A is the commutator bracket and δlk is the Kronecker
symbol. Knowing that (H − λ)u = 0, for λ ∈ C and u ∈ S ′(Rn) implies u ∈ S(Rn)
(why?) show that

Eλ = {u ∈ S ′(Rn); (H − λ)u = 0} 6= {0} ⇐⇒ λ ∈ n+ 2N021.2.1998.13321.2.1998.133 (4.162)

and E−n+2k =

∑
|α|=k

cαC
α exp(−|x|2/2), cα ∈ C

 , k ∈ N0.21.2.1998.13421.2.1998.134 (4.163)

1.2.2000.406 Problem 4.7. [Definition of determinant of matrices.]

iml.6 Problem 4.8. [Proof that dα = 0 in (
iml.5
3.32).] To prove that the 1-form is

closed it suffices to show that it is closed when restricted to any 2-dimensional
submanifold. Thus we may suppose that A = A(s, t) depends on 2 parameters. In
terms of these parameters

iml.7iml.7 (4.164) α = Tr(A(s, t)−1 dA(s, t)

ds
)ds+ Tr(A(s, t)−1 dA(s, t)

dt
)dt.

Show that the exterior derivative can be written

iml.8iml.8 (4.165) dα = Tr([A(s, t)−1 dA(s, t)

dt
, A(s, t)−1 dA(s, t)

ds
])ds ∧ dt

and hence that it vanishes.

21.2.1998.137 Problem 4.9. If E and F are vector spaces, show that the space of operators
Ψm

iso(Rn;E,F ) from S ′(Rn;E) to S ′(Rn;F ) is well-defined as the matrices with
entries in Ψm

iso(Rn) for any choice of bases of E and F.

1.2.2000.349 Problem 4.10. Necessity of ellipticity for a psuedodifferential operator to be
Fredholm on the isotropic Sobolev spaces.
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(1) Reduce to the case of operators of order 0.
(2) Construct a sequence in L2 such that ‖un‖ = 1, un → 0 weakly and

Aun → 0 strongly in L2.

21.2.1998.135 Problem 4.11. [Koszul complex] Consider the form bundles over Rn. That is
ΛkRn is the vector space of dimension

(
n
k

)
consisting of the totally antisymmetric

k-linear forms on Rn. If e1, e2, . . . , en is the standard basis for Rn then for a k-tuple
α eα defined on basis elements by

eα(ei1 , . . . , eik) =

k∏
j=1

δ1jαj

extends uniquely to a k-linear map. Elements dxα ∈ ΛkRn are defined by the total
antisymmetrization of the eα. Explicitly,

dxα(v1, . . . , vk) =
∑
π

sgnπeα(vπ1
, . . . , vπn)

where the sum is over permutations π of {1, . . . , n} and sgnπ is the parity of π.
The dxα for strictly increasing k-tuples α of elements of {1, . . . , n} give a basis for
ΛkRn. The wedge product is defined by dxα ∧ dxβ = dxα,β .

Now let S ′(Rn; Λk) be the tensor product, that is u ∈ S ′(Rn; Λk) is a finite sum

21.2.1998.13621.2.1998.136 (4.166) u =
∑
α

uαdx
α.

The annihilation operators in (
21.2.1998.131
4.160) define an operator, for each k,

D : S ′(Rn; Λk) −→ S ′(Rn; Λk+1), Du =

n∑
j=1

Ajuαdx
j ∧ dxα.

Show that D2 = 0. Define inner products on the ΛkRn by declaring the basis
introduced above to be orthonormal. Show that the adjoint of D, defined with
respect to these inner products and the L2 pairing is

D∗ : S ′(Rn; Λk) −→ S ′(Rn; Λk−1), D∗u =

n∑
j=1

Cjuαιjdx
α.

Here, ιj is ‘contraction with ej ;’ it is the adjoint of dxj ∧ . Show that D+D∗ is an
elliptic element of Ψ1

iso(Rn; Λ∗). Maybe using Problem
21.2.1998.111
4.6 show that the null space

of D +D∗ on S ′(Rn; Λ∗Rn) is 1-dimensional. Deduce that

21.2.1998.13821.2.1998.138 (4.167) {u ∈ S ′(Rn);Du = 0} = C exp(−|x|2/2),

{u ∈ S ′(Rn; Λk);Du = 0} = (S ′(Rn; Λk−1), k ≥ 1.

Observe that, as an operator from S ′(Rn; Λodd) to S ′(Rn; Λeven), D + D∗ is an
elliptic element of Ψ1

iso(Rn; Λodd,Λeven) and has index 1.

22.2.1998.141 Problem 4.12. [Isotropic essential support] For an element of Sm(Rn) define
(isotropic) essential support, or operator wavefront set, of A ∈ Ψm

iso(Rn) by

22.2.1998.14522.2.1998.145 (4.168) WFiso(A) = cone supp(σL(A)) ⊂ R2n \ {0}.
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Show that WFiso(A) = cone supp(σL(A)) and check the following

WF′iso(A+B) ∪WF′iso(A ◦B) ⊂WF′iso(A) ∩WF′iso(B),22.2.1998.14922.2.1998.149 (4.169)

WF′iso(A) = ∅ ⇐⇒ A ∈ Ψ−∞iso (Rn).22.2.1998.14622.2.1998.146 (4.170)

22.2.1998.150 Problem 4.13. [Isotropic partition of unity] Show that if Ui ⊂ Sn−1 is an open

cover of the unit sphere and Ũi = {Z ∈ R2n \ {0}; Z
|Z| ∈ Ui} is the corresponding

conic open cover of R2n \ {0} then there exist (finitely many) operators Ai ∈
Ψ0

iso(Rn) with WF′iso(Ai) ⊂ Ũi, such that

22.2.1998.15122.2.1998.151 (4.171) Id−
∑
i

Ai ∈ Ψ−∞iso (Rn).

22.2.1998.152 Problem 4.14. Suppose A ∈ Ψm
iso(Rn), is elliptic and has index zero as an

operator on S ′(Rn). Show that there exists E ∈ Ψ−∞iso (Rn) such that A + E is an
isomorphism of S ′(Rn).

22.2.1998.147 Problem 4.15. [Isotropic wave front set] For u ∈ S ′(Rn) define

22.2.1998.14822.2.1998.148 (4.172) WFiso(u) =
⋂{

WF′iso(A);A ∈ Ψ0
iso(Rn), Au ∈ S(Rn)

}
.



CHAPTER 5

MicrolocalizationC.Microlocalization

5.1. Calculus of supports

Recall that we have already defined the support of a tempered distribution in
the slightly round-about way:

7.17.1 (5.1) if u ∈ S ′(Rn), supp(u) = {x ∈ Rn; ∃ φ ∈ S(Rn), φ(x) 6= 0, φu = 0}{.

Now if A : S(Rn) −→ S ′(Rn) is any continuous linear operator we can consider the
support of the kernel:

7.27.2 (5.2) supp(A) = supp(KA) ⊂ Rn × Rn = R2n.

We write out the space as a product here to point to the fact that any subset of
the product defines (is) a relation i.e. a map on subsets:

7.37.3 (5.3)
G ⊂ Rn × Rn, S ⊂ Rn =⇒

G ◦ S =
{
x ∈ Rn; ∃ y ∈ S s.t. (x, y) ∈ G

}
.

One can write this much more geometrically in terms of the two projection maps

7.47.4 (5.4) R2n

πL

||

πR

""
Rn Rn.

Thus πR(x, y) = y, πL(x, y) = x. Then (
7.3
5.3) can be written in terms of the action

of maps on sets as

7.57.5 (5.5) G ◦ S = πL
(
π−1
R (S) ∩G

)
.

From this it follows that if S is compact and G is closed, then G ◦ S is closed,
since its intersection with any compact set is the image of a compact set under a
continuous map, hence compact. Now, by the calculus of supports we mean the
‘trivial’ result.

7.6 Proposition 5.1. If A : S(Rn) −→ S ′(Rn) is a continuous linear map then

7.77.7 (5.6) supp(Aφ) ⊂ supp(A) ◦ supp(φ) ∀ φ ∈ C∞c (Rn).

Proof. Since we want to bound supp(Aφ) we can use (
7.1
5.1) directly, i.e. show

that

7.87.8 (5.7) x /∈ supp(A) ◦ supp(φ) =⇒ x /∈ supp(Aφ).

Since we know supp(A) ◦ supp(φ) to be closed, the assumption that x is outside
this set means that there exists ψ ∈ C∞c (Rn) with

ψ(x) 6= 0 and supp(ψ) ∩ supp(A) ◦ supp(φ) = ∅.

129
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From (
7.3
5.3) or (

7.5
5.5) this means

7.97.9 (5.8) supp(A) ∩ (supp(ψ)× supp(φ)) = ∅ in R2n.

But this certainly implies that

7.107.10 (5.9)

KA(x, y)ψ(x)φ(y) = 0

=⇒ ψA(φ) =

∫
KA(x, y)ψ(x)φ(y)dy = 0.

Thus we have proved (
7.7
5.6) and the lemma. �

Diff ops.

5.2. Singular supports

As well as the support of a tempered distribution we can consider the singular
support:

7.117.11 (5.10) sing supp(u) =
{
x ∈ Rn;∃ φ ∈ S(Rn), φ(x) 6= 0, φu ∈ S(Rn)

}{
.

Again this is a closed set since x /∈ sing supp(u) =⇒ ∃ φ ∈ S(Rn) with φu ∈ S(Rn)
and φ(x) 6= 0 so φ(x′) 6= 0 for |x− x′| < ε, some ε > 0 and hence x′ /∈ sing supp(u)
i.e. the complement of sing supp(u) is open.

Directly from the definition we have

sing supp(u) ⊂ supp(u) ∀ u ∈ S ′(Rn) and7.127.12 (5.11)

sing supp(u) = ∅ ⇐⇒ u ∈ C∞(Rn).7.137.13 (5.12)

Examples

5.3. Pseudolocality

We would like to have a result like (
7.7
5.6) for singular support, and indeed we can

get one for pseudodifferential operators. First let us work out the singular support
of the kernels of pseudodifferential operators.

7.14 Proposition 5.2. If A ∈ Ψm
∞(Rn) then

7.157.15 (5.13) sing supp(A) = sing supp(KA) ⊂
{

(x, y) ∈ R2n;x = y
}
.

Proof. The kernel is defined by an oscillatory integral

(5.14) I(a) = (2π)−n
∫
ei(x−y)·ξa(x, y, ξ)dξ.

If the order m is < −n we can show by integration by parts that

7.167.16 (5.15) (x− y)αI(a) = I ((−Dξ)
αa) ,

and then this must hold by continuity for all orders. If a is of order m and |α| >
m+ n then (−Dξ)

αa is of order less than −n, so

7.177.17 (5.16) (x− y)αI(a) ∈ C0
∞(Rn), |α| > m+ n.

In fact we can also differentiate under the integral sign:

7.187.18 (5.17) Dβ
xD

γ
y (x− y)αI(a) = I

(
Dβ
xD

γ
y (−Dξ)

αa
)

so generalizing (
7.17
5.16) to

7.197.19 (5.18) (x− y)αI(a) ∈ Ck∞(Rn) if |α| > m+ n+ k.

This implies that I(A) is C∞ on the complement of the diagonal, {x = y}. This
proves (

7.15
5.13). �
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An operator is said to be pseudolocal if it satisfies the condition

7.207.20 (5.19) sing supp(Au) ⊂ sing supp(u) ∀ u ∈ C−∞(Rn).

7.21 Proposition 5.3. Pseudodifferential operators are pseudolocal.

Proof. Suppose u ∈ S ′(Rn) has compact support and x /∈ sing supp(u). Then
we can choose φ ∈ S(Rn) with φ ≡ 1 near x and φu ∈ S(Rn) (by definition). Thus

7.227.22 (5.20) u = u1 + u2, u1 = (1− φ)u, u2 ∈ S(Rn).

Since A : S(Rn) −→ S(Rn), Au2 ∈ S(Rn) so

7.237.23 (5.21) sing supp(Au) = sing supp(Au1) and x /∈ supp(u1).

Choose ψ ∈ S(Rn) with compact support, ψ(x) = 1 and

7.247.24 (5.22) supp(ψ) ∩ supp(1− φ) = ∅.

Thus

7.257.25 (5.23) ψAu1 = ψA(1− φ)u = Ãu

where

(5.24) KÃ(x, y) = ψ(x)KA(x, y)(1− φ(y)).

Combining (
7.24
5.22) and (

7.15
5.13) shows that KÃ ∈ Ψ−∞∞ (Rn) so, by Lemma

5.42
2.8, Ãu ∈

C∞(Rn) and x /∈ sing supp(Au) by (
7.15
5.13)(?). This proves the proposition. �

5.4. Coordinate invarianceSect.CooInv

If Ω ⊂ Rn is an open set, put

7.267.26 (5.25)
C∞c (Ω) =

{
u ∈ S(Rn); supp(u) b Ω

}
C−∞c (Ω) =

{
u ∈ S ′(Rn); supp(u) b Ω

}
respectively the space of C∞ functions of compact support in Ω and of distributions
of compact support in Ω. Here K b Ω indicates that K is a compact subset of Ω.
Notice that if u ∈ C−∞c (Ω) then u defines a continuous linear functional

7.277.27 (5.26) C∞(Ω) 3 φ 7−→ u(φ) = u(ψφ) ∈ C

where if ψ ∈ C∞c (Ω) is chosen to be identically one near supp(u) then (
7.27
5.26) is

independent of ψ. [Think about what continuity means here!]
Now suppose

7.287.28 (5.27) F : Ω −→ Ω′

is a diffeomorphism between open sets of Rn. The pull-back operation is

7.297.29 (5.28) F ∗ : C∞c (Ω′)←→ C∞c (Ω), F ∗φ = φ ◦ F.

7.30 Lemma 5.1. If F is a diffeomorphism, (
7.28
5.27), between open sets of Rn then

there is an extension by continuity of (
7.29
5.28) to

7.317.31 (5.29) F ∗ : C−∞c (Ω′)←→ C−∞c (Ω).
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Proof. The density of C∞c (Ω) in C−∞c (Ω), in the weak topology given by the
seminorms from (

7.27
5.26), can be proved in the same way as the density of S(Rn) in

S ′(Rn) (see Problem
P.7.1
5.5). Thus, we only need to show continuity of (

7.31
5.29) in this

sense. Suppose u ∈ C∞c (Ω′) and φ ∈ C∞c (Ω) then

7.327.32 (5.30)

(F ∗u)(φ) =

∫
u(F (x))φ(x)dx

=

∫
u(y)φ(G(y))|JG(y)|dy

where JG(y) =
(
∂G(y)
∂y

)
is the Jacobian of G, the inverse of F. Thus (

7.29
5.28) can be

written

7.337.33 (5.31) F ∗u(φ) = (|JG|u) (G∗φ)

and since G∗ : C∞(Ω) −→ C∞(Ω′) is continuous (!) we conclude that F ∗ is contin-
uous as desired. �

Now suppose that
A : S(Rn) −→ S ′(Rn)

has

7.347.34 (5.32) supp(A) b Ω× Ω ⊂ R2n.

Then

7.357.35 (5.33) A : C∞c (Ω) −→ C−∞c (Ω)

by Proposition
7.6
5.1. Applying a diffeomorphism, F, as in (

7.28
5.27) set

7.367.36 (5.34) AF : C∞c (Ω′) −→ C−∞c (Ω′), AF = G∗ ◦A ◦ F ∗.

7.37 Lemma 5.2. If A satisfies (
7.34
5.32) and F is a diffeomorphism (

7.28
5.27) then

7.387.38 (5.35) KAF (x, y) = (G×G)∗K · |JG(y)| on Ω′ × Ω′

has compact support in Ω′ × Ω′.

Proof. Essentially the same as that of (
7.32
5.30). �

7.39 Proposition 5.4. Suppose A ∈ Ψm
∞(Rn) has kernel satisfying (

7.34
5.32) and F is

a diffeomorphism as in (
7.28
5.27) then AF , defined by (

7.36
5.34), is an element of Ψm

∞(Rn).

Proof. See Proposition
1.10.2007.94
2.11. �

5.5. ProblemsP.7.1

P5.1 Problem 5.1. Show that Weyl quantization

(5.36) S∞∞(Rn;Rn) 3 a 7−→ qW (a) = (2π)−n
∫
ei(x−y)·ξa(

x+ y

2
, ξ)dξ

is well-defined by continuity from S−∞∞ (Rn;Rn) and induces an isomorphism

(5.37) Sm∞(Rn;Rn)
σW−→←−
qW

Ψm
∞(Rn) ∀ m ∈ R.

Find an asymptotic formula relating qW (A) to qL(A) for any A ∈ Ψm
∞(Rn).

P5.2 Problem 5.2. Show that if A ∈ Ψm
∞(Rn) then A∗ = A if and only if σW (A) is

real-valued.
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P5.3 Problem 5.3. Is it true that every E ∈ Ψ−∞∞ (Rn) defines a map from S ′(Rn)
to S(Rn)?

5.46 Problem 5.4. Show that S(Rn) is dense in L2(Rn) by proving that if φ ∈
C∞(Rn) has compact support and is identically equal to 1 near the origin then

(5.38) un(x) = (2π)−nφ(
x

n
)

∫
eix·ξφ(ξ/n)û(ξ)dξ ∈ S(Rn) if u ∈ L2(Rn)

and un → u in L2(Rn). Can you see any relation to pseudodifferential operators
here?

5.47 Problem 5.5. Check carefully that with the definition

(5.39) Hk(Rn) =

u ∈ S ′(Rn);u =
∑
|α|≤−k

Dαuα, uα ∈ L2(Rn)


for −k ∈ N one does have

(5.40) u ∈ Hk(Rn)⇐⇒ 〈D〉ku ∈ L2(Rn)

as claimed in the text.

5.48 Problem 5.6. Suppose that a(x) ∈ C∞∞(Rn) and that a(x) ≥ 0. Show that the
operator

(5.41) A =

n∑
j=1

D2
xj + a(x)

can have no solution which is in L2(Rn).

5.49 Problem 5.7. Show that for any open set Ω ⊂ Rn, C∞c (Ω) is dense in C−∞c (Ω)
in the weak topology.

5.53 Problem 5.8. Use formula (
7.47
2.204) to find the principal symbol of AF ; more

precisely show that if F ∗ : T ∗Ω′ −→ T ∗ω is the (co)-differential of F then

σm(AF ) = σm(A) ◦ F ∗.

We have now studied special distributions, the Schwartz kernels of pseudodif-
ferential operators. We shall now apply this knowledge to the study of general
distributions. In particular we shall examine the wavefront set, a refinement of sin-
gular support, of general distributions. This notion is fundamental to the general
idea of ‘microlocalization.’

5.6. Characteristic variety

If A ∈ Ψm
∞(Rn), the left-reduced symbol is elliptic at (x, ξ) ∈ Rn × (Rn\{0}) if

there exists ε > 0 such that

8.18.1 (5.42)

∣∣σL(A)(x, ξ)
∣∣ ≥ ε|ξ|m in{

(x, ξ) ∈ Rn × (Rn\{0}) ; |x− x| ≤ ε,
∣∣ ξ
|ξ|
− ξ

|ξ|
∣∣ ≤ ε, |ξ| ≥ 1

ε

}
.

Directly from the definition, ellipticity at (x, ξ) is actually a property of the
principal symbol, σm(A) and if A is elliptic at (x, ξ) then it is elliptic at (x, tξ) for
any t > 0. Clearly{

(x, ξ) ∈ Rn × (Rn\{0}); A is elliptic (of order m) at (x, ξ)
}
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is an open cone in Rn × (Rn\{0}). The complement

8.28.2 (5.43) Σm(A) =
{

(x, ξ) ∈ Rn × (Rn\{0}) ; A is not elliptic of order m at (x, ξ)
}

is therefore a closed conic subset of Rn × (Rn\{0}) ; it is the characteristic set (or
variety) of A. Since the product of two symbols is only elliptic at (x, ξ) if they are
both elliptic there, if follows from the composition properties of pseudodifferential
operators that

8.38.3 (5.44) Σm+m′(A ◦B) = Σm(A) ∪ Σm′(B).

5.7. Wavefront set

We adopt the following bald definition:

8.48.4 (5.45)
If u ∈ C−∞c (Rn) =

{
u ∈ S ′(Rn); supp(u) b Rn

}
then

WF(u) =
⋂{

Σ0(A); A ∈ Ψ0
∞(Rn) and Au ∈ C∞(Rn)

}
.

Thus WF(u) ⊂ Rn × (Rn\{0}) is always a closed conic set, being the intersection
of such sets. The first thing we wish to show is that WF(u) is a refinement of
sing supp(u). Let

8.58.5 (5.46) π : Rn × (Rn\{0}) 3 (x, ξ) 7−→ x ∈ Rn

be projection onto the first factor.

8.6 Proposition 5.5. If u ∈ C−∞c (Rn) then

8.78.7 (5.47) π(WF(u)) = sing supp(u).

Proof. The inclusion π(WF(u)) ⊂ sing supp(w) is straightforward. Indeed,
if x /∈ sing supp(u) then there exists φ ∈ C∞c (Rn) with φ(x) 6= 0 such that φu ∈
C∞(Rn). Of course as a multiplication operator, φ ∈ Ψ0

∞(Rn) and Σ0(φ) 63 (x, ξ)
for any ξ 6= 0. Thus the definition (

8.4
5.45) shows that (x, ξ) /∈WF(u) for all ξ ∈ Rnr0

proving the inclusion.
Using the calculus of pseudodifferential operators, the opposite inclusion,

(5.48) π(WF(u)) ⊃ sing supp(u)

is only a little more complicated. Thus we have to show that if (x, ξ) /∈WF(u) for
all ξ ∈ Rnr0 then x /∈ sing supp(u). The hypothesis is that for each (x, ξ), ξ ∈ Rnr0,
there exists A ∈ Ψ0

∞(Rn) such that A is elliptic at (x, ξ) and Au ∈ C∞(Rn). The
set of elliptic points is open so there exists ε = ε(ξ) > 0 such that A is elliptic on

8.88.8 (5.49)
{

(x, ξ) ∈ Rn × (Rnr0); |x− x| < ε,
∣∣ ξ
|ξ|
− ξ

|ξ|
∣∣ < ε

}
.

Let Bj , j = 1, . . . , N be a finite set of such operators associated to ξj and such that
the corresponding sets in (

8.8
5.49) cover {x}× (Rnr0); the finiteness follows from the

compactness of the sphere. Then consider

B =

N∑
j=1

B∗jBj =⇒ Bu ∈ C∞(Rn).
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This operator B is elliptic at (x, ξ), for all ξ 6= 0. Thus if φ ∈ C∞c (Rn), 0 ≤ φ(x) ≤ 1,
has support sufficiently close to x, φ(x) = 1 in |x−x| < ε/2 then, since B has non-
negative principal symbol

(5.50) B + (1− φ) ∈ Ψ0
∞(Rn)

is globally elliptic. Thus, by Lemma
5.31
2.7, there exists G ∈ Ψ0

∞(Rn) which is a
parametrix for B + (1− φ) :

8.98.9 (5.51) Id ≡ G ◦B +G(1− φ) mod Ψ−∞∞ (Rn).

Let ψ ∈ C∞c (Rn) be such that supp(ψ) ⊂ {φ = 1} and ψ(x) 6= 0. Then, from the
reduction formula

ψ ◦G ◦ (1− φ) ∈ Ψ−∞∞ (Rn).

Thus from (
8.9
5.51) we find

ψu = ψG ◦Bu+ ψG(1− φ)u ∈ C∞(Rn).

Thus x /∈ sing supp(u) and the proposition is proved. �

We extend the definition to general tempered distributions by setting

8.108.10 (5.52) WF(u) =
⋃

φ∈C∞c (Rn)

WF(φu), u ∈ S ′(Rn).

Then (
8.7
5.47) holds for every u ∈ S ′(Rn).

5.8. Essential support

Next we shall consider the notion of the essential support of a pseudodifferential
operator. If a ∈ Sm∞(RN ;Rn) we define the cone support of a by

8.118.11 (5.53)

cone supp(a) =
{

(x, ξ) ∈ RN × (Rnr0);∃ ε > 0 and ∀ M ∈ R,∃ CM s.t.

|a(x, ξ)| ≤ CM 〈ξ〉−M if |x− x| ≤ ε,
∣∣ ξ
|ξ|
− ξ

|ξ|
∣∣ ≤ ε}{.

This is clearly a closed conic set in RN × (Rnr0). By definition the symbol decays
rapidly outside this cone, in fact even more is true.

8.29 Lemma 5.3. If a ∈ S∞∞(RN ;Rn) then

8.158.15 (5.54)

(x, η) /∈ cone supp(a) =⇒
∃ ε > 0 s.t. ∀ M,α, β ∃ CM with∣∣Dα

xD
β
ξ a(x, η)

∣∣ ≤ CM 〈η〉−M if |x− x| < ε,
∣∣ η
|η|
− η

|η|
∣∣ < ε.

Proof. To prove (
8.15
5.54) it suffices to show it to be valid for Dxja, Dξka and

then use an inductive argument, i.e. to show that

8.178.17 (5.55) cone supp(Dxja), cone supp(Dξka) ⊂ cone supp(a).

Arguing by contradiction suppose that Dx`a does not decay to order M in any cone

around (x, ξ) /∈ cone supp . Then there exists a sequence (xj , ξj) with

8.188.18 (5.56)

{
xj −→ x,

∣∣ ξj
|ξj | −

ξ

|ξ|

∣∣ −→ 0, |ξj | −→ ∞
and

∣∣Dx`a(xj , ξj)
∣∣ > j〈ξj〉M .
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We can assume that M < m, since a ∈ Sm∞
(
Rn;RN

)
. Applying Taylor’s formula

with remainder, and using the symbol bounds on D2
xja, gives

8.198.19 (5.57) a(xj + te`, ξj) = a(xj , ξj) + it(Dxja)(xj , ξj) +O
(
t2〈ξj〉m

)
, (e`)j = δ`j

providing |t| < 1. Taking t = 〈ξj〉M−m −→ 0 as j −→ ∞, the first and third terms
on the right in (

8.19
5.57) are small compared to the second, so

(5.58)
∣∣a(xj + 〈ξj〉

M−m
2 , ξj

) ∣∣ > 〈ξj〉2M−m,
contradicting the assumption that (x, ξ) /∈ cone supp(a). A similar argument applies
to Dξ`a so (

8.15
5.54), and hence the lemma, is proved. �

For a pseudodifferential operator we define the essential support by

8.128.12 (5.59) WF′(A) = cone supp (σL(A)) ⊂ Rn × (Rnr0) .

8.13 Lemma 5.4. For every A ∈ Ψm
∞(Rn)

8.148.14 (5.60) WF′(A) = cone supp(σR(A)).

Proof. Using (
8.15
5.54) and the formula relating σR(A) to σL(A) we conclude

that

8.168.16 (5.61) cone supp(σL(A)) = cone supp(σR(A)),

from which (
8.14
5.60) follows. �

A similar argument shows that

8.208.20 (5.62) WF′(A ◦B) ⊂WF′(A) ∩WF′(B).

Indeed the asymptotic formula for σL(A ◦ B) in terms of σL(A) and σL(B) shows
that

8.218.21 (5.63) cone supp(σL(A ◦B)) ⊂ cone supp (σL(A)) ∩ cone supp (σL(B))

which is the same thing.

5.9. Microlocal parametricesSect.MicPar

The concept of essential support allows us to refine the notion of a parametrix
for an elliptic operator to that of a microlocal parametrix.

9.1 Lemma 5.5. If A ∈ Ψm
∞(Rn) and z /∈ Σm(A) then there exists a microlocal

parametrix at z, B ∈ Ψ−m∞ (Rn) such that

9.29.2 (5.64) z /∈WF′(Id−AB) and z /∈WF′(Id−BA).

Proof. If z = (x, ξ), ξ 6= 0, consider the symbol

(5.65) γε(x, ξ) = φ

(
x− x
ε

)
(1− φ)(εξ)φ

(
(
ξ

|ξ|
− ξ

|ξ|
)
/
ε

)
where as usual φ ∈ C∞c (Rn), φ(ζ) = 1 in |ζ| ≤ 1

2 , φ(ζ) = 0 in |ζ| ≥ 1. Thus

γε ∈ S0
∞ (Rn;Rn) has support in

9.39.3 (5.66) |x− x| ≤ ε, |ξ| ≥ 1

2ε
,

∣∣∣∣ ξ|ξ| − ξ

|ξ|

∣∣∣∣ ≤ ε
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and is identically equal to one, and hence elliptic, on a similar smaller set

9.49.4 (5.67) |x− x| < ε

2
, |ξ| ≥ 1

ε
,

∣∣∣∣ ξ|ξ| − ξ

|ξ|

∣∣∣∣ ≤ ε

2
.

Define Lε ∈ Ψ0
∞(Rn) by σL(Lε) = γε. Thus, for any ε > 0,

8.338.33 (5.68) z /∈WF′(Id−Lε), WF′(Lε) ⊂
{

(x, ξ); |x− x| ≤ ε and

∣∣∣∣ ξ|ξ| − ξ

|ξ|

∣∣∣∣ ≤ ε} .
Let G2m ∈ Ψ2m

∞ (Rn) be a globally elliptic operator with positive principal
symbol. For example take σL(G2m) = (1 + |ξ|2)m, so Gs ◦ Gt = Gs+t for any s,
t ∈ R. Now consider the operator

(5.69) J = (Id−Lε) ◦G2m +A∗A ∈ Ψ2m
∞ (Rn).

The principal symbol of J is (1−γε)(1 + |ξ|2)m+ |σm(A)|2 which is globally elliptic
if ε > 0 is small enough (so that σm(A) is elliptic on the set (

9.3
5.66)). According to

Lemma
5.1
2.75, J has a global parametrix H ∈ Ψ−2m

∞ (Rn). Then

8.348.34 (5.70) B = H ◦A∗ ∈ Ψ−m∞ (Rn)

is a microlocal right parametrix for A in the sense that B ◦ A − Id = RR with
z /∈WF′(RR) since

8.358.35 (5.71) RR = B ◦A− Id = H ◦A∗ ◦A− Id

= (H ◦ J − Id) +H ◦ (Id−Lε)G2m ◦A

and the first term on the right is in Ψ−∞∞ (Rn) whilst z is not in the operator
wavefront set of (Id−Lε) and hence not in the operator wavefront set of the second
term.

By a completely analogous construction we can find a left microlocal paramet-
rix. Namely (Id−Lε) ◦ G2m + A ◦ A∗ is also globally elliptic with parametrix H ′

and then B′ = A∗ ◦H ′ satisfies

(5.72) B′ ◦A− Id = RL, z /∈WF′(RL).

Then, as usual,

(5.73) B = (B′ ◦A−RL)B = B′ (A ◦B)−RLB = B′ +B′RR −RLB

so z /∈ WF′(B − B′), which implies that B is both a left and right microlocal
parametrix. �

In fact this argument shows that such a left parametrix is essentially unique. See
Problem

P.9.1
5.29.

5.10. Microlocality

Now we can consider the relationship between these two notions of wavefront
set.

8.22 Proposition 5.6. Pseudodifferential operators are microlocal in the sense that

8.238.23 (5.74) WF(Au) ⊂WF′(A) ∩WF(u) ∀ A ∈ Ψ∞∞(Rn), u ∈ C−∞c (Rn).
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Proof. We need to show that

8.248.24 (5.75) WF(Au) ⊂WF′(A) and WF(Au) ⊂WF(u).

the second being the usual definition of microlocality. The first inclusion is easy.
Suppose (x, ξ) /∈ cone suppσL(A). If we choose B ∈ Ψ0

∞(Rn) with σL(B) supported
in a small cone around (x, ξ) then we can arrange

(5.76) (x, ξ) /∈ Σ0(B), WF′(B) ∩WF′(A) = ∅.
Then from (

8.20
5.62), WF′(BA) = ∅ so BA ∈ Ψ−∞∞ (Rn) and BAu ∈ C∞(Rn). Thus

(x, ξ) /∈WF(Au).
Similarly suppose (x, ξ) /∈ WF(u). Then there exists G ∈ Ψ0

∞(Rn) which is
elliptic at (x, ξ) with Gu ∈ C∞(Rn). Let B be a microlocal parametrix for G at
(x, ξ) as in Lemma

9.1
5.5. Thus

(5.77) u = BGu+ Su, (x, ξ) /∈WF′(S).

Now apply A to this identity. Since, by assumption, Gu ∈ C∞c (Rn) the first term
on the right in

8.318.31 (5.78) Au = ABGu+ASu

is smooth. Since, by (
8.20
5.62), (x, ξ) /∈ WF′(AS) it follows from the first part of the

argument above that (x, ξ) /∈WF(ASu) and hence (x, ξ) /∈WF(Au). �

We can deduce from the existence of microlocal parametrices at elliptic points
a partial converse of (8.24).

8.32 Proposition 5.7. For any u ∈ C−∞(Rn) and any A ∈ Ψm
∞(Rn)

(5.79) WF(u) ⊂WF(Au) ∪ Σm(A).

Proof. If (x, ξ) /∈ Σm(A) then, by definition, A is elliptic at (x, ξ). Thus, by
Lemma

9.1
5.5, A has a microlocal parametrix B, so

(5.80) u = BAu+ Su, (x, ξ) /∈WF′(S).

It follows that (x, ξ) /∈ WF(Au) implies that (x, ξ) /∈ WF(u) proving the Proposi-
tion. �

5.11. Explicit formulations

From this discussion of WF′(A) we can easily find a ‘local coordinate’ formu-
lations of WF(u) in general.

8.25 Lemma 5.6. If (x, ξ) ∈ Rn × (Rnr0) and u ∈ S ′(Rn) then (x, ξ) /∈ WF(u) if
and only if there exists φ ∈ C∞c (Rn) with φ(x) 6= 0 such that for some ε > 0, and
for all M there exists CM with

8.268.26 (5.81)
∣∣φ̂u(ξ)

∣∣ ≤ CM 〈ξ〉M in
∣∣ ξ
|ξ|
− ξ̄

|ξ|
∣∣ < ε.

Proof. If ζ ∈ C∞(R), ζ(ξ) ≡ 1 in |ξ| < ε
2 and supp(ζ) ⊂

[−3ε
4 , 3ε

4

]
then

(5.82) γ(ξ) = (1− ζ)(ξ) · ζ
( ξ
|ξ|
− x

|x|
)
∈ S0
∞(Rn)

is elliptic at ξ̄ and from (
8.26
5.81)

(5.83) γ(ξ) · φ̂u(ξ) ∈ S(Rn).
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Thus if σR(A) = φ1(x)γ(ξ) then A(φ2u) ∈ C∞ where φ1φ2 = φ, φ1(x), φ2(x) 6= 0,
φ1, φ2 ∈ C∞c (Rn). Thus (x, ξ) /∈ WF(u). Conversely if (x, ξ) /∈ WF(u) and A is
chosen as above then A(φ1u) ∈ S(Rn) and Lemma

8.25
5.6 holds. �

5.12. Wavefront set of KA

At this stage, a natural thing to look at is the wavefront set of the kernel of a
pseudodifferential operator, since these kernels are certainly an interesting class of
distributions.

8.27 Proposition 5.8. If A ∈ Ψm
∞(Rn) then

8.288.28 (5.84)
WF(KA) =

{
(x, y, ξ, η) ∈ R2n ×

(
R2nr0

)
;

x = y, ξ + η = 0 and (x, ξ) ∈WF′(A)
}
.

In particular this shows that WF′(A) determines WF(KA) and conversely.

Proof. Using Proposition
8.6
5.5 we know that π (WF(KA)) ⊂

{
(x, x)

}
so

WF(KA) ⊂
{

(x, x; ξ, η)
}
.

To find the wave front set more precisely consider the kernel

KA(x, y) = (2π)−n
∫
ei(x−y)·ξb(x, ξ)dξ

where we can assume |x− y| < 1 on supp(KA). Thus is φ ∈ C∞c (X) then

g(x, y) = KA(x, y) ∈ C−∞c (Rn)

and

ĝ(ζ, η) = (2π)−n
∫
e−iζx−iηyei(x−y)·ζ(φb)(x, ξ)dζdxdy

=

∫
e−i(ζ+η)·x(φb)(x,−η)dx

= φ̂b(ζ + η,−η).

The fact that φb is a symbol of compact support in x means that for every M∣∣φ̂b(ζ + η,−η)
∣∣ ≤ CM (〈ζ + η〉)−M 〈η〉m.

This is rapidly decreasing if ζ 6= −η, so

WF(KA) ⊂
{

(x, x, η,−η)
}

as claimed.

Moreover if (x, η) /∈ WF′(A) then choosing φ to have small support near x makes

φ̂b rapidly decreasing near −η for all ζ. This proves Proposition
8.27
5.8. �

5.13. Hypersurfaces and Hamilton vector fields

In the Hamiltonian formulation of classical mechanics the dynamical behaviour
of a ‘particle’ is fixed by the choice of an energy function (‘the Hamiltonian’) h(x, ξ)
depending on the position and momentum vectors (both in R3 you might think,
but maybe in R3N because there are really N particles). In fact one can think
of a system confined to a surface in which case the variables are in the cotangent
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bundle of a manifold. However, in the local coordinate description the motion of
the particle is given by Hamilton’s equations:-

22.10.2007.18422.10.2007.184 (5.85)
dxi
dt

=
∂h

∂ξi
(x, ξ),

dξi
dt

= − ∂h
∂xi

(x, ξ).

This means that the trajectory (x(t), ξ(t)) of a particle is an integral curve of the
vector field

24.10.2007.18524.10.2007.185 (5.86) Hh(x, ξ) =
∑
i

(
∂h

∂ξi
(x, ξ)

∂

∂xi
− ∂h

∂xi
(x, ξ)

∂

∂ξi
(x, ξ)

)
.

This, of course, is called the Hamilton vector field of h. The most important basic
fact is that h itself is constant along integral curves of Hh, namely

24.10.2007.18624.10.2007.186 (5.87) Hhh =
∑
i

(
∂

∂hξi
(x, ξ)

∂h

∂xi
(x, ξ)− ∂h

∂xi
(x, ξ)

∂h

∂ξi
(x, ξ)h(x, ξ)

)
= 0.

More generally the action of Hh on any other function defines the Poisson bracket
between h and g and

24.10.2007.18724.10.2007.187 (5.88) Hhg = {h, g} = −{g, h} = −Hgh

from which (
24.10.2007.186
5.87) again follows. See Problem

24.10.2007.190
5.18.

More invariantly the Hamilton vector can be constructed using the symplectic
form

24.10.2007.18824.10.2007.188 (5.89) ω =
∑
i

dξi ∧ dxi = dα, α =
∑
i

ξidxi.

Here α is the ‘tautological’ 1-form. If we think of Rnx×Rnξ = (x, ξ)′ as the pull back

under π : (x, ξ) 7−→ x of β as a 1-covector on Rn. In this sense the tautological form
α is well defined on the cotangent bundle of any manifold and has the property
that if one introduces local coordinates in the manifold x and the canonically dual
coordinates in the cotangent bundle (by identifying a 1-covector as ξ · dx) then it
takes the form of α in (

24.10.2007.188
5.89). Thus the symplectic form, as dα, is well-defined on

T ∗X for any manifold X.
Returning to the local discussion it follows directly from (

24.10.2007.185
5.86) that

24.10.2007.18924.10.2007.189 (5.90) ω(·, Hh) = dh(·)

and conversely this determines Hh. See Problem
24.10.2007.192
5.19.

Now, we wish to apply this discussion of ‘Hamiltonian mechanics’ to the case
that h = p(x, ξ) is the principal symbol of some pseudodifferential operator. We
shall in fact take p to be homogeneous of degree m (later normalized to 1) in |ξ| > 1.
That is,

24.10.2007.19524.10.2007.195 (5.91) p(x, sξ) = smp(x, ξ) ∀ x ∈ Rn, |ξ| ≥ 1, s|ξ| ≥ 1, s > 0.

The effect of this is to ensure that

24.10.2007.19624.10.2007.196 (5.92) Hp is homogeneous of degree m− 1 under (x, ξ) 7−→ (x, sξ)

in the same region. One consequence of this is that

24.10.2007.19724.10.2007.197 (5.93) Hp : SMc (Rn;Rn) −→ SM−1
c (Rn;Rn).

(where the subscript ‘c’ just means supports are compact in the first variable). To
see this it is convenient to again rewrite the definition of symbol spaces. Since
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supports are compact in x we are just requiring uniform smoothness in those vari-
ables. Thus, we are first requiring that symbols be smooth. Now, consider any
point ξ̄ 6= 0. Thus ξ̄j 6= 0 for some j and we can consider a conic region around ξ̄
of the form

24.10.2007.19824.10.2007.198 (5.94) ξj/ξ̄j ∈ (0,∞), |ξk/ξj − ξ̄j/ξ̄j | < ε

where ε > 0 is small. Then the symbolic conditions on a ∈ SMc (Rn;Rn) imply

24.10.2007.19924.10.2007.199 (5.95)
b(x, t, r) = a(x, rt1, . . . , rtj−1, r sgn ξ̄j , rtj , . . . , rtn−1)

satisfies|Dα
xD

γ
tD

k
r b(x, t, r)| ≤ Cα,γ,krM−k in r ≥ 1.

See Problem
24.10.2007.200
5.20.

For the case of a homogeneous function (away from ξ = 0) such as p the surface
Σm(P ) = {p = 0} has already been called the ‘characteristic variety’ above. Corre-
spondingly the integral curves of Hp on Σm(p) (so the ones on which p vanishes) are
called null bicharacteristics, or sometimes just bicharacteristics. Note that Σm(P )
may well have singularities, since dp may vanish somewhere. However this is not a
problem with the general discussion, since Hp vanishes at such points – and it is
only singular in this sense of vanishing. The integral curves through such a point
are necessarily constant.

Now we are in a position to state at least a local form of the propagation
theorem for operators of ‘real principal type’. This means dp 6= 0, and in fact even
more, that dp and α are linearly independent. The theorems below in fact apply
in general when p is real even if there are points where dp is a multiple of α – they
just give no information in those cases.

22.10.2007.126 Theorem 5.1 (Hörmander’s propagation theorem, local version). Suppose P ∈
Ψm
∞(M) has real principal symbol homogeneous of degree m, that c : (a, b) −→

Σm(P ) is an interval of a null bicharacteristic curve (meaning c∗(
d
dt ) = Hp) and

that u ∈ S ′(Rn) satisfies

22.10.2007.12822.10.2007.128 (5.96) c(a, b) ∩WF(Pu) = ∅

then

22.10.2007.12722.10.2007.127 (5.97)

{
either c(a, b) ∩WF(u) = ∅
or c(a, b) ⊂WF(u).

5.14. Relative wavefront set

Although we could proceed directly by induction over the (Sobolev) order of
regularity to prove a result such as Theorem

22.10.2007.126
5.1 it is probably better to divide

up the proof a little. To do this we can introduce a refinement of the notion of
wavefront set, which is actually the wavefront set relative to a Sobolev space. So,
fixing s ∈ R we can simply define by direct analogy with (

8.4
5.45)

22.10.2007.12922.10.2007.129 (5.98) WFs(u) =
⋂{

Σ0(A);A ∈ Ψ0
∞(Rn);Au ∈ Hs(Rn)

}
, u ∈ C−∞c (Rn).

Notice that this would not be a very good definition if extended directly to u ∈
S ′(Rn) if we want to think of it as only involving local regularity (because growth
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of u might stop Au from being in Hs(Rn) even if it is smooth). So we will just
localize the definition in general

22.10.2007.13022.10.2007.130 (5.99) WFs(u) =
⋂{

Σ0(A);A ∈ Ψ0
∞(Rn);A(ψu) ∈ Hs(Rn) ∀ ψ ∈ C∞c (Rn)

}
,

u ∈ C−∞(Rn).

In this sense the regularity is with respect to Hs
loc(Rn) – is purely local.

22.10.2007.131 Lemma 5.7. If u ∈ C−∞(Rn) then WFs(u) = ∅ if and only if u ∈ Hs
loc(Rn).

Proof. The same proof as in the case of the original wavefront set works,
only now we need to use Sobolev boundedness as well. Certainly if u ∈ Hs

loc(Rn)
then ψu ∈ Hs(Rn) for each ψ ∈ C∞c (Rn) and hence A(ψu) ∈ Hs(Rn) for every
A ∈ Ψ0

∞(Rn). Thus WFs(u) = ∅.
Conversely if u ∈ C−∞c (Rn) and WFs(u) = ∅ then for each point (x, ξ) with

x ∈ supp(u) and |ξ| = 1 there exists Ax,ξ ∈ Ψ0
∞(Rn) such that Au ∈ Hs(Rn) with

(x, ξ) /∈ Σ0(Ax,ξ). That is A(x,ξ) is elliptic at (x, ξ). By compactness (given the
conic property of the elliptic set) a finite collection Ai = A(xi,ξi) have the property
that the union of their elliptic sets cover some set K× (Rn \0) where K is compact
and supp(u) is contained in the interior of K. We can then choose φ ∈ C∞c (Rn) with
0 ≤ φ ≤ 1, supp(φ) ⊂ K and φ = 1 on supp(u) and

B = (1− φ) +
∑
i

A∗iAu ∈ Ψ0
∞(Rn)

is globally elliptic in Ψ0
∞(Rn) and Bu ∈ Hs(Rn) by construction (since (1− φ)u =

0). Thus u ∈ Hs(Rn). Applying this argument to ψu for each ψ ∈ C∞c (Rn) for
u ∈ C−∞(Rn) we see that WFs(u) = ∅ implies ψu ∈ Hs(Rn) and hence u ∈
Hs

loc(Rn). �

Of course if u ∈ C−∞c (Rn) then WFs(u) = ∅ is equivalent to u ∈ Hs(Rn).
It also follows directly from this definition that pseudodifferential operators are

‘appropriately’ microlocal given their order.

22.10.2007.135 Lemma 5.8. If u ∈ C−∞(Rn) then

22.10.2007.13622.10.2007.136 (5.100) WF(u) ⊃
⋃
s

WFs(u).

and coversely if γ ⊂ Rn × (Rn \ 0) is an open cone then

22.10.2007.13722.10.2007.137 (5.101) γ ∩WFs(u) = ∅ ∀ s =⇒ γ ∩WF(u) = ∅.
The combination of these two statements is that

15.11.2007.32615.11.2007.326 (5.102) WF(u) =
⋃
s

WFs(u).

Note that there is not in general equality in (
22.10.2007.136
5.100).

Proof. If (x̄, ξ̄) ∈ WFs(u) for some s then by definition there exists ψ ∈
C∞c (Rn) with ψ(x̄) 6= 0 and A ∈ Ψ0

∞(Rn) which is elliptic at (x̄, ξ̄) and is such that
A(ψu) /∈ Hs(Rn). This certainly implies that (x̄, ξ̄) ∈WF(u) proving (

22.10.2007.136
5.100).

To prove the partial converse if suffices to assume that u ∈ C−∞c (Rn) and to fix
a point (x̄, ξ̄) ∈ γ and deduce from (

22.10.2007.137
5.101) that (x̄, ξ̄) /∈WF(u). Since γ is an open

cone we may choose ε > 0 such that G = {(x, ξ); |x− x̄| ≤ ε, | ξ|ξ| −
ξ̄
ξ̄
| ≤ ε} ⊂ γ. Now
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for each s the covering argument in the proof of Lemma
22.10.2007.131
5.7 shows that we may

find As ∈ Ψ0
∞(Rn) such that As(u) ∈ Hs(Rn) and G ∩ Σ0(As) = ∅. Now choose

one A ∈ Ψ0
∞(Rn) which is elliptic at (x̄, ξ̄) and has WF′(A) ⊂ {(x, ξ); |x − x̄| <

ε, | ξ|ξ| −
ξ̄
ξ̄
| < ε}, which is the interior of G. Since As has a microlocal parametrix in

a neighbourhood of G, BsAs = Id +Es, WF′(Es) ∩G = ∅ it follows that

22.10.2007.13822.10.2007.138 (5.103) Au = A(BsAs − Es)u = (ABs)Asu−AEsu ∈ Hs(Rn) ∀ s,
since AEs ∈ Ψ−∞∞ (Rn). Thus Au ∈ S(Rn) (since u is assumed to have compact
support) so (x̄, ξ̄) /∈WF(u), proving (

22.10.2007.137
5.101). �

22.10.2007.133 Lemma 5.9. If u ∈ S ′(Rn) and A ∈ Ψm
∞(Rn) then

22.10.2007.13422.10.2007.134 (5.104) WFs−m(Au) ⊂WF′(A) ∩WFs(u) ∀ s ∈ R.

Proof. See the proof of the absolute version, Proposition
8.22
5.6. This shows

that if (x̄, ξ̄) /∈ WF′(A) then (x̄, ξ̄) /∈ WF(Au), so certainly (x̄, ξ̄) /∈ WFs−m(Au).
Similarly, if (x̄, ξ̄) /∈WFs(u) then there exists B ∈ Ψ0

∞(Rn) which is elliptic at (x̄, ξ̄)
and such that Bu ∈ Hs(Rn). If G ∈ Ψ0

∞(Rn) is a microlocal parametrix for B at
(x̄, ξ̄) then (x̄, ξ̄) /∈WF′(GB−Id) so by the first part (x̄, ξ̄) /∈WFs−m(A(GB−Id)u)
and on the other hand, AGBu ∈ Hs−m(Rn), so (

22.10.2007.134
5.104) follows. �

Now, we can state a relative version of Theorem
22.10.2007.126
5.1:-

22.10.2007.139 Theorem 5.2 (Hörmander’s propagation theorem, L2, local version). Suppose
P ∈ Ψ1

∞(M) has real principal symbol, that c : [a, b] −→ Σm(P ) is an interval of a
null bicharacteristic curve (meaning c∗(

d
dt ) = Hp) and that u ∈ C−∞c (Rn) satisfies

22.10.2007.128p22.10.2007.128p (5.105) c([a, b]) ∩WF 1
2
(Pu) = ∅ (eventually c([a, b]) ∩WF0(Pu) = ∅)

then

22.10.2007.127p22.10.2007.127p (5.106)

{
either c([a, b]) ∩WF0(u) = ∅
or c([a, b]) ⊂WF0(u).

Proof that Theorem
22.10.2007.126
5.1 follows from Theorem

22.10.2007.139
5.2. The basic idea is

to apply (
22.10.2007.137
5.101), remembering that there is not equality (in general) in (

22.10.2007.136
5.100) –

the necessary uniformity here comes from the geometry so let us check that first.

22.10.2007.146 Lemma 5.10. First, we can act on P on the left with some elliptic operator
with positive principal symbol, such as 〈D〉−m+1 which changes the order of P to
1. This does not change Σ(P ) as the principal symbol changes from p to ap where
a > 0, and only scales the Hamilton vector field on Σ(P ) since

15.11.2007.32715.11.2007.327 (5.107) Hap = aHp + pHa

and the second term vanishes on Σ(P ). Thus it suffices to consider the case m = 1.
If p is real and homogeneous of degree 1, Γ is an open conic neighbourhood of a

bicharacteristic segment c([a, b]) such that dp and the canonical 1-form α = ξ ·dx are
independent at c(a) and γ is an open conic neighbourhood of c(t) for some t ∈ [a, b]
then there is an open conic neighbourhood G of c([a, b]), G ⊂ Γ such that G∩Σ(P )
is a union of (null) bicharacteristic intervals cq(aq, bq)) which intersect γ.

Proof. If dp and α are linearly dependent at a some point (x̄, ξ̄) ∈ Σ(P ) then
Hp = cξ · ∂ξ is a multiple of the radial vector field at that point. By homogeneity
the same must be true at (x̄, sξ̄) for all s > 0 so the integral curve of Hp through
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(x̄, ξ̄) must be contained in the ray through that point. Thus the condition that
dp and ξ · dx are linearly independent at c(a) implies that this must be true on all
points of c([a, b]) and hence in a neighbourhood of this interval.

Thus it follows that Hp and ξ ·∂ξ are linearly independent near c([a, b]). Since p
is homogeneous of degree 1, Hp is homogeneous of degree 0. It follows that there are
local coordinates Ξ 6= 0 homogeneous of degree 1 and yk, homogeneous of degree 0,
in a neighbourhood of c([a, b]) in terms of which Hp = ∂y1 . These can be obtained
by integrating along Hp to solve

31.10.2007.24531.10.2007.245 (5.108) Hpy1 = 1, Hpyk = 0, k > 1, HpΞ = 0

with appropriate initial conditions on a conic hypersurface transversal to Hp. Then
the integral curves, including c([a, b]) must just be the y1 lines for which the con-
clusion is obvious, noting that ∂y1 must be tangent to Σ(P ). �

Now, returning to the proof note that we are assuming that Theorem
22.10.2007.139
5.2 has

been proved for all first order pseudodifferential operators with real principal sym-
bol. Suppose we have the same set up but assume that

22.10.2007.14022.10.2007.140 (5.109) c([a, b]) ∩WFs+ 1
2
(Pu) = ∅ (eventually c([a, b]) ∩WFs(Pu) = ∅)

in place of (
22.10.2007.128
5.96). Then we can simply choose a globally invertible elliptic operator

of order s, say Qs = 〈D〉s and rewrite the equation as

22.10.2007.14122.10.2007.141 (5.110) Psv = Qsf, Ps = QsPQ−s, v = Qsu

Then (
22.10.2007.140
5.109) implies that

22.10.2007.14222.10.2007.142 (5.111) c([a, b]) ∩WF 1
2
(Psv) = ∅

and Ps ∈ Ψ0
∞(Rn) is another operator with real principal symbol – in fact the same

as before, so we get (
22.10.2007.127
5.97) which means that for each s we have the alternatives

22.10.2007.14322.10.2007.143 (5.112)

{
either c([a, b]) ∩WFs(u) = ∅
or c([a, b]) ⊂WFs(u).

Now the hypothesis in (
22.10.2007.128
5.96) implies (

22.10.2007.140
5.109) for each s and hence for each s we

have the alternatives (
22.10.2007.143
5.112). Of course if the second condition holds for any one s

then it holds for all larger s and in particular implies that the second case in (
22.10.2007.127
5.97)

(but for the compact interval) holds. So, what we really need to show is that if the
first case in (

22.10.2007.143
5.112) holds for all s then

22.10.2007.14422.10.2007.144 (5.113) c([a, b]) ∩WF(u) = ∅.

This is where we need to get some uniformity. However, consider nearby points
and bicharacteristics. Our assumption is that for some t ∈ [a, b], c(t) /∈ WF(u) –
otherwise we are in the second case. Since the set WF(u) is closed and conic, this
implies that some open cone γ containing c(t) is also disjoint from WF(u). Thus it
follows that γ ∩WFs(u) = ∅ for all s. This is where the geometry comes in to show
that there is a fixed open conic neighbourhood G of c([a, b]) such that

22.10.2007.14522.10.2007.145 (5.114) G ∩WFs(u) = ∅ ∀ s ∈ R.

Namely we can take G to be a small neighbourhood as in Lemma
22.10.2007.146
5.10. Since

one point on each of the null bicharacteristic intervals forming G ∩ Σ(P ) meets a
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point of γ, the first alternative in (
22.10.2007.143
5.112) must hold for all these intervals, for all s.

That is,

22.10.2007.14722.10.2007.147 (5.115) G ∩WFs(u) = ∅ ∀ s.

Now (
22.10.2007.137
5.101) applies to show that G∩WF(u) = ∅ so in particular we are in the first

case in (
22.10.2007.127
5.97) and the theorem follows. �

Finally we further simplify Theorem
22.10.2007.139
5.2 to a purely local statement.

22.10.2007.148 Proposition 5.9. Under the hypotheses of Theorem
22.10.2007.139
5.2 if t ∈ (a, b) and WF0(u)∩

c((t± ε)) = ∅ for some ε > 0 then c(t) /∈WF0(u).

Derivation of Theorem
22.10.2007.139
5.2 from Proposition

22.10.2007.148
5.9. The dicotomy in (

22.10.2007.127
5.97)

amounts to the statement that if c(t) /∈WF0(u) for some t ∈ [a, b] then C = {t′ ∈
[a, b]; c(t) ∈WF0(u)} must be empty. Since WF(u) is closed, C is also closed. Ap-
plying the Proposition to sup(C ∩ [a, t)) shows that it cannot be in C and neither
can inf(C ∩ (t, b]) so both these sets must be empty and hence C itself must be
empty. �

5.15. Proof of Proposition
22.10.2007.148
5.9

Before we finally get down to the analysis let me note some more simiplifica-
tions. We can actually assume that c(t) = a = 0 and that the interval is [0, δ] for
some δ > 0. Indeed this is just changing the parameter in the case of the positive
sign. In the case of the negative sign reversing the sign of P leaves the hypotheses
unchanged but reverses the parameter along the integral curve. Thus our hypothe-
ses are that

22.10.2007.15022.10.2007.150 (5.116) c([0, δ]) ∩WF 1
2
(Pu) = ∅ (eventually just c([0, δ]) ∩WF0(Pu) = ∅) and

c((0, δ]) ∩WF0(u) = 0

and we wish to conclude that

22.10.2007.15122.10.2007.151 (5.117) c(0) /∈WF0(u).

We can also assume that

22.10.2007.15222.10.2007.152 (5.118) c(0) /∈WF− 1
2
(u).

In fact, if (
22.10.2007.152
5.118) does not hold, then there is in fact some s < − 1

2 such that

c(0) /∈WFs(u) but c(0) ∈WFt(u) for some t ≤ max(− 1
2 , s+ 1

2 ). Indeed, u itself is in
some Sobolev space. Now we can apply the argument used earlier to deduce (

22.10.2007.143
5.112)

from (
22.10.2007.127
5.97). Namely, replace P by 〈D〉s+ 1

2P 〈D〉−s− 1
2 and u by u′ = 〈D〉s+ 1

2u. Then
(
22.10.2007.152
5.118) is satisfied by u′ and if the argument to prove (

22.10.2007.151
5.117) works, we conclude

that c(0) /∈ WFs(u) which is a contradiction. Thus, proving that (
22.10.2007.151
5.117) follows

form (
22.10.2007.150
5.116) and (

22.10.2007.151
5.117) suffices to prove everything.

Okay, now to the construction. What we will first do is find a ‘test’ operator
A ∈ Ψ0

∞(Rn) which has

22.10.2007.15422.10.2007.154 (5.119) WF′(A) ⊂ N(c(0)), A∗ = A
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for a preassigned conic neighbourhood N(c(0)) of the point of interest. Then we
want in addition to arrange that for a preassigned conic neigbourhood N(c(δ/2)),

22.10.2007.15522.10.2007.155 (5.120)

1

i
(AP − P ∗A) = B2 + E0 + E1,

B ∈ Ψ0
∞(Rn), B∗ = B is elliptic at c(0),

E0 ∈ Ψ0
∞(Rn), WF′(E0) ⊂ N(c(

δ

2
))

and E1 ∈ Ψ−1
∞ (Rn).

Before checking that we can arrange (
22.10.2007.155
5.120) let me comment on why it will

help! In fact there is a flaw in the following argument which will be sorted out
below. Given (

22.10.2007.155
5.120) let us apply the identity to u and then take the L2 pairing

with u which would give

22.10.2007.15622.10.2007.156 (5.121) −2Im〈u,APu〉 = −i〈u,APu〉+ i〈APu, u〉 = ‖Bu‖2 + 〈u,E0〉+ 〈u,E1u〉.

where I have illegally integrated by parts, which is part of the flaw in the argument.
Anyway, the idea is that APu is smooth – at least it would be if we assumed that
N(c(0)) ∩WF(Pu) = ∅ – so the left side is finite. Similarly by the third line of
(
22.10.2007.155
5.120), WF′(E0) is confined to a region where u is known to be well-behaved and

the order of E1 allows us to use (
22.10.2007.152
5.118). So with a little luck we can show, and

indeed we will, that

22.10.2007.15722.10.2007.157 (5.122) Bu ∈ L2(Rn) =⇒ c(0) /∈WF0(u)

which is what we are after. The problems with this argument are of the same nature
that are met in discussions of elliptic regularity and the niceties are discussed below.

So, let us now see that we can arrange (
22.10.2007.155
5.120). First recall that we have

normalized P to be of order 1 with real principal symbol. So

P ∗ = P + iQ, Q ∈ Ψ0
∞(Rn), Q = Q∗.

Thus the left side of the desired identity in (
22.10.2007.155
5.120) can be written

22.10.2007.15922.10.2007.159 (5.123) −i[A,P ] +QA ∈ Ψ0
∞(Rn), σ0(−i[A,P ] +QA) = −Hpa+ qa

where q is the principal symbol of q etc. Since E1 in (
22.10.2007.155
5.120) can include any terms

of order −1 we just need to arrange the principal symbol identity

22.10.2007.16022.10.2007.160 (5.124) −Hpa+ qa = b2 + e.

Notice that p is by assumption a function which is homogeneous of degree 1 so the
vector field Hp is homogeneous of degree 0. We can further assume that

22.10.2007.16122.10.2007.161 (5.125) Hp 6= 0 on c([0, δ]).

Indeed, if Hp = 0 at c(0) then the whole integral curve through c(0) consists of the
point and the result is trivial. So we can assume that Hp 6= 0 at c(0) and then
(
22.10.2007.161
5.125) follows by shrinking δ. As noted above we can now introduce coordinates t
s ∈ R2n−2 and Θ > 0, homogeneous respectively of degrees 0, 0 and 1, in terms of
which Hp = ∂

∂t , c(0) = (0, 1) so the integral curve is just (t, 0, 1) and the differential
equation (

22.10.2007.160
5.124) only involves the t variable and the s variables as parameters (ξj

disappears because of the assumed homogeneity)

22.10.2007.16222.10.2007.162 (5.126) − d

dt
a+ qa = b2 + e.
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So, simply choose b = φ(t)φ(|s|) for some cut-off function φ(x) ∈ C∞c (R) which is 1
near 0 and has small support in |x| ≤ δ′ which will be chosen small. Then solve

22.10.2007.16322.10.2007.163 (5.127) − d

dt
ã+ qã = b2 =⇒ ã(t, s) = −φ2(|s|)e−Q(t,s)

∫ t

−∞
eQ(t′,s)φ2(t′, s)dt′

where Q is a primitive of q. Integrating from t << 0 ensures that the support of
a′ is confined to |s| ≤ δ′ and t ≥ −δ′. Now simply choose a function ψ ∈ C∞(R)
which is equal to 1 in t < 1

2δ − δ′ and equal to 0 in t > 1
2δ + δ′. Then setting

a(t, s) = ψ(t)ã(t, s) gives a solution of (
22.10.2007.162
5.126) with the desired support properties.

Namely if we simply cut a and b off in Θ near zero to make them into smooth
symbols and select operators B and A self-adjoint and with these principal symbols
then (

22.10.2007.155
5.120) follows where the supports behave as we wish when δ′ is made small.

So, what is the problem with the derivation of (
22.10.2007.156
5.121). For one thing the

integration by parts, but for another the pairing which we do not know to make
sense. In particular the norm ‖Bu‖ which we wish to show to be finite certainly
has to be for this argument to be possible. The solution to these problems is simply
to regularize the operators.

So, now choose a sequence µn(R) where the variable will be Θ. We want

22.10.2007.16422.10.2007.164 (5.128) µn ∈ C∞c (R), µn bounded in S0(R) and µn → 1 ∈ Sε(R) ∀ ε > 0.

This is easily arranged, for instance taking µ ∈ C∞c (R) equal to 1 near 0 and setting
µn(Θ) = µ(Θ/n). Since we have arranged that the homogeneous variable Θ is
annihilated by Hp = d

dt we can simply multiply through the equation and get a
similar family of solutions to (

22.10.2007.160
5.124)

22.10.2007.16522.10.2007.165 (5.129) −Hpan + qan = b2n + en

where all terms are bounded in S0
∞(Rn;Rn) (and have compact support in the base

variables). Now if we take operators An, Bn with these full symbols, and then their
self-adjoint parts, we conclude that An, Bn ∈ Ψ0

∞(Rn) have left symbols bounded
in S0 and we get a sequence of solutions to the identity (

22.10.2007.155
5.120) with uniformity.

Let’s check that we know precisely what this means. Namely for all ε > 0,
22.10.2007.16622.10.2007.166 (5.130)

An is bounded in Ψ0
∞(Rn), An → A in Ψε

∞(Rn), WF′(An) ⊂ N(c(δ)) is uniform,

1

i
(AnP − P ∗An) = B2

n + E0,n + E1,n,

B∗n = Bn ∈ Ψ0
∞(Rn) is bounded, Bn → B in Ψε

∞(Rn), Ψ0
∞(Rn) 3 B is elliptic at c(0),

E0,n ∈ Ψ0
∞(Rn) is bounded, WF′(E0,n) ⊂ N(c(

δ

2
)) is uniform

and E1,n ∈ Ψ−1
∞ (Rn) is bounded.

where the boundedness of the sequences means that the symbols estimates on the
left symbols have fixed constants independent of n and uniformity of the essential
support conditions means that for instance

22.10.2007.16722.10.2007.167 (5.131)
q /∈ N(c(

δ

2
)) =⇒ ∃ R ∈ Ψ0

∞(Rn) elliptic at q

such that RE0,n is bounded in Ψ−∞∞ (Rn).

All this follows from our choice of symbols.
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I leave as an exercise the effect of the uniformity statement on the essential
support.

22.10.2007.169 Lemma 5.11. Suppose An is bounded in Ψm
∞(Rn) for some m and that

22.10.2007.17022.10.2007.170 (5.132) WF′(An) ⊂ G uniformly

for a closed cone G in the sense of (
22.10.2007.167
5.131). Then if u ∈ C−∞c (Rn) is such that

22.10.2007.17122.10.2007.171 (5.133) WFm(u) ∩G = ∅ then Anu is bounded in L2(Rn).

Now we are in a position to finish! For finite n all the operators in the identity
in (

22.10.2007.166
5.130) are smoothing so we can apply the operators to u and pair with u. Then

the integration by parts used to arrive at (
22.10.2007.156
5.121) is really justified in giving

22.10.2007.17222.10.2007.172 (5.134)
−2Im〈u,AnPu〉 = −i〈u,AnPu〉+ i〈AnPu, u〉 = ‖Bnu‖2 + 〈u,E0,nun〉+ 〈u,E1,nu〉.
We have arranged that WF′(An) is uniformly concentrated near (the cone over)
c([0, δ2 ]) and, from (

22.10.2007.150
5.116), that WF 1

2
(Pu) does not meet such a set. Thus Lemma

22.10.2007.169
5.11

shows us that AnPu is bounded in H
1
2 (Rn). Since we know that WF− 1

2
(u) does

not meet c([0, δ]) we conclude (always taking the parameter δ′ determining the size
of the supports small enough) that

22.10.2007.17322.10.2007.173 (5.135) |〈u,AnPu〉| is bounded

as n → ∞. Similarly |〈u,E0,n〉| is bounded since E0,n is bounded in Ψ0
∞(Rn) and

has essential support uniformly in the region where u is known to be in L2(Rn) and
|〈u,E1,n〉| is bounded since E1,n is uniformly of order −1 and has essential sup-

port (uniformly) in the region where u is known to be in H−
1
2 (Rn). Thus indeed,

‖Bnu‖L2 is bounded. Thus Bnu is bounded in L2(Rn), hence has a weakly conver-
gent subsequence, but this must converge to Bu when paired with test functions.
Thus in fact Bu ∈ L2(Rn) and (

22.10.2007.151
5.117) follows.

5.16. Hörmander’s propagation theorem

There are still some global issues to settle. Theorem
22.10.2007.126
5.1, which has been proved

above, can be immediately globalized and microlocalized at the same time. It is
also coordinate invariant – see the discussion in Chapter

Pse-man
6, so can be transferred

to any manifold as follows.

22.10.2007.174 Theorem 5.3. If P ∈ Ψm(M) has real principal symbol and is properly sup-
ported then for any distribution u ∈ C−∞(M),

22.10.2007.17522.10.2007.175 (5.136) WF(u) \WF(Pu) ⊂ Σ(P )

is a union of maximally extended null bicharacteristics in Σ(P ) \WF(Pu).

Some consequences of this in relation to the wave equation are discussed below,
and extension of it in Chapter

Scat
7.

As already noted, the strengthened assumption on the regularity of Pu in (
22.10.2007.128
5.96)

is not necessary to deduce (
22.10.2007.127
5.97), or correspondingly (

22.10.2007.150
5.116) for (

22.10.2007.151
5.117). This is

not important in the proof of Theorem
22.10.2007.126
5.1 since we are making a much stronger

assumption on the regularity of Pu anyway. However, to get the more refined
version of Theorem

22.10.2007.139
5.2, as stated ‘eventually’ we only need to prove (

22.10.2007.151
5.117) using

the corresponding form of (
22.10.2007.150
5.116). This in turn involves a more careful choice of

φ(x) using the following sort of division result.
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22.10.2007.177 Lemma 5.12. There exist a function φ ∈ C∞(R) with support in [0,∞) which
is strictly positive in (0,∞) and such that for any 0 < f ∈ C∞(R),

22.10.2007.17822.10.2007.178 (5.137)

∫ t

−∞
f(t′)φ2(t′)dt′ = φ(t)a(t), a ∈ C∞(R), supp(a) ⊂ [0,∞).

Proof. This is true for φ = exp(−1/t) in t > 0, φ(t) = 0 in t ≤ 0. Indeed the
integral is then bounded by

22.10.2007.17922.10.2007.179 (5.138) |
∫ t

−∞
f(t′) exp(−2/t′)dt′| ≤ C exp(−2/t), t ≤ 1.

This shows that a(t), defined as the quotient for t > 0 and 0 for t < 0 is bounded
by Cφ(t). A similar argument show that each of the derivatives are also uniformly
bounded by t−Nφ(t) and is therefore also bounded. �

Taking φ to be such a function in the discussion above (near the lower bound
of its support) allows the symbol a defined by integration, and then an, to be
decomposed as

22.10.2007.18022.10.2007.180 (5.139) an = bngn + a′n

where a′n is uniformly supported in t < δ′/10 and gn is also a uniformly bounded
sequence of symbols of order 0. This results in a similar decomposition for the
operators

22.10.2007.18122.10.2007.181 (5.140) An = BnGn +A′n +R′n

where R′n is uniformly of order−1, Gn is uniformly of order 0 and A′n, also uniformly
of order 0 is uniformly supported in the region where we already know that u ∈
L2(Rn). The previous estimate (

22.10.2007.173
5.135) on the left side of (

22.10.2007.172
5.134) can then be

replaced by

22.10.2007.18222.10.2007.182 (5.141) |〈u,AnPu〉| ≤ |〈Bnu,GnPu〉|+ |〈u,A′nPu〉|+ |〈u,R′nPu〉| ≤ C‖Bnu‖+C ′

using only the ‘eventual’ estimate in (
22.10.2007.150
5.116) to control the third term. The other

terms in (
22.10.2007.172
5.134) behave as before which results in an estimate

22.10.2007.18322.10.2007.183 (5.142) ‖Bnu‖2 ≤ C ′‖Bnu‖+ C ′′

which still implies that ‖Bnu‖ is bounded, so the argument can be completed
as before. This then proves the ‘eventual’ form of Theorem

22.10.2007.139
5.2 and hence, after

reinterpretation, Theorem
22.10.2007.174
5.3.

5.17. Elementary calculus of wavefront sets

We want to achieve a reasonable understanding, in terms of wavefront sets, of
three fundamental operations. These are

Pull-back: F ∗upbpb (5.143)

Push-forward: F∗u andproofproof (5.144)

Multiplication: u1 · u2.multmult (5.145)
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In order to begin to analyze these three operations we shall first introduce and
discuss some other more “elementary” operations:

Pairing: (u, v) −→ 〈u, v〉 =

∫
u(x)v(x)dxpairpair (5.146)

Projection: u(x, y) 7−→
∫
u(x, y)dyprojproj (5.147)

Restriction: u(x, y) 7−→ u(x, 0)restrest (5.148)

Exterior product: (u, v) 7−→ (u� v)(x, y) = u(x)v(y)exprexpr (5.149)

Invariance: F ∗u, for F a diffeomorphism.invinv (5.150)

Here (
rest
5.148) and (

inv
5.150) are special cases of (

pb
5.143), (

proj
5.147) of (

proof
5.144) and (

expr
5.149) is

a combination of (
mult
5.145) and (

pb
5.143). Conversely the three fundamental operations

can be expressed in terms of these elementary ones. We can give direct definitions
of the latter which we then use to analyze the former. We shall start with the
pairing in (

pair
5.146).

5.18. Pairing

We know how to ‘pair’ a distribution and a C∞ function. If both are C∞ and
have compact supports then

9.79.7 (5.151) 〈u1, u2〉 =

∫
u1(x)u2(x)dx

and in general this pairing extends by continuity to either C−∞c (Rn) × C∞(Rn) or
C∞(Rn) × C−∞c (Rn) Suppose both u1 and u2 are distributions, when can we pair
them?

9.8 Proposition 5.10. Suppose u1, u2 ∈ C−∞c (Rn) satisfy

9.99.9 (5.152) WF(u1) ∩WF(u2) = ∅
then if A ∈ Ψ0

∞(Rn) has

9.109.10 (5.153) WF(u1) ∩WF′(A) = ∅, WF(u2) ∩WF′(Id−A) = ∅
the bilinear form

9.119.11 (5.154) 〈u1, u2〉 = 〈Au1, u2〉+ 〈u1, (Id−A∗)u2〉
is independent of the choice of A.

Notice that A satisfying (
9.10
5.153) does indeed exist, just choose a ∈ S0

∞ (Rn;Rn)
to be identically 1 on WF(u2), but to have cone supp(a) ∩WF(u1) = ∅, possible
because of (

9.9
5.152), and set A = qL(a).

Proof. Of course (
9.11
5.154) makes sense because Au1, (Id−A∗)u2 ∈ C∞(Rn) by

microlocality and the fact that WF′(A) = WF′(A∗). To prove that this definition
is independent of the choice of A, suppose A′ also satisfies (

9.10
5.153). Set

(5.155) 〈u1, u2〉′ = 〈A′u1, u2〉+ 〈u1, (Id−A′)∗u2〉.
Then

(5.156) WF′(A−A′) ∩WF(u1) = WF′((A−A′)∗) ∩WF(u2) = ∅.
The difference can be written

9.129.12 (5.157) 〈u1, u2〉′ − 〈u1, u2〉 = 〈(A−A′)u1, u2〉 − 〈u1, (A−A′)∗u2〉.
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Naturally we expect this to be zero, but this is not quite obvious since u1 and u2

are both distributions. We need an approximation argument to finish the proof.
Choose B ∈ Ψ0

∞(Rn) with

9.139.13 (5.158)
WF′(B) ∩WF(u1) = WF′(B) ∩WF(u2) = ∅

WF′(Id−B) ∩WF(A−A′) = ∅

If vn −→ u2, in C−∞c (Rn), vn ∈ C∞c (Rn) then

(5.159) wn = φ
[
(Id−B) vn +Bu2

]
−→ u2

if φ ≡ 1 in a neighbourhood of supp(u2), φ ∈ C∞c (Rn). Here Bu2 ∈ C∞(Rn), so
(5.160)
(A−A′)wn = (A−A′)φ(Id−B) · vn + (A−A′)φBu2 −→ (A−A′)u2 in C∞(Rn),

since (A−A′)φ(Id−B) ∈ Ψ−∞∞ (Rn). Thus

〈(A−A′)u1, u2〉 −→ 〈(A−A′)u1, u2〉
〈u1, (A−A′)

∗
wn〉 −→ 〈u1, (A−A′)

∗
u2〉,

since wn −→ u2 in C−∞c (Rn) and (A−A′)∗wn −→ (A−A′)∗ u2 in C∞(Rn). Thus

(5.161) 〈u1, u2〉′ − 〈u1, u2〉 = lim
n→∞

[
〈(A−A′)u1, wn〉 − 〈u1, (A−A′)

∗
wn
]

= 0.

�

Here we are using the complex pairing. If we define the real pairing by

9.159.15 (5.162) (u1, u2) = 〈u1, u2〉

then we find

9.16 Proposition 5.11. If u1, u2 ∈ C−∞c (Rn) satisfy

9.179.17 (5.163) (x, ξ) ∈WF(u1) =⇒ (x,−ξ) /∈WF(u2)

then the real pairing, defined by

9.189.18 (5.164) (u1, u2) = (Au1, u2) + (u1, (Id−At)u2),

where A satisfies (
9.10
5.153), is independent of A.

Proof. Notice that

9.199.19 (5.165) WF(u) =
{

(x,−ξ) ∈ Rn × (Rnr0); (x, ξ) ∈WF(u)
}
.

We can write (
9.17
5.163), using (

9.15
5.162), as

(5.166) (u1, u2) = 〈Au1, u2〉+ 〈u1, (Id−At)u2〉.

Since, by definition, Atu2 = A∗u2,

(5.167) (u1, u2) = 〈Au1, u2〉+ 〈u1, (Id−A∗)u2〉 = 〈u1, u2〉

is defined by (
9.11
5.154), since (

9.17
5.163) translates to (

9.9
5.152). �
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5.19. Multiplication of distributions

The pairing result (
9.18
5.164) can be used to define the product of two distributions

under the same hypotheses, (
9.17
5.163).

9.20 Proposition 5.12. If u1, u2 ∈ C−∞c (Rn) satisfy

9.219.21 (5.168) (x, ξ) ∈WF(u1) =⇒ (x,−ξ) /∈WF(u2)

then the product of u1 and u2 ∈ C−∞c (Rn) is well-defined by

9.229.22 (5.169) u1u2(φ) = (u1, φu2) = (φu1, u2) ∀ φ ∈ C∞c (Rn)

using (
9.18
5.164).

Proof. We only need to observe that if u ∈ C−∞c (Rn) and A ∈ Ψm
∞(Rn) has

WF′(A) ∩WF(u) = ∅ then for any fixed ψ ∈ C∞c (Rn)

9.239.23 (5.170) ‖ψAφu‖Ck ≤ C‖φ‖Cp p = k +N

for some N, depending on m. This implies the continuity of φ 7−→ u1u2(φ) defined
by (

9.22
5.169). �

5.20. Projection

Here we write Rnz = Rpx × Rky and define a continuous linear map, which we
write rather formally as an integral

10.110.1 (5.171) C−∞c (Rn) 3 u 7−→
∫
u(x, y)dy ∈ C−∞c (Rp)

by pairing. If φ ∈ C∞(Rp) then

10.210.2 (5.172) π∗1φ ∈ C∞(Rn), π1 : Rn 3 (x, y) 7−→ x ∈ Rp

and for u ∈ C−∞c (Rn) we define the formal ‘integral’ in (
10.1
5.171) by

10.310.3 (5.173) (

∫
u(x, y)dy, φ) = ((π1)∗u, φ) := u(π∗1φ).

In this sense we see that the projection is dual to pull-back (on functions) under
π1, so is “push-forward under π1,” a special case of (

proof
5.144). The support of the

projection satisfies

10.410.4 (5.174) supp ((π1)∗u) ⊂ π1 (supp(u)) ∀ u ∈ C−∞c (Rn),

as follows by duality from

10.510.5 (5.175) supp(π∗1φ) ⊂ π−1
1 (suppφ) .

10.6 Proposition 5.13. Let π1 : Rp+k −→ Rp be projection, then for every u ∈
C−∞c (Rp+k)

10.710.7 (5.176)
WF ((π1)∗u) ⊂

{
(x, ξ) ∈ Rp × (Rp\0) ;

∃ y ∈ Rk with (x, y, ξ, 0) ∈WF(u)
}
.

Proof. First notice that

10.810.8 (5.177) (π1)∗ : C∞c (Rn) −→ C∞c (Rp).

Combining this with (
10.4
5.174) we see that

10.910.9 (5.178) sing supp ((π1)∗u) ⊂ π1 (sing suppu)
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which is at least consistent with Proposition
10.6
5.13. To prove the proposition in full

let me restate the local characterization of the wavefront set, in terms of the Fourier
transform:

10.10 Lemma 5.13. Suppose K ⊂⊂ Rn and Γ ⊂ Rnr0 is a closed cone, then

10.1110.11 (5.179)
u ∈ C−∞c (Rn), WF(u) ∩ (K × Γ) = ∅, A ∈ Ψm

∞(Rn), WF′(A) ⊂ K × Γ

=⇒ Au ∈ S(Rn).

In particular

10.1210.12 (5.180)
u ∈ C−∞c (Rn), WF(u) ∩ (K × Γ) = ∅, φ ∈ C∞c (Rn), supp(φ) ⊂ K

=⇒ φ̂u(ξ) is rapidly decreasing in Γ.

Conversely suppose Γ ⊂ Rnr0 is a closed cone and u ∈ S ′(Rn) is such that for
some φ ∈ C∞c (Rn)

10.1310.13 (5.181) φ̂u(ξ) is rapidly decreasing in Γ

then

10.1410.14 (5.182) WF(u) ∩
{
x ∈ Rn;φ(x) 6= 0

}
× int(Γ) = ∅.

With these local tools at our disposal, let us attack (
10.7
5.176). We need to show

that

10.1510.15 (5.183)
(x, ξ) ∈ Rp × (Rp\0) s.t. (x, y, ξ, 0) /∈WF(u) ∀ y ∈ Rn

=⇒ (x, ξ) /∈WF ((π1)∗u) .

Notice that, WF(u) being conic and π(WF(u)) being compact, WF(u)∩(Rn×Sn−1)
is compact. The hypothesis (

10.15
5.183) is the statement that

(5.184) {x} × Rk × Sn−1 × {0} ∩WF(u) = ∅.
Thus x has an open neighbourhood, W, in Rp, and (ξ, 0) a conic neighbourhood γ1

in (Rn\0) such that

(5.185) (W × Rk × γ1) ∩WF(u) = ∅.
Now if φ ∈ C∞c (Rp) is chosen to have support in W

10.1610.16 (5.186) ̂(π∗1φ)u(ξ, η) is rapidly decreasing in γ1.

Set v = φ(π1)∗u. From the definition of projection and the identity

(5.187) v = φ(π1)∗u = (π1)∗[(π
∗
1φ)u],

we have

10.1710.17 (5.188) v̂(ξ) = v(e−ix·ξ) = ̂((π∗1φ)u)(ξ, 0).

Now (
10.16
5.186) shows that v̂(ξ) is rapidly decreasing in γ1 ∩ (Rp × {0}), which is a

cone around ξ in Rp. Since v = φ(π1)∗u this shows that (x, ξ) /∈ WF ((π1)∗u) , as
claimed. �

Before going on to talk about the other operations, let me note a corollary of
this which is useful and, even more, helps to explain what is going on:

10.18 Corollary 5.1. If u ∈ C−∞c (Rn) and

(5.189) WF(u) ∩
{

(x, y, ξ, 0);x ∈ Rp, y ∈ Rk, ξ ∈ Rp\0
}

= ∅
then (π1)∗(u) ∈ C∞c (Rn).
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Proof. Indeed, (
10.7
5.176) says WF ((π1)∗u) = ∅. �

Here, the vectors (x, y, ξ, 0) are the ones “normal” (as we shall see, really conor-
mal) to the surfaces over which we are integrating. Thus Lemma

10.10
5.13 and Corol-

lary
10.18
5.1 both state that the only singularities that survive integration are the ones

which are conormal to the surface along which we integrating; the ones even par-
tially in the direction of integration are wiped out. This in particular fits with the
fact that if we integrate in all variables then there are no singularities left.

5.21. Restriction

Next we wish to consider the restriction of a distribution to a subspace

10.1910.19 (5.190) C−∞c (Rn) 3 u 7−→ u � {y = 0} ∈ C−∞c (Rp).

This is not always defined, i.e. no reasonable map (
10.19
5.190) exists for all distributions.

However under an appropriate condition on the wavefront set we can interpret
(
10.19
5.190) in terms of pairing, using our definition of products. Thus let

(5.191) ι : Rp 3 x 7−→ (x, 0) ∈ Rn

be the inclusion map. We want to think of u � {y = 0} as ι∗u. If u ∈ C∞c (Rn) then
for any φ′ ∈ C∞c (Rn) the identity

10.3510.35 (5.192) ι∗u(ι∗φ′) = u (φ′δ(y))

holds.
The restriction map ι∗ : C∞c (Rn) −→ C∞c (Rp) is surjective. If u ∈ C−∞c (Rn)

satisfies the condition

10.2110.21 (5.193) WF(u) ∩
{

(x, 0, 0, η);x ∈ Rp, η ∈ Rn−p
}

= ∅
then we can interpret the pairing

10.2010.20 (5.194)
ι∗u(φ) = u (φ′δ(y)) ∀ φ ∈ C∞c (Rp)
where φ′ ∈ C∞c (Rn) and ι∗φ′ = φ

to define ι∗u. Indeed, the right side makes sense by Proposition
9.20
5.12.

Thus we have directly proved the first part of

10.22 Proposition 5.14. Set R =
{
u ∈ C−∞c (Rn); (

10.21
5.193) holds

}
then (

10.20
5.194) de-

fines a linear restriction map ι∗ : R −→ C−∞c (Rp) and

10.2310.23 (5.195) WF(ι∗u) ⊂
{

(x, ξ) ∈ Rp × (Rpr0); ∃ η ∈ Rn with (x, 0, ξ, η) ∈WF(u)
}
.

Proof. First note that (
10.21
5.193) means precisely that

10.2410.24 (5.196) û(ξ, η) is rapidly decreasing in a cone around {0} × Rk\0.
When u ∈ C∞c (Rn) taking Fourier transforms in (

10.35
5.192) gives

10.2510.25 (5.197) ι̂∗u(ξ) =
1

(2π)k

∫
û(ξ, η)dη.

In general (
10.24
5.196) ensures that the integral in (

10.25
5.197) converges, it will then hold

by continuity.
We actually apply (

10.25
5.197) to a localized version of u; if ψ ∈ C∞c (Rp) then

10.2610.26 (5.198) ψ̂ι∗(u)(ξ) = (2π)−k
∫
ψ̂(ξ)û(ξ, η)dη.
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Thus suppose (x, ξ) ∈ Rp × (Rp\0) is such that (x, 0, ξ, η) /∈WF(u) for any η. If ψ
has support close to x and ζ ∈ C∞c (Rn−p) has support close to 0 this means

10.2710.27 (5.199) ψ̂ζu(ξ, η) is rapidly decreasing in a cone around each (ξ, η).

We also have rapid decrease around (0, η) from (
10.24
5.196) (make sure you understand

this point) as

(5.200) ψ̂ζu(ξ, η) is rapidly decreasing in γ × Rp

for a cone, γ, around ξ. From (
10.25
5.197)

(5.201) ψ̂ι∗(ζu)(ξ) is rapidly decreasing in γ.

Thus (x, ξ) /∈ WF(ι∗(ζu)). Of course if we choose ζ(y) = 1 near 0, ι∗(ζu) = ι∗(u)
so (x, ξ) /∈ WF(u), provided (x, 0, ξ, η) /∈ WF(u), for all η. This is what (

10.23
5.195)

says. �

Try to picture what is going on here. We can restate the main conclusion of
Proposition

10.22
5.14 as follows.

Take WF(u) ∩
{

(x, 0, ξ, η) ∈ Rp × {0} × (Rn\0)
}

and let Z denote projection
off the η variable:

10.2810.28 (5.202) Rp × {0} × Rp × Rk Z−→ Rp × Rp

then

(5.203) WF(ι∗u) ⊂ Z(WF(u) ∩ {y = 0}).

We will want to think more about these operations later.

5.22. Exterior product

This is maybe the easiest of the elementary operators. It is always defined

10.2910.29 (5.204) (u1 � u2)(φ) = u1 (u2(φ(x, ·)) = u2(u1(φ(·, y)).

Moreover we can easily compute the Fourier transform:

10.3010.30 (5.205) û1 � u2(ξ, η) = û1(ξ)û2(η).

10.31 Proposition 5.15. The (exterior) product

10.3210.32 (5.206) C−∞c (Rp)× C−∞c (Rk)←− C−∞c (Rp+k)

is a bilinear map such that

10.3310.33 (5.207)
WF(u1 � u2) ⊂ [(supp(u1)× {0})×WF(u2)]

∪ [WF(u1)× (supp(u2)× {0})] ∪ [WF(u1)×WF(u2)].

Proof. We can localize near any point (x, y) with φ1(x)φ2(y), where φ1 is
supported near x and φ2 is supported near y. Thus we only need examine the
decay of

10.3410.34 (5.208) ̂φ1u1 � φ2u2 = φ̂1u1(ξ) · φ̂2u2(η).

Notice that if φ̂1u1(ξ) is rapidly decreasing around ξ 6= 0 then the product is rapidly
decreasing around any (ξ, η). This gives (

10.33
5.207). �
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5.23. Diffeomorphisms

We next turn to the question of the extension of F ∗, where F : Ω1 −→ Ω2 is
a C∞ map, from C∞(Ω2) to some elements of C−∞(Ω2). The simplest example of
pull-back is that of transformation by a diffeomorphism.

We have already noted how pseudodifferential operators behave under a diffeo-
morphism: F : Ω1 −→ Ω2 between open sets of Rn. Suppose A ∈ Ψm

∞(Rn) has
Schwartz kernel of compact support in Ω1 × Ω1 then we define

11.111.1 (5.209) AF : C∞c (Ω2) −→ C∞c (Ω2)

by AF = G∗ ·A · F ∗, G = F−1. In §
Sect.CooInv
5.4 we showed that AF ∈ Ψm

∞(Rn). In fact we
showed much more, namely we computed a (very complicated) formula for the full
symbols. Recall the definition of the cotangent bundle of Rn

11.211.2 (5.210) T ∗Rn ' Rn × Rn

identified as pairs of points (x, ξ), where x ∈ Rn and

11.311.3 (5.211) ξ = df(x) for some f ∈ C∞(Rn).

The differential df(x) of f at x ∈ Rn is just the equivalence class of f(x)−f(x) ∈ Ix
modulo I2

x. Here

11.411.4 (5.212)

Ix =
{
g ∈ C∞(Rn); g(x) = 0

}
I2
x =

{ ∑
finite

gihi, gi, hi ∈ Ix
}
.

The identification of ξ, given by (
11.2
5.210) and (

11.3
5.211), with a point in Rn is obtained

using Taylor’s formula. Thus if f ∈ C∞(Rn)

11.511.5 (5.213) f(x) = f(x) +

n∑
i=1

∂f

∂xj
(x)(x− x)j +

∑
i,j=1

gij(x)xixj .

The double sum here is in I2
x, so the residue class of f(x) − f(x) in Ix

/
I2
x is the

same as that of

(5.214)

n∑
i=1

∂f

∂xj
(x)(x− x)j .

That is, d(x − x)j = dxj , j = 1, . . . , n form a basis for T ∗xRn and in terms of this
basis

(5.215) df(x) =

n∑
i=1

∂f

∂xj
(x)dxj .

Thus the entries of ξ are just
(
∂f
∂x1

, . . . ∂f∂xn

)
for some f. Another way of saying this

is that the linear functions ξ · x = ξ1x1 + ξ2x2 · · · ξnxn have differentials spanning
T ∗xRn.

So suppose F : Ω1 −→ Ω2 is a C∞ map. Then

(5.216) F ∗ : T ∗yΩ2 −→ T ∗xΩ1, y = F (x)
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is defined by F ∗df(y) = d(F ∗f)(x) since F ∗ : Iy −→ Ix, F ∗ : I2
y −→ I2

x. In

coordinates F (x) = y =⇒

(5.217)
∂

∂xj
(F ∗f(x)) =

∂

∂y
f(F (x)) =

n∑
k=1

∂f

∂xk
(y)

∂Fk
∂xj

i.e. F ∗(η · dy) = ξ · dx if

11.611.6 (5.218) ξj =

n∑
k=1

∂Fk
∂xj

(x) · ηk.

Of course if F is a diffeomorphism then the Jacobian matrix ∂F
∂x is invertible

and (
11.6
5.218) is a linear isomorphism. In this case

11.711.7 (5.219)
F ∗ : T ∗Ω2

Rn ←→ T ∗Ω1
Rn

(x, ξ)←→ (F (x), η)

with ξ and η connected by (
11.6
5.218). Thus (F ∗)∗ : C∞(T ∗Ω1) −→ C∞(T ∗Ω2).

11.8 Proposition 5.16. If F : Ω1 −→ Ω2 is a diffeomorphism of open sets of Rn
and A ∈ Ψm

∞(Rn) has Schwartz kernel with compact support in Ω1 × Ω2 then

11.911.9 (5.220) σm(AF ) = (F ∗)∗σm(A)

and

11.1011.10 (5.221) F ∗
(
WF′(AF )

)
= WF′(A).

It follows that symbol σm(A) of A is well-defined as an element of S
m−[1]
∞ (T ∗Rn)

independent of coordinates and WF′(A) ⊂ T ∗Rn\0 is a well-defined closed conic
set, independent of coordinates. The elliptic set and the characteristic set Σm are
therefore also well-defined complementary conic subsets of T ∗Ω\0.

Proof. Look at the formulae. �

The main use we make of this invariance result is the freedom it gives us to
choose local coordinates adapted to a particular problem. It also suggests that
there should be neater ways to write various formulae, e.g. the wavefront sets of
push-forward and pull-backs.

11.12 Proposition 5.17. If u ∈ C−∞c (Rn) has supp(u) ⊂ Ω2 and F : Ω1 −→ Ω2 is
a diffeomorphism then

11.1311.13 (5.222)

WF(F ∗u) ⊂
{

(x, ξ) ∈ Rn × (Rn\0); (F (x), η) ∈WF(u), ηj =
∑
i

∂Fi
∂xj

(x)ξi
}
.

Proof. Just use the standard definition

(5.223) WF(F ∗u) =
⋂{

Σ(A); A(F ∗u) ∈ C∞
}
.

To test the wavefront set of F ∗u it suffices to consider A’s with kernels supported
in Ω1 × Ω1 since supp(F ∗u b Ω1 and for a general pseudodifferential operator A′
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there exists A with kernel supported in Ω1 such that A′u − Au ∈ C∞(Rn). Then
AF ∗u ∈ C∞c (Ω1)⇐⇒ AFu ∈ C∞c (Ω2). Thus

WF(F ∗u) =
⋂{

Σ(A); AFu ∈ C∞
}

(5.224)

=
⋂{

F ∗(Σ(AF ));AFu ∈ C∞
}

(5.225)

= F ∗WF(u)(5.226)

since, for u, it is enough to consider operators with kernels supported in Ω2×Ω2. �

5.24. Products

Although we have discussed the definition of the product of two distributions
we have not yet analyzed the wavefront set of the result.

11.14 Proposition 5.18. If u1, u2 ∈ C−∞c (Rn) are such that

(5.227) (x, ξ) ∈WF(u1) =⇒ (x,−ξ) /∈WF(u2)

then the product u1u2 ∈ C−∞c (Rn), defined by Proposition
9.20
5.12 satisfies

11.3511.35 (5.228)

WF(u1u2) ⊂
{

(x, ξ);x ∈ supp(u1) and (x, ξ) ∈WF(u2)
}

∪
{

(x, ξ);x ∈ supp(u2) and (x, ξ) ∈WF(u1)
}

∪
{

(x, ξ); ξ = η1 + η2, (x, ηi) ∈WF(ui), i = 1, 2
}
.

Proof. We can represent the product in terms of three ‘elementary’ opera-
tions.

11.1511.15 (5.229) u1u2(x) = ι∗
[
F ∗(u1 � u2)

]
where F : R2n −→ R2n is the linear transformation

(5.230) F (x, y) = (x+ y, x− y)

and ι : Rn ↪→ Rn × {0} ⊂ R2n is inclusion as the first factor. Thus (
11.15
5.229)

corresponds to the ‘informal’ notation

11.1611.16 (5.231) u1u2(x) = u1(x+ y)u2(x− y) � {y = 0}
and will follow by continuity once we analyse the wavefront set properties.

We know from Proposition
10.31
5.15 that

(5.232)

WF (u1 � u2) ⊂
{

(X,Y,Ξ, H) ;X ∈ supp(u1),Ξ = 0, (Y,H) ∈WF(u2)
}

∪
{

(X,Y,Ξ, H) ; (X,Ξ) ∈WF(u1), Y ∈ supp(u2), H = 0
}

∪
{

(X,Y,Ξ, H) ; (X,Ξ) ∈WF(u1), (Y,H) ∈WF(u2)
}
.

Since F is a diffeomorphism, by Proposition
11.12
5.17,

WF(F ∗(u1 � u2)) =
{

(x, y, ξ, η); (F t(x, y),Ξ, H) ∈WF(u1 � u2),

(ξ, η) = At(Ξ, H)
}
.

where F t is the transpose of F as a linear map. In fact F t = F, so

WF(F ∗(u1 � u2)) ⊂{
(x, y, ξ, η);x+ y ∈ supp(u1), ξ + η = 0, (x− y, 1

2
(ξ − η)) ∈WF(u2)

}
∪
{

(x, y, ξ, η); (x+ y,
1

2
(ξ + η)) ∈WF(u1), (x− y, 1

2
(ξ − η)) ∈WF(u2)

}
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and so using Proposition
10.22
5.14

WF(F ∗(u1 � u2)) � {y = 0}
⊂
{

(x, 0, ξ,−ξ);x ∈ supp(u1), (x, ξ) ∈WF(u2)
}

∪
{

(x, 0, ξ, η); (x ∈ supp(u2), (x, ξ) ∈WF(u2)
}

∪
{

(x, 0, ξ, η); (x,
1

2
(ξ + η)) ∈WF(u2), (x,

1

2
(ξ − η)) ∈WF(u1)

}
Notice that
(5.233)

(x, 0, 0, η) ∈WF (F ∗(u1 � u2)) =⇒ (x,
1

2
η) ∈WF(u1) and (x,

1

2
η) WF(u2)

which introduces the assumption under which u1u2 is defined. Finally then we see
that

11.1711.17 (5.234)
WF(u1u2) ⊂

{
(x,ξ);x ∈ supp(u1), (x, ξ) ∈WF(u2)

}
∪
{

(x, ξ);x ∈ supp(u2), (x, ξ) ∈WF(u1)
}

∪
{

(x, ξ); (x, η1) ∈WF(u1), (x, η2) ∈WF(u2) and ξ = η1 + η2

}
.

which is another way of writing the conclusion of Proposition
11.14
5.18. �

5.25. Pull-back

Now let us consider a general C∞ map

11.1811.18 (5.235) F : Ω1 −→ Ω2, Ω1 ⊂ Rn,Ω2 ⊂ Rm.

Thus even the dimension of domain and range spaces can be different. When can
we define F ∗u, for u ∈ C−∞c (Ω2) and what can we say about WF(F ∗u)? For a
general map F it is not possible to give a sensible, i.e. consistent, definition of F ∗u
for all distributions u ∈ C−∞(Ω2).

For smooth functions we have defined

(5.236) F ∗ : C∞c (Ω2) −→ C∞(Ω1)

but in general F ∗φ does not have compact support, even if φ does. We therefore
impose the condition that F be proper

11.1911.19 (5.237) F−1(K) b Ω2 ∀ K b Ω2,

(mostly just for convenience). In fact if we want to understand F ∗u near x1 ∈ Ω1

we only need to consider u near F (x1) ∈ Ω2.
The problem is that the map (

11.18
5.235) may be rather complicated. However any

smooth map can be decomposed into a product of simpler maps, which we can
analyze locally. Set

(5.238) graph(F ) =
{

(x, y) ∈ Ω1 × Ω2; y = F (x)
} ιF−→ Ω1 × Ω2.

This is always an embedded submanifold of Ω1 × Ω2 the functions yi − Fi(x),
i = 1, . . . , N are independent defining functions for graph(F ) and x1, . . . , xn are
coordinates on it. Now we can write

11.2011.20 (5.239) F = π2 ◦ ιF ◦ g
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where g : Ω1 ←→ graph(F ) is the diffeomorphism onto its range x 7−→ (x, F (x)).
This decomposes F as a projection, an inclusion and a diffeomorphism. Now con-
sider

11.2111.21 (5.240) F ∗φ = g∗ · ι∗F · π∗2φ

i.e. F ∗φ is obtained by pulling φ back from Ω2 to Ω1 ×Ω2, restricting to graph(F )
and then introducing the xi as coordinates. We have directly discussed (π∗2φ) but
we can actually write it as

11.2211.22 (5.241) π∗2φ = 1� φ(y),

so the result we have proved can be applied to it. So let us see what writing (
11.21
5.240)

as

11.2311.23 (5.242) F ∗φ = g∗ ◦ ι∗F (1� φ)

tells us. If u ∈ C−∞c (Ω2) then

11.2411.24 (5.243) WF(1� u) ⊂
{

(x, y, 0, η); (y, η) ∈WF(u)
}

by Proposition
10.31
5.15. So we have to discuss ι∗F (1 � u), i.e. restriction to y = F (x).

We can do this by making a diffeomorphism:

11.2511.25 (5.244) TF (x, y) = (x, y + F (x))

so that T−1
F (graph(F )) = {(x, 0)}. Notice that g ◦ TF = π1, so

11.2611.26 (5.245) F ∗φ = ι∗{y=0} (T ∗F (1� u)) .

Now from Proposition
11.12
5.17 we know that

11.2711.27 (5.246) WF(T ∗F (1� u)) = T ∗F (WF(1� u))

=
{

(X,Y,Ξ, H); (X,Y + F (X), ξ, η) ∈WF(1� u),

η = H, ξi = Ξi + Σ
∂Fj
∂xi

Hj

}
i.e.

11.2811.28 (5.247) WF(T ∗F (1� u)) =
{

(x, y, ξ, η); ξi =
∑
j

∂Fj
∂xj

(x)ηj , (F (x), η) ∈WF(u)
}
.

So consider our existence condition for restriction to y = 0, that ξ 6= 0 on WF(T ∗F (1�
u)) i.e.

11.2911.29 (5.248) (F (x), η) ∈WF(u) =⇒
∑
j

∂Fj
∂xi

(x)ηj 6= 0.

If (
11.29
5.248) holds then, from (

11.27
5.246) and Proposition

10.22
5.14

11.3011.30 (5.249) WF(F ∗u) ⊂
{

(x, ξ); ∃ (F (x), η) ∈WF(u) and ξj =
∑
j

∂Fj
∂xi

(x)ηj
}
.

We can reinterpret (
11.29
5.248) and (

11.30
5.249) more geometrically. The differential of

F gives a map

(5.250)

F ∗ : T ∗F (x)Ω2 −→ T ∗xΩ1 ∀ x ∈ Ω1

(F (x), η) 7−→ (x, ξ) where ξi = Σ
∂Fj
∂xi

ηj .
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Thus (
11.29
5.248) can be restated as:

11.3111.31 (5.251)
∀ x ∈ Ω1, the null space of F ∗x : T ∗F (x)Ω2 −→ T ∗xΩ1

does not meet WF(u)

and then (
11.30
5.249) becomes

11.3211.32 (5.252) WF(F ∗u) ⊂
⋃
x∈Ω1

F ∗x [WF(u) ∩ T ∗F (x)Ω2] = F ∗(WF(u))

(proved we are a little careful in that F ∗ is not a map; it is a relation between
T ∗Ω2 and T ∗Ω1) and in this sense (

11.31
5.251) holds. Notice that (

11.30
5.249) is a sensi-

ble “consequence” of (
11.31
5.251), since otherwise WF(F ∗u) would contain some zero

directions.

11.33 Proposition 5.19. If F : Ω1 −→ Ω2 is a proper C∞ map then F ∗ extends (by
continuity) from C∞c (Ω2) to

11.3411.34 (5.253)
{
u ∈ C−∞c (Ω2);F ∗(WF(u)) ∩ (Ω1 × 0) = ∅ in T ∗Ω1

}
and (

11.32
5.252) holds.

5.26. The operation F∗

Next we will look at the dual operation, that of push-forward. Notice the basic
properties of pull-back:

Maps C∞c to C∞c (if F is proper)12.112.1 (5.254)

Not always defined on distributions.12.212.2 (5.255)

Dually we find

12.3 Proposition 5.20. If F : Ω1 −→ Ω2 is a C∞ map of an open subset of Rn
into an open subset of Rn then for any u ∈ C−∞c (Ω1)

12.412.4 (5.256) F∗(u)(φ) = u(F ∗φ)

is a distribution of compact support and

12.512.5 (5.257) F∗ : C−∞c (Ω1) −→ C−∞c (Ω2)

has the property:

12.612.6 (5.258)
WF(F∗u) ⊂

{
(y, η);y ∈ F (supp(u)), y = F (x), F ∗xη = 0

}
∪{

(y, η); y = F (x), (x, F ∗xη) ∈WF(u)
}
.

Proof. Notice that the ‘opposite ’ of (
12.1
5.254) and (

12.2
5.255) hold, i.e. F∗ is always

defined but even if u ∈ C∞c (Ω1) in general F∗u /∈ C∞c (Ω2). All we really have to
prove is (

12.6
5.258). As usual we look for a formula in terms of elementary operations.

So suppose u ∈ C∞c (Ω1)

12.712.7 (5.259)

F∗u(φ) = u(F ∗φ) φ ∈ C∞c (Ω2)

=

∫
u(x) φ(F (x)) dx

=

∫
u(x)δ(y − F (x)) φ(y) dydx.

Thus, we see that

12.812.8 (5.260) F∗u = π∗H
∗(u� δ)
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where δ = δ(y) ∈ C−∞c (Rm), H is the diffeomorphism

(5.261) H(x, y) = (x, y − F (x))

and π : Rn+m −→ Rm is projection off the first factor.
Thus (

12.8
5.260) is the desired decomposition into elementary operations, since

u�δ ∈ C−∞c (Rn+m), π∗H
∗(u�δ) is always defined and indeed the map is continuous,

which actually proves (
12.8
5.260).

So all we need to do is estimate the wavefront set using our earlier results.
From Proposition

10.31
5.15 it follows that

(5.262)

WF(u� δ) ⊂
{

(x, 0, ξ, η);x ∈ supp(u), ξ = 0
}
∪
{

(x, 0, ξ, 0); (x, ξ) ∈WF(u)
}

∪
{

(x, 0, ξ, η); (x, ξ) ∈WF(u)
}

=
{

(x, 0, ξ, η);x ∈ supp(u), ξ = 0
}
∪
{

(x, 0, ξ, η); (x, ξ) ∈WF(u)
}
.

Then consider what happens under H∗. This is a diffeomorphism so the wavefront
set transforms under the pull-back:

(5.263)

WF(H∗(u� δ)) = WF(u(x)δ(y − F (x))

=
{

(x, F (x),Ξ, η); Ξi = ξi −
∑
j

∂Fj
∂xi

(x)ηj , (x, 0, ξ, η) ∈WF(u� δ)
}

=
{

(x, F (x),Ξ, η);x ∈ supp(u),Ξi = −
∑
j

∂Fj
∂xi

(x)ηj)
}

∪
{

(x, F (x),Ξ, η); η ∈ Rm, (x, ξ) ∈WF(u)),Ξi = ξi −
∑
j

∂Fi
∂xj

ηj
}
.

Finally recall the behaviour of wavefront sets under projection, to see that

WF(F∗u) ⊂
{

(y, η); ∃ (x, y, 0, η) ∈WF(H∗(u� δ))
}

=
{

(y, η); y = F (x) for some x ∈ supp(u) and∑
j

∂Fj
∂xi

ηj = 0, i = 1, . . . , n
}

∪
{

(y, η); y = F (x) for some (x, ξ) ∈WF(u) and

ξi =
∑
j

∂Fi
∂xi

ηj , i = 1, . . . , n)
}
.

This says

WF(F∗u) ⊂
{

(y, η); y ∈ F (supp(u)) and F ∗x (η) = 0
}

(5.264)

∪
{

(y, η); y = F (x) with (x, F ∗xη) ∈WF(u)
}

(5.265)

which is just (
12.6
5.258). �

As usual one should note that the two terms here are “really the same”.
Now let us look at F∗ as a linear map,

12.912.9 (5.266) F∗ : C∞c (Ω1) −→ C−∞c (Ω2).
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As such it has a Schwartz kernel, indeed (
12.8
5.260) is just the usual formula for an

operator in terms of its kernel:

12.1012.10 (5.267) F∗u(y) =

∫
K(y, x)u(x)dx, K(y, x) = δ(y − F (x)).

So consider the wavefront set of the kernel:

12.1112.11 (5.268) WF(δ(y − F (x)) = WF(H∗δ(y)) =
{

(y, x; η, ξ); y = F (x), ξ = F ∗xη
}
.

Now changing the order of the factors we can regard this as a subset

12.1212.12 (5.269) WF′(K) =
{

((y, η), (x, ξ)); y = F (x), ξ = F ∗η
}
⊂ (Ω2×Rm)× (Ω1×Rn).

As a subset of the product we can regard WF′(K) as a relation: if Γ ⊂ Ω2 ×
(Rn\0) set

WF′(K) ◦ Γ ={
(y, η) ∈ Ω2 × (Rm\0); ∃ ((y, η)), (x, ξ)) ∈WF′(K) and (x, ξ) ∈ Γ

}
Indeed with this definition

12.1412.14 (5.270) WF(F∗u) ⊂WF′(K) ◦WF(u), K = kernel of F∗.

5.27. Wavefront relation

One serious application of our results to date is:

12.15 Theorem 5.4. Suppose Ω1 ⊂ Rn, Ω2 ⊂ Rm are open and A ∈ C−∞(Ω1 × Ω2)
has proper support, in the sense that the two projections

12.1612.16 (5.271) supp(A)

π1
{{

π2
##

Ω1 Ω2

are proper, then A defines a linear map

12.1712.17 (5.272) A : C∞c (Ω2) −→ C−∞c (Ω1)

and extends by continuity to a linear map

A :
{
u ∈ C−∞c (X); WF(u) ∩

{
(y, η) ∈ Ω2 × (Rn\0);(5.273)

∃ (x, 0, y,−η) ∈WF(K)
}

= ∅
}
−→ C−∞c (Ω1)12.1812.18 (5.274)

for which

12.1912.19 (5.275) WF(Au) ⊂WF′(A) ◦WF(u),

where

12.2012.20 (5.276)
WF′(A) =

{
((x, ξ), (y, η)) ∈(Ω1 × Rn)× (Ω2 × Rm); (ξ, η) 6= 0

and (x, y, ξ,−η) ∈WF(K)
}
.

Proof. The action of the map A can be written in terms of its Schwartz kernel
as

12.2112.21 (5.277) Au(x) =

∫
K(x, y)u(y)dy = (π1)∗(K · (1� u)).

Here 1� u is always defined and

(5.278) WF(1� u) ⊂
{

(x, y, 0, η); (y, η) ∈WF(u)
}
.
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So the main question is, when is the product defined? Our sufficient condition for
this is:

(5.279) (x, y, ξ, η) ∈WF(K) =⇒ (x, y,−ξ,−η) /∈WF(1� u)

which is

(5.280) (x, y, 0, η) ∈WF(K) =⇒ (x, y, 0,−η) /∈WF(1� u)

(5.281) i.e. (y,−η) /∈WF(u)

This of course is (
12.18
5.274):

(5.282) Au is defined (by continuity) if

(5.283)
{

(y, η) ∈WF(u); ∃ (x, 0, y,−η) ∈WF(A)
}

= ∅.
Then from our bound on the wavefront set of a product

(5.284)

WF (K · (1� u)) ⊂{
(x, y, ξ, η); (ξ, η) =(ξ′, η′) + (0, η′′) with

(x, y, ξ′, η′) ∈WF(K) and (x, η′′) ∈WF(u)
}

∪
{

(x, y, ξ, η); (x,y, ξ, η) ∈WF(K), y ∈ supp(u)
}

∪
{

(x, y, 0, η);(x, y) ∈ supp(A)(y, η) ∈WF(u)
}
.

This gives the bound

WF (π∗(K · (1� u))) ⊂
{

(x, ξ); (x, y, ξ, 0) ∈WF(K · (1� u)) for some y
}

(5.285)

⊂WF′(A) ◦WF(u).(5.286)

�

5.28. Applications

Having proved this rather general theorem, let us note some examples and
applications.

First, for pseudodifferential operators we know that

(5.287) WF′(A) ⊂ {(x, x, ξ, ξ)}
i.e. corresponds to the identity relation (which is a map). Then (

12.19
5.275) is the

microlocality of pseudodifferential operators. The next result also applies to all
pseudodifferential operators.

12.22 Corollary 5.2. If K ∈ C−∞(Ω1 × Ω2) has proper support and

12.2312.23 (5.288) WF′(K) ∩ {(x, y, ξ, 0)} = ∅
then the operator with Schwartz kernel K defines a continuous linear map

12.2412.24 (5.289) A : C∞c (Ω2) −→ C∞c (Ω1).

If

12.2512.25 (5.290) WF′(K) ∩ {(x, y, 0, η)} = ∅
then A extends by continuity to

12.2612.26 (5.291) A : C−∞c (Ω2) −→ C−∞c (Ω1).

Proof. Immediate from (
12.17
5.272)-(

12.26
5.291). �
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5.29. ProblemsP.9.1

12.27 Problem 5.9. Show that the general definition (
8.10
5.52) reduces to

(5.292) WF(u) =
⋂{

Σ0(A); A ∈ Ψ0
∞(Rn) and Au ∈ C∞(Rn)

}
, u ∈ S ′(Rn)

and prove the basic result of ‘microlocal elliptic regularity:’

8.308.30 (5.293)
If u ∈ S ′(Rn) and A ∈ Ψm

∞(Rn) then

WF(u) ⊂ Σ(A) ∪WF(Au).

12.28 Problem 5.10. Compute the wavefront set of the following distributions:

(5.294)

δ(x) ∈ S ′(Rn), |x| ∈ S ′(Rn) and

χBn(x) =

{
1 |x| ≤ 1

0 |x| > 1.

12.29 Problem 5.11. Let Γ ⊂ Rn × (Rnr0) be an open cone and define

C−∞c,Γ (Rn) =
{
u ∈ C−∞c (Rn);Au ∈ C∞(Rn)(5.295)

∀ A ∈ Ψ0
∞(Rn) with WF′(A) ∩ Γ = ∅

}
.(5.296)

Describe a complete topology on this space with respect to which C∞c (Rn) is a dense
subspace.

12.30 Problem 5.12. Show that, for any pseudodifferential operator A ∈ Ψm
∞(Rn),

WF′(A) = WF′(A∗).

12.31 Problem 5.13. Give an alternative proof to Lemma
9.1
5.5 along the following

lines (rather than using Lemma
5.1
2.75). If σL(A) is the left reduced symbol then for

ε > 0 small enough

(5.297) b0 = γε
/
σL(A) ∈ S−m∞ (Rn;Rn) .

If we choose B0 ∈ Ψ−m∞ (Rn) with σL(B0) = b0 then

9.59.5 (5.298) Id−A ◦B0 = G ∈ Ψ0
∞(Rn)

has principal symbol

(5.299) σ0(G) = 1− σL(A) · b0.

From (
9.4
5.67)

(5.300) γε/4σ0(G) = γε/4.

Thus we conclude that if σL(C) = γε/4 then

(5.301) G = (Id−C)G+ CG with CG ∈ Ψ−1
∞ (Rn).

Thus (
9.5
5.298) becomes

9.69.6 (5.302) Id−AB0 = CG+R1 WF′(R1) 63 z.

Let B1 ∼
∑
j≥1

(CG)j , B1 ∈ Ψ−1 and set

(5.303) B = B0 (Id +B1) ∈ Ψ−m∞ (Rn).
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From (
9.6
5.302)

AB = AB0(I +B1)(5.304)

= (Id−CG) (I +B1)−R1 (Id +B1)(5.305)

= Id +R2, WF′(R2) 63 z.(5.306)

Thus B is a right microlocal parametrix as desired. Write out the construction of
a left parametrix using the same method, or by finding a right parametrix for the
adjoint of A and then taking adjoints using Problem

12.30
5.12.

12.32 Problem 5.14. Essential uniqueness of left and right parametrices.

12.33 Problem 5.15. If (x̄, ξ̄) ∈ Rn×(Rnr0) is a given point, construct a distribution
u ∈ C−∞c (Rn) which has

(5.307) WF(u) =
{

(x̄, tξ̄); t > 0
}
⊂ Rn × (Rnr0).

12.34 Problem 5.16. Suppose that A ∈ Ψm
∞(Rn) has Schwartz kernel of compact

support. If u ∈ C−∞c (Rn) use the four ‘elementary operations’ (and an earlier
result on the wavefront set of kernels) to investigate under what conditions

(5.308) κ(x, y) = KA(x, y)u(y) and then γ(x) = (π1)∗κ

make sense. What can you say about WF(γ)?

12.35 Problem 5.17. Consider the projection operation under π1 : Rp×Rk −→ Rp.
Show that (π1)∗ can be extended to some distributions which do not have compact
support, for example

(5.309)
{
u ∈ S ′(Rn); supp(u) ∩K × Rk is compact for each K ⊂⊂ Rn

}
.

24.10.2007.190 Problem 5.18. As an exercise, check the Jacobi identify for the Poisson bracket

24.10.2007.19124.10.2007.191 (5.310) {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 ∀ f, g, h ∈ C∞(R2n).

24.10.2007.192 Problem 5.19. The fact that (
24.10.2007.189
5.90) determines Hh uniquely is equivalent to

the non-degeneracy of ω, that

24.10.2007.19324.10.2007.193 (5.311) ω(v, w) = 0 ∀ w =⇒ v = 0.

Show that if ω is a non-degenerate form and (
24.10.2007.189
5.90) is used to define the Poisson

bracket by

24.10.2007.19424.10.2007.194 (5.312) {f, g} = ω(Hf , Hg) = dg(Hf ) = Hfg

then the Jacobi identity (
24.10.2007.191
5.310) holds if and only if ω is closed as a 2-form.

24.10.2007.200 Problem 5.20. Check that a finite number of regions (
24.10.2007.198
5.94) cover the comple-

ment of a neighbourhood of 0 in Rn and that if a is smooth and has compact support
in x then the estimates (

24.10.2007.199
5.95) is such neighbourhoods imply that a ∈ SMc (Rn;Rn)

and conversely.



CHAPTER 6

Pseudodifferential operators on manifolds

Pse-man
In this chapter the notion of a pseudodifferential on a manifold is discussed.

Some preliminary material on manifolds is therefore necessary. However the discus-
sion of the basic properties of differentiable manifolds is kept to a bare minimum.
For a more leisurely treatement the reader might well consult XX or YY. Our main
aims here are first, to be able to prove the Hodge theorem (given the deRham the-
orem). Then we describe some global object which are very useful in applications,
namely a global quantization map, the structure of complex powers and the zeta
function.

6.1. C∞ structures

Let X be a paracompact Hausdorff topological space. A C∞ structure on X is
a subspace

13.113.1 (6.1) F ⊂ C0(X) = {u : X −→ R continuous }

with the following property:
For each x ∈ X there exists elements f1, . . . , fn ∈ F such that for some open

neighbourhood Ω 3 x

13.213.2 (6.2) F : Ω 3 x 7−→ (f1(x), . . . , fn(x)) ∈ Rn

is a homeomorphism onto an open subset of Rn and every f ∈ F satisfies

13.313.3 (6.3) f � Ω = g ◦ F for some g ∈ C∞(Rn).

The map (
13.2
6.2) is a coordinate system near x. Two C∞ structures F1 and F2

are ‘compatible’ if F1 ∪F2 is also a C∞ structure. Compatibility in this sense is an
equivalence relation on C∞ structures. It therefore makes sense to say that:

13.4 Definition 6.1. A C∞ manifold is a (connected) paracompact Hausdorff topo-
logical space with a maximal C∞ structure.

The maximal C∞ structure is conventionally denoted

(6.4) C∞(X) ⊂ C0(X).

It is necessarily an algebra. If we let C∞c (W ) ⊂ C∞(X) denote the subspace of
functions which vanish outside a compact subset of W then any local coordinates
(
13.2
6.2) have the property

13.513.5 (6.5) F ∗ : C∞c (F (Ω))←→
{
u ∈ C∞(X); u = 0 on X\K,K ⊂⊂ Ω

}
.

Futhermore C∞(X) is local:

13.613.6 (6.6)
u : X −→ R and ∀ x ∈ X ∃ Ωx open, Ωx 3 x,

s.t. u− fx = 0 on Ωx for some fx ∈ C∞(X) =⇒ u ∈ C∞(X).

167
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A map G : X −→ Y between C∞ manifolds X and Y is C∞ if

(6.7) G∗ : C∞(Y ) −→ C∞(X)

i.e. G ◦ u ∈ C∞(X) for all u ∈ C∞(Y ).

6.2. Form bundles
Bundles

A vector bundle is a triple π : V −→ X consisting of two manifolds, X and V,
and a surjective C∞ map π with each

(6.8) Vx = π−1(x)

having a linear structure such that

(6.9) F =
{
u : V −→ R, u is linear on each Vx

}
is a C∞ structure on V compatible with C∞(V ) (i.e. contained in it, since it is
maximal).

The basic example is the cotangent bundle which we defined before for open
sets in Rn. The same definition works here. Namely for each x ∈ X set

(6.10)

Ix =
{
u ∈ C∞(X);u(x) = 0

}
I2
x =

{
u =

∑
finite

uiu
′
i; ui, u

′
i ∈ Ix

}
T ∗xX = Ix

/
I2
x, T

∗X =
⋃
x∈X

T ∗xX.

So π : T ∗X −→ X just maps each T ∗xX to x. We need to give T ∗X a C∞ structure
so that “it” (meaning π : T ∗X −→ X) becomes a vector bundle. To do so note
that the differential of any f ∈ C∞(X)

(6.11) df : X −→ T ∗X df(x) = [f − f(x)] ∈ T ∗xX
is a section (π ◦ df = Id). Put

(6.12) F =
{
u : T ∗X −→ R;u ◦ df : X −→ R is C∞ ∀ f ∈ C∞(X)

}
.

Then F = C∞(T ∗X) is a maximal C∞ structure on T ∗X and

Flin =
{
u : T ∗X −→ R, linear on each T ∗xX;u ∈ F

}
is therefore compatible with it. Clearly df is C∞.

Any (functorial) operation on finite dimensional vector spaces can be easily seen
to generate new vectors bundles from old. Thus duality, tensor product, exterior
powers all lead to new vector bundles:

(6.13) TxX = (T ∗xX)
∗
, TX =

⋃
x∈X

TxX

is the tangent bundle

ΛkxX =
{
u :

k factors

TxX × · · · × TxX −→ R;u is multilinear and antisymmetric
}

leads to the k-form bundle

ΛkX =
⋃
x∈X

ΛkxX, Λ1X ' T ∗X

where equivalence means there exists (in this case a natural) C∞ diffeomorphism
mapping fibres to fibres linearly (and in this case projecting to the identity on X).
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A similar construction leads to the density bundles

ΩαxX =
{
u :

n=dimX factors

TxX ∧ · · · ∧ TxX −→ R; absolutely homogeneous of degree α
}

that is

u(tv1 ∧ . . . vn) = |t|αu(v1 ∧ · · · ∧ vn).

These are important because of integration. In general if π : V −→ X is a vector
bundle then

C∞(X;V ) =
{
u : X −→ V ; π ◦ u = Id

}
is the space of sections. It has a natural linear structure. Suppose W ⊂ X is a
coordinate neighbourhood and u ∈ C∞(X; Ω), Ω = Ω1X, has compact support in
W. Then the coordinate map gives an identification

Ω∗xX ←→ Ω∗F (x)R
n ∀ α

and

(6.14)

∫
u =

∫
Rn

gu(x), u = gu(x)|dx|

is defined independent of coordiantes. That is the integral

(6.15)

∫
: C∞c (X; Ω) −→ R

is well-defined.

6.3. Pseudodifferential operators
ManPseud

We will start with a definition of pseudodifferential operators on a (not nec-
essarily compact) manifold which has lots of properties but may be a bit hard to
verify in practice.

1.10.2007.66 Definition 6.2. If X is a C∞ manifold and C∞c (X) ⊂ C∞(X) is the space of
C∞ functions of compact support, then, for any m ∈ R, Ψm(X) is the space of
linear operators

13.713.7 (6.16) A : C∞c (X) −→ C∞(X)

with the following properties. First,

13.813.8 (6.17)

if φ, ψ ∈ C∞(X) have disjoint supports then ∃ K ∈ C∞(X2; ΩR)

such that ∀ u ∈ C∞c (X) φAψu =

∫
X

K(x, y)u(y),

and secondly if F : W −→ Rn is a coordinate system in X and ψ ∈ C∞c (X) has
support in W then

∃ B ∈ Ψm
∞(Rn), supp(B) ⊂ F (W )× F (W ) s.t.

ψAψu �W = F ∗(B((F−1)∗(ψu))) ∀ u ∈ C∞c (X).

This seems a pretty horrible definition, since it requires us to check every coor-
dinate system, at least in principle. In practice the coordinate-invariance we proved
earlier (see Proposition

7.39
5.4) means that this is not necessary and also that there

are plenty of examples as we proceed to see.
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1.10.2007.70 Lemma 6.1. The space Ψ−∞(X) =
⋂
m Ψm(X) contains all the smoothing op-

erators on X, those with kernels K ∈ C∞(X2; ΩR).

In fact there is equality between Ψ−∞(X) and the space of smoothing operators
but it is easier to see this after a little more thought!

Proof. Smoothing operators, having smooth kernels, satisfy the first part
of the definition and also the second since smoothing operators with compactly
supported kernels are pseudodifferential operators on Rn. �

1.10.2007.68 Lemma 6.2. If G : U −→ Rn is a coordinate patch on X and B ∈ Ψm
∞(Rn) has

kernel with support supp(B) b G(U)×G(U) then

1.10.2007.691.10.2007.69 (6.18) Au = G∗B(G−1)∗(u
∣∣
U

) defines A ∈ Ψm(X).

Proof. Since the kernel of a pseudodifferential operator is smooth outside the
diagonal the first part of the definition holds for A – indeed if φ, ψ ∈ C∞(X) then

1.10.2007.711.10.2007.71 (6.19) φAψ = G∗B′(G−1)∗(u
∣∣
U

), B′ = ((G−1)∗φ)B((G−1)∗ψ) ∈ Ψ−∞∞ (Rn)

since (G−1)∗φ, (G−1)∗ψ ∈ C∞(G(U)) have disjoint supports. Similarly for the
second part, the identity (

1.10.2007.71
6.19) still holds and if φ and ψ are both supported in

some other coordinate patch F : W −→ Rn then the support of the kernel of B′ is
contained in G(U ∩W ) × G(U ∩W ) and H = F ◦ G−1 is a diffeomorphism from
G(U ∩W ) to F (U ∩W ). The local coordinate invariance in Proposition

1.10.2007.94
2.11 shows

that B′′ = H∗B′(H−1)∗ ∈ Ψm(Rn) has kernel with support in F (U∩W )×F (U∩W )
and (

1.10.2007.71
6.19) becomes

1.10.2007.721.10.2007.72 (6.20) φAψ = F ∗B′′(F−1)∗(u
∣∣
W

)

which implies the second condition. �

Thus there are lots of examples – if B ∈ Ψm
∞(Rn) and ψ ∈ C∞c (X) has support

in a coordinate patch with image ψ′ in the local coordinates then applying (
1.10.2007.69
6.18)

to ψ′Bψ′ gives an element of Ψm(X). In fact each pseudodifferential operator is
a sum of a smoothing operator and terms of this type. To see this, first note the
following elementary result. Any open cover of a C∞ manifold has a partition of
unity subordinate to it, i.e. if Ar ⊂ X are open sets for r ∈ R and

(6.21) X =
⋃
r∈R

Ar

there exists φi ∈ C∞c (X), all non-negative with locally finite supports:

(6.22) ∀ i supp(φi) ∩ supp(φj) 6= ∅ for a finite set of indices j,

where each supp(φi) ⊂ Ar for some r = r(i) and

(6.23)
∑
i

φi(x) = 1 ∀ x.

In fact one can do slightly better than this.

13.9 Lemma 6.3. Given an open cover Ua of X there exists a partition of unity φi
(so with locally finite supports) and

1.10.2007.651.10.2007.65 (6.24) ∀ i, j ∃ a such that supp(φj) ∩ suppj ⊂ Ua.
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Taking i = j shows that the partition of unity is subordinate to the given open cover
and the condition (

1.10.2007.65
6.24) is automatically satisfied if the intersection of supports is

empty.

Proof. Take any partition of unity ψa subordinate to the cover Ua and indexed
so that supp(ψa) ⊂ Ua. Thus, the support of each supp(ψa) is compact and only
meets finitely many of the others. It follows that each point p ∈ supp(φa) has a
neighbourhood V (p) which is contained in the intersection of all of the Ub such
that p ∈ supp(ψb). For each a take a partition of unity of X subordinate to the
cover by such V (p)’s and X \ supp(ψa). Then replace ψa by the finitely many non-
zero products with this partition of unity (any term from a factor with support in
X \ supp(ψa)) gives zero. Taken together all the resulting (non-zero) functions give
a partition of unity as desired since when two of the supports intersect they are
contained in one of the V (p)’s. �

1.10.2007.63 Proposition 6.1. If φi is a partition of unity subordinate to a coordinate cov-
ering of X satisfying the condition of Lemma

13.9
6.3 and for each pair i, j such that

supp(φi)∩ supp(φj) 6= ∅ Fij : Ωij −→ Rn is a coordinate system in a neighbourhood
Ωij of this set, then an operator A : C∞c (X) −→ C∞(X) is a pseudodifferential
operator on X if and only if

1.10.2007.641.10.2007.64 (6.25) φiAφj has smooth kernel if supp(φi) ∩ supp(φj) = ∅
and otherwise is of the form F ∗ijAij(F

−1
ij )∗ with Aij ∈ Ψm

∞(Rn)

and kernel supported in F (Ωij)× F (Ωij).

Proof. The necessity of these conditions follows directly from the definition.
Conversely if A satisifies all these conditions then for each φ, ψ ∈ C∞c (X) φAψ is
a finite sum (by local finiteness of the partition of unity) of terms to which either
Lemma

1.10.2007.70
6.1 or Lemma

1.10.2007.68
6.2 applies. Thus it is an element of Ψm(X). �

So, this means that the original defintion can be replaced by the same one with
respect to any given cover by coordinate patches – meaning that a pseudodifferential
operator is just a (locally finite) sum of a smoothing operator plus pseudodifferential
operators acting in a cover by coordinate patches Fi : Ωi −→ Rn :

1.10.2007.861.10.2007.86 (6.26) A ∈ Ψm(X) =⇒ A = A′ +
∑
i

Ai, A
′ ∈ C∞(X2; ΩR), Ai = F ∗i Bi(F

−1
i )∗,

Bi ∈ Ψm
∞(Rn), supp(Bi) bi (Ωi)× Fi(Ωi).

13.10 Theorem 6.1. Let X be a compact C∞ manifold then the pseudodifferential
operators Ψ∗(X) form an order filtered ring.

Proof. The main point of course is that they form a ring, the order-filtering
means that

1.10.2007.731.10.2007.73 (6.27) Ψm(X) ◦Ψm′(X) ⊂ Ψm+m′(X).

Since X is compact, C∞c (X) = C∞(X) and all the operators act on C∞(X), so
the product is well-defined. From the remarks above, it suffices to consider the
four cases of products A ◦ B where A and B are either smoothing operators or
pseudodifferential operators with supports in a coordinate patch. In fact using a
partition of unity as in Lemma

13.9
6.3 corresponding to a coordinate cover and then

applying Proposition
1.10.2007.63
6.1 if they are both pseudodifferential operators we can assume
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they have support in the same coordinate patch. Then the result follows from the
local composition theorem of Chapter

C.Euclidean
2. So it is enough to suppose that at least one

of the operators is a smoothing operator. If both are smoothing then this follows
from the fact that the kernel of the composite is given in terms of the kernels of
the factors by

1.10.2007.741.10.2007.74 (6.28) (A ◦B)(p, p′) =

∫
X

A(p, ·)B(·, p′) ∈ C∞(X2; ΩR).

When one factor is smoothing and the other is a local pseudodifferential the com-
poste is smoothing since it is given by the action of the pseudodifferential operator
(or its transpose) on the kernel of the smoothing operator, in one of the vari-
ables. �

Note that if X is not compact we cannot in general compose pseudodifferential
operators, since the first one maps C∞c (X) into C∞(X) and the second may not act
on C∞(X). This is sorted out below.

Now, it is most important to show that the symbol maps still makes sense and
has at leat most of the properties it had on Rn. This is not quite obvious because
of the non-uniqueness inherent in a presentation such as (

1.10.2007.64
6.25). First however we

need to check that there is a place for the symbol to take values.
Recall that for an open set Ω ⊂ Rn we defined the symbol spaces Sm∞(Ω;Rp)

as consisting of the smooth functions satisfying (
3.1
2.1). Let π : W −→ X be a real

vector bundle over a manifold X. So X is covered by local coordinate patches Ωi
over which W is trivial, meaning there is a diffeomorphism

1.10.2007.761.10.2007.76 (6.29) Fi : π−1(Ωi) −→ Ω′i × Rp

which maps each fibre π−1(p) to the corresponding {p′} × Rq and is a linear map.
Then if we choose a partition of unity subordinate to the cover we can set

1.10.2007.771.10.2007.77 (6.30) Sm(W ) =

{
a : W −→ C; a =

∑
i

φiF
∗
i ai for some ai ∈ Sm(Ω′i × Rp)

}
provided we show this is independent of choices.

1.10.2007.75 Proposition 6.2. If W −→ X is a real vector bundle over a smooth manifold
X then the space, Sm(W ), of symbols on W is well-defined for each m ∈ R by
(
1.10.2007.77
6.30).

Proof. We need to check to things here, what happens under changes of
coordinate covering and changes of local trivializations. Notice that can move the
φ into local coordinates to get φ′i ∈ C∞c (Ω′i) and write (

1.10.2007.77
6.30) as

1.10.2007.781.10.2007.78 (6.31) Sm(W ) =

{
a : W −→ C; a =

∑
i

F ∗i φ
′
iai for some ai ∈ Sm(Ω′i × Rp)

}
.

Then φ′iai actually has compact support in the base variables, so is a global symbol
on Rn × Rp. If ψj is a partition of unity subordinate to another coordinate patch
then we can lift these functions under π to W and write a ∈ Sm(W ) as

a =
∑
i,j

ψjF
∗
i φ
′
iai =

∑
i,j

F ∗i ψ
′
jφ
′
iai.
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Thus each ψjφi is supported in the intersection of the two coordinate patches. Thus
it suffices to show that if

1.10.2007.801.10.2007.80 (6.32) F : ω × Rp −→ Ω′ × Rp, F (x, ξ) = (f(x), A(x)ξ)

is a diffeomorphism, so f is a diffeomorphism and A(x) is smooth and invertible,
then a ∈ Sm(Ω′;Rp), supp(a) ⊂ K × Rp imples that F ∗a ∈ Sm(Ω;Rp). We can
do this in two steps since F = F ′ ◦ (f, Id) where F ′ is of the same form with
f = Id . The second map amounts to a coordinate change and it is easy to see
that the estimates in (

3.1
2.1) are preserved by such a transformation. Thus it suffices

to show that if a ∈ Sm(Rm;Rp) has support in K × Rp for some compact K and
A : Ω←→ GL(p,R) is a smooth map in an open neighbourhood of Ω ⊃ K then

1.10.2007.811.10.2007.81 (6.33) a(x,A(x)ξ) ∈ Sm(Rn;Rp).
The basic symbol estimate

|a(x,A(x)ξ)| ≤ C sup
K
〈A(x)ξ〉m ≤ C ′〈ξ〉m

therefore follows from the invertibility of A(x) and the fact that a vanishes outside
K × Rp. VijξiDξj and Dxk . The symbol estimates on a function b just amount to
requiring the estimate

1.10.2007.851.10.2007.85 (6.34) |P (x, V,Dx)b(x, ξ)| ≤ C〈ξ〉m

for all polynomials P with smooth coefficient in x (since b vanishes outside K ×
Rp. The diffeomorphism (x, ξ) 7−→ (x,A(x)ξ) maps the space of these differential
operators into itself, so the symbol estimates carry over. �

Suppose A ∈ Ψm(X) and ρi is a square partition of unity subordinate to a
coordinate cover Fi : Ωi −→ Rb, so we can suppose

1.10.2007.871.10.2007.87 (6.35) supp(ρi) ⊂ Ωi,
∑
i

ρ2
i = 1.

Then

1.10.2007.891.10.2007.89 (6.36) A−
∑
i

ρiAρi ∈ Ψm−1(X)

since [A, ρi] ∈ Ψm−1(X) as follows from (
1.10.2007.86
6.26) and the corresponding local property.

This lead us to set

14.914.9 (6.37) σm(τ)(A) =
∑

{i,π(τ)∈supp(ρi)}

bi(x
(i), ξ(i))

where

(6.38) τ = F ∗i (
∑
j

ξ
(i)
j · dxj) ξ(i) · dx ∈ T ∗x(i)Rn, x(i) = Fi(π(τ))

and the bi are representatives of the symbols of the ρiAρi. This defines a function
on T ∗X\0, in fact the equivalence class

14.1014.10 (6.39) σm(A) ∈ Sm−[1](T ∗X) = Sm(T ∗X)/Sm−1(T ∗X)

is well-defined.

14.11 Proposition 6.3. The principal symbol map in (
14.10
6.39), defined as in (

14.9
6.37),

gives a short exact sequence:

14.1214.12 (6.40) 0 ↪→ Ψm−1(X) ↪→ Ψm(X)
σm−→ Sm−[1](T ∗X) −→ 0.
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Proof. First we need to check that σm(A) is indeed well-defined. This involves
checking what happens under a change of coordinate covering and a change of
partition of unity subordinate to it. For a change of coordinate covering for a fixed
square partition of unity it suffices to use the transformation law for the principal
symbol under a diffeomorphism of Rn.

Now, if ρ′j is another square partition of unity, subordinate to the same covering
note that ∑

j

ρ′jρiAρ
′
jρi ≡ ρiAρi

where equality is modulo Ψm−1, since [φ,Ψm] ⊂ Ψm−1 for any C∞ function φ.
It follows from (

14.12
6.40) that the principal symbols, defined by (

14.9
6.37), for the two

partitions are the same.
The principal symbol is therefore well defined. Moreover, it follows that if

φ ∈ C∞(X) then

1.10.2007.911.10.2007.91 (6.41) σm(φA) = φσm(A) since ρi(φA)ρi = φ(ρiAρi).

Certainly if A ∈ Ψm−1(X) then σm(N) ≡ 0. Moreover if A ∈ Ψm(X) and
σm(A) ≡ 0 then it follows from (

1.10.2007.91
6.41) that σm(ρiAρi) = 0 and hence, from the

properties of operators on Rn that ρiAρi is actually of order m − 1. This proves
that the null space of σm is exactly Ψm−1(X).

Thus it only remains to show that the map σm is surjective. If a ∈ Sm(T ∗X)
choose Ai ∈ Ψm

∞(Rn) by

(6.42) σL(Ai) = ρi(x)(F ∗)−1aiρi(y) ∈ Sm∞(Rn × Rn)

and set

14.1514.15 (6.43) A =
∑
i

F ∗i AiG
∗
i Gi = F−1

i .

Then, from (
14.9
6.37) σm(A) ≡ a by invariance of the principal symbol. �

6.4. The symbol calculus

The other basic properties of the calculus on a compact manifold are easily
established. For example to check that

14.1614.16 (6.44) σm+m′(A ·B) = σm(A) · σm(B)

if A ∈ Ψm(X), B ∈ Ψm′(X) note that

(6.45) AB =
∑
i,j

ρ2
iAρ

2
jB =

∑
i,j

ρiAρi · ρjBρi mod Ψm+m′−1.

In §
Sect.MicPar
5.9 we used the symbol calculus to construct a left and right parametrix for

an elliptic element of Ψm(X), where X is compact, i.e. an element B ∈ Ψ−m(X),
such that

14.1714.17 (6.46) AB − Id, BA− Id ∈ Ψ−∞(X).

As a consequence of this construction note that:

14.18 Proposition 6.4. If A ∈ Ψm(X) is elliptic, and X is compact, then

14.1914.19 (6.47) A : C∞(X) −→ C∞(X)
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is Fredholm, i.e. has finite dimensional null space and closed range with finite di-
mensional complement. If ν is a non-vanishing C∞ measure on X and a generalized
inverse of A is defined by

14.2014.20 (6.48)
Gu = f if u ∈ Ran(A), Af = u, f ⊥ν Nul(A)

Gu = 0 if u ⊥ν Ran(A)

then G ∈ Ψ−m(X) satisfies

14.2114.21 (6.49)
GA = Id−πN
AG = Id−πR

where πN and πR are ν-orthogonal projections onto the null space of A and the
ν-orthocomplement of the range of A respectively.

Proof. The main point to note is that E ∈ Ψ−∞(X) is smoothing,

14.2214.22 (6.50) E : C−∞(X) −→ C∞(X) ∀ E ∈ Ψ−∞(X).

Such a map is compact on L2(X), i.e. maps bounded sets into precompact sets by
the theorem of Ascoli and Arzela. The second thing to recall is that a Hilbert space
with a compact unit ball is finite dimensional. Then

14.2314.23 (6.51) Nul(A) = {u ∈ C∞(X);Au = 0} = {u ∈ L2(X);Au = 0}

since, from (
14.23
6.51) Au = 0 =⇒ (BA − Id)u = −Eu, E ∈ Ψ∞(X), so Au = 0,

u ∈ C−∞(X) =⇒ u ∈ C∞(X). Then

(6.52) Nul(A) = {u ∈ L2(X);Au = 0

∫
|u|2ν = 1} ⊂ L2(X)

is compact since it is closed (A is continuous) and so Nul(A) = E(Nul(A)) is
precompact. Thus Nul(A) is finite dimensional.

Next let us show that Ran(A) is closed. Suppose fj = Auj −→ f in C∞(X),
uj ∈ C∞(X). By what we have just shown we can assume that uj ⊥ν Nul(A). Now
if B is the parametrix

(6.53) uj = Bfj + Euj , E ∈ Ψ−∞(X).

Suppose, along some subsequence, ‖uj‖ν −→∞. Then

(6.54)
uj
‖uj‖ν

= B

(
fj
‖uj‖ν

)
+ E

(
uj
‖uj‖ν

)
shows that

uj
‖uj‖ν lies in a precompact subset of L2,

uj
‖uj‖ν −→ u. This is a con-

tradiction, since Au = 0 but ‖u‖ = 1 and u ⊥ν Nul(A). Thus the norm sequence
‖uj‖ is bounded and therefore the sequence has a weakly convergent subsequence,
which we can relabel as uj . The parametrix shows that u = Bfj + Euj is strongly
convergent with limit u, which satisfies Au = f.

Finally we have to show that Ran(A) has a finite dimensional complement.
If πR is orthogonal projection off Ran(A) then from the second part of (

14.17
6.46)

f = πRE
′f for some smoothing operator E. This shows that the orthocomplement

has compact unit ball, hence is finite dimensional. �

Notice that it follows that the two projections in (
14.21
6.49) are both smoothing

operators of finite rank.
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6.5. Pseudodifferential operators on vector bundles
PseudVB

Perhaps unwisely I have carried through the discussion above for pseudodiffer-
ential operators acting on functions. The extension to operators between sections
of vector bundles is mainly notational.

14.2 Theorem 6.2. If W −→ Y is a C∞ vector bundle and F : X −→ Y is a C∞
map then F ∗W −→ X is a well-defined C∞ vector bundle over X with total space

14.314.3 (6.55) F ∗W =
⋃
x∈X

WF (x);

if φ ∈ C∞(Y ;W ) then F ∗φ is a section of F ∗W and C∞(X;F ∗W ) is spanned by
C∞(X) · F ∗C∞(Y ;W ).

Distributional sections of any C∞ vector bundle can be defined in two equivalent
ways:

14.414.4 (6.56) “Algebraically” C−∞(X;W ) = C−∞(X)
⊗
C∞(X)

C∞(X;W )

or as the dual space

14.514.5 (6.57) “Analytically” C−∞(X;W ) =
[
C∞c (X; Ω⊗W ′)

]′
where W ′ is the dual bundle and Ω the density bundle over X. In order to use
(
14.5
6.57) we need to define a topology on C∞c (X;U) for any vector bundle U over X.

One can do this by reference to local coordinates.
We have just shown that any elliptic pseudodifferential operator, A ∈ Ψm(X)

on a compact manifold X has a generalized inverse B ∈ Ψ−m(X), meaning

15.115.1 (6.58)
BA = Id−πN
AB = Id−πR

where πN and πR are the orthogonal projections onto the null space of A and
the orthocomplement of the range of A with respect to a prescribed C∞ positive
density ν, both are elements of Ψ−∞(X) and have finite rank. To use this theorem
in geometric situations we need first to make the “trivial” extension to operators
on sections of vector bundles.

As usual there are two ways (at least) to approach this extension; the high road
and the low road. The “low” road is to go back to the definition of Ψm(X) and
to generalize to Ψm(X;V,W ). This just requires to take the definition, following
(
13.7
6.16), but using a covering with respect to which the bundles V,W are both locally

trivial. The local coordinate representatives of the pseudodifferential operator are
then matrices of pseudodifferential opertors. The symbol mapping becomes

15.215.2 (6.59) Ψm(X;V,W ) −→ Sm−[1] (T ∗X; Hom(V,W ))

where Hom(V,W ) ' V ⊗W ′ is the bundle of homomorphisms from V to W and
the symbol space consists of symbolic sections of the lift of this bundle to T ∗X. We
leave the detailed description and proof of these results to the enthusiasts.

So what is the “high” road. This involves only a little sheaf-theoretic thought.
Namely we want to define the space Ψm(X;V,W ) using Ψm(X) by:

15.315.3 (6.60) Ψm(X;V,W ) = Ψm(X)
⊗
C∞(X2)

C∞(X2;V �W ′).
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To make sense of this we first note that Ψm(X) is a C∞(X2)-module as is the space
C∞(X2;V �W ′) where V �W ′ is the “exterior” product:

15.415.4 (6.61) (V �W ′)(x,y) = Vx ⊗W ′y.

The tensor product in (
15.3
6.60) means that

15.515.5 (6.62) A ∈ Ψm(X;V,W ) is of the form A =
∑
i

Ai ·Gi

where Ai ∈ Ψm(X), Gi ∈ C∞(X2;V �W ′) and equality is fixed by the relation

15.615.6 (6.63) φA ·G−A · φG ≡ 0.

Now what we really need to note is:

15.7 Proposition 6.5. For any compact C∞ manifold Y and any vector bundle U
over Y

15.815.8 (6.64) C−∞(Y ;U) ≡ C−∞(Y )
⊗
C∞(Y )

C∞(Y ;U).

Proof. C−∞(Y ;U) = (C∞(Y ; Ω ⊗ U ′))′ is the definition. Clearly we have a
mapping

(6.65) C−∞(Y )
⊗
C∞(Y )

C∞(Y ;U) 3
∑
i

Ai · gi −→ C−∞(Y ;U)

given by

15.915.9 (6.66)
∑
i

ui · gi(ψ) =
∑
i

ui(gi · ψ)

since giψ ∈ C∞(Y ; Ω) and linearity shows that the map descends to the tensor
product. To prove that the map is an isomorphism we construct an inverse. Since
Y is compact we can find a finite number of sections gi ∈ C∞(Y ;U) such that any
u ∈ C∞(Y ;U) can be written

(6.67) u =
∑
i

higi hi ∈ C∞(Y ).

By reference to local coordinates the same is true of distributional sections with

(6.68) hi = u · qi qi ∈ C∞(Y ;U ′).

This gives a left and right inverse. �

15.10 Theorem 6.3. The calculus extends to operators on sections of vector bundles
over any compact C∞ manifold.

6.6. Hodge theorem

The identification of the deRham cohomology of a compact manifold with the
finite dimensional vector space of harmonic forms goes back to Hodge in the al-
gebraic setting and to Hermann Weyl in the general case. It is a rather direct
consequence of the Fredholm properties on smooth sections of the Laplacian. In
fact this has nothing much to do with the explicit form of the deRham complex, so
let’s do it in the natural context of an elliptic complex over a compact manifold M.
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Thus let Ei, i = 0, . . . , N be complex vector bundles and suppose di ∈ Diff1(M ;Ei, Ei+1),
i < N, form a complex of differential operators, meaning that for each i < N di+1

annihilates the range of di which means just that

23.9.2007.3423.9.2007.34 (6.69) di+1di = 0 ∈ Diff1(M ;Ei;Ei+2), i < N.

Such a complex is said to be exact (on C∞ sections) if
23.9.2007.3523.9.2007.35 (6.70)

C∞(M ;E0)
d0 //C∞(M ;E1)

d1 // . . . C∞(M ;EN−1)
dN−1 //C∞(M ;EN )

is exact, meaning that conversely

23.9.2007.3623.9.2007.36 (6.71) null(di+1) = diC∞(M : Ei) ∀ i < N.

The principal symbol σi(di) ∈ C∞(T ∗M ;π∗ hom(Ei, Ei+1) is a homogeneous poly-
nomial of degree 1 and from (

23.9.2007.34
6.69) these bundle maps for a complex over T ∗M.

Of course the all vanish at the zero section so, excluding that, we say the original
complex is elliptic if the symbol complex

23.9.2007.3723.9.2007.37 (6.72)

C∞(T ∗M \ 0;π∗E0)
σ1(d0) //C∞(T ∗M \ 0;π∗E1)

σ1(d1) // . . .

C∞(T ∗M \ 0;π∗EN−1)
σ1(dN−1)//C∞(T ∗M \ 0;π∗EN )

is exact.
Now, choose an Hermitian inner product on each of the Ei and a smooth

density on M so that we can define the adjoints δi of the di−1 (so that the subscript
corresponds to the subscript of the vector space on which the operator acts)

23.9.2007.3823.9.2007.38 (6.73) δi = (di−1)∗ ∈ Diff1(M ;Ei, Ei−1), i = 1, . . . , N.

Then form the Hodge operator and the Laplacian

23.9.2007.3923.9.2007.39 (6.74) (d+ δ)i ∈ Diff1(M ;Ei, Ei−1⊕Ei+1), ∆i = δi+1di +di−1δ
2
i ∈ Diff2(M ;Ei).

We can also take the direct sum of all the terms in the complex and set

23.9.2007.4123.9.2007.41 (6.75) d = ⊕idi ∈ Diff1(M ;E∗), δ = ⊕iδi ∈ Diff1(M ;E∗).

Then (
23.9.2007.34
6.69) and the induced identity δi−1δi = 0 together show that

23.9.2007.4023.9.2007.40 (6.76) (d+ δ)2 = ⊕i∆i ∈ Diff2(M ;E∗)

since applied to C∞(M ;Ei)
23.9.2007.4223.9.2007.42 (6.77)

(d+ δ)2
∣∣
C∞(M ;Ei)

= (d+ δ)di + (d+ δ)δi = (di+1 + δi+1)di + (di−1 + δi−1)δi = ∆i.

23.9.2007.33 Theorem 6.4. For an elliptic complex the operators d + δ and all the ∆i are
elliptic,

23.9.2007.4323.9.2007.43 (6.78) null(∆i) = {u ∈ C∞(M ;Ei); diu = 0, δiu = 0}
and the inclusion of this space into the null space of di induces an isomorphism of
vector spaces

23.9.2007.4423.9.2007.44 (6.79) null(∆i) ' {u ∈ C∞(M ;Ei); diu = 0} /di−1C∞(M ;Ei).

In particular the vector spaces on the right in (
23.9.2007.44
6.79) are finite dimensional; these

are the (hyper-)cohomology spaces of the original complex.



6.6. HODGE THEOREM 179

Proof. The symbol of ∆i is exactly

23.9.2007.4623.9.2007.46 (6.80) σ2(∆i) = σ1(δi+1)σ1(di) + σ1(di−1)σ1(δi).

Over points of T ∗M \ 0 we can use the (pointwise) inner product on the Ei’s and
the fact that σ1(δi) = (σ1(d∗i−1) to see that

〈f, σ1(∆i)f〉 = 〈f, σ1(δi+1)σ1(di)f〉+ 〈f, σ1(di−1)σ1(δi)f〉 = |σ1(di)f |2 + |σ1(δi)f |2.

Thus an element of the null space of σ2(∆i) is in the intersection of the null spaces
of σ1(di) and σ1(δi). The null space of the latter is precisely the orthocomplement
to the range of the former, so (by the assumed ellipticity) σ2(∆i) is injective and
hence an isomorphism. As an elliptic operator the null space of ∆i, even acting
on distributions, consists of elements of C∞(M ;Ei). Moreover integration by parts
then gives

23.9.2007.4823.9.2007.48 (6.81) ∆iu = 0 =⇒
∫
M

〈u,∆iu〉ν = ‖diu‖2L2 + ‖δiu‖2L2 =⇒ diu = 0, δiu = 0.

The converse is obvious, so this proves (
23.9.2007.43
6.78).

We know that any elliptic operator on a compact manifold is Fredholm. More-
over ∆i is self-adjoint, directly from the definition in (

23.9.2007.39
6.74). Thus the range of ∆i

is precisely the orthocomplement (with respect to the L2 inner product) of its own
null space:

23.9.2007.4523.9.2007.45 (6.82) C∞(M ;Ei) = null(∆i)⊕∆C∞(M ;Ei).

Now expanding out ∆i we can decompose each element of the second term as

23.9.2007.4923.9.2007.49 (6.83) ∆u = di−1δiu+ δi+1diu = di−1vi−1 + δi+1wi+1.

The two terms here are orthogonal in L2(M ;Ei) and this allows us to rewrite (
23.9.2007.45
6.82)

as The Hodge Decomposition

23.9.2007.5023.9.2007.50 (6.84) C∞(M ;Ei) = null(∆i)⊕ di−1C∞(M ;Ei−1)⊕ δi+1C∞(M ;Ei+1).

Indeed, all three terms here are orthogonal as follows by integration by parts and
the fact that d2 = 0 and hence there must be equality in (

23.9.2007.50
6.84) since each element

has such a decomposition, as follows from (
23.9.2007.45
6.82) and (

23.9.2007.49
6.83).

Now if u ∈ C∞(M ;Ei) satisfies diu = 0, consider its Hodge decomposition

23.9.2007.5123.9.2007.51 (6.85) u = u0 + du1 + δv.

The last term must vanish since applying d to (
23.9.2007.51
6.85), dδv = 0 and then integrating

by parts

23.9.2007.5223.9.2007.52 (6.86)

∫
M

〈v, dδv〉ν = ‖δv‖2L2 = 0.

The map u〉u0 therefore takes the left side of (
23.9.2007.44
6.79) to the right. It is injective,

since u0 = 0 means that u is ‘exact’ and it is surjective since u0 is itself closed and
the decomposition (

23.9.2007.51
6.85) is unique, so it is mapped to u0. This gives the Hodge

isomorphism (
23.9.2007.44
6.79). �

In fact the same argument works with distributional sections of the various
bundles. We know that, as an elliptic operator

23.9.2007.5323.9.2007.53 (6.87) ∆i : C−∞(M ;Ei) −→ C−∞(M ;Ei)
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also has range exactly the annihilator of the null space of its adjoint, also ∆i, on
C∞ sections. Thus we get a distributional decomposition

23.9.2007.5423.9.2007.54 (6.88) C−∞(M ;Ei) = null(∆i)⊕∆C−∞(M ;Ei)

which we can still think of as ‘orthogonal’ since the pairing exists between the
smooth harmonic forms and the general distibutional sections. A distributional
form of the Hodge decomposition follows as before which we can write as

23.9.2007.5523.9.2007.55 (6.89) C−∞(M ;Ei) = null(∆i)⊕
(
di−1C−∞(M ;Ei−1)+̇δi+1C−∞(M ;Ei+1)

)
.

Here the second two terms do not formally ‘pair’ under extension of the L2 inner
product so we just claim that the intersection is empty. This follows from the fact
that an element of the intersection is harmonic and hence smooth and thus, from
(
23.9.2007.54
6.88), vanishes. This lead immediately to a distributional Hodge isomorphism

23.9.2007.5623.9.2007.56 (6.90) null(∆i) =
{
u ∈ C−∞(M ;Ei); diu = 0

}
/di−1C−∞(M ;Ei)

completely analogous to (
23.9.2007.43
6.78). The proof is almost the same. A closed distribu-

tional form has a decomposition as in (
23.9.2007.55
6.89), u = u0 + du′+ δv where u1 and v are

now distributional sections. However applying d we see that dδv = 0 and δδv = 0
so δv is harmonic, hence smooth, and the integration by parts argument as before
shows that δv = 0 (not of course that v = 0). This gives a map from right to left
in (

23.9.2007.56
6.90) which is an isomorphism just as before.
In particular this shows that the ‘distributional deRham’ and ‘smooth deRham’

cohomologies are isomorphic. In fact the isomorphism is natural, even though both
isomorphisms (

23.9.2007.43
6.78) and (

23.9.2007.56
6.90) depend on the choice of inner product and smooth

density (since of course the harmonic forms depend on these choices). Namely the
isomorphism is induced by the natural ‘inclusion map’

23.9.2007.5723.9.2007.57 (6.91)
{u ∈ C∞(M ;Ei); diu = 0} /di−1C∞(M ;Ei) −→

{
u ∈ C−∞(M ;Ei); diu = 0

}
/di−1C−∞(M ;Ei).

In many applications in differential geometry it is important to go a little further
than this. The Hodge theorem above identifies the null space of the Laplacian with
the intersections of the null spaces of d and δ. More generally consider the spectral
decomposition associated to the ∆i.

23.9.2007.58 Proposition 6.6. If (C∞(M ;Ei))
+ is the orthocomplement to null(∆i) for

each i then the di induce and exact complex
23.9.2007.5923.9.2007.59 (6.92)

(C∞(M ;E0))+ d0 // (C∞(M ;E1))+d1 // . . . (C∞(M ;EN−1))+
dN−1 // (C∞(M ;EN ))+

which restricts to an exact finite-dimensional complex on the subspaces which are
eigenspaces of ∆i for a fixed λ > 0.

Proof. All the null spaces vanish and exactness follows from the Hodge de-
composition. �

Of course the adjoint complex is the one for δ and the same result holds for distri-
butional sections. Note that this means that the eigenspaces of ∆i, corresponding
to non-zero eigenvalues, can be decomposed into exact and coexact parts. Thus
even though the Hodge operator d + δ mixes form degrees, all its eigenvectors are
can be decomposed into eigenvectors of ∆ which have ‘pure degree’.
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6.7. Sobolev spaces and boundedness

[Following discussions with Sheel Ganatra]
In the discussion above, I have shown that elliptic pseudodifferential operators

are Fredholm on the spaces of C∞ sections directly from the existence of parame-
terices, rather than using the more standard argument on Sobolev spaces. However,
let me now recall this starting with operators of order 0. In fact it is convenient
to define the Sobolev spaces for other orders so that boundedness is ‘obvious’ and
then check that the definition is sensible.

18.10.2007.103 Lemma 6.4. On any compact manifold M each A ∈ Ψ0(M ;V,W ) for vector
bundles V and W extends by continuity from C∞(M ;V ) to a bounded operator

18.10.2007.10418.10.2007.104 (6.93) A : L2(M ;V ) −→ L2(M ;W ).

Proof. There are two obvious alternatives here. The first is to use the same
construction of approximate square roots as before. That is, using the symbol
calculus onie can see that if A is as above and we choose inner products on V and
W and a smooth volume form on M so that A∗ is defined then for a large positive
constant C there exists B ∈ Ψ0(M ;V ) so that

18.10.2007.10518.10.2007.105 (6.94) C −B∗B = A∗A+G, G ∈ Ψ−∞(M ;V ).

This starts by solving the equation at a symbolic level, so showing that σ0(A) exists
such that

18.10.2007.10618.10.2007.106 (6.95) C − σ0(B)∗σ0(B) = σ0(A)2, σ∗0(A) = σ0(A).

Thus σ0(A) is the square root of the positive definite matrix C − σ∗0(B)σ0(B).
Then one can proceed inductively using the symbol calculus, as before, to solve the
problem modulo smoothing.

Alternatively we can simply use the known boundedness of smoothing opera-
tors on M and of pseudodifferential operators on Rn. Thus the local (matrices of)
operators, or order 0, as in (

1.10.2007.69
6.18) are bounded on L2(Rn) and since u ∈ L2(M ;V )

is equivalent to (Fi)
∗ψiuj ∈ L2(Rn) for a partition of unity ψi subordinate to a

coordinate cover over each element of which the bundle is trivial, the boundedness
(
18.10.2007.104
6.93) follows. Of course we are also using the density of C∞(M ;W ) in L2(M ;W )

which follows from the same argument. �

defines

18.10.2007.101 Definition 6.3. On a compact manifold and for a vector bundle W we set
18.10.2007.10218.10.2007.102 (6.96)

Hs(M ;W ) =
{
u ∈ C−∞(M ;W );Au ∈ L2(M ;V ) ∀ A ∈ Ψ−s(M ;W,V )

}
, s ∈ R.

Here we are demanding this for all pseudodifferential operators and all vector bun-
dles V. This of course is gross overkill.

18.10.2007.107 Proposition 6.7. For each s ∈ R, C∞(M ;V ) is dense in Hs(M ;V ), every
element A ∈ Ψm(M ;V,W ) extends by continuity to a bounded linear operator

18.10.2007.10818.10.2007.108 (6.97) A : Hs(M ;V ) −→ Hs−m(M ;W ) ∀ s ∈ R, ∀ s ∈ R

and if A ∈ Ψm(M ;V,W ) is elliptic then

18.10.2007.10918.10.2007.109 (6.98) Au ∈ Hs(M ;V ) =⇒ u ∈ Hs+m(M ;W ).
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Proof. Since I have not quite fixed the topology on Hs(M ;V ), the density
statement is to be interpreted as meaning that if u ∈ Hs(M ;V ) then there is
a sequence un ∈ C∞(M ;V ) such that Pun → Pu in L2(M ;W ) for every P ∈
Ψs(M ;V,W ). In fact the simplest thing to prove is that, with the ugly definition
(
18.10.2007.102
6.96) of Hs(M ;V ) that

18.10.2007.11018.10.2007.110 (6.99) P ∈ Ψs(M ;V,W ), u ∈ Hs(M ;V ) =⇒ Pu ∈ L2(M ;W )

since this is precisely what the definition requires. Conversely we can see that

18.10.2007.11118.10.2007.111 (6.100) P ∈ Ψs(M ;V,W ), u ∈ L2(M ;V ) =⇒ Pu ∈ H−s(M ;W )

Here we are using the action of pseudodifferential operators on distributions. In-
deed, if A ∈ Ψ−s(M ;W,U) for some other vector bundle U then we just need
to show that APu ∈ L2(M ;U). However, by the composition theorem, AP ∈
Ψ0(M ;V,U) so this follows from Lemma

18.10.2007.103
6.4.

Combining these two special cases of (
18.10.2007.108
6.97) we can get the general case. Note

that there is always an elliptic element Ps ∈ ψs(M ;V ) for any s ∈ R and any vector
bundle V. There is certainly an elliptic symbol, say (1+ |ξ|2)

s
2 IdV where | · | is some

Riemannian metric. The surjectivity of the symbol maps shows that there is in fact
a pseudodifferential operator Ps with this symbol, which is therefore elliptic. By
the elliptic construction above this operator has a parameterix Qs ∈ Ψ−s(M ;V )
which is also elliptic and satisfies

18.10.2007.11218.10.2007.112 (6.101) QsPs − Id, PsQs − Id ∈ Ψ−∞(M ;V ).

Now, given a general A ∈ Ψm(M ;W,V ) composing with this identity shows that
18.10.2007.11318.10.2007.113 (6.102)

A = (AQs)Ps +G = BPs +G, B = AQs ∈ Ψm−s(M ;V,W ), G ∈ Ψ−∞(M ;V,W ).

A smoothing operator certainly satisfies (
18.10.2007.108
6.97) (since C∞(M ;V ) ⊂ Hs(M ;V ) for

all s) so it suffices to consider BPs in place of A. Applying (
18.10.2007.110
6.99) to Ps and (

18.10.2007.111
6.100)

to B, with s replaced by m− s shows that

18.10.2007.11418.10.2007.114 (6.103) Hs(M ;V )
Ps //L2(M ;V )

B //Hs−m(M ;W )

which gives (
18.10.2007.108
6.97).

If A is elliptic then (
18.10.2007.109
6.98) follows since if Q ∈ Ψ−m(M ;W,V ) is a parametrix

for A then
18.10.2007.11518.10.2007.115 (6.104)

QA = Id−G, G ∈ Ψ−∞(M ;V ), Au ∈ Hs(M ;W ) =⇒ u = QAu+Gu ∈ Hs+m(M ;V ).

This means that the original definition can be written in the much simpler form
18.10.2007.11618.10.2007.116 (6.105)

Hs(M ;W ) =
{
u ∈ C−∞(M ;W );P−su ∈ L2(M ;W ) for some elliptic P−ss ∈ Ψ−s(M ;W )

}
.

Here of course ‘some’ means for any one elliptic element.
Finally then the density also follows. Namely, if u ∈ Hs(M ;V ) then

18.10.2007.11718.10.2007.117 (6.106) u = Qs(Psu) +Gu, Ps ∈ Ψs(M ;V ), Qs ∈ Ψ−s(M ;V ), G ∈ Ψ−∞(M ;V ).

Thus Psu ∈ L2(M ;V ). Let vn → Psu in L2(M ;V ) then Gu ∈ C∞(M ;V ) and
18.10.2007.11818.10.2007.118 (6.107)

Qsun+Gu→ u ∈ Hs(M ;V ) since PQsun+PGu→ Gu ∈ L2(M ;W ) ∀ P ∈ Ψs(M ;V,W ).

�
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Using the Fredholm properties of elliptic operators we see that if Ps/2 ∈
Ψs/2(M ;V ) is elliptic then, if s > 0,

18.10.2007.11918.10.2007.119 (6.108) Bs = P ∗s/2Ps/2 + 1 ∈ Ψs(M ;V )

is an isomorphism. Indeed, it is elliptic so we know that any element u of its null
space is in C∞(M ;V ). However integration by parts is then justified and shows that

18.10.2007.12018.10.2007.120 (6.109) Bsu = 0 =⇒ 〈Ps/2u, Ps/2u〉+ ‖u‖2L2 = 0 =⇒ u ≡ 0.

Thus its null space consists of {0} and since it is (formally) self-adjoint, the same
is true of the null space of its adjoint. Thus, being Fredholm, it is an isomorphism.
In fact its inverse

18.10.2007.12118.10.2007.121 (6.110) B−1
s ∈ Ψ−s(M ;V )

is also invertible. We have already shown (
18.10.2007.121
6.110) since B−1

s is the generalized
inverse.

Thus we have shown the main part of

18.10.2007.122 Proposition 6.8. For any compact manifold M and any vector bundle V over
M there is an invertible element Bs ∈ Ψs(M ;V ) for each s and then

18.10.2007.12318.10.2007.123 (6.111) Hs(M ;V ) = {u ∈ C−∞(M ;V );Bsu ∈ L2(M ;V )}, ‖u‖s = ‖Bsu‖L2

shows that Hs(M ;V ) is a Hilbert space. Moreover ψiu has entries in Hs(Rn) for
any covering of M by coordinate patches over each of which the bundle is trivial
and for any partition of unity subordinate to it.

Proof. The last part just follows by looking at the local coordinate represen-
tative of Bs. Namely ψiu is a (vector of) compactly supported distributions in the
coordinate patch and (1 + |D|2)−s/2ψiu ∈ L2(Rn) since it is smooth outside the
image of the support of ψi by pseudolocality and inside the coordinate patch by
the boundedness of pseudodifferential operators discussed above. �

18.10.2007.124 Proposition 6.9. The L2 pairing with respect to an inner product and smooth
volume form extends by continuity to a non-degenerate pairing

18.10.2007.12518.10.2007.125 (6.112) Hs(M ;V )×H−s(M ;V ) −→ C

which allows H−s(M ;V ) to be identified with the dual of Hs(M ;V ) for any s.

Proof. Exercise! �

6.8. Pseudodifferential projections
S.pseudo.proj

We are interested in constructing projections in the pseudodifferential algebra
corresponding to arbitrary symbolic projections.

1.12.2007.433 Theorem 6.5. If M is compact, E is a complex vector bundle over M and
p ∈ C∞(S∗M ; hom(E)) is valued in the projections in the sense that p2 = p then
there exists an element P ∈ Ψ0(M ;E) with symbol p which is itself a projection.

First we work modulo smoothing operators, for later applications we shall do
this without assuming the compactness of M.
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1.12.2007.427 Lemma 6.5. If E −→ M is a complex vector bundle and p ∈ C∞(S∗M ;E)
satisfies p2 = p then there exists Q ∈ Ψ0(M ;E) which is properly supported and
such that

1.12.2007.4281.12.2007.428 (6.113) Q2 −Q ∈ Ψ−∞(M ;E).

Proof. Of course the first step is simply to choose Q0 ∈ Ψ0(M ;E) which is
properly supported and has σ0(Q) = p. This gives a version of (

1.12.2007.428
6.113) but only

modulo terms of order −1 :

1.12.2007.4291.12.2007.429 (6.114) Q2
0 −Q0 = E1 ∈ Ψ−1(M ;E).

However note, by composing with Q0 first on the left and then on the right, that
Q0E1 = E1Q0. It follows that

1.12.2007.4301.12.2007.430 (6.115) (Id−P )EiP, PEi(Id−P ) ∈ Ψ−i−1(M ;E)

for i = 1. Then set Q1 = −Q0E1Q0 + (Id−Q)E0(Id−Q0) and Q(1) = Q0 +Q1. It
follows from (

1.12.2007.429
6.114) and (

1.12.2007.430
6.115) that

1.12.2007.4311.12.2007.431 (6.116) Q2
(i) −Q(i) = Ei+1 = Ei +Q(i)Qi +QiQ(i) −Qi ∈ Ψ−i−1(M ;E).

Thus we can proceed by induction and successively find Qj ∈ Ψ−j(M ;E), always
properly supported, such that

1.12.2007.4321.12.2007.432 (6.117) Q(i) =

i∑
j=1

Qj satisfies (
1.12.2007.431
6.116) for all i.

Then taking Q to be a properly supported asympotic sum of this series gives an
operator as claimed. �

5.6.1998.228 Proposition 6.10. If M is compact, E is a complex vector bundle over M and
Q ∈ Ψ0(M ;E) is such that Q2 −Q ∈ Ψ−∞(M ;E) then there exists P ∈ Ψ0(M ;E)
such that P 2 = P and P −Q ∈ Ψ−∞(M ;E).

Proof. As a bounded operator on L2(M ;E), Q has discrete spectrum outside
{0, 1}. Indeed, if τ /∈ {0, 1} then

1.12.2007.4341.12.2007.434 (6.118) (Q− τ Id)((1− τ)−1Q− τ−1(Id−Q)) = Id +(1− τ)−1τ−1(Q2 −Q)

gives a parametrix for Q− τ Id . The right side is invertible for |τ | large and hence
for all τ outside a discrete subset of C \ {0, 1} with inverse Id +S(τ) where S(τ)
is meromorphic with values in Ψ−∞(M ;E). Letting Γ be the circle of radius 1

2 − ε
around the origin for ε > 0 sufficiently small it follows that Q− τ Id is invertible on
Γ with inverse ((1− τ)−1Q− τ−1(Id−Q))(Id +S(τ). Thus, by Cauchy’s theorem,

1.12.2007.4351.12.2007.435 (6.119) Id−P =
1

2πi

∮
Γ

(τ −Q)−1dτ = Id−Q+ S, S ∈ Ψ−∞(M ;E)

and moreover P is a projection since choosing Γ′ to be a circle with slightly larger
radius than Γ,

1.12.2007.4361.12.2007.436 (6.120)

(Id−P )2 =
1

2πi

2πi∮
Γ′

∮
Γ

(τ ′ −Q)−1(τ −Q)−1dτ ′dτ

=
1

2πi

1

2πi

∮
Γ′

∮
Γ

(
(τ ′ − τ)−1(τ ′ −Q)−1 + (τ ′ − τ)−1(τ −Q)−1

)
dτ ′dτ

= Id−P
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since in the first integral the integrand is holomorphic in τ inside Γ and in the
second the τ ′ integral has a single pole at τ ′ = τ inside Γ. �

The following more qualitative version is used in the discussion of the Calderón
projection .

4.6.1998.227 Proposition 6.11. If M is compact, E is a complex vector bundle over M and
Q ∈ Ψ0(M ;E) is such that Q2 −Q ∈ Ψ−∞(M ;E) and F ⊂ Hs(M ;E) is a closed
subspace corresponding to which there are smoothing operators A,B ∈ Ψ−∞(M ;E)
with Id−Q = A on F and (Q+B)L2(M ;E) ⊂ F then there is a smoothing operator
B′ ∈ Ψ−∞(M : E) such that F = Ran(Q+B′) and (Q+B′)2 = Q+B′.

Proof. Assume first that s = 0, so F is a closed subspace of L2(X;E). Ap-
plying Proposition

5.6.1998.228
6.10 to Q we may assume that it is a projection P, without

affecting the other conditions. Consider the intersection E = F ∩Ran(Id−P ). This
is a closed subspace of L2(M ;E). With A as in the statement of the proposition,
E ⊂ Nul(Id−A). Indeed P vanishes on Ran(Id−P ) and hence on E and by hypoth-
esis Id−P − A vanishes on F and hence on E. From the properties of smoothing
operators, E is contained in a finite dimensional subspace of C∞(M ;E), so is itself
such a space. We may modify P by adding a smoothing projection onto E to it,
and so assume that F ∩ Ran(Id−P ) = {0}.

Consider the sum G = F + Ran(Id−P ) and the operator Id +B = (P + B) +
(Id−P ), with B as in the statement of the Proposition. The range of Id +B is
contained in G. Thus G must be a closed subspace of L2(M ;E) with a finite di-
mensional complement in C∞(M ;E). Adding a smoothing projection onto such a
complement we can, again by altering P by smoothing term, arrange that

5.6.1998.2295.6.1998.229 (6.121) L2(M ;E) = F ⊕ Ran(Id−P )

is a (possibly non-orthogonal) direct sum. Since P has only been altered by a
smoothing operator the hypotheses of the Proposition continue to hold. Let Π
be the projection with range F and null space equal to the range of Id−P. It
follows that P ′ = P + (Id−P )RP for some bounded operator R (namely R =
(Id−P )(P ′ − P )P.) Then restricted to F, P ′ = Id and P = Id +A so R = −A on
F. In fact R = AP ∈ Ψ−∞(M ;E), since they are equal on F and both vanish on
Ran(Id−P ). Thus P ′ differs from P by a smoothing operator.

The case of general s follows by conjugating with a pseudodifferential isomor-
phism of Hs(M ;E) to L2(M ;E) since this preserves both the assumptions and the
conclusions. �

6.9. The Toeplitz algebra
Toeplitz

6.10. Semiclassical algebra
Semiclassicalalgebra

Recall the notion of a semiclassical 1-parameter family of pseudodifferential
operators (which we will nevertheless call a semiclassical operator) on Euclidean
space in Section

Euclidean-scl
2.19. Following the model in Section

ManPseud
6.3 above we can easily

‘transfer’ this definition to a manifold M, compact or not. The main thing to decide
is what to require of the part of the kernel away from the diagonal. This however
is clear from (

28.11.2007.392
2.210). Namely in any compact set of M2 which does not meet the

diagonal, the kernel should be smooth uniformly down to ε = 0, including in ε itself,
and it should vanish there to infinite order. This motivates the following definition
modelled closely on Definition

1.10.2007.66
6.2 and the discussion of operators between sections
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of vector bundles in Section
PseudVB
6.5. This time I have chosen to define the classical

operators, of course the spaces Ψm
sl-∞(X,E) have a similar definition.

1.12.2007.414 Definition 6.4. If X is a C∞ manifold and E = (E+, E−) is a pair of com-
plex vector bundles over X then, for any m ∈ R, Ψm

sl (X;E) is the space of linear
operators

13.7scl13.7scl (6.122) Aε : C∞c ([0, 1]×X;E+) −→ C∞([0, 1]×X;E−)

with the following properties. First,
13.8scl13.8scl (6.123)

if φ, ψ ∈ C∞(X) have disjoint supports then ∃ Kε ∈ C∞([0, 1]ε ×X2; ΩR ⊗Hom(E)),

Kε ≡ 0 at {ε = 0}such that ∀ u ∈ C∞c ([0, 1]×X;E+) φAψu =

∫
X

Kε(x, y)u(y),

and secondly if F : W −→ Rn is a coordinate system in X over which E is trivial,
with trivializations h±E±

∣∣
W
←→ W × CN± , and ψ ∈ C∞c (X) has support in W

then

∃ Bε ∈ Ψm
sl (Rn;CN+ ,CN−), supp(Bε) ⊂ [0, 1]× F (W )× F (W ) s.t.

ψAεψu �W = h−F
∗(Bε((F

−1)∗(h−1
+ ψu))) ∀ u ∈ C∞c ([0, 1]×X;E+).

A semiclassical operator (always a family of course) is said to be properly
supported if its kernel has proper support in [0, 1]×X ×X, that is proved the two
maps

1.12.2007.4151.12.2007.415 (6.124) supp(Bε)

πL

zz

πR

$$
X X

are both proper, meaning the inverse image of a compact set is compact. Since

1.12.2007.4161.12.2007.416 (6.125) πX supp(Bεu) ⊂ πL(supp(Bε) ∩ π−1
R (πX supp(u))

(where supp(u) ⊂ [0, 1]×X and πX is projection onto the second factor) it follows
that a properly supported operator satisifes

1.12.2007.4171.12.2007.417 (6.126) Bε : C∞c ([0, 1]×X;E+) −→ C∞c ([0, 1]×X;E−).

The same is true of the adjoint, so in fact by duality

1.12.2007.4181.12.2007.418 (6.127) Bε : C∞([0, 1]×X;E+) −→ C∞([0, 1]×X;E−).

The discussion above now carries over to give similar results for semiclassical
families.

1.12.2007.419 Proposition 6.12. The subspaces of properly supported semiclassial operators
for any manifold have short exact symbol sequences

1.12.2007.4211.12.2007.421 (6.128)
0 ↪→ Ψm−1

sl (X) ↪→ Ψm(X)
σm−→ Sm−[1](T ∗X) −→ 0,

0 ↪→ εΨm
sl (X) ↪→ Ψm

sl (X)
σm−→−→ 0,

compose as operators (
1.12.2007.417
6.126) and (

1.12.2007.418
6.127) and their symbols, standard and semi-

classical, compose as well:

1.12.2007.4201.12.2007.420 (6.129)
σm+m′(AεBε) = σm(Aε) ◦ σm′(Bε),
σsl(AεBε) = σsl(Aε) ◦ σsl(Bε).
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The L2 boundedness in Proposition
7.12.2007.441
2.14 carries over easily to the manifold

case.

1.12.2007.437 Proposition 6.13. If M is compact and E is a complex vector bundle over M
then Aε ∈ Ψ0

sl(M ;E) then

1.12.2007.4381.12.2007.438 (6.130) sup
0<ε≤1

‖Aε‖L2(M ;E) <∞.

We are particularly interested in semiclassical operators below because they
make it possible to easily ‘quantize’ projections.

1.12.2007.422 Proposition 6.14. Suppose p ∈ C∞(slT ∗X; hom(E)) is a smooth family of
projections for a compact manifold X then there exists a semiclassical family of
projections Pε ∈ Ψ0

sl(X;E) such that σsl(Pε) = p.

Proof. By the surjectivity of the semiclassical symbol map we can choose
Aε ∈ Ψ0

sl(X;E) with σsl(Aε) = p and we can arrange that σ0(Aε) is the constant
family of projections defined by p on the sphere bundle at infinity. Then

1.12.2007.4231.12.2007.423 (6.131) A2
ε −Aε = Eε ∈ εΨ−1

sl (X;E).

Composing on the left in (
1.12.2007.423
6.131) gives the same result as composing on the right,

so

1.12.2007.4251.12.2007.425 (6.132) AεEε = EεAε =⇒ σ(e) = pσ(e)p+ (Id−p)σ(e)(Id−p)
where the symbolic identity is true in both sense, for σ(e) = σsl(e) and σ(e) =
σ−1(e).

Now, we wish to ‘correct’ Aε so this error term is smoothing and vanishes to
infinite order at ε = 0. First we add the term

A(1)
ε = AεA

(1)
ε Aε − (Id−Aε)A(1)

ε (Id−Aε) ∈ Ψ−1
sl (X;E)

to Aε. This modifies (
1.12.2007.423
6.131) to

1.12.2007.4241.12.2007.424 (6.133) (Aε +A(1)
ε )2 −Aε −A(1)

ε = Eε +AεA
(1)
ε +A(1)

ε Aε −A(1)
ε ∈ ε2Ψ−2

sl (X;E).

Repeating this step generates an asymptotic solution and summing the asymptotic
series gives a solution modulo rapidly decreasing smoothing error terms.

�

6.11. Heat kernel

6.12. Resolvent

6.13. Complex powers

6.14. Problems

6.3.1998.156 Problem 6.1. Show that compatibility in the sense defined before Defini-
tion

13.4
6.1 is an equivalence relation on C∞ structures. Conclude that there is a

unique maximal C∞ structure containing any give C∞ structure.

6.3.1998.158 Problem 6.2. Let F be a C∞ structure on X and let Oa, a ∈ A, be a covering
of X by coordinate neighbourhoods, in the sense of (

13.2
6.2) and (

13.3
6.3). Show that the

maximal C∞ structure containing F consists of ALL functions on X which are of
the form (

13.3
6.3) on each of these coordinate patches. Conclude that the maximal C∞

structure is an algebra.
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6.3.1998.159 Problem 6.3 (Partitions of unity). Show that any C∞ manifold admits parti-
tions of unity. That is, if Oa, a ∈ A, is an open cover of X then there exist elements
ρa,i ∈ C∞(X), a ∈ A, i ∈ N, with 0 ≤ ρa,i ≤ 1, with each ρa,i vanishing outside
a compact subset Ka,i ⊂ Oa such that only finite collections of the {Ka,i} have
non-trivial intersection and for which∑

a∈A,i∈N
ρa,i = 1.



CHAPTER 7

Scattering calculus

Scat
7.1. Scattering pseudodifferential operatorsS.Scattering.operators

There is another calculus of pseudodifferential operators which is ‘smaller’ than
the traditional calculus. It arises by taking amplitudes in (

3.2
2.2) which treat the

base and fibre variables symmetrically, but not ‘simultaneously.’ Thus consider the
spaces

21.2.1998.11321.2.1998.113 (7.1) Sl,m∞ (Rpz,Rnξ ) =
{
a ∈ C∞(Rp+n);

sup
Rp+n

(1 + |z|)−l+|α|(1 + |ξ|)−m+|β||Dα
zD

β
ξ a(z, ξ)| <∞, ∀ α, β

}
.

Observe that

21.2.1998.11521.2.1998.115 (7.2) Sl,m∞ (Rpz;Rnξ ) ⊂ (1 + |z|2)l/2Sm∞(Rpz;Rnξ ).

We can then define

21.2.1998.11421.2.1998.114 (7.3) A ∈ Ψl,m
∞−sc(Rn)⇐⇒ A = (1 + |x|2)l/2B,

B ∈ Ψm
∞(Rn) and σL(B) ∈ S0,m

∞ (Rnx ,Rnξ ).

It follows directly from this definition and the properties of the ‘traditional’ oper-
ators that the left symbol map is an isomorphism

1.2.2000.3001.2.2000.300 (7.4) σL : Ψl,m
∞−sc(Rn) −→ Sl,m∞ (Rnx ,Rnξ ).

To prove that this is an algebra, we need first the analogue of the asymptotic
completeness, Proposition

4.12
2.3, for symbols in S∗,∗∞ (Rp;Rn).

1.2.2000.292 Lemma 7.1. If aj ∈ Sl−j,m−j∞ (Rp,Rn) for j ∈ N0 then there exists

1.2.2000.2931.2.2000.293 (7.5) a ∈ Sl,m(Rp,Rn) s.t. a−
N∑
j=0

aj ∈ Sl−N,m−N∞ (Rp,Rn) ∀ N ∈ N0.

Even though there is some potential for confusion we write a ∼
∑
j

aj for a symbol

a satisfying (
1.2.2000.293
7.5).

Proof. We use the same strategy as in the proof of Proposition
4.12
2.3 with the

major difference that there are essentially two different symbolic variables. Thus
with the same notation as in (

4.15
2.54) we set

1.2.2000.2941.2.2000.294 (7.6) a =
∑
j

φ(εjz)φ(εjξ)aj(z, ξ)

and we proceed to check that if the εj ↓ 0 fast enough as j → ∞ then the series
converges in Sl,m∞ (Rp,Rn) and the limit satisfies (

1.2.2000.293
7.5).

189
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The first of the seminorms, for convergence, is

Aj = sup
z

sup
ξ

(1 + |z|)−l(1 + |ξ|)−mφ(εjz)φ(εjξ)|aj(z, ξ)|.

On the support of this function either |z| ≥ 1/εj or |ξ| ≥ 1/ε. Thus

Aj ≤ sup
z

sup
ξ

(1 + |z|)−l+j(1 + |ξ|)−m+j |aj(z, ξ)|

× sup
z

sup
ξ

(1 + |z|)−j(1 + |ξ|)−jφ(εjz)φ(εjξ)

≤ εjj sup
z

sup
ξ

(1 + |z|)−l+j(1 + |ξ|)−m+j |aj(z, ξ)|

The last term on the right is a seminorm on Sl−j,m−j∞ (Rp,Rn) so convergence follows
by choosing the εj eventually smaller than a certain sequence of positive numbers.
The same argument follows, as in the discussion leading to (

4.17
2.56), for convergence

of the series for the derivatives and also for the stronger convergence leading to
(
1.2.2000.293
7.5). Since overall this is a countable collection of conditions, all can be arranged

by diagonalization and the result follows. �

With this result on asymptotic completeness the proof of Theorem
8.2.1998.99
4.1 can be

followed closely to yield the analogous result on products. In fact we can also define
polyhomogeneous operators. This requires a little work if we try to do it directly.
However see (

1.2.2000.275
1.99) and Problem

1.2.2000.301
1.17 which encourages us to identify

1.2.2000.2971.2.2000.297 (7.7)
RC∗p×RC∗n : S0,0

ph (Rp,Rn)←→ C∞(Sp,1 × Sn,1),

Sl,mph (Rp,Rn) = (1 + |z|2)l/2(1 + |ξ|2)m/2S0,0
ph (Rp,Rn), l,m ∈ R.

These definitions are discussed as problems starting at Problem
PolyDouble
1.18. Thus we

simply define

1.2.2000.2991.2.2000.299 (7.8) Ψl,m
sc (Rn) =

{
A ∈ Ψl,m

∞−sc;σL(A) ∈ Sl,mph (Rn,Rn)
}
.

1.2.2000.295 Theorem 7.1. The spaces Ψl,m
∞−sc(Rn) (resp. Ψl,m

sc (Rn)) of scattering (resp.
polyhomogeneous scattering) pseudodifferential operators on Rn, form an order-
bifiltered ∗-algebra

1.2.2000.2961.2.2000.296 (7.9) Ψl,m
∞−sc(Rn) ◦Ψl′,m′

∞−sc(Rn) ⊂ Ψl+l′,m+m′

∞−sc (Rn)

with residual spaces

1.2.2000.3551.2.2000.355 (7.10)
⋂
l,m

Ψl,m
∞−sc(Rn) =

⋂
l,m

Ψl,m
sc (Rn)Ψ−∞iso (Rn) = S(R2n).



CHAPTER 8

Elliptic boundary problemsC.Elliptic.boundary

Summary

Elliptic boundary problems are discussed, especially for operators of Dirac type.
We start with a discussion of manifolds with boundary, including functions spaces
and distributions. This leads to the ‘jumps formula’ for the relationship of the
action of a differential operator to the operation of cutting off at the boundary;
this is really Green’s formula. The idea behind Calderòn’s approach to boundary
problems is introduced in the restricted context of a dividing hypersurface in a
manifold without boundary. This includes the fundamental result on the boundary
behaviour of a pseudodifferential operator with a rational symbol. These ideas are
then extended to the case of an operator of Dirac type on a compact manifold
with boundary with the use of left and right parametrices to define the Calderòn
projector. General boundary problems defined by pseudodifferential projections are
discussed by reference to the ‘Calderòn realization’ of the operator. Local boundary
conditions, and the corresponding ellipticity conditions, are then discussed and the
special case of Hodge theory on a compact manifold with boundary is analysed in
detail for absolute and relative boundary conditions.

Introduction

Elliptic boundary problems arise from the fact that elliptic differential operators
on compact manifolds with boundary have infinite dimensional null spaces. The
main task we carry out below is the parameterization of this null space, in terms of
boundary values, of an elliptic differential operator on a manifold with boundary.
For simplicity of presentation the discussion of elliptic boundary problems here will
be largely confined to the case of first order systems of differential operators of
Dirac type. This has the virtue that the principal results can be readily stated.

Status as of 4 August, 1998

Read through Section
S.Manifolds.boundary
8.1–Section

S.Smooth.functions.MWB
8.2: It is pretty terse in places! Several vital

sections are still missing.

8.1. Manifolds with boundaryS.Manifolds.boundary

Smooth manifolds with boundary can be defined in very much the same was as
manifolds without boundary. Thus we start with a paracompact Hausdorff space
X and assume that it is covered by ‘appropriate’ coordinate patches with corre-
sponding transition maps. In this case the ‘model space’ is Rn,1 = [0,∞) × Rn−1,
a Euclidean half-space of fixed dimension, n. As usual it is more convenient to use

191
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as models all open subsets of Rn,1; of course this means relatively open, not open
as subsets of Rn. Thus we allow any

O = O′ ∩ Rn,1, O′ ⊂ Rn open,

as local models.
By a smooth map between open sets in this sense we mean a map with a smooth

extension. Thus if Oi for i = 1, 2 are open in Rn,1 then smoothness of a map F
means that

1.6.1998.2201.6.1998.220 (8.1) F : O1 → O2, ∃ O′i ⊂ Rn, i = 1, 2, open and F̃ : O′1 → O′2

which is C∞ with Oi = O′i ∩ Rn,1 and F = F ′|O1.

It is important to note that the smoothness condition is much stronger than
just smoothness of F on O ∩ (0,∞)× Rn−1.

By a diffeomorphism between such open sets we mean an invertible smooth
map with a smooth inverse. Various ways of restating the condition that a map be
a diffeomorphism are discussed below.

With this notion of local model we define a coordinate system (in the sense of
manifolds with boundary) as a homeomorphism of open sets

X ⊃ U Φ−→ O ⊂ Rn,1, O, U open.

Thus Φ−1 is assumed to exist and both Φ and Φ−1 are assumed to be continuous.
The compatibility of two such coordinate systems (U1,Φ1, O1) and (U2,Φ2, O2) is
the requirement that either U1 ∩ U2 = φ or if U1 ∩ U2 6= φ then

Φ1,2 = Φ2 ◦ Φ−1
1 : Φ1(U1 ∩ U2)→ Φ2(U1 ∩ U2)

is a diffeomorphism in the sense described above. Notice that both Φ1(U1 ∩ U2)
and Φ2(U1 ∩ U2) are open in Rn,1. The inverse Φ1,2 is defined analogously.

A C∞ manifold with boundary can then be formally defined as a paracompact
Hausdorff topological space which has a maximal covering by mutually compatible
coordinate systems.

An alternative definition, i.e.
characterization, of a manifold with boundary is that there exists a C∞ manifold
X̃ without boundary and a function f ∈ C∞(X̃) such that df 6= 0 on {f = 0} ⊂ X̃
and

X =
{
p ∈ X̃; f(p) ≥ 0

}
,

with coordinate systems obtained by restriction from X̃. The doubling construction
described below shows that this is in fact an equivalent notion.

8.2. Smooth functionsS.Smooth.functions.MWB

As in the boundaryless case, the space of functions on a compact manifold
with boundary is the primary object of interest. There are two basic approaches to
defining local smoothness, the one intrinsic and the other extrinsic, in the style of
the two definitions of a manifold with boundary above. Thus if O ⊂ Rn,1 is open
we can simply set

C∞(O) = {u : O → C;∃ ũ ∈ C∞(O′),

O′ ⊂ Rn open, O = O′ ∩ Rn,1, u = ũ|O
}
.
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Here the open set in the definition might depend on u. The derivatives of ũ ∈
C∞(O′) are bounded on all compact subsets, K b 0. Thus

eq:F1eq:F1 (8.2) sup
K∩O◦

|Dαu| <∞, O◦ = O ∩ ((0,∞)× Rn−1).

The second approach is to use (
eq:F1
8.2) as a definition, i.e.

to set

eq:F2eq:F2 (8.3) C∞(O) = {u : O◦ → C; (
eq:F1
8.2) holds ∀ K b O and all α} .

In particular this implies the continuity of u ∈ C∞(O) up to any point p ∈ O ∩
({0} × Rn−1), the boundary of O as a manifold with boundary.

As the notation here asserts, these two approaches are equivalent. This follows
(as does much more) from a result of Seeley:

Proposition 8.1. If C∞(O) is defined by (
eq:F2
8.3) and O′ ⊂ Rn is open with

O = O′ ∩ Rn,1 then there is a linear extension map

E : C∞(O)→ C∞(O′), Eu|O′ = u

which is continuous in the sense that for each K ′ b O′, compact, there is some
K b O such that for each α

sup
K′
|DαEu| ≤ Cα,K′ sup

K∩O
|Dαu| .

The existence of such an extension map shows that the definition of a diffeo-
morphism of open sets O1, O2, given above, is equivalent to the condition that
the map be invertible and that it, and its inverse, have components which are in
C∞(O1) and C∞(O2) respectively.

Given the local definition of smoothness, the global definition should be evident.
Namely, if X is a C∞ manifold with boundary then

C∞(X) =
{
u : X → C; (Φ−1)∗(u|U ) ∈ C∞(O) ∀ coordinate systems

}
.

This is also equivalent to demanding that local regularity, i.e.
the regularity of (Φ−1)∗(u|O), hold for any one covering by admissible coordinate
systems.

As is the case of manifolds without boundary, C∞(X) admits partitions of unity.
In fact the proof of Lemma

13.9
6.3 applies verbatim; see also Problem

6.3.1998.159
6.3.

The topology of C∞(X) is given by the supremum norms of the derivatives in
local coordinates. Thus a seminorm

sup
KbO

∣∣Dα(Φ−1)∗(u|U )
∣∣

arises for each compact subset of each coordinate patch. In fact there is a countable
set of norms giving the same topology. If X is compact, C∞(X) is a Fréchet space,
if it is not compact it is an inductive limit of Fréchet spaces (an LF space).

The boundary of X, ∂X, is the union of the Φ−1(O ∩ ({0} × Rn−1)) over
coordinate systems. It is a manifold without boundary. It is compact if X is
compact. Furthermore, ∂X has a global defining function ρ ∈ C∞(X); that is
ρ ≥ 0, ∂X = {ρ = 0} and dρ 6= 0 at ∂X. Moreover if ∂X is compact then any such
boundary defining function can be extended to a product decomposition of X near
∂X:

11.6.1998.25011.6.1998.250 (8.4) ∃C ⊃ ∂X, open in X ε > 0 and a diffeomorphismϕ : C ' [0, ε)ρ × ∂X.
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If ∂X is not compact this is still possible for an appropriate choice of ρ. For an
outline of proofs see Problem

11.6.1998.251
8.1.

11.6.1998.249 Lemma 8.1. If X is a manifold with compact boundary then for any boundary
defining function ρ ∈ C∞(X) there exists ε > 0 and a diffeomorphism (

11.6.1998.250
8.4).

11.6.1998.251 Problem 8.1.

The existence of such a product decomposition near the boundary (which might
have several components) allows the doubling construction mentioned above to be
carried through. Namely, let

eq:F4eq:F4 (8.5) X̃ = (X ∪X)/∂X

be the disjoint union of two copies of X with boundary points identified. Then
consider

eq:F5eq:F5 (8.6) C∞(X̃) = {(u1, u2) ∈ C∞(X)⊕ C∞(X);

(ϕ−1)∗(u1|C) = f(ρ, ·), (ϕ−1)∗(u2|C) = f(−ρ, ·),
f ∈ C∞((−1, 1)× ∂X)} .

This is a C∞ structure on X̃ such that X ↪→ X̃, as the first term in (
eq:F4
8.5), is an

embedding as a submanifold with boundary, so

C∞(X) = C∞(X̃)|X .
In view of this possibility of extending X to X̃, we shall not pause to discuss

all the usual ‘natural’ constructions of tensor bundles, density bundles, bundles of
differential operators, etc. They can simply be realized by restriction from X̃. In
practice it is probably preferable to use intrinsic definitions.

The definition of C∞(X) implies that there is a well-defined restriction map

C∞(X) 3 u 7−→ u|∂X ∈ C∞(∂X).

It is always surjective. Indeed the existence of a product decomposition shows that
any smooth function on ∂X can be extended locally to be independent of the chosen
normal variable, and then cut off near the boundary.

There are important points to observe in the description of functions near
the boundary. We may think of C∞(X) ⊂ C∞(X◦) as a subspace of the smooth
functions on the interior of X which describes the ‘completion’ (compactification if
X is compact!) of the interior to a manifold with boundary. It is in this sense that
the action of a differential operator P ∈ Diffm(X)

P : C∞(X)→ C∞(X)

should be understood. Thus P is just a differential operator on the interior of X
with ‘coefficients smooth up to the boundary.’

Once this action is understood, there is an obvious definition of the space of
C∞ functions which vanish to all orders at the boundary,

Ċ∞(X) = {u ∈ C∞(X);Pu|∂X = 0 ∀ P ∈ Diff∗(X)} .
Having chosen a product decomposition near the boundary, Taylor’s theorem gives
us an isomorphism

C∞(X)/Ċ∞(X) ∼=
⊕
k≥0

C∞(∂X) · [dρ|∂X ]k.



8.3. DISTRIBUTIONS 195

8.3. DistributionsS.Distributions.MWB

It is somewhat confusing that there are three (though really only two) spaces of
distributions immediately apparent on a compact manifold with boundary. Under-
standing the relationship between them is important to the approach to boundary
problems used here.

The coarsest (as it is a little dangerous to say largest) space is C−∞(X◦),
the dual of C∞c (X◦; Ω), just the space of distributions on the interior of X. The
elements of C−∞(X◦) may have unconstrained growth, and unconstrained order of
singularity, approaching the boundary. They are not of much practical value here
and appear for conceptual reasons.

Probably the most natural space of distributions to consider is the dual of
C∞(X; Ω) since this is arguably the direct analogue of the boundaryless case. We
shall denote this space

eq:D1eq:D1 (8.7) Ċ−∞(X) = (C∞(X; Ω))′

and call it the space of supported distributions. The ‘dot’ is supposed to indicate
this support property, which we proceed to describe.

If X̃ is any compact extension of X (for example the double) then, as already

noted, the restriction map C∞(X̃; Ω) → C∞(X; Ω) is continuous and surjective.
Thus, by duality, we get an injective ‘extension’ map

eq:D2eq:D2 (8.8) Ċ−∞(X) 3 u 7→ ũ ∈ C−∞(X̃), ũ(ϕ) = u(ϕ|X).

We shall regard this injection as an identification Ċ−∞(X) ↪→ C−∞(X̃); its range
is easily characterized.

prop:D4 Proposition 8.2. The range of the map (
eq:D2
8.8) is the subspace consisting of

those ũ ∈ C−∞(X̃) with supp ũ ⊂ X.

The proof is given below. This proposition is the justification for calling
Ċ−∞(X) the space of supported distributions; the dot is support to indicate that

this is the subspace of the ‘same’ space for X̃, i.e.
C−∞(X̃), of elements with support in X.

This notation is consistent with Ċ∞(X) ⊂ C∞(X̃) being the subspace (by
extension as zero) of elements with support in X. The same observation applies to
sections of any vector bundle, so

Ċ∞(X; Ω) ⊂ C∞(X̃; Ω)

is a well-defined closed subspace. We set

eq:D5eq:D5 (8.9) C−∞(X) = (Ċ∞(X; Ω))′

and call this the space of extendible distributions on X. The inclusion map for the
test functions gives by duality a restriction map:

eq:D6eq:D6 (8.10) RX : C−∞(X̃)→ C−∞(X),

RXu(ϕ) = u(ϕ) ∀ ϕ ∈ Ċ∞(X; Ω) ↪→ C∞(X̃; Ω).

We write, at least sometimes, RX for the map since it has a large null space so
should not be regarded as an identification. In fact

eq:D7eq:D7 (8.11) Nul(RX) =
{
v ∈ C−∞(X̃); supp(v) ∩X◦ = φ

}
= Ċ−∞(X̃\X◦),
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is just the space of distributions supported ‘on the other side of the boundary’. The
primary justification for calling C−∞(X) the space of extendible distributions is:

prop:D8 Proposition 8.3. If X is a compact manifold with boundary, then the space
C∞c (X◦; Ω) is dense in Ċ∞(X; Ω) and hence the restriction map

eq:D9eq:D9 (8.12) C−∞(X) ↪→ C−∞(X◦)

is injective, whereas the restriction map from (
eq:D6
8.10), RX : Ċ−∞(X) −→ C−∞(X),

is surjective.

Proof. If V is a real vector field on X̃ which is inward-pointing across the
boundary then

exp(sV ) : X̃ → X̃

is a diffeomorphism with Fs(X) ⊂ X◦ for s > 0. Furthermore if ϕ ∈ C∞(X̃) then

F ∗s ϕ → ϕ in C∞(X̃) as s → 0. The support property shows that F ∗s ϕ ∈ C∞c (X◦)

if s < 0 and ϕ ∈ Ċ∞(X). This shows the density of C∞c (X◦) in Ċ∞(X). Since
all topologies are uniform convergence of all derivatives in open sets. The same
argument applies to densities. The injectivity of (

eq:D9
8.12) follows by duality.

On the other hand the surjectivity of (
eq:D6
8.10) follows directly from the Hahn-

Banach theorem. �

Proof of Proposition
prop:D4
8.2. For ũ ∈ C−∞(X̃) the condition that supp ũ ⊂ X

is just

eq:D10eq:D10 (8.13) ũ(ϕ) = 0 ∀ ϕ ∈ C∞c ⊂ (X̃\X; Ω) ⊂ C∞(X̃; Ω).

Certainly (
eq:D10
8.13) holds if u ∈ Ċ−∞(X) since ϕ|X = 0. Conversely, if (

eq:D10
8.13)

holds, then by continuity and the density of C∞c (X̃\X; Ω) in C∞(X̃\X◦; Ω), what

follows from Proposition
prop:D8
8.3, ũ vanishes on Ċ∞(X\X◦). �

It is sometimes useful to consider topologies on the spaces of distributions
C−∞(X) and Ċ−∞(X). For example we may consider the weak topology. This is
given by all the seminorms u 7→ ‖〈u, φ〉‖, where φ is a test function.

11.6.1998.252 Lemma 8.2. With respect to the weak topology, the subspace C∞c (X◦) is dense

in both Ċ−∞(X) and C−∞(X).

8.4. Boundary TermsS.Boundary.terms

To examine the precise relationship between the supported and extendible dis-
tributions consider the space of ‘boundary terms’.

BT1BT1 (8.14) Ċ−∞∂X (X) =
{
u ∈ Ċ−∞(X); supp(u) ⊂ ∂X

}
.

Here the support may be computed with respect to any extension, or intrinsically
on X. We may also define a map ‘cutting off’ at the boundary:

BT2BT2 (8.15) C∞(X) 3 u 7→ uc ∈ Ċ−∞(X), uc(ϕ) =

∫
X

uϕ ∀ ϕ ∈ C∞(X; Ω).
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BT3 Proposition 8.4. If X is a compact manifold with boundary then there is a
commutative diagram

BT4BT4 (8.16) Ċ∞(X)

��
C∞(X)

()c

yy ��
0 // Ċ−∞∂X (X) // Ċ−∞(X) // C−∞(X) // 0

with the horizontal sequence exact.

Proof. The commutativity of the triangle follows directly from the definitions.
The exactness of the horizontal sequence follows from the density of C∞c (X◦; Ω) in

Ċ∞(X; Ω). Indeed, this shows that v ∈ Ċ−∞∂X (X) maps to 0 in C−∞(X) since

v(ϕ) = 0 ∀ ϕ ∈ C∞c (X◦; Ω). Similarly, if u ∈ Ċ−∞(X) maps to zero in C−∞(X)
then u(ϕ) = 0 for all ϕ ∈ C∞c (X◦; Ω), so supp(u) ∩X◦ = ∅. �

Note that both maps in (
BT4
8.16) from C∞(X) into supported and extendible

distributions are injective. We regard the map into C−∞(X) as an identification.
In particular this is consistent with the action of differential operators. Thus P ∈
Diffm(X) acts on C∞(X) and then the smoothness of the coefficients of P amount
to the fact that it preserves C∞(X), as a subspace. The formal adjoint P ∗ with
respect to the sesquilinear pairing for some smooth positive density, ν

BT5BT5 (8.17) 〈ϕ,ψ〉 =

∫
X

ϕψν ∀ ϕ,ψ ∈ C∞(X)

acts on Ċ∞(X):

BT6BT6 (8.18) 〈P ∗ϕ,ψ〉 = 〈ϕPψ〉 ∀ ϕ ∈ Ċ∞(X), ψ ∈ C∞(X), P ∗ : Ċ∞(X) −→ Ċ∞(X).

However, P ∗ ∈ Diffm(X) is fixed by its action over X◦. Thus we do have

BT7BT7 (8.19) 〈P ∗ϕ,ψ〉 = 〈ϕ, Pψ〉 ∀ ϕ ∈ C∞(X), ψ ∈ Ċ∞(X).

We define the action of P by duality. In view of the possibility of confusion,
we denote P the action on C−∞(X) and by Ṗ the action on Ċ∞(X).

BT8BT8 (8.20)

〈Pu, ϕ〉 = 〈u, P ∗ϕ〉 ∀ u ∈ C−∞(X), ϕ ∈ Ċ∞(X), P : C−∞(X) −→ C−∞(X)

〈Ṗ u, ϕ〉 = 〈u, P ∗ϕ〉 ∀ u ∈ Ċ−∞(X), ϕ ∈ C∞(X), Ṗ : Ċ−∞(X) −→ Ċ−∞(X).

It is of fundamental importance that (
BT7
8.19) does not hold for all ϕ,ψ ∈ C∞(X).

This failure is reflected in Green’s formula for the boundary terms, which appears
below as the ‘Jump formula’. This is a distributional formula for the difference

BT9BT9 (8.21) Ṗ uc − (Pu)c ∈ Ċ−∞∂X , u ∈ C∞(X)P ∈ Diffm(X).

Recall that a product decomposition of C ⊂ X near ∂X is fixed by an inward
pointing vector field V. Let x ∈ C∞(X) be a corresponding boundary defining
function, with V x = 0 near ∂X, with χV : C → ∂X the projection onto the



198 8. ELLIPTIC BOUNDARY PROBLEMS

boundary from the product neighborhood C. Then Taylor’s formula for u ∈ C∞(X)
becomes

BT10BT10 (8.22) u ∼
∑
k

1

k!
χ∗V (V ku|∂x)xk.

It has the property that a finite sum

uN = ϕu− ϕ
N∑
k=0

1

k!
χ∗V (V ku|∂X)xk

where ϕ ≡ 1 near ∂X, suppϕ ⊂ C, satisfies

BT11BT11 (8.23) Ṗ (uN )c = (PuN )c, P ∈ Diffm(X),m < N.

Since (1− ϕ)u ∈ Ċ∞(X) also satisfies this identity, the difference in (
BT9
8.21) can (of

course) only depend on the V ku|∂X for k ≤ m, in fact only for k < m.

Consider the Heaviside function 1c ∈ Ċ−∞(X), detained by cutting off the
identity function of the boundary. We define distributions

BT12BT12 (8.24) δ(j)(x) = V j+11c ∈ Ċ−∞∂X , j ≥ 0.

Thus, δ(0)(x) = δ(x) is a ‘Dirac delta function’ at the boundary. Clearly supp δ(x) ⊂
∂X, so the same is true of δ(j)(x) for every j. If ψ ∈ C∞(∂X) we define

BT13BT13 (8.25) ψ · δ(j)(x) = ϕ(X∗V ψ) · δ(j)(x) ∈ Ċ−∞∂X (X).

This, by the support property of δ(j), is independent of the cut off ϕ used to define
it.

BT14 Proposition 8.5. For each P ∈ Diffm(X) there are differential operators on

the boundary Pij ∈ Diffm−i−j−1(∂X), i+ j < m, i, j ≥ 0, such that

BT15BT15 (8.26) Ṗ uc − (Pu)c =
∑
i,j

(Pij(V
j
u |∂X) · δ(j)(x), ∀ u ∈ C∞(X),

and P0m−1 = i−mσ(P, dx) ∈ C∞(∂X).

Proof. In the local product neighborhood C,

BT16BT16 (8.27) P =
∑

0≤l≤m

PlV
l

where Pl is a differential operator of the order at most m− l, on X be depending on
x as a parameter. Thus the basic cases we need to analyze arise from the application
of V to powers of x :

BT17BT17 (8.28) xl
(
V j+1(xp)c − (V j+1xp)c

)
=

{
0 l + p > j

p!(j−p)!
(j−p−l)! (−1)lδ

(j−p−l) l + p ≤ j.

Taking the Taylor sense of the Pl,

Pl ∼
∑
r

xrPl,r

and applying P to (
BT10
8.22) gives

BT18BT18 (8.29) Puc − (Pu)c =
∑
r+k<l

(−1)r(Pl,r(V
ku|∂x)) δ(l−1−r−k)(x).
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This is of the form (
BT15
8.26). The only term with l − 1 − r − k = m − 1 arises from

l −m, k = r = 0 so is the operator Pm at x = 0. This is just i−mσ(P, dx). �

8.5. Sobolev spacesS.Sobolev.boun

As with C∞ functions we may define the standard (extendible) Sobolev spaces

by restriction or intrinsically. Thus, if X̃ is an extension of a compact manifold
with boundary, X, the we can define

11.6.1998.25311.6.1998.253 (8.30) Hm(X) = Hm
c (X̃)|X, ∀ m ∈ R;Hm(X) ⊂ C−∞(X).

That this is independent of the choice of X̃ follows from the standard properties
of the Sobolev spaces, particularly their localizability and invariance under diffeo-
morphisms. The norm in Hm(X) can be taken to be

11.6.1998.25411.6.1998.254 (8.31) ‖u‖m = inf
{
‖ũ‖Hm(X̃); ũ ∈ H

m(X̃), u = ũX

}
.

A more intrinsic defintion of these spaces is discussed in the problems.
There are also supported Sobolev spaces,

11.6.1998.25511.6.1998.255 (8.32) Ḣm(X) =
{
u ∈ Hm(X̃); supp(u) ⊂ X

}
⊂ Ċ−∞(X).

Sobolev space of sections of any vector bundle can be defined similarly.

11.6.1998.256 Proposition 8.6. For any m ∈ R and any compact manifold with boundary
X, Hm(X) is the dual of Ḣ−m(X; Ω) with respect to the continuous extension of
the densely defined bilinear pairing

(u, v) =

∫
X

uv, u ∈ C∞(X), v ∈ Ċ∞(X; Ω).

Both Hm(X) and Ḣm(X) are C∞(X)-modules and for any vector bundle over

X, Hm(X;E) ≡ Hm(X) ⊗C∞(X) C∞(X;E) and Ḣm(X;E) ≡ Ḣm(X) ⊗C∞(X)

C∞(X;E).

Essentially from the definition of the Sobolev spaces, any P ∈ Diffk(X;E1, E2)
defines a continuous linear map

11.6.1998.25711.6.1998.257 (8.33) P : Hm(X;E1) −→ Hm−k(X;E2).

We write the dual (to P ∗ of course) action

11.6.1998.25811.6.1998.258 (8.34) Ṗ : Ḣm(X;E1) −→ Ḣm−k(X;E2).

These actions on Sobolev spaces are consistent with the corresponding actions on
distributions. Thus

C−∞(X;E) =
⋃
m

Hm(X), C∞(X;E) =
⋂
m

Hm(X),

Ċ−∞(X;E) =
⋃
m

Ḣm(X), Ċ∞(X;E) =
⋂
m

Ḣm(X).
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8.6. Dividing hypersurfacesS.Dividing.hypersurfaces

As already noted, the point of view we adopt for boundary problems is that
they provide a parametrization of the space of solutions of a differential opera-
tor on a space with boundary. In order to clearly indicate the method pioneered
by Calderòn, we shall initially consider the restrictive context of an operator of
Dirac type on a compact manifold without boundary with an embedded separating
hypersurface.

Thus, suppose initially that D is an elliptic first order differential operator act-
ing between sections of two (complex) vector bundles V1 and V2 over a compact
manifold without boundary, M. Suppose further that H ⊂ M is a dividing hyper-
surface. That is, H is an embedded hypersuface with oriented (i.e. trivial) normal
bundle and that M = M+ ∪M− where M± are compact manifolds with boundary
which intersect in their common boundary, H. The convention here is that M+ is
on the positive side of H with respect to the orientation.

In fact we shall make a further analytic assumption, that

11.4.1998.19511.4.1998.195 (8.35) D : C∞(M ;V1) −→ C∞(M ;V2) is an isomorphism.

As we already know, D is always Fredholm, so this implies the topological condi-
tion that the index vanish. However we only assume (

11.4.1998.195
8.35) to simplify the initial

discussion.
Our objective is to study the space of solutions on M+. Thus consider the map

11.4.1998.19611.4.1998.196 (8.36)
{
u ∈ C∞(M+;V1);Du = 0 in M◦+

} bH−→ C∞(H;V1), bHu = u|∂M+
.

The idea is to use the boundary values to parameterize the solutions and we can
see immediately that this is possible.

11.4.1998.197 Lemma 8.3. The assumption (
11.4.1998.195
8.35) imples that map bH in (

11.4.1998.196
8.36) is injective.

Proof. Consider the form of D in local coordinates near a point of H. Let the
coordinates be x, y1, . . . , yn−1 where x is a local defining function for H and assume
that the coordinate patch is so small that V1 and V2 are trivial over it. Then

D = A0Dx +

n−1∑
j=1

AjDyj +A′

where the Aj and A′ are local smooth bundle maps from V1 to V2. In fact the
ellipticity of D implies that each of the Aj ’s is invertible. Thus the equation can
be written locally

Dxu = Bu, B = −
n−1∑
j=1

A−1
0 Dyj −A−1

0 A′.

The differential operator B is tangent to H. By assumption u vanishes when re-
stricted to H so it follows that Dxu also vanishes at H. Differentiating the equation
with respect to x, it follows that all derivatives of u vanish at H. This in turn
implies that the global section of V1 over M

ũ =

{
u in M+

0 in M−

is smooth and satisfies Dũ = 0. Then assumption (
11.4.1998.195
8.35) implies that ũ = 0, so

u = 0 in M+ and bH is injective. �
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In the proof of this Lemma we have used the strong assumption (
11.4.1998.195
8.35). As

we show below, if it is assumed instead that D is of Dirac type then the Lemma
remains true without assuming (

11.4.1998.195
8.35). Now we can state the basic result in this

setting.

29.3.1998.187 Theorem 8.1. If M = M+ ∪ M− is a compact manifold without boundary
with separating hypersurface H as described above and D ∈ Diff1(M ;V1, V2) is a
generalized Dirac operator then there is an element ΠC ∈ Ψ0(H;V ), V = V1|H,
satisfying Π2

C = ΠC and such that

29.3.1998.19329.3.1998.193 (8.37) bH : {u ∈ C∞(M+;V1);Du = 0} −→ ΠCC∞(H;V )

is an isomorphism. The projection ΠC can be chosen so that

11.4.1998.19811.4.1998.198 (8.38) bH : {u ∈ C∞(M−;V1);Du = 0} −→ (Id−ΠC)C∞(H;V )

then ΠC is uniquely determined and is called the Calderòn projection.

This result remains true for a general elliptic operator of first order if (
11.4.1998.195
8.35)

is assumed, and even in a slightly weakened form without (
11.4.1998.195
8.35). Appropriate

modifications to the proofs below are consigned to problems.
For first order operators the jump formula discussed above takes the following

form.

11.4.1998.202 Lemma 8.4. Let D be an elliptic differential operator of first order on M, acting
between vector bundles V1 and V2. If u ∈ C∞(M+;V1) satisfies Du = 0 in M◦+ then

11.4.1998.20311.4.1998.203 (8.39) Duc =
1

i
σ1(D)(dx)(bHu) · δ(x) ∈ C−∞(M ;V2).

Since the same result is true for M−, with an obvious change of sign, D defines
a linear operator

11.4.1998.20511.4.1998.205 (8.40) D :
{
u ∈ L1(M ;V1);u± = u|M± ∈ C∞(M±;V1), Du± = 0 in M◦±

}
−→

1

i
σ(D)(dx)(bHu+ − bHu−) · δ(x) ∈ C∞(H;V2) · δ(x).

To define the Calderòn projection we shall use the ‘inverse’ of this result.

11.4.1998.204 Proposition 8.7. If D ∈ Diff1(M ;V1, V2) is elliptic and satisfies (
11.4.1998.195
8.35) then

(
11.4.1998.205
8.40) is an isomorphism, with inverse ID, and

11.4.1998.20611.4.1998.206 (8.41) ΠCv = bH

(
ID

1

i
σ(D)(dx)v · δ(x)

)
+

, v ∈ C∞(H;V1),

satisfies the conditions of Theorem
29.3.1998.187
8.1.

Proof. Observe that the map (
11.4.1998.205
8.40) is injective, since its null space consists

of solutions of Du = 0 globally on M ; such a solution must be smooth by elliptic
regularity and hence must vanish by the assumed invertibility of D. Thus the main
task is to show that D in (

11.4.1998.205
8.40) is surjective.

Since D is elliptic and, by assumption, an isomorphism on C∞ sections over
M it is also an isomorphism on distributional sections. Thus the inverse of (

11.4.1998.205
8.40)

must be given by D−1. To prove the surjectivity it is enough to show that

13.4.1998.20713.4.1998.207 (8.42) D−1(w · δ(x))|M± ∈ C∞(M±;V1) ∀ w ∈ C∞(H;V2).

There can be no singular terms supported on H since w ·δ(x) ∈ H−1(M ;V2) implies
that u = D−1(w · δ(x)) ∈ L2(M ;V1).
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Now, recalling that D−1 ∈ Ψ−1(M ;V2, V1), certainly u is C∞ away from H.
At any point of H outside the support of w, u is also smooth. Since we may
decompose w using a partition of unity, it suffices to suppose that w has support in
a small coordinate patch, over which both V1 and V2 are trivial and to show that
u is smooth ‘up to H from both sides’ in the local coordinate patch. Discarding
smoothing terms from D−1 we may therefore replace D−1 by any local parametrix
Q for D and work in local coordinates and with components:

13.4.1998.20813.4.1998.208 (8.43)

Qij(wj(y) · δ(x)) = (2π)−n
∫
ei(x−x

′)ξ+i(y−y′)·ηqij(x, y, ξ, η)w(y′)δ(x′)dx′dy′dξdη.

For a general pseudodifferential operator, even of order −1, the result we are seeking
is not true. We must use special properties of the symbol of Q, that is D−1.

8.7. Rational symbolsS.Rational.symbols

13.4.1998.209 Lemma 8.5. The left-reduced symbol of any local parametrix for a generalized
Dirac operator has an expansion of the form

13.4.1998.21013.4.1998.210 (8.44)

qij(z, ζ) =

∞∑
l=1

g(z, ζ)−2l+1pij,l(z, ζ) with pij,l a polynomial of degree 3l − 2 in ζ;

here g(z, ζ) is the metric in local coordinates; each of the terms in (
13.4.1998.210
8.44) is therefore

a symbol of order −l.

Proof. This follows by an inductive arument, of a now familiar type. First,
the assumption that D is a generalized Dirac operator means that its symbol
σ1(D)(z, ζ) has inverse g(z, ζ)−1σ1(D)∗(z, ζ); this is the princiapl symbol of Q.
Using Leibniz’ formula one concludes that for any polynomial rl of degree j

∂ζi
(
g(z, ζ)−2l+1rj(z, ζ)

)
= g(z, ζ)−2lr′j+1(z, ζ)

where rj+1 has degree (at most) j+ 1. Using this result repeatedly, and proceeding
by induction, we may suppose that q = q′k + q′′k+1 where q′k has an expansion up
to order k, and so may be taken to be such a sum, and q′′k+1 is of order at most
−k − 1. The composition formula for left-reduced symbols then shows that

σ1(D)q′′k+1 ≡ g−2kqk+1 mod S−k−1

where qk+1 is a polynomial of degree at most 3k. Inverting σ1(D)(ζ) as at the initial
step then shows that q′′k+1 is of the desired form, g−2k−1rk+1 with rk+1 of degree
3k + 1 = 3(k + 1) − 2, modulo terms of lower order. This completes the proof of
the lemma. �

With this form for the symbol of Q we proceed to the proof of Proposition
11.4.1998.204
8.7.

That is, we consider (
13.4.1998.208
8.43). Since we only need to consider each term, we shall

drop the indicies. A term of low order in the amplitude qN gives an operator with
kernel in CN−d. Such a kernel gives an operator

C∞(H;V2) −→ CN−d(M ;V1)

with kernel in CN−d. The result we want will therefore follow if we show that each
term in the expansion of the symbol q gives an operator as in (

13.4.1998.207
8.42).

To be more precise, we can assume that the amplitude q is of the form

q = (1− φ)g−2lq′
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where q′ is a polynomial of degree 3l − 2 and φ = φ(ξ, η) is a function of compact
support which is identically one near the origin. The cutoff function is to remove
the singularity at ζ = (ξ, η) = 0. Using continuity in the symbol topology the
integrals in x′ and y′ can be carried out. By assumption w ∈ C∞c (Rn−1), so the
resulting integral is absolutely convergent in η. If l > 1 it is absolutely convergent
in ξ as well, so becomes

Q(w(y) · δ(x)) = (2π)−n
∫
eixξ+iy·ηq(x, y, ξ, η)ŵ(η)dξdη.

In |ξ| > 1 the amplitude is a rational function of ξ, decaying quadratically as
ξ →∞. If we assume that x > 0 then the exponential factor is bounded in the half
plane =ξ ≥ 0. This means that the limit as R → ∞ over the integral in =ξ ≥ 0
over the semicircle |ξ| = R tends to zero, and does so with uniform rapid decrease
in η. Cauchy’s theorem shows that, for R > 1 the real integral in ξ can be replaced
by the contour integral over γ(R), which is, forR >> |η| given by the real interval
[−R,R] together with the semicircle of radius R in the upper half plane. If |η| > 1
the integrand is meromorphic in the upper half plane with a possible pole at the
singular point g(x, y, ξ, η) = 0; this is at the point ξ = ir

1
2 (x, y, η) where r(x, y, η)

is a positive-definite quadratic form in η. Again applying Cauchy’s theorem

Q(w(y)δ(x) = (2π)−n+1i

∫
exr

1
2 (x,y,η)+iy·ηq′(x, y, η)ŵ(η)dη

where q′ is a symbol of order −k + 1 in η.

The product exr
1
2 (x,y,η)q′(x, y, η) is uniformly a symbol of order −k+1 in x > 1,

with x derivatives of order p being uniformly symbols of order −k+1+p. It follows
from the properties of pseudodifferential operators that Q(w · δ(x)) is a smooth
function in x > 0 with all derivatives locally uniformly bounded as x ↓ 0.

8.8. Proofs of Proposition
11.4.1998.204
8.7 and Theorem

29.3.1998.187
8.1S.Proofs.204.187

This completes the proof of (
13.4.1998.207
8.42), since a similar argument applies in x < 0,

with contour deformation into the lower half plane. Thus we have shown that
(
11.4.1998.205
8.40) is an isomorphism which is the first half of the statement of Proposition

(
11.4.1998.204
8.7). Furthermore we see that the limiting value from above is a pseudodifferential

operator on H :

13.4.1998.21113.4.1998.211 (8.45) Q0w = lim
x↓0

D−1(w · δ(x)), Q0 ∈ Ψ0(H;V2, V1).

This in turn implies that ΠC , defined by (
11.4.1998.206
8.41) is an element of Ψ0(H;V1), since it

is Q0 ◦ 1
i σ(D)(dx).

Next we check that ΠC is a projection, i.e.
that Π2

C = ΠC . If w = ΠCv, v ∈ C∞(H;V1), then w = bHu, u = ID
1
i σ(D)(dx)v|M+

,
so u ∈ C∞(M+;V1) satisfies Du = 0 in M◦+. In particular, by (

11.4.1998.203
8.39), Puc =

1
i σ1(D)(dx)w · δ(x), which means that w = ΠCw so Π2

C = ΠC . This also shows
that the range of ΠC is precisely the range of bH as stated in (

29.3.1998.193
8.37). The same

argument shows that this choice of the projection gives (
11.4.1998.198
8.38). �

8.9. InversesS.Operators

Still for the case of a generalized Dirac operator on a compact manifold with
dividing hypersurface, consider what we have shown. The operator D defines a
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map in (
11.4.1998.203
8.39) with inverse

3.6.1998.2213.6.1998.221 (8.46) ID : {v ∈ C∞(H;V1); ΠCv = v} −→ {u ∈ C∞(M+;V1);Du = 0 in M+}.

This operator is the ‘Poisson’ operator for the canonical boundary condition given
by the Calderòn operator, that is u = IDv is the unique solution of

3.6.1998.2223.6.1998.222 (8.47) Du = 0 in M+, u ∈ C∞(M+;V1), ΠCbHu = v.

We could discuss the regularity properties of ID but we shall postpone this until
after we have treated the ‘one-sided’ case of a genuine boundary problem.

As well as ID we have a natural right inverse for the operator D as a map from
C∞(M+;V1) to C∞(M−;V2). Namely

3.6.1998.223 Lemma 8.6. If f ∈ C∞(M+;V2) then u = D−1(fc)|M+ ∈ C∞(M+;V1) and the
map RD : f 7−→ u is a right inverse for D, i.e.
D ◦RD = Id .

Proof. Certainly D(D−1(fc) = fc, so u = D−1(fc)|M+
∈ C−∞(M+;V1) sat-

ifies Du = f in the sense of extendible distributions. Since f ∈ C∞(M+;V2) we
can solve the problem Du ≡ f in the sense of Taylor series at H, with the con-
stant term freely prescibable. Using Borel’s lemma, let u′ ∈ C∞(M+;V1) have the

appropriate Taylor series, with bHu
′ = 0.. Then D(u′c) − fc = g ∈ Ċ∞(M +; V2).

Thus u′′ = D−1g ∈ C∞(M ;V1). Since D(u′ − u′′) = fc, the uniqueness of solutions
implies that u = (u′ − u′′)|M+

∈ C∞(M+;V1). �

Of course RD cannot be a two-sided inverse to D since it has a large null space,
described by ID.

3.6.1998.226 Problem 8.2. Show that, for D as in Theorem
29.3.1998.187
8.1 if f ∈ C∞(M+;V2) and v ∈

C∞(H;V1) there exists a unique u ∈ C∞(M+;V2) such that Du = f in C∞(M+;V2)
and bHu = ΠCv.

8.10. Smoothing operatorsS.Smoothing.operators

The properties of smoothing operators on a compact manifold with boundary
are essentially the same as in the boundaryless case. Rather than simply point to
the earlier discussion we briefly repeat it here, but in an abstract setting.

Let H be a separable Hilbert space. In the present case this would be L2(X)
or L2(X;E) for some vector bundle over X, or some space Hm(X;E) of Sobolev
sections. Let B = B(H) be the algebra of bounded operators on H and K = K(H)
the ideal of compact operators. Where necessary the norm on B will be written
‖ ‖B; K is a closed subspace of B which is the closure of the ideal F = F(H) of
finite rank bounded operators.

We will consider a subspace J = J (H) ⊂ B with a stronger topology. Thus we
suppose that J is a Fréchet algebra. That is, it is a Fréchet space with countably
many norms ‖ ‖k such that for each k there exists k′ and Ck with

SO1SO1 (8.48) ‖AB‖k ≤ Ck‖A‖k′‖B‖k′ ∀ A,B ∈ J .

In particular of course we are supposing that J is a subalgebra (but not an ideal)
in B. To make it a topological *-subalgebra we suppose that

SO2SO2 (8.49) ‖A‖B ≤ C‖A‖k ∀ A ∈ J , ∗ : J −→ J .
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In fact we may suppose that k = 0 by renumbering the norms. The third condition
we impose on J implies that it is a subalgebra of K, namely we insist that

SO3SO3 (8.50) F ∩ J is dense in J ,
in the Fréchet topology. Finally, we demand, in place of the ideal property, that J
be a bi-ideal in B (also called a ‘corner’) that is,

A1, A2 ∈ J , B ∈ B =⇒ A1BA2 ∈ J ,(8.51)

∀ k ∃ k′ such that ‖A1BA2‖k ≤ C‖A1‖k′‖B‖B‖A2‖k′ .
SO5 Proposition 8.8. The space of operators with smooth kernels acting on sec-

tions of a vector bundle over a compact manifold satisfies (
SO1
8.48)–(

SO4
8.52) with H =

Hm(X;E) for any vector bundle E.

Proof. The smoothing operators on sections of a bundle E can be written as
integral operators

SO6SO6 (8.52) Au(x) =

∫
E

A(x, y)u(y), A(x, y) ∈ C∞(X2; Hom(E)⊗ ΩR).

Thus J = C∞(X2; Hom(E)⊗ΩR) and we make this identification topological. The
norms are the Ck norms. If P1, . . . , pN(m) is a basis, on C∞(X2), for the differential
operators of order m on Hom(E)⊗ ΩL then we may take

SO7SO7 (8.53) ‖A‖m = sup
j
‖PjA‖L∞

for some inner products on the bundles. In fact Hom(E) = π∗LE ⊗ π∗RE∗ from it
which follows easily that this is a basis Pj = Pj,k ⊗ Pj,R decomposing as products.
From this (

SO1
8.48) follows easily since

SO8SO8 (8.54) ‖AB‖m = sup
j
‖(PjLA) · (Pj,RB)‖∞‖AB‖L∞ ≤ C‖A‖L∞‖B‖L∞

by the compactnes of X. From this (
SO7
8.53) follows with k = 0.

The density (
SO3
8.50) is the density of the finite tensor product C∞(X;E) ⊗ C∞

(X;E∗ ⊗ ΩL) in C∞(X2; Hom(E)⊗ ΩL). This follows from the boundaryless case
by doubling (or directly). Similarly the bi-ideal condition (

SO4
8.52) can be seen from

the regularity of the kernel. A more satisfying argument using distribution theory
follows from the next result.

�

SO9 Proposition 8.9. An operator A : Ċ∞(X;E) → C−∞(X;F ) is a smoothing

operator if and only if it extends by continuity to Ċ−∞(X;E) and then has range
in C∞(X;F ) ↪→ C−∞(X;F ).

Proof. If A has the stated mapping property then compose with a Seeley
extension operator, then EA = Ã is a continuous linear map

Ã : Ċ−∞(X;E)→ C∞(X̃; F̃ ),

for an extension of F to F̃ over the double X̃. Localizing in the domain to trivialize
E and testing with a moving delta function we recover the kernel of Ã as

Ã(x, y) = Ã · δy ∈ C∞(X̃; F̃ ).

Thus it follows that Ã ∈ C∞(X̃ × X; Hom(E, F̃ ) ⊗ ΩR). The converse is more
obvious.

�
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Returning to the general case of a bi-ideal as in (
SO1
8.48)–(

SO4
8.52) we may consider

the invertibility of Id +A, A ∈ J .

SO10 Proposition 8.10. If A ∈ J , satisfying (
SO1
8.48)–(

SO4
8.52), then Id +A has a gen-

eralized inverse of the form Id +B, B ∈ J , with

AB = Id−πR, BA = Id−πL ∈ J ∩ F

both finite rank self-adjoint projections.

Proof. Suppose first that A ∈ J and ‖A‖B < 1. Then Id +A is invertible in
B with inverse Id+B ∈ B,

SO11SO11 (8.55) B =
∑
j≥1

(−1)jAj .

Not only does this Neumann series converge in B but also in J since for each k

SO12SO12 (8.56) ‖Aj‖k ≤ Ck‖A‖k′‖Aj−2‖B‖A‖k′ ≤ C ′k‖A‖
j−2
B , j ≥ 2.

Thus B ∈ J , since by assumption J is complete (being a Fréchet space). In this
case Id +B ∈ B is the unique two-sided inverse.

For general A ∈ J we use the assumed approximability in (
SO3
8.50). Then A =

A′ + A′′ when A′ ∈ F ∩ J and ‖A′′‖B ≤ C‖A′′‖k < 1 by appropriate choice. It
follows that Id +B′′ = (Id +A′′)−1 is the inverse for Id +A′′ and hence a parameterix
for Id +A:

(Id +B′′)(Id +A) = Id +A′ +B′′A′(8.57)

(Id +A)(Id +B′′) = Id +A′ +A′B′′

with both ‘error’ terms in F ∩ J . �Unfinished.

Lemma on

subprojec-

tions. 8.11. Left and right parametrices

Suppose that H1 and H2 are Hilbert spaces and A : H1 −→ H2 is a bounded
linear operator between them. Let J1 ⊂ B(H1) and J2 ⊂ B(H2) be bi-ideals as in
the previous section. A left parametrix for A, modulo J1, is a bounded linear map
BL : H2 −→ H1 such that

8.6.1998.2438.6.1998.243 (8.58) BL ◦A = Id +JL, JL ∈ J1.

Similarly a right parametrix for A, modulo J2 is a bounded linear map BR : H2 −→
H1 such that

8.6.1998.2448.6.1998.244 (8.59) A ◦BR = Id +JR, JR ∈ J2.

8.6.1998.245 Proposition 8.11. If a bounded linear operator A : H1 −→ H2 has a left
parametrix BL modulo a bi-ideal J1, satisfying (

SO1
8.48)–(

SO4
8.52), then A has closed

range, null space of finite dimension and there is a generalized left inverse, differing
from the original left parametrix by a term in J1, such that

8.6.1998.2478.6.1998.247 (8.60) BL ◦A = Id−πL, πL ∈ J1 ∩ F ,

with πL the self-adjoint projection onto the null space of A.
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Proof. Applying Proposition
SO10
8.10, Id +JL has a generalized inverse Id +J,

J ∈ J1, such that (Id +J)(Id +JL) = (Id−π′L), π′L ∈ J1 ∩ F . Replacing BL by

B̃L = (Id +J)BL gives a new left parametrix with error term π′L ∈ J1 ∩ F . The
null space of A is contained in the null space of B′L ◦ A and hence in the range
of FL; thus it is finite dimensional. Furthermore the self-dajoint projection πL
onto the null space is a subprojection of π′L, so is also an element of J1 ∩ F .
The range of A is closed since it has finite codimension in Ran(A(Id−πL)) and
if fn ∈ Ran(A(Id−πL)) = Aun, un = (Id−πL)un, converges to f ∈ H2, then
un = BLfn converges to u ∈ H1 with A(Id−πL)u = f. �

8.6.1998.246 Proposition 8.12. If a bounded linear operator A : H1 −→ H2 has a right
parametrix BR modulo a bi-ideal J2, satisfying (

SO1
8.48)–(

SO4
8.52), then it has closed

range of finite codimension and there is a generalized right inverse, differing from
the original right parametrix by a term in J2, such that

8.6.1998.2488.6.1998.248 (8.61) A ◦BR = Id−πR, πR ∈ J2 ∩ F ,

with Id−πR the self-adjoint projection onto the range space of A.

Proof. The operator Id +JR has, by Proposition
SO10
8.10, a generalized inverse

Id +J with J ∈ J1. Thus B′R = BR ◦ (Id +J) is a right parametrix with error term
Id−π′R, π′R ∈ J1 ∩F being a self-adjoint projection. Thus the range of A contains
the range of Id−π′R and is therefore closed with a finite-dimensional complement.
Furthemore the self-adjoint projection onto the range of A is of the form Id−πR
where πR is a subprojection of π′R, so also in J1 ∩ F . �

The two cases, of an operator with a right or a left parametrix are sometimes
combined in the term ‘semi-Fredholm.’ Thus an operator A : H1 −→ H2 is semi-
Fredholm if it has closed range and either the null space or the orthocomplement
to the range is finite dimensional. The existence of a right or left parametrix,
modulo the ideal of compact operators, is a necessary and sufficient condition for
an operator to be semi-Fredholm.

8.12. Right inverseS.Right.inverse

In treating the ‘general’ case of an elliptic operator on compact manifold
with boundary we shall start by constructing an analogue of the right inverse in
Lemma

3.6.1998.223
8.6. So now we assume that D ∈ Diff1(X;V1, V2) is an operator of Dirac

type on a compact manifold with boundary.
To construct a right inverse for D we follow the procedure in the boundaryless

case. That is we use the construction of a pseudodifferential parametrix. In order
to make this possible we need to extend M and D ‘across the boundary.’ This
is certainly possible for X, since we may double it to a compact manifold without
boundary, 2X. Then there is not obstruction to extending D ‘a little way’ across the
boundary. We shall denote by M an open extension of X (of the same dimension)

so X ⊂M is a compact subset and by D̃ an extension of Dirac type to M.
The extension of D to D̃, being elliptic, has a parametrix Q̃. Consider the map

28.4.1998.21428.4.1998.214 (8.62) Q̃′ : L2(X;V2) −→ H1(X;V1), Q̃′f = Q̃fc|X

where fc is the extension of f to be zero outside X. Then Q̃′ is a right parametrix,
DQ̃′ = Id +E where E is an operator on L2(X;V2) with smooth kernel on X2.
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Following Proposition
8.6.1998.246
8.12, D has a generalized right inverse Q̃′′ = Q̃′(Id +E′) up

to finite rank smoothing and

28.4.1998.21528.4.1998.215 (8.63) D : H1(X;V1)←→ L2(X;V2)

has closed range with a finite dimensional complement in C∞(X;V2).

28.4.1998.216 Proposition 8.13. The map (
28.4.1998.215
8.63) maps C∞(X;V2) to C∞(X;V1), it is sur-

jective if and only if the only solution of D∗u = 0, u ∈ Ċ∞(X;V2) is the trivial
solution.

Proof. The regularity statement, that Q′C∞(X;V ) ⊂ C∞(X;V1) follows as
in the proof of Lemma

3.6.1998.223
8.6. Thus Q′ maps C∞(X;V1) to C∞(X;V2) if and only

if any paramatrix Q̃′ does so. Given f ∈ C∞(X;V2) we may solve Du′ ≡ f in
Taylor series at the boundary, with u′ ∈ C∞(X;V1) satisfying bHu

′ = 0. Then

D(u′)c − f ∈ Ċ∞(X;V2) so it follows that Q′(fc)|X ∈ C∞(X;V1).

Certainly any solution of D∗u = 0 with u ∈ Ċ∞(X;V2) is orthogonal to the
range of (

28.4.1998.215
8.63) so the condition is necessary. So, suppose that (

28.4.1998.215
8.63) is not surjec-

tive. Let f ∈ L2(X;V2) be in the orthocomplement to the range. Then Green’s
formula gives the pairing with any smooth section

(Dv, f)X = (Dṽ, fc)X̃ = (ṽ, D∗fc)X̃ = 0.

This means that D∗fc = 0 in X̃, that is as a supported distribution. Thus, f ∈
Ċ∞(X;V2) satisfies D∗f = 0. �

As noted above we will proceed under the assumption that D∗f has no such
non-trivial solutions in Ċ∞(X;V2). This condition is discussed in the next section.

28.4.1998.218 Theorem 8.2. If unique continuation holds for D∗ then D has a right inverse

28.4.1998.21928.4.1998.219 (8.64) Q : C∞(X : V2) −→ C∞(X;V1), DQ = Id

where Q = Q̃′ + E, Q̃′f = Q̃f |X where Q̃ is a parametrix for an extension of D
across the boundary and E is a smoothing operator on X.

Proof. As just noted, unique continuation for D∗ implies that D in (
28.4.1998.215
8.63)

is surjective. Since the parametrix maps C∞(X;V2) to C∞(X;V1), D must be
surjective as a map from C∞(X;V1) to C∞(X;V2). The parametrix modulo finite
rank operators can therefore be corrected to a right inverse for D by the addition
of a smoothing operator of finite rank. �

8.13. Boundary mapS.Boundary.map

The map b from C∞(X;E) to C∞(∂X;E) is well defined, and hence is well
defined on the space of smooth solutions of D. We wish to show that it has closed
range. To do so we shall extend the defintion to the space of square-integrable
solutions. For any s ∈ R set

6.6.1998.2306.6.1998.230 (8.65) N s(D) = {u ∈ Hs(X;E);Du = 0} .

Of course the equation Du = 0 is to hold in the sense of extendible distributions,
which just means in the interior of X. Thus N∞(D) is the space of solutions of D
smooth up to the boundary.



8.14. CALDERÒN PROJECTOR 209

6.6.1998.231 Lemma 8.7. If u ∈ N 0(D) then

6.6.1998.2326.6.1998.232 (8.66) Ḋuc = v · δ(x), v ∈ H− 1
2 (∂X;E)

defines an injective bounded map b̃ : N 0(D) −→ H−
1
2 (∂X;E) by b̃(u) = iσ(D)(dx)v

which is an extension of b : N∞(D) −→ C∞(∂X;E) defined by restriction to the
boundary.

Proof. Certainly Ḋuc ⊂ Ċ∞∂X(X;E) has support in the boundary, so is a sum
of products in any product decomposition of X near ∂X,

D(uc) =
∑
j

vj · δ(j)(x).

Since D is a first order operator and uc ∈ L2(X̃;E), for any local extension,

Ḋuc ∈ Ḣ−1(X;E). Localizing so that E is trivial and the localized vj have compact
supports this means that

6.6.1998.2336.6.1998.233 (8.67) (1 + |η|2 + |ξ|2)−
1
2 v̂j(η)ξj ∈ L2(Rn).

If vj 6= 0 for some j > 0 this is not true even in some region |η| < C. Thus vj ≡ 0
for j > 0 and (

6.6.1998.232
8.66) must hold. Furthermore integration in ξ gives

6.6.1998.2346.6.1998.234 (8.68)

∫
R

(1 + |η|2 + |ξ|2)−1dξ = c(1 + |η|2)−
1
2 , c > 0, so∫

Rn−1

(1 + |η|2)−
1
2 |v̂(η)|2dη < 0.

Thus v ∈ H− 1
2 (∂X;E) and b̃ is well defined. The jumps formula shows it to

be an extension of b. The injectivity of b̃ follows from the assumed uniqueness of
solutions to Ḋu = 0 in X. �

Notice that (
6.6.1998.234
8.68) is actually reversible. That is if v ∈ H−

1
2 (∂X;E) then

v · δ(x) ∈ H−1(X;E). This is the basis of the construction of a left parametrix for

b̃, which then shows its range to be closed.

6.6.1998.235 Lemma 8.8. The boundary map b̃ in Lemma
6.6.1998.231
8.7 has a continuous left paramet-

rix ĨD : H−
1
2 (∂X;E) −→ N 0(D), ID ◦ b̃ = Id +G, where G has smooth kernel on

X × ∂X, and the range of b̃ is therefore a closed subspace of H−
1
2 (∂X;E).

Proof. The parametrix ĨD is given directly by the parametrix Q̃ for D̃, and
extension to X̃. Applying Q̃ to (

6.6.1998.232
8.66) gives

6.6.1998.2396.6.1998.239 (8.69) u = ĨDv +Ru, ĨD = RX ◦ Q̃ ◦
1

i
σ(D)(dx)

with R having smooth kernel. Since ĨD is bounded from H−
1
2 (∂X;E) to L2(X;E)

and R is smoothing it follows from Proposition
8.6.1998.245
8.11 that the range of b̃ is closed. �

8.14. Calderòn projectorS.Calderon.projector

Having shown that the range of b̃ in Lemma
6.6.1998.231
8.7 is closed in H−

1
2 (∂X;E) we

now deduce that there is a pseudodifferential projection onto it. The discussion
above of the boundary values of the Q̃(w · δ(x)) is local, and so applies just as well
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in the present more general case. Since this is just the definition of the map ĨD in
Lemma

6.6.1998.235
8.8, we conclude directly that

6.6.1998.2406.6.1998.240 (8.70) Pv = lim
X◦

ĨDv, v ∈ C∞(∂X;E)

defines P ∈ Ψ0(∂X;E).

6.6.1998.241 Lemma 8.9. If P is defined by (
6.6.1998.240
8.70) then P 2 − P ∈ Ψ−∞(∂X;E) and there

exist A, B ∈ Ψ−∞(∂X;E) such that P − Id = A on Ran(b̃) and Ran(P + B) ⊂
Ran(b̃).

Proof needs

clarification.
Proof. That P 2 − P ∈ Ψ−∞(∂X;E) follows, as above, from the fact that Q̃

is a two-sided parametrix on distributions supported in X. Similarly we may use
the right inverse of D to construct B. If v ∈ H− 1

2 (∂X;E) then by construction,

DĨDv = R′v

where R′ has a smooth kernel on X × ∂X. Applying the right inverse Q it follows

that u′ = ĨDv−(Q◦R′)v ∈ N 0(D), where Q◦R′ also has smooth kernel on X×∂X.
Thus b̃(u′) = (P +B)v ∈ Ran(b̃) where B has kernel arising from the restriction of
the kernel of A ◦R′ to ∂X × ∂X, so B ∈ Ψ−∞(∂X;E). �

Now we may apply Proposition
4.6.1998.227
6.11 with F = Ran(b̃) and s = − 1

2 to show the
existence of a Calderòn projector.

6.6.1998.242 Proposition 8.14. If D is a generalized Dirac operator on X then there is an
element ΠC ∈ Ψ0(∂X;E) such that Π2

C = ΠC , Ran(ΠC) = Ran(b̃) on H−
1
2 (∂X;E),

ΠC − P ∈ Ψ−∞(∂X;E) where P is defined by (
6.6.1998.240
8.70) and Ran(ΠC) = Ran(b) on

C∞(∂X;E).

Proof. The existence of psuedodifferential projection, ΠC , differing from P
by a smoothing operator and with range Ran(b̃) is a direct consequence of the

application of Proposition
4.6.1998.227
6.11. It follows that Ran(b̃) ∩ C∞(∂X;E) is dense in

Ran(b̃) in the topology of H−
1
2 (∂X;E). Furthermore, if follows that if v ∈ Ran(b̃)∩

C∞(∂X;E) then u ∈ N 0(D) such that b̃u = v is actually in C∞(X;E), i.e.

it is in N∞(D). Thus the range of b is just Ran(b̃) ∩ C∞(∂X;E) so Ran(b) is the
range of ΠC acting on C∞(∂X;E). �

In particular b̃ is just the continuous extension of b from N∞(D) to N 0(D), of
which it is a dense subset. Thus we no longer distinguish between these two maps
and set b̃ = b.

8.15. Poisson operatorS.Poisson.operator

8.16. Unique continuationS.Unique.continuation

8.17. Boundary regularityS.Boundary.regularity

8.18. Pseudodifferential boundary conditionsS.Pseudodifferential.boundary

The discussion above shows that for any operator of Dirac type the ‘Calderòn
realization’ of D,

28.4.1998.128.4.1998.1 (8.71) DC : {u ∈ Hs(X;E1); ΠCbu = 0} −→ Hs−1(X;E2), s >
1

2
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is an isomorphism.
We may replace the Calderòn projector in (

28.4.1998.1
8.71) by a more general projection

Π, acting on C∞(∂X, V1), and consider the map

28.4.1998.228.4.1998.2 (8.72) DΠ : {u ∈ C∞(X;V1); Πbu = 0} −→ C∞(X;V2).

In general this map will not be particularly well-behaved. We will be interested in
the case that Π ∈ Ψ0(∂X;V1) is a pseudodifferential projection. Then a condition
for the map DΠ to be Fredholm can be given purely in terms of the relationship
between Π and the (any) Calderòn projector ΠC .

29.3.1998.188 Theorem 8.3. If D ∈ Diff1(X;E1, E2) is of Dirac type and Pi ∈ Ψ0(∂X;E1)
is a projection then the map

29.3.1998.18929.3.1998.189 (8.73) DΠ : {u ∈ C∞(X;E1); Π(u∂X) = 0} D−→ C∞(X;E2)

is Fredholm if and only if

29.3.1998.19029.3.1998.190 (8.74) Π ◦ΠC : Ran(ΠC) ∩ C∞(∂V1) −→ Ran(Π) ∩ C∞(∂E1) is Fredholm

and then the index of DΠ is equal to the relative index of ΠC and Π, that is the
index of (

29.3.1998.190
8.74).

Below we give a symbolic condition equivalent which implies the Fredholm con-
dition. If enough regularity conditions are imposed on the generalized inverse to
(
28.4.1998.1
8.71) then this symbolic is also necessary.

Proof. The null space of DΠ is easily analysed. Indeed Du = 0 implies that
u ∈ N , so the null space is isomorphic to its image under the boundary map:

{u ∈ N ; Πbu = 0} b−→ {v ∈ C; Πv = 0} .
Since C is the range of ΠC this gives the isomorphism

28.4.1998.628.4.1998.6 (8.75) Nul(DΠ) ' Nul (Π ◦ΠC : C −→ Ran(Π)) .

In particular, the null space is finite dimensional if and only if the null space of
Π ◦ΠC is finite dimensional.

Similarly, consider the range of DΠ. We construct a map

28.4.1998.21228.4.1998.212 (8.76) τ : C∞(∂X;V1) −→ C∞(X;V2)/Ran(DΠ).

Indeed each v ∈ C∞(∂X;V1) is the boundary value of some u ∈ C∞(X : V1), let
τ(v) be he class of DU. This is well-defined since any other extension u′ is such
that b(u− u′) = 0, so D(u− u′) ∈ Ran(DΠ). Furthermore, τ is surjective, since DC
is surjective. Consider the null space of τ. This certainly contains the null space of
Π. Thus consider the quotient map

τ̃ : Ran(Π) −→ C∞(X : V2)/Ran(DΠ),

which is still surjective. Then τ̃(v) = 0 if and only if there exists v′ ∈ C such that
Π(v − v′) = 0. That is, τ̃(v) = 0 if and only if Π(v) = Π ◦ΠC . This shows that the
finer quotient map

28.4.1998.21328.4.1998.213 (8.77) τ ′ : Ran(Π)/Ran(Π ◦ΠC)←→ C∞(X;V2)/Ran(DΠ)

is an isomorphism. This shows that the range is closed and of finite codimension if
Π ◦ΠC is Fredholm.

The converse follows by reversing these arguments. �
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8.19. Gluing

Returning to the case of a compact manifold without boundary, M, with a
dividing hypersurface H we can now give a gluing result for the index.

29.3.1998.191 Theorem 8.4. If D ∈ Diff1(M ;E1, E2) is of Dirac type and M = M1 ∩M2 is
the union of two manifolds with boundary intersecting in their common boundary
∂M1 ∩ ∂M2 = H then

29.3.1998.19229.3.1998.192 (8.78) Ind(D) = Ind(Π1,C , Id−Π2,C) = Ind(Π2,C , Id−Π1,C)

where Πi,C , i = 1, 2, are the Calderòn projections for D acting over Mi.

8.20. Local boundary conditionsS.Local.boundary

8.21. Absolute and relative Hodge cohomologyS.Absolute.relative

8.22. Transmission conditionS.Transmission.condition



CHAPTER 9

The wave kernelC.Wave.kernel

Let us return to the subject of “good distributions” as exemplified by Dirac
delta ‘functions’ and the Schwartz kernels of pseudodifferential operators. In fact
we shall associate a space of “conormal distributions” with any submanifold of a
manifold.

9.1. Conormal distributions

Thus let X be a C∞ manifold and Y ⊂ X a closed embedded submanifold –
we can easily drop the assumption that Y is closed and even replace embedded
by immersed, but let’s treat the simplest case first! To say that Y is embedded
means that each ȳ ∈ Y has a coordinate neighbourhood U, in X, with coordinate
x1, . . . , xn in terms of which ȳ = 0 and

16.116.1 (9.1) Y ∩ U = {x,= · · · = xk = 0}.
We want to define

16.216.2 (9.2) I∗(X,Y ; Ω
1
2 ) ⊂ C−∞(X; Ω

1
2 )

to consist of distributions which are singular only at Y and small “along Y.”
So if u ∈ C−∞c (U) then in local coordinates (

16.1
9.1) we can identify u with u′ ∈

C−∞c (Rn) so u′ ∈ Hs
c (Rn) for some s ∈ R. To say that u is ‘smooth along Y ’ means

we want to have

16.316.3 (9.3) Dl1
xk+1

. . . Dln−k
xn u′ ∈ Hs′

c (Rn) ∀ l1, . . . , ln−k
and a fixed s′, independent of l (but just possibly different from the initial s);
of course we can take s = s′. Now conditions like (

16.3
9.3) do not limit the singular

support of u′ at all! However we can add a requirement that multiplication by a
function which vanishes on Y makes u′ smooth, by one degree, i.e.

16.416.4 (9.4) xp11 . . . xpkk u
′ ∈ Hs+|p|(Rn), |p| = p1 + · · ·+ pk.

This last condition implies

16.516.5 (9.5) Dq1
1 . . . Dqk

k x
p1
1 . . . xpkk u

′ ∈ Hs(Rn) if |q| ≤ |p|.
Consider what happens if we rearrange the order of differentiation and multi-

plication in (
16.5
9.5). Since we demand (

16.5
9.5) for all p, q with |q| ≤ |p| we can show in

tial that

16.10516.105 (9.6) ∀ |q| ≤ |p| ≤ L

(9.7) =⇒

16.616.6 (9.8)

L∏
i=1

(xjiD`i)u ∈ Hs(Rn) ∀ pairs, (ji,`i) ∈ (1, . . . , k)2.

213
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Of course we can combine (
16.3
9.3) and (

16.6
9.8) and demand

16.716.7 (9.9)

L2∏
i=1

Dpi

L1∏
i=1

(xjiD`i)u
′ ∈ Hs

c (Rn)(jj , `i) ∈ (1, . . . , k)2

∀ L1, L2 pi ∈ (k + 1, . . . u).

Problem 9.1. Show that (
16.7
9.9) implies (

16.3
9.3) and (

16.4
9.4)

The point about (
16.7
9.9) is that it is easy to interpret in a coordinate indepen-

dent way. Notice that putting C∞ coefficients in front of all the terms makes no
difference.

16.8 Lemma 9.1. The space of all C∞ vector fields on Rn tangent to the submanifold
{x1 = · · · = xk = 0} is spanning over C∞(Rn) by

16.916.9 (9.10) xiDj , Dp i, j ≤ k, p > k.

Proof. A C∞ vector field is just a sum

(9.11) V =
∑
j≤k

ajDj +
∑
p>k

bpDp.

Notice that the Dp, for p > k, are tangent to {x1 = · · · = xk = 0}, so we can
assume bp = 0. Tangency is then given by the condition

(9.12) V x)i = 0 and {x1 = · · · = xk = 0}, i = 1, . . . , h

i.e. aj =
∑̀
=1

aj`x`, 1 ≤ j ≤ h. Thus

(9.13) V =
∑
`=1

aj`x`Dj

which proves (
16.9
9.10). �

This allows us to write (
16.7
9.9) in the compact form

16.1016.10 (9.14) V(Rn, Yk)pu′ ⊂ Hs
c (Rn) ∀ p

where V(Rn, Yk) is just the space of all C∞ vector fields tangent to Yk = {x1 =
· · · = xk = 0}. Of course the local coordinate just reduce vector fields tangent to Y
to vector fields tangent to Yk so the invariant version of (

16.10
9.14) is

16.1116.11 (9.15) V(X,Y )pu ⊂ Hs(X; Ω
1
2 ) ∀ p.

To interpret (
16.11
9.15) we only need recall the (Lie) action of vector fields on half-

densities. First for densities: The formal transpose of V is −V, so set

(9.16) LV φ(ψ) = φ(−V ψ)

if φ ∈ C∞(X; Ω), ψ ∈ C∞(X). On Rn then becomes

16.1216.12 (9.17)

∫
LV φ · ψ = −

∫
φ · V ψ

= −
∫
φ(x)V ψ · dx

=

∫
(V φ(x) + δV φ)ψ dx

δV =

n∑
i=1

Diai if V = ΣaiDi.
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i.e.

16.1316.13 (9.18) LV (φ|dx|) = (V φ)|dx|+ δV φ.

Given the tensorial properties of density, set

16.1416.14 (9.19) LV (φ|dx|t) = V φ|dx|t + tδV φ.

This corresponds to the natural trivialization in local coordinates.

16.15 Definition 9.1. If Y ⊂ X is a closed embedded submanifold then

16.1616.16 (9.20)

IHs
(
X,Y ; Ω

1
2

)
=
{
u ∈ Hs

(
X; Ω

1
2

)
satisfying (11)}

I∗
(
X,Y ; Ω

1
2

)
=
⋃
s

IHs
(
X,Y ; Ω

1
2

)
.

Clearly

16.1716.17 (9.21) u ∈ I∗(X,Y ; Ω
1
2 ) =⇒ u � X\Y ∈ C∞

(
X\Y ; Ω

1
2

)
and

16.1816.18 (9.22)
⋂
s

IHs
(
X,Y ; Ω

1
2

)
= C∞

(
X; Ω

1
2

)
.

Let us try to understand these distributions in some detail! To do so we start with
a very simple case, namely Y = {p} is a point; so we only have one coordinate
system. So construct p = 0 ∈ Rn.

16.1916.19 (9.23)
u ∈ I∗c

(
Rn, {0}; Ω

1
2

)
=⇒ u = u′|dx| 12 when

xαDβ
xu
′ ∈ Hs

c (Rn), s fixed ∀ |α| ≥ |β|.

Again by a simple commutative argument this is equivalent to

16.2016.20 (9.24) Dβ
xx

αu′ ∈ Hs
c (Rn) ∀ |α| ≥ |β|.

We can take the Fourier transform of (
16.20
9.24) and get

16.2116.21 (9.25) ξβDα
ξ û
′ ∈ 〈ξ〉−sL2(Rn) ∀ |α| ≥ |β|.

In this form we can just replace ξβ by 〈ξ〉|β|, i.e. (
16.21
9.25) just says

16.2216.22 (9.26) Dα
ξ û
′(ξ) ∈ 〈ξ〉−s−|β|L2(Rn) ∀ α.

Notice that this is very similar to a symbol estimate, which would say

16.2316.23 (9.27) Dα
ξ û
′(ξ) ∈ 〈ξ〉m−|α|L∞(Rn) ∀ α.

16.24 Lemma 9.2. The estimate (
16.22
9.26) implies (

16.23
9.27) for any m > −s− n

2 ; conversely
(
16.23
9.27) implies (

16.22
9.26) for any s < −m− n

2 .

Proof. Let’s start with the simple derivative, (
16.23
9.27) implies (

16.22
9.26). This really

reduces to the case α = 0. Thus

(9.28) 〈ξ〉ML∞(Rn) ⊂ L2(Rn) =⇒M < −n
2

is the inequality

(9.29)

(∫
|u|2dξ

) 1
2

≤ sup〈ξ〉−M |u|
(∫
〈ξ〉2Mdξ

) 1
2
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and

(9.30)

∫
〈ξ〉2Mdξ =

∫ (
1 + |ξ|2

)M
dξ <∞ iff M < −n

2
.

To get (
16.23
9.27) we just show that (

16.23
9.27) implies

16.2516.25 (9.31) 〈ξ〉s+|α|Dα
ξ û
′ ∈ 〈ξ〉m+sL∞ ⊂ L2 if m+ s < −n

2
.

The converse is a little trickier. To really see what is going on we can reduce (
16.22
9.26)

to a one dimensional version. Of course, near ξ = 0, (
16.22
9.26) just says û′ is C∞, so

we can assume that |ξ| > 1 on supp û′ and introduce polar coordinates:

16.2616.26 (9.32) ξ = tw, w ∈ Sn−1t > 1.

Then
Exercise 2. Show that (

16.22
9.26) (or maybe better, (

16.21
9.25)) implies that

16.2716.27 (9.33) Dk
t Pû

′(tw) ∈ t−s−kL2(R+ × Sn−1; tn−1dtdw) ∀ k

for any C∞ differential operator on Sn−1. �

In particular we can take P to be elliptic of any order, so (
16.27
9.33) actually implies

16.2816.28 (9.34) sup
w
Dk
t Pû(t, w) ∈ t−s−kL2(R+; tn−1dt)

or, changing the meaning to dt,

16.2916.29 (9.35) sup
w∈Sn−1

∣∣Dk
t Pû(t, w)

∣∣ ∈ t−s−k−n−1
2 L2

(
R+, dt

)
.

So we are in the one dimensional case, with s replaced by s + n−1
2 . Now we can

rewrite (
16.29
9.35) as

16.3016.30 (9.36) Dtt
qDk

t Pû ∈ trL2, ∀ k, r − q = −s− k − n− 1

2
− 1.

Now, observe the simple case:

16.3116.31 (9.37) f = 0t < 1, Dtf ∈ trL2 =⇒ f ∈ L∞ if r < −1

2

since

(9.38) sup |f | =
t∫

−∞

trg ≤
(∫
|g|2
) 1

2

·

 t∫
−∞

t2r


1
2

.

Thus from (
16.30
9.36) we deduce ≤ (

∫
|g|2)

1
2

(9.39) Dk
t Pû ∈ t−qL∞ if r < −1

2
, i.e. − q > −s− k − n

2
.

Finally this gives (
16.23
9.27) when we go back from polar coordinates, to prove the

lemma.

16.32 Definition 9.2. Set, for m ∈ R,

(9.40) Imc (Rn, |[0}) = {u ∈ C−∞c (Rn); û ∈ Sm−n4 (Rn)}

with this definition,

16.3316.33 (9.41) IHs(Rn, {0}) ⊂ Imc (Rn, {0}) ⊂ Is
′

c (Rn, {0})
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provided

(9.42) s > −m− n

4
> s′.

Exercise 3. Using Lemma 24, prove (
16.33
9.41) carefully.

So now what we want to do is to define Imc (X, {p}; Ω
1
2 ) for any p ∈ X by

16.3416.34 (9.43)
u ∈ Imc (X, {p}; Ω

1
2 )⇐⇒ F ∗(φu) ∈ Imc (Rn, {0}),

u � X\{p} ∈ C∞(X\{p}).

Here we have a little problem, namely we have to check that Im(Rn, {0}) is invariant
under coordinate changes. Fortunately we can do this using (

16.33
9.41).

17.7 Lemma 9.3. If F : Ω −→ Rn is a diffeomorphism of a neighbourhood of 0 onto
its range, with F (0) = 0, then

17.817.8 (9.44) F ∗{u ∈ Imc (Rn, {0}; supp(u) ⊂ F (Ω)} ⊂ Imc (Rn, {0}).

Proof. Start with a simple case, that F is linear. Then

(9.45) u = (2π)−n
∫
eixξa(ξ)dξ, a ∈ Sm−n4 (Rn).

so

17.917.9 (9.46)

F ∗u = (2π)−n
∫
eiAx·ξa(ξ)dξ Fx = Ax

= (2π)−n
∫
iix·A

tξa(ξ)dξ

= (2π)−n
∫
eix·ηa((At)−1η)|detA|−1dη.

Since a((At)−1η)|detA|−1 ∈ Sm−n4 Rn) we have proved the result for linear trans-
formations. We can always factorize F is

17.1017.10 (9.47) F = G ·A, A = (F∗)

so that the differential of G at 0 is the identity, i.e.

17.1117.11 (9.48) G(x) = x+O(|x|2).

Now (
17.11
9.48) allows us to use an homotopy method, i.e. set

17.1217.12 (9.49) Gs(x) = x+ s(G(x)− x) s ∈ [0, 1)
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so that G0 = Id, Gs = G. Such a 1-parameter family is given by integration of a
vector field:

17.1317.13 (9.50)

G∗sφ =

s∫
0

d

ds
G∗sφdx

=

∫
0

s
d

ds
φ(Gx(x))ds

=
∑

1

s∫
0

d

G

ξ

s,i
ds (∂xjφ) (Gδ(x)) ds

=

s∫
0

G∗s (Vsφ) ds

when the coefficients of Vs are

17.1417.14 (9.51) G∗sVs,j =
d

ds
Gs,i.

Now by (
17.12
9.49) d

dsGs,i = Σxixja
s
ij(x), so the same is true of the Vs,i, again using

(
17.12
9.49).

We can apply (
17.13
9.50) to compute

17.1517.15 (9.52) G∗u =

′∫
0

G∗s (Vsu) ds

when u ∈ Imc (Rn, {0}) has support near 0. Namely, by (
16.33
9.41), u ∈ IHs

c (Rn, {0}) ,
with s < −m− n

4 , but then

(9.53) Vsu ∈ IHs+1
c (Rn, {0})

since V =
n∑

i,j=1

bsij(x)xixjDj . Applying (
16.33
9.41) again gives

17.1617.16 (9.54) G∗s(Vsu) ∈ Im
′
(Rn, {0}) , ∀ m′ > m− 1.

This proves the coordinates invariance. �

Last time we defined the space of conormal distributions associated to a closed
embedded submanifold Y ⊂ X :

17.117.1 (9.55)
IHs(X,Y ) = {u ∈ Hs(X);V(X,Y )ku ⊂ Hs(X) ∀ k}

IH∗(X,Y ) = I∗(X,Y ) =
⋃
sIHs(X,Y ).

Here V(X,Y ) is the space of C∞ vector fields on X tangent to Y. In the special case
of a point in Rn, say 0, we showed that

17.217.2 (9.56) u ∈ I∗c (Rn), {0})⇐⇒ u ∈ C−∞c (Rn) and û ∈ SM (Rn),M = M(u).

In fact we then defined the “standard order filtration” by

17.317.3 (9.57) u ∈ Imc (Rn, {0}) =
{
u ∈ C−∞c (Rn); û ∈ Sm−n4 (Rn)

}
,

and found that

17.417.4 (9.58) IHs
c (Rn, {0}) ⊂ I−s−

n
4

c (Rn, {0}) ⊂ IHs′

c (Rn, {0}) ∀ s′ < s.
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Our next important task is to show that Imc (Rn, {0}) is invariant under coordinate
changes. That is, if F : U1 −→ Rn is a diffeomorphism of a neighbourhood of 0 to
its range, with F (0) = 0, then we want to show that

17.517.5 (9.59) F ∗u ∈ Imc (Rn, {0}) ∀ u ∈ Imc (Rn, {0}), supp(u) ⊂ F (U1).

Notice that we already know the coordinate independence of the Sobolev-based
space, so using (

17.4
9.58), we deduce that

17.617.6 (9.60) F ∗u ∈ Im
′

c (Rn, {0}) ∀ u ∈ Imc (Rn, {0}), n′ > m, supp(u) ⊂ F (U1).

In fact we get quite a lot more for our efforts:

17.17 Lemma 9.4. There is a coordinate-independent symbol map:

17.1817.18 (9.61) Im(X, {p}; Ω
1
2 )@ > σmY >> Sm+n

4−[J]
(
T ∗pRn; Ω

1
2

)
given by the local prescription

17.1917.19 (9.62) σmY (u) = û(ξ)|dξ| 12

where u = v|dx| 12 is local coordinate based at 0, with ξ the dual coordinate in T ∗pX.

Proof. Our definition of Im(X, {p}; Ω
1
2 ) is just that in any local coordinate

based at p

17.2017.20 (9.63) u ∈ Im(X, {p}; Ω
1
2 ) =⇒ φu = v|dx| 12 , v ∈ Imc (Rn, {0})

and u ∈ C∞(X\{p}; Ω
1
2 ). So the symbol map is clearly supposed to be

17.2117.21 (9.64) σm(u)(ζ) ≡↓ v̂(ξ)|dξ| 12 ∈ Sm+n
4−[1](Rn; Ω

1
2 )

where ζ ∈ T ∗pX is the 1-form ζ = ξ ·dx in the local coordinates. Of course we have to
show that (

17.21
9.64) is independent of the choice of coordinates. We already know that

a change of coordinates changes v̂ by a term of order m− n
4 −1, which disappears in

(
17.21
9.64) so the residue class is determined by the Jacobian of the change of variables.

From (
17.9
9.46) we see exactly how v̂ transforms under the Jacobian, namely as a

density on

T ∗0Rn : A ∈ GL(n,R) =⇒ Â∗v(η)|dη| 12

= v̂((At)−1η)|detA|−1|dy|

so η = Atξ =⇒

17.2217.22 (9.65) Â∗v(η)|dy| = v̂(ξ)|dξ|.
However recall from (

17.20
9.63) that u is a half-density, so actually in the new coordinates

v′ = A∗v · | detA| 12 . This shows that (
17.21
9.64) is well-defined.

Before going on to consider the general case let us note a few properties of
Im(X, {p},Ω 1

2 ) : �

Exercise: Prove that

17.2317.23 (9.66)

If P ∈ Diffm(X; Ω
1
2 ) then

P : Im(X, {p}; Ω
1
2 ) −→ Im+M (X, {p}; Ω

1
2 ) ∀ m

σm+M (Pu) = σM (P ) · σm(u).

To pass to the general case of Y ⊂ X we shall proceed in two steps. First let’s
consider a rather ‘linear’ case of X = V a vector bundle over Y. Then Y can be
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identified with the zero section of V. In fact V is locally trivial, i.e. each p ∈ y has
a neighbourhood U s.t.

17.2417.24 (9.67) π−1(U) ' Rnx × U ′y′U ′ ⊂ Rp

by a fibre-linear diffeomorphism projecting to a coordinate system on this base. So
we want to define

(9.68) Im(V, Y ; Ω
1
2 ) = {u ∈ I∗(V, Y ; Ω

1
2 );

of φ ∈ C∞c (U) then under any trivialization (
17.24
9.67)

17.2517.25 (9.69)
φu(x, y) ≡ (2π)−n

∫
eix·ξa(y, ξ)dξ|dx| 12 , mod C∞,

a ∈ Sm−n2−
p
4 (Rpy,Rnξ ).

Here p = dimY, p+n = dimV. Of course we have to check that (
17.25
9.69) is coordinate-

independent. We can write the order of the symbol, corresponding to u having order
m as

17.2617.26 (9.70) m− dimV

4
+

dimY

2
= m+

dimV

4
− codimY

2
.

These additional shifts in the order are only put there to confuse you! Well, actually
they make life easier later.

Notice that we know that the space is invariant under any diffeomorphism of
the fibres of V, varying smoothly with the base point, it is also obvious that (

17.25
9.69)

in independent the choice of coordinates is U ′, since that just transforms these
variables. So a general change of variables preserving Y is

(9.71) (y, x) 7−→ (f(y, x), X(y, x)) X(y, 0) = 0.

In particular f is a local diffeomorphism, which just changes the base variables
in (

17.25
9.69), so we can assume f(y) ≡ y. Then X(y, x) = A(y) · x + O(x2). Since

x 7−→ A(y) ·x is a fibre-by-fibre transformation it leaves the space invariant too, So
we are reduced to considering

17.2717.27 (9.72) G : (y, x) 7−→ (y, x+ Σaij(x, y)xixj)y + Σbi(x, y)xi.

To handle these transformations we can use the same homotopy method as before
i.e.

17.2817.28 (9.73) Gs(x, y=(y + s)
∑
i

bi(x, y)xi, x+ s
∑
i,j

aij(x, y)xixj)

is a 1-parameter family of diffeomorphisms. Moreover

(9.74)
d

ds
G∗su = G∗sVsk

where

(9.75) Vs =
∑
i,`

βi,`(s, x, y)xi∂y` +
∑
i,j,k

αi,j,k +
∑
i,j,k

αijk(α, y, s)`i, `j
∂

∂xk
.

So all we really have to show is that

17.2917.29 (9.76) Vs : IM (U ′ × Rn, U ′ × {0}) −→ IM−1(U ′ × Rn, U ′ × {0}) ∀ M.

Again the spaces are C∞-modules so we only have to check the action of xi∂y` and
xix+ j∂xk . These change the symbol to

(9.77) Dξi∂y`a and iDξiDξj · ξka
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respectively, all one order lower.
This shows that the definition (

17.25
9.69) is actually a reasonable one, i.e. as usual

it suffices to check it for any covering by coordinate partition.
Let us go back and see what the symbol showed before.

17.30 Lemma 9.5. If

(9.78) u ∈ Im(V, Y ; Ω
1
2 )u = v|dx| 12 |dξ| 12

defines an element

(9.79) σm(u) ∈ Sm+n
4 + p

4−[1](V ∗; Ω
1
2 )

independent of choices.

Last time we discussed the invariant symbol for a conormal distribution asso-
ciated to the zero section of a vector bundle. It turns out that the general case
is not any more complicated thanks to the “tubular neighbourhood” or “normal
fibration” theorem. This compares Y ↪→ X, a closed embedded submanifold, to the
zero section of a vector bundle.

Thus at each point y ∈ Y consider the normal space:

18.118.1 (9.80) NyY = Ny{X,Y } = Tyx/TyY.

That is, a normal vector is just any tangent vector to X modulo tangent vectors to
Y. These spaces define a vector bundle over Y :

18.218.2 (9.81) NY = N{X;Y } =
⊔
y∈Y

NyY

where smoothness of a section is inherited from smoothness of a section of TyX, i.e.

18.318.3 (9.82) NY = TyX/TyY.

Suppose Yi ⊂ Xi are C∞ submanifolds for i = 1, 2 and that F : X1 −→ X2 is a
C∞ map such that

18.418.4 (9.83) F (Y1) ⊂ Y2.

Then F∗ : TyX1 −→ TF (y)X2, must have the property

18.518.5 (9.84) F∗ : TyY1 −→ TF (y)Y2 ∀ y ∈ Y1.

This means that F∗ defines a map of the normal bundles

18.618.6 (9.85) F∗ : NY1
//

��

NY2

��
Y1

F
// Y2.

Notice the very special case that W −→ Y is a vector bundle, and we consider
Y ↪→W as the zero section. Then

18.718.7 (9.86) Ny{W ;Y } ←→Wy ∀ y ∈ Y
since

18.818.8 (9.87) TyW = TyY ⊕ Ty(Wy) ∀ y ∈W.
That is, the normal bundle to the zero section is naturally identified with the vector
bundle itself.
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So, suppose we consider C∞ maps

18.918.9 (9.88) f : B −→ N{X;Y } = NY

where B ⊂ X is an open neighbourhood of the submanifold Y. We can demand
that

18.1018.10 (9.89) f(y) = (y, 0) ∈ NyY ∀ y ∈ Y

which is to say that f induces the natural identification of Y with the zero section
of NY and moreover we can demand

18.1118.11 (9.90) f∗ : NY −→ NY is the identity.

Here f∗ is the map (
18.6
9.85), so maps NY to the normal bundle to the zero section

of NY, which we have just observed is naturally just NY again.

18.12 Theorem 9.1. For any closed embedded submanifold Y ⊂ X there exists a
normal fibration, i.e. a diffeomorphism (onto its range) (

18.9
9.88) satisfing (

18.10
9.89) and

(
18.11
9.90); two such maps f1, f2 are such that g = f2 ◦ f−1

1 is a diffeomorphism near
the zero section of NY, inducing the identity on Y and inducing the identity (

18.11
9.90).

Proof. Not bad, but since it uses a little Riemannian geometry I will not
prove it, see [ ], [ ]. (For those who know a little Riemannian geometry, f−1 can be
taken as the exponential map near the zero section of NY, identified as a subbundle
of TYX using the metric.) Of course the uniqueness part is obvious. �

Actually we do not really need the global aspects of this theorem. Locally it is
immediate by using local coordinates in which Y = {x1 = · · · = xk = 0}.

Anyway using such a normal fibration of X near Y (or working locally) we can
simply define

18.1318.13 (9.91)
Im(X,Y ; Ω

1
2 ) = {u ∈ C−∞(X; Ω

1
2 );u is C∞ in X\Y and

(f−1)∗(φu) ∈ Im(NY, Y ; Ω
1
2 ) if φ ∈ C∞(X), supp(φ) ⊂ B}.

Naturally we should check that the definition doesn’t depend on the choice of f.
This means knowing that Im(NY, Y ; Ω

1
2 ) is invariant under g, as in the theorem,

but we have already checked this. In fact notice that g is exactly of the type of
(
17.27
9.72). Thus we actually know that

(9.92) σm(g∗u) = σm(u) in Sm+n
4 + p

4−[1](N∗Y ; Ω
1
2 ).

So we have shown that there is a coordinate invariance symbol map

18.1418.14 (9.93) σm : Im(X,Y ; Ω
1
2 ) −→ Sm+n

4 + p
4−[1](N∗Y ; Ω

1
2 )

giving a short exact sequence
18.1518.15 (9.94)

0 ↪→ Im−1(X,Y ; Ω
1
2 ) −→ Im(X,Y ; Ω

1
2 )@ > σm >> Sm+n

4 + p
4−[1](N∗Y ; Ω

1
2 ) −→ 0

(9.95) where n = dimX − dimY, p = dimY.

Asymptotic completeness carries over immediately. We also need to go back and
check the extension of (

17.23
9.66):
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18.16 Proposition 9.1. If Y ↪→ X is a closed embedded submanifold and A ∈
Ψm
c (X; Ω

1
2 ) then

18.1718.17 (9.96) A : IM (X,Y ; Ω
1
2 ) −→ IM+m(X,Y ; Ω

1
2 ) ∀ M

and

18.1818.18 (9.97) σm+M (Au) = σm(A)σm(A) � N∗Y σM (u).

Notice that σm(A) ∈ Sm−[1](T ∗X) so the product here makes perfectly good sense.

Proof. Since everything in sight is coordinate-independent we can simply
work in local coordinates where

18.1918.19 (9.98) X ∼ Rpy × Rnx , Y = {x = 0}.

Then u ∈ Imc (X,Y ; Ω
1
2 ) means just

18.2018.20 (9.99) u = (2π)−n
∫
eix·ξa(y, ξ)dξ · |dx| 12 , a ∈ Sm−n4 + p

4 (Rp,Rn).

Similarly A can be written in the form

18.2118.21 (9.100) A = (2π)−n−p
∫
ei(x−x

′)·ξ+i(y−y′)·ηb(x, y, ξ, η)dξdη.

Using the invariance properties of the Sobolev based space if we write

(9.101) A = A0 + ΣxjBj , A0 = qL(b(0, y, ξ, η))

we see that Au ∈ Im+M (X,Y ; Ω
1
2 ) is equivalent to A0u ∈ Im+M (X,Y ; Ω

1
2 ). Then

(9.102) A0u = (2π)−n−p
∫
eix·ξ+i(y−y

′)·ηb(0, y′, ξ, η)b(y′, ξ)dy′dηdξ,

where we have put A0 in right-reduced form. This means

(9.103) A0u = (2π)−n
∫
eix·ξc(y, ξ)dξ

where

(9.104) c(y, ξ) = (2π)−p
∫
ei(y−y

′)·ηb(0, y′, ξ, η)a(y′, ξ)dy′dη.

Regarding ξ as a parameter, this is, before y′ integration, the kernel of a pseudo-
differential operator is y. It can therefore be written in left-reduced form, i.e.

18.2218.22 (9.105) c(y, ξ) = (2π)−p
∫
ei(y−y

′)ηe(y, ξ, η)dηdy′ = e(y, ξ, 0)

where e(y, ξ, η) = b(0, y, ξ, η)a(y, ξ) plus terms of order at most m+M − n
4 + p

4 −1.
This proves the formula (

18.18
9.97). �

Notice that if A is elliptic then Au ∈ C∞ implies u ∈ C∞, i.e. there are no
singular solutions. Suppose that P is say a differential operator which is not elliptic
and we look for solutions of

18.2318.23 (9.106) Pu ∈ C∞(XΩ
1
2 ).

How can we find them? Well suppose we try

18.2418.24 (9.107) u ∈ IM (X,Y ; Ω
1
2 )
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for some submanifold Y. To know that u is singular we will want to have

18.2518.25 (9.108) σ(u) is elliptic on N∗Y

(which certainly implies that u /∈ C∞).
The simplest case would be Y a hypersurface. In any case from (

18.18
9.97) and

(
18.23
9.106) we deduce

18.2618.26 (9.109) σm(P ) · σM (u) ≡ 0.

So if we assume (
18.25
9.108) then we must have

18.2718.27 (9.110) σm(P ) � N∗Y = 0.

18.28 Definition 9.3. A submanifold is said to be characteristic for a given operator
P ∈ Diffm(X; Ω

1
2 ) if (

18.27
9.110) holds.

Of course even if P is characteristic for y, and so (
18.26
9.109) holds we do not recover

(
18.23
9.106), just

18.2918.29 (9.111) Pu ∈ Im+M−1(X,Y ; Ω
1
2 )

i.e. one order smoother than it “should be”. The task might seem hopeless, but let
us note that these are examples, and important ones at that!!

Consider the (flat) wave operator

18.3018.30 (9.112) P = P 2
t −

n∑
i=1

D2
i = D2

t −∆ on Rn+1.

A hypersurface in Rn+1 looks like

18.3118.31 (9.113) H =
{
h(t, x) = 0

}
, (dh 6= 0 on H) .

The symbol of P is

18.3218.32 (9.114) σ2(P ) = τ2 − |ξ|2 = τ2 − ξ2
1 − · · · − ξ2

n,

where τ, ξ are the dual variables to t, x. So consider (
18.27
9.110),

18.3318.33 (9.115) N∗Y =
{

(t, x;λdh(t, y));h(t, x) = 0
}
.

Inserting this into (
18.32
9.114) we find:

18.3418.34 (9.116)

(
λ
∂h

∂t

)2

−
(
λ
∂h

∂x1

)2

− · · · −
(
λ
∂h

∂xn

)2

= 0 on h = 0

i.e. simply:

18.3518.35 (9.117)

(
∂h

∂t

)2

= |dxh|2 on h(t, x) = 0.

This is the “eikonal equation” for h (and hence H).
Solutions to (

18.35
9.117) are easy to find – we shall actually find all of them (locally)

next time. Examples are given by taking h to be linear:

18.3618.36 (9.118) H =
{
h = at+ b · x = 0

}
is characteristic for P ⇐⇒ a2 = |b|2.

Since h/a defines the same surface, all the linear solutions correspond to planes

18.3718.37 (9.119) t = ω · x, ω ∈ Sn−1.
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So, do solutions of Pu ∈ C∞ which are conormal with respect to such hyper-
surfaces exist? Simply take

18.3818.38 (9.120) u = v(t− ω · x) v ∈ I∗(R, {0}; Ω
1
2 ).

Then

18.3918.39 (9.121) Pu = 0, u ∈ I∗(Rn+1, H; Ω
1
2 ).

For example v(s) = δ(s), u = δ(t− ω · x) is a “travelling wave”.

9.2. Lagrangian parameterization

We will consider below the push-forward of conormal distributions under a
fibration and how this gives rise to the more general notion of a Lagrangian distri-
bution. So we first consider the local model for a fibration, which is projection, π,
off a Euclidean factor

π : Rny × Rkz → Rny .

The most important case of conormal distributions associated to a submanifold here
is that of a hyperspace H ⊂ Rny×bbRkz with global defining function h ∈ C∞(Rn+k),
H = {h = 0}, dh 6= 0 on H.

Recall from the general properties of conormal distributions that if u is conor-
mal to H then WF(u) ⊂ N∗H = {λ · dh(y, z);h(y, z) = 0}. From the properties of
wavefront set under push-forward, if u has compact support then

WF(π∗u) ⊂ {(y, η); ∃ z s.t. (y, z) ∈ H,

η = λdh(y, z),
∂h

∂z
(y, z) = 0}.

That is, the singularities of u are (co-)normal to H and any singularities not (co-
)normal to the fibres are wiped out by integration.

So, we are interested in the set

30.3.2008.57930.3.2008.579 (9.122) CH = {(y, z) ∈ H;
∂h

∂z
(y, z) = 0}

the ‘fibre critical’ set; a point is in this set if the fibre through it is tangent to H
at that point. In general this can be quite singular but by the implicit function
theorem

27.3.2008.56927.3.2008.569 (9.123) dh(ȳ, z̄), d
∂h

∂zj
(ȳ, z̄) linearly independent⇒ CH is smooth near (ȳ, z̄).

Observe that the set (
30.3.2008.579
9.122) only depends on H, not on the chosen defining

function, h. Indeed any other defining functions is just h′ = ah with a 6= 0. Of
course this defines the same hypersurface H and since

30.3.2008.58030.3.2008.580 (9.124)
∂h′

∂zj
= a

∂h

∂zj
+
∂a

∂zj
h

leads to the same fibre critical set CH , justifying the notation.
A fibre-preserving map in local coordinates is just one of the form

30.3.2008.58130.3.2008.581 (9.125) (y, z) = F̃ (y′, z′), z = F (y′, z′), y = G(y′)
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so under a diffeomorphism of this form the fibre above y pulls back to the fibre above
y′. The definition of CH is also invariant under fibre-preserving diffeomorphisms.
Namely, if H ′ is the pull back of H then CH also pulls back to CH′ since

30.3.2008.58230.3.2008.582 (9.126) h′ = F̃ ∗h, i.e. h′(y′, z′) = h(y, z) =⇒ dz′h
′(y′, z′) =

∂F

∂z′
· dzh(y, z).

prop:1 Proposition 9.2. Under the non-degeneracy assumption (
27.3.2008.569
9.123) on H ⊂ Rn×

Rk, the map

27.3.2008.57027.3.2008.570 (9.127) N∗H \ 0
∣∣
CH
3 (y, z;λdh) 7→ (y, λdh) ∈ T ∗Rn \ 0

is locally an embedding with range a conic Lagrangian submanifold ΛH , i.e., a ho-
mogeneous submanifold of dimension n such that

27.3.2008.57127.3.2008.571 (9.128) α =
∑
j

ηjdyj vanishes as a 1-form on ΛH .

Proof. In local coordinates the map (
27.3.2008.570
9.127) is the projection

π̃ : (y, z, η, ζ) 7→ (y, η)

restricted to the submanifold

27.3.2008.57227.3.2008.572 (9.129)

N∗H \ 0
∣∣
CH

= {(y, z; η, ζ);h(y, z) = 0

ζ =
∂h

∂zj
(y, z) = 0, η = λdyh(y, z)},

By the implicit function theorem it suffices to show that the differential is injective
when restricted to the tangent space of (

27.3.2008.572
9.129), i.e., that no element of the null

space of π̃∗ is tangent to M = N∗H \ 0|CH (other than zero of course). The null
space of π̃∗ is spanned by ∂zj and ∂ζi . Since ζ = 0 in N∗H over CH , only a · ∂z
could be tangent to it. However, ηj = λ ∂h

∂zjyj
on M and also ∂h

∂zh
= 0 on M so

∑
k

∂2h

∂yj∂zk
ak = 0 =

∑
k

∂2h

∂zj∂zk
ak

which implies a = 0 because of (
27.3.2008.569
9.123).

Thus (
27.3.2008.570
9.127) is locally an embedding, i.e., is an immersion as long as (

27.3.2008.569
9.123)

holds, with the image denoted ΛH . To see (
27.3.2008.571
9.128), i.e. that α = 0 when restricted

to ΛH it is enough to show that π̃∗α =
∑
j ηjλyj = 0 on M = (N∗H \ 0)|CH . Since

ηj = λ ∂h
∂yj

on M,

α = λ
∑
j

∂h

∂yj
dyj = λdh = 0

on M , since h = 0. �

Notice that under a coordinate transformation in the variables y, say y = G(y′),
the hypersurface H is transformed to H ′ defined by h′(y′, z) = h(G(y′), z) and ΛH
is replaced by

30.3.2008.58330.3.2008.583 (9.130) ΛH′ = {(y′, η′), y = G(y′), η′ · dy′ = η ·G∗dy, (y, η) ∈ ΛH}.

That is, ΛH is a well-defined submanifold of T ∗Rn\0 with Rn treated as a manifold.
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We shall say a hypersurface H ⊂ Rn × Rk such that (
27.3.2008.569
9.123) holds near p̄ ∈ H

is a parameterization of ΛH near (ȳ, dh(ȳ, z̄)), p̄ = (ȳ, z̄) given by (
27.3.2008.570
9.127). Propo-

sition
prop:1
9.2 has a converse, namely any Λ ⊂ T ∗Rn \ 0 which is homogeneous and

Lagrangian arises this way locally, that is provided

27.3.2008.57327.3.2008.573 (9.131)

Λ ⊂ T ∗Rn \ 0 is smooth of dimension n,

t · Λ = Λ, t > 0 is Lagrangian

ω =
∑
j

dηjdyj vanishes on Λ.

Note that as a consequence of the assumed homogeneity of Λ, this last condition is
equivalent to

9.4.2008.6799.4.2008.679 (9.132) α =
∑
j

ηjdyj vanishes on Λ.

Certainly (
9.4.2008.679
9.132) implies that ω = dα vanishes on Λ. Conversely, the homogeneity

means exactly that R = η · ∂η is everywhere tangent to Λ. Then for any v ∈ TpΛ,

9.4.2008.6809.4.2008.680 (9.133) α(v) = ω(R, v) = 0.

prop:2 Proposition 9.3. Any homogeneous Lagrangian submanifold has a parame-
terization near each point (ȳ, η̄) ∈ Λ and H can be chosen to be minimal in the
sense that if p̄ is the base point of the parameterization

30.3.2008.58530.3.2008.585 (9.134)
∂2h

∂zi∂zj
(p̄) = 0.

Proof. Fix (ȳ, η̄) ∈ Λ, η̄ /∈ 0 by assumption in (
27.3.2008.573
9.131). Let S ⊂ Rn by the

projection of T(ȳ,η̄)Λ onto the first factor. Thus

4.4.2008.6304.4.2008.630 (9.135) dimS = n− k − 1 ≤ n− 1

by homogeneity (which implies η ·∂η is tangent to Λ) so k ≥ 0. By an affine change
of variables in Rn we may assume ȳ = 0 and that S = sp{∂zk+2

, . . . , ∂yn}. Thus
on Λ, near (ȳ, η̄), the variables yj , j ≥ k + 2, have independent differentials and
dyj = 0 at (ȳ, η̄) for j = 1, . . . , k + 1. The vanishing of α, and dα, on Λ, and in
particular on the tangent space T(ȳ,η̄)Λ implies that

ηk+2 = · · · = ηn = 0 at (ȳ, η̄),

dηk+2 = · · · = dηn = 0 at (ȳ, η̄).

Thus the variables ηj , j = 1, . . . , k+1 and yl, l ≥ k+2 together give local coordinates
on Λ near (ȳ, η̄). By a further linear transformation among only the first k + 1
variables we can assume that η̄ = (1, 0, . . . , 0).

Write

α = η1dy1 −
∑

2≤j≤k+1

yjdηj +
∑
l≥k+2

ηldyl + d(
∑

2≤j≤k+1

ηjyj).

By assumption in (
27.3.2008.573
9.131) this 1-form vanishes identically on Λ. Next restrict to

Γ = Λ ∩ {η1 = 1}, which involves no essential loss of information due to the
assumed homogeneity of Λ. Then zj = ηj+1, 1 ≤ j ≤ k and y′′ = (yk+2, . . . , yn) are
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local coordinates on Γ near the base point and the other variables can therefore be
expressed in terms of them and so we may define a function g(z, y′′) by

9.4.2008.6819.4.2008.681 (9.136) g(z, y′′) = y1 +
∑

2≤j≤k+1

ηjyj on Γ

Thus on Γ,

28.3.2008.57428.3.2008.574 (9.137)

α = dg −
∑

1≤j≤k

yj+1dzj +
∑
l≥k+2

ηldyl = 0 on Γ =⇒

ηj+1 = zj , yj+1 =
∂g

∂zj
, j = 1, . . . , k, ηl = − ∂g

∂yl
, l ≥ k + 2.

We shall show that the zero set of the function

28.3.2008.57628.3.2008.576 (9.138) h(y, z) = y1 +

k∑
j=1

zjyj+1 − g(z, y′′)

parameterizes Λ near (ȳ, η̄). Certainly (
27.3.2008.569
9.123) holds so it suffices to check that the

Lagrangian it parameterizes is indeed Λ. Differentiating h,

CH = {yj+1 =
∂g

∂zj
, j = 1, . . . , k, h = y1 +

k∑
j=1

zjyj+1 − g(z, y′′) = 0}

shows that the zj and yl, l ≥ k + 2 are coordinates on CH and from (
28.3.2008.574
9.137)

28.3.2008.57528.3.2008.575 (9.139) dyh = dy1 +

k∑
j=1

zjdyj+1 − dy′′g(z, y′′) =⇒ (y, dyh) ∈ Γ

so H does parameterize Λ.
This completes the proof of Proposition

prop:2
9.3 since h is minimal, in that ∂2h/∂zi∂zj =

0 at the chosen base point. �

As we shall see below, it is important to observe that two minimal paramer-
izations of a conic Lagrangian near a given point are equivalent in the sense that
there is is a fibre-preserving diffeomorphism mapping base point to base point and
taking one hypersurface to the other.

30.3.2008.584 Lemma 9.6 (Minimal parameterizations). If H ′ ⊂ Rn × Rk′ is a hypersurface
satisfying (

27.3.2008.569
9.123) at p̄ = (ȳ, z̄) which is minimal in the sense that (

30.3.2008.585
9.134) holds and

which locally parameterizes a conic Lagrangian Λ then k′ = k, the integer in (
4.4.2008.630
9.135)

for that Lagrangian and there is a local fibre-preserving diffemorphism reducing H ′

to the hypersurface H constructed in Proposition
prop:2
9.3.

Proof. We may work in the local coordinates introduced in the proof of Propo-
sition

prop:2
9.3. Thus, in addition to assuming that H ′ = {h′(y, z) = 0} parameterizes Λ

near (ȳ, η̄) we may suppose that (
4.4.2008.630
9.135) holds and also that p̄ = (ȳ, z̄) is the base

point of both the given parameterization and that constructed in Proposition
prop:2
9.3.

Thus yj , for j ≥ n − k + 2 ηl, l ≤ k + 1 are coordinates on Λ, ȳ = 0, η̄ =
(1, 0, . . . , 0) and T(ȳ,η̄)Λ is reduced to normal form. First we arrange that, locally,
CH′ = CH by a fibre-preserving diffeomorphism. Of necessity dh′ = dy1 at the base
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point, so h′ = a(y1 +g(y2, . . . , yn, z)). So may assume that h′ = y1 +g(y2, . . . , yn, z).
From the arranged form of the tangent space to Λ at the base point we know that

4.4.2008.6314.4.2008.631 (9.140) dy
∂h′

∂zj
(p̄) define {dyj = 0, 2 ≤ j ≤ k + 1}.

Thus, after a linear change of fibre coordinates, we may suppose that

4.4.2008.6324.4.2008.632 (9.141) dy
∂h′

∂zj
= dyj at p̄.

Now the assumption that H ′ and H parameterize the same Lagrangian means
that

4.4.2008.6334.4.2008.633 (9.142) CH 3 (y, z)
_

��
(y, dyh(y, z)) (y, dyh

′(y, z′)) in Λ ∩ {η1 = 1}

CH′ 3 (y, z′)
_

OO

induces a diffeomorphism from CH to CH′ . We need to check that this can be
extended to a fibre preserving diffeomorphism, but this is clear since z and the
y′′ = yk+2, . . . , yn give coordinates on CH and similarly on CH′ and in terms of
these (

4.4.2008.633
9.142) is the restriction of the identity in y and

4.4.2008.6344.4.2008.634 (9.143) zj =
∂h′

∂yj+1
(y, z′)

which is fibre-preserving.
Thus we have arranged that CH = CH′ and that dyh = dyh

′ there, which
means that

4.4.2008.6354.4.2008.635 (9.144) h′ = h+O((h, dzh)2)

i.e. the difference vanishes quadratically on CH = CH′ .
So, we need to make a further fibre-preserving transformation which removes

these quadratic terms, leaving CH fixed of course. This can be done using the
Morse lemma. Since a proof is not included here, it seem appropriate to prove it
directly – this amounts to Moser’s proof of the Morse Lemma.

Since we have arranged that h′ and h are equal up to quadratic terms on
CH it follows that ht = (1 − t)h + th′ is, for t ∈ [0, 1], a 1-parameter family of
parameterizations of the same Lagrangian Λ with CH fixed (and of course dht
constant on CH .) So, Moser’s idea applied to this case, is to look for a 1-parameter
family of fibre-preserving diffeomorphisms,

4.4.2008.6364.4.2008.636 (9.145) Ft(y, z) = (y, Z(t, z)), F0(y, z) = (y, z),

starting at the identity and such that

4.4.2008.6374.4.2008.637 (9.146) F ∗t ht = ht(y, Z(t, z)) ≡ h(y, z) = h0(y, z).

The nice feature of this is that the condition can be expressed differentially and
written in the form

4.4.2008.6384.4.2008.638 (9.147) 0 =
d

dt
F ∗t ht = F ∗t (Vtht(y, z) + h′t) =⇒ Vtht(y, z) + h′t = 0
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where Vt is the 1-parameter family of vector fields defining Ft. That is, Ft can be
recovered from Vt and the intial condition F0 = Id, and will be fibre-preserving if
and only if

4.4.2008.6394.4.2008.639 (9.148) Vt =

k∑
j=1

vj(t, z)∂zj

is tangent to the fibres. The remarkable property of (
4.4.2008.638
9.147) is that ‘Ft has disap-

peared’ and we only need to find Vt.
By construction

ht = h+

k∑
i,j=1

Gij(t, y
′, z)

∂h

∂zi

∂h

∂zj

=⇒ ∂ht
∂zi

=
∑
j

Aij(t, y, y
′)
∂h

∂zj

where the Gij are smooth and Aij is invertible near CH . Thus

4.4.2008.6414.4.2008.641 (9.149)
dh

dt
=

k∑
i,j=1

dGij(t, y
′, z)

dt

∂h

∂zi

∂h

∂zj
(A−1 ∂ht

∂z
)j

constructs Vt. �

It also follows from Proposition
prop:2
9.3 that there is a parameterization of Λ, near

a given point, with any number of fibre variables z, greater than or equal to k.
Namely, if z′ ∈ Rq and p(z′) is a non-degenerate quadratic form in z′ then

H ′ = {(y, z, z′) ∈ Rn × Rk × Rq; h′ = h(y, z) + p(z′)}

also parameterizes Λ and has k+q fibre variables, simply because ∂h′

∂z′ = 0⇔ z′ = 0.1

Conversely we may remove ‘unnecessary’ fibre variables.

9.4.2008.682 Lemma 9.7. If H ⊂ {Rk+l
(z,Z) × R

n} is defined by h where at the base point

∂2h∂Z2 is invertible and Z = S(z, y) is the local sollution of ∂h/∂Z(z, S, y) = 0
then H ′ = {h′ = h(z, S, y) locally parameterizes the same Lagrangian as H.

Proof. The invertibility of ∂2h/∂Z2 at the base point ȳ, z̄, Z̄) implies that the
local solution of ∂h/∂Z(z, S, y) is of the indicated form and then h′ exists. Then

9.4.2008.6839.4.2008.683 (9.150)
∂h′

∂z
=
∂h

∂z
+
∂S

∂z
· ∂h
∂Z

from which it follows that CH∂(y, z, Z) 7−→ (y, z) ∈ CH′ is an isomorphism and
dyh
′ = dyh at the points so identified. Thus h′ parameterizes the same Lagrangian

as h. �

The most familiar case of a conic Lagrangian submanifold of T ∗Rn is the conor-
mal bundle of a submanifold. If the manifold is of codimension k + 1 then

G = {y ∈ Rn; g1(y) = · · · = gk+1(y) = 0, dgj independent}

N∗G = {(y, η) ∈ T ∗Rn; η =

k+1∑
i=1

ηidgi(y)}.

1See Problem N
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Clearly G is parameterized near η = (1, 0, . . . , 0) by

h(y, z) = g1(y) +

k∑
j=1

zjgj+1(h).

Then ∂2h/∂zi∂zj ≡ 0. Conversely,

ParCon Proposition 9.4. If H ⊂ Rn × Rk is such that ∂2h/∂zi∂zj ≡ 0 on CH then
H parameterizes the conormal bundle of a submanifold locally.

Proof. See Problem MM. �

9.3. Lagrangian distributions

Now we are in a position to associate a space of distributions with a conic
Lagrangian, Λ ⊂ T ∗X \ 0, in a way that generalizes the conormal distributions
discussed earlier.

4.4.2008.642 Definition 9.4. If Λ ⊂ T ∗X \ 0 is a smooth conic Lagrangian submanifold
then

4.4.2008.6434.4.2008.643 (9.151) I∗(X,Λ) ⊂ C−∞(X)

is defined to consist of those distributions satisfying

4.4.2008.6444.4.2008.644 (9.152) WF(u) ⊂ Λ

and such that for each p ∈ Λ there is a local parameterization H ⊂ X × Rk of Λ
near p and v ∈ I∗(X × Rk, H) with compact support such that

4.4.2008.6454.4.2008.645 (9.153) p /∈WF(u(·)−
∫
Rk
v(·, z)dz).

Thus by definition a distribution is Lagrangian if it is ‘smooth away from the
Lagrangian’ and microlocally given by push-forward of a conormal distribution on
a parameterizing hypersurface near each point of the Lagrangian.

As usual this definition only really makes good sense because the same class
of singularities near a given point of Λ arises by pushing forward, independent of
which parameterization of the Lagrangian is used. So, we check this first

One thing to check is that this does indeed reduce to the conormal distributions
discussed earler.

9.4.2008.684 Proposition 9.5. If Λ = N∗G \ 0 is the conormal bundle of an embedded
submanifold then

9.4.2008.6859.4.2008.685 (9.154) I∗(X,N∗G) = I∗(X,G).

Proof. Stationary phase to minimal parameterization. �

4.4.2008.646 Lemma 9.8. If Hi ⊂ X×Rki , i = 1, 2, near pi ∈ CHi are two parameterizations
of a conic Lagrangian Λ near p ∈ Λ and χ ∈ C∞c (X × Rki) then for each v ∈
I∗(X × Rk1 ;H1) there exists w ∈ I∗(X × Rk1 ;H1) such that

4.4.2008.6474.4.2008.647 (9.155) p /∈WF(

∫
Rk1

v(·, z)dz −
∫
Rk2

w(·, z′)dz′.

Nothing is said about the orders of v and w, but we will work this out as we go
along.
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Proof. Suppose first that both the Hi are minimal parameterizations at p.
Then we know from Proposition

30.3.2008.584
9.6 that the two parameterizations are related by a

fibre-preserving diffeomorphism. This means that the resulting spaces of conormal
distributions are mapped onto each other by the diffeomorphism and its inverse
locally and then w is the pull-back of v with a Jacobian factor inserted to ensure
that the integrals are the same.

So, to prove the general case it suffices to work with an arbitrary parameteriza-
tion H1 and we may suppose that H2 is any convenient minimal parameterization.
At the base point,

4.4.2008.6484.4.2008.648 (9.156)
∂2h1

∂zi∂zj
has rank p

where minimality corresponds to p = 0. After a linear change of variables, we may
take this matrix to be the identity in the last p × p block. Then by the implicit
function theorem,

∂h1

∂zi
= 0, k1−p+1 ≤ i ≤ ki =⇒ zj = Zj(y, z

′), k1−p+1 ≤ k1, z
′ = (z1, . . . , zk), k = k1−p.

Thus,
4.4.2008.6504.4.2008.650 (9.157)

h1(y, z) = h(y, z′)+

k1∑
i,j=k1−p+1

Hij(zi−Zi(y, z′))(zj−Zj(y, z′)), h(z′, y) = h1(y, z′, Z(y, z′))

with Hij symmetric and invertible. �

9.4. Keller’s example of a caustic

Keller was the first to effectively compute with Lagrangian distributions in a
context, that of a caustic, where what is now called the Keller-Maslov line bundle
cannot be avoided. This example will be discussed here and should help to motivate
the general, invariant, definition of the symbol of a Lagrangian distribution in the
next section.

Consider the wave operator in 2 + 1 dimensions

5.4.2008.6515.4.2008.651 (9.158) P = D2
t −D2

x −D2
y.

The forward forcing problem for P is uniquely solvable. That is, if f ∈ C−∞(R3)
has support in t ≥ 0 then there is a unique distribution

5.4.2008.6525.4.2008.652 (9.159) u ∈ C−∞(R3), Pu = f, supp(u) ⊂ {t ≥ 0}.
It is also the case that if in addition f ∈ C∞(R3) then u ∈ C∞(R3). In particular
this means that if u is a solution of Pu = 0 in t < 0 then u can be extended uniquely
to a solution in the whole of R32 and the singularities in the future only depend on
the singularities in the past.

So, suppose that we have arrange that u ∈ C−∞(R3) is conormal to some
hypersurface in t < 0 and satisfies the wave equation, or at least has Pu smooth
there. It is possible to find such solutions, u ∈ Im(R3, G) which are elliptic (so in
particular not smooth) if G is characteristic for the wave equation, meaning that

5.4.2008.6535.4.2008.653 (9.160) N∗G ⊂ Σ(P ) = {(x, y, t, τ, ξ, η); τ2 = ξ2 + η2}.

2Problem NN
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The most obvious example of this is a characteristic plane G = {t = ω · (x, y)}
where |ω|2 = 1. Then for instance

5.4.2008.6545.4.2008.654 (9.161) P (δ(t− ω · (x, y)) = 0.

As we shall see below, it is possible to continue any smooth curve C ∈ R2 as a
characteristic hypersurface (in two ways in fact) for |t| < ε where ε > 0 depends on
C, and especially on its curvature. As opposed to the case of the line ω · (x, y) = 0
which leads to the global surface above, in general this characteristic hypersurface
will develop singularities. Again as we shall see below, the conormal bundle of the
curve defines a global smooth conic Lagrangian and the singularities correspond
to the places where the projection of this to the base is not locally smooth. The
particular example we consider here, following the idea of Keller, is where G is a
parabola. The general construction is carried out below but for the parabola

5.4.2008.6555.4.2008.655 (9.162) C = {y =
x2

2
}, N∗C = {(x, x

2

2
,−xη, η), x, η ∈ R}

we can find the global Lagrangian – it is ‘the union of the light rays through the
points of N∗C \ 0’. Here, by a light ray, we mean a straight line in Σ(P ) ⊂ T ∗R3

on which τ, ξ and η are constant (with τ2 = ξ2 + η2) and t = t0 + s, x = x0 − ξs/τ
and y = y0− ηs/τ. Here (t0, x0, y0, τ, ξ, η) is the initial point, so we can take t0 = 0

and s = t and so initially τ = ±(x2
0 + 1)

1
2 η and

5.4.2008.6565.4.2008.656 (9.163)

ΛC = {(t, x0±
x0t

(x2
0 + 1)

1
2

,
x2

0

2
−∓ t

(x2
0 + 1)

1
2

,±(x2
0+1)

1
2 η,−x0η, η);x0, η, t ∈ R, η 6= 0}.

If we take τ to have the oppsosite sigh to η, meaning the negative sign in
(
5.4.2008.656
9.163) then y increases with t from its initial (non-negative value) snd x increases

if negative and decreases if positive. It is straightforward to check3 that

5.4.2008.6575.4.2008.657 (9.164) Λ−C = N∗G in t < 1, G smooth.

In fact the first singularity which occurs, meaning the first point at which the
intersection of the tangent space to Λ−C and the fibre of T ∗R3 has dimension greater
than 1 is at (1, 0, 1,−1, 0, 1) at which it has dimension 2 – it always has dimension
1 in t < 1. In fact we can easily see exactly where the tangent space to Λ−C meets
the fibre with dimension greater than one since this is exactly where

5.4.2008.6585.4.2008.658 (9.165)

d

dx0

(
x0(1− t

(x2
0 + 1)

1
2

)

)
= 1− t

(x2
0 + 1)

3
2

= 0 and

d

dx0

(
x2

0

2
+

t

(x2
0 + 1)

1
2

)
= x0 −

tx0

(1 + x2
0)

3
2

= 0

⇐⇒ t = (1 + x2
0)

3
2 , x = x3

0, y = 1 +
3

2
x2

0.

This curve is the full caustic, K. As a curve, it is smooth as a curve except for a
singular point at (1, 0, 1), which is the point we are most interested in. Notice that
if we think of Λ−C as projecting to the conormal bundle to a family Ct of curves in
R2 starting at C0 = C and parameterized by t, then for t < 1, Ct is smooth, for
t = 1 it has a single singular point at (1, 0, 1) and for t > 1 these curves each have

3Problem ***
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two singular points, on K. If you check4 what is happening to the curvature of Ct
you will see that it is positive in the ‘upwards direction’ (i.e. for y increasing) and
this remains true for t > 1 for the part of the curve outside K; however the part of
the curve above K has the opposite curvature. This is reflected in the behaviour
of the symbols as we shall see.

Using the construction in the previous sections we can find an explicit parame-
terization for Λ−C near (1, 0, 1) and show that there are solutions of Pu = 0 nearby

which are Lagrangian with respect to Λ−C . Thus following the proof of Propositon
prop:2
9.3

we first make an affine change of coordinates setting

5.4.2008.6595.4.2008.659 (9.166) S = y − t, R =
y + t

2
− 1, x = x.

The dual variables are then

5.4.2008.6605.4.2008.660 (9.167) η = σ +
ρ

2
, τ = −σ +

ρ

2
, ξ = ξ i.e. σ =

η − τ
2

, ρ = η + τ.

Thus in the canonically dual coordinates to these coordinates is

5.4.2008.6615.4.2008.661 (9.168) Λ−C = {(S, x,R, σ, ξ, ρ) =

(
1

2
x2

0 + t((x2
0 + 1)−

1
2 − 1), x0 − x0t(x

2
0 + 1)−

1
2 ,
x2

0

4
+

1

2
t(1 + (x2

0 + 1)−
1
2 )− 1,

1

2
(1 + (x2

0 + 1)
1
2 )η,−x0η, (1− (x2

0 + 1)
1
2 )η);x0, η, t ∈ R, η 6= 0}

where we use the same parameterization. Now the base point has been moved to
the point (1, 0, 0) above the origin in (S, x,R) and the projection to the base of the
tangent space is fixed by

5.4.2008.6625.4.2008.662 (9.169) dx = 0, dS = 0.

4Problem ***
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Then a parameterizing hypersurface is given by

5.4.2008.6635.4.2008.663 (9.170) h = S + zx− F (R, z), F = xξ

where z = ξ and R are taken as coordinates on Λ−C ∩ {σ = 1}. Thus F is given
implicitly by:-

5.4.2008.6645.4.2008.664 (9.171)

F (R, z) = (x0−x0t(x
2
0+1)−

1
2 )zη,

1

2
(1+(x2

0+1)
1
2 )η = 1, z = −x0η, R =

x2
0

4
+

1

2
t(1+(x2

0+1)−
1
2 )−1,

where we eliminate η using the second equation and x0 and t in terms of z and R
using the last two. Now, we know that ∂2

zh = 0 at the base point and we can easily
check that

5.4.2008.6655.4.2008.665 (9.172) ∂3
zh =? at p̄.

This of course means that ∂2
zh < 0 above x = 0 for t = 1 − δ and ∂2

zh > 0 above
x = 0 for t = 1 + δ, δ > 0 small. The effect of this is Keller’s observation

5.4.2008.6665.4.2008.666 (9.173)
As a conormal distribution the symbol of u

is multiplied by i across the swallowtail tip.

This shows that we must expect ‘factors of i’ to appear in the definition of the sym-
bol of a Lagrangian distributions when we generalize from the conormal case. These
factors are what constitutes the Keller-Maslov line bundle over a conic Lagrangian.

9.5. Oscillatory testing and symbols

The symbol of a conormal distribution is defined by taking the Fourier trans-
form across the submanifold. To extend this to the Lagrangian case requires some
care. We shall show that if u ∈ I∗(X,Λ; Ω

1
2 ) is a half-density then we can define

its symbol as an object on Λ (but not quite a function) by pairing with oscillating
functions. Thus consider

5.4.2008.6675.4.2008.667 (9.174) A(s, f, ν) = u(e−isfν), f ∈ C∞(X), u ∈ I∗(X,Λ; Ω
1
2 ).

The argument is really local, so it is enough to take X = Rn, but we do want to
ensure coordinate invariance. In order for (

5.4.2008.667
9.174) to make sense, ν should be a

half-density. Obviously to find (i.e. define) the symbol at some point λ ∈ Λ, or
really the ray through that point, we will suppose that ν has support near the
projection of that point. The main question is then, what we should demand of f.
It is clearly natural to expect to take

5.4.2008.6685.4.2008.668 (9.175) df(π(λ)) = λ ∈ T ∗X \ 0.

5.4.2008.669 Lemma 9.9. For any λ ∈ Λ, the phase f ∈ C∞(X) can be chosen so that

5.4.2008.6705.4.2008.670 (9.176) f(π(λ)) = 0 and graph(df) t Λ = {λ}
and then, if ν has sufficiently small support near π(λ), A(s, f, ν) in (

5.4.2008.667
9.174) is a

classical symbol for any u ∈ I∗(X,Λ; Ω
1
2 ).

NB: Cutoffs need to be done better and argument cleaned up!

Proof. As shown in the proof of Proposition
prop:2
9.3 coordinates can be introduced

near the projection of λ in terms of which the base point and the tangent space to
Λ at the base point takes the form

6.4.2008.6716.4.2008.671 (9.177) λ = dy1, TλΛ = sp{∂ηj , 1 ≤ j ≤ k + 1, ∂yl , l ≥ k + 2}.
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Since, for any choice of a real-valued function f ∈ C∞(X), and any coordinates

6.4.2008.6746.4.2008.674 (9.178) graph(df) = {(y, dyf)} ⊂ T ∗X

is a smooth Lagrangian submanifold (since it clearly has dimension n, being a
graph, and α = η · dy = df is closed on Λ, and hence ω = dα vanishes there).
Thus, if df(π(λ)) = λ then (

5.4.2008.670
9.176) is just the condition that the pairing between

T ∗λ graph(df) and TλΛ be non-degenerate. Thus the condition on f is just

6.4.2008.6726.4.2008.672 (9.179) det

(
∂2f

∂i∂j

∣∣
i,j≥k+2

)
6= 0.

Put more invariantly, this condition can be stated in terms of any submanifold S
through π(λ) = ȳ which is conormal bundle tangent to Λ at λ, i.e. λ ∈ N∗S and
TλN

∗S = TλΛ as

6.4.2008.6736.4.2008.673 (9.180) df(ȳ) = λ, f
∣∣
A

has a non-degenerate critical point at ȳ.

Of course such a submanifold S exists, for example that given locally by yj = ȳj
for j ≥ k + 2 and (

6.4.2008.673
9.180) only depends on TȳS.

5

Under this assumption of transversality we need to examine (
5.4.2008.667
9.174). We know

from the properties of the wave front set that only the points where df ∈WF(u) can
make asymptotic contributions to A(s, f, ν). Thus, if ν has small enough support
then only the point λ ∈ WF(u) is relevant and we may suppose that, in local
coordinates,

6.4.2008.6756.4.2008.675 (9.181) u(y) =

∫
eiτh(y,z)a(y, z, τ)dzdτ |dy| 12 , a ∈ Smphg

for some m and some parameterizing hypersurface for Λ at λ. Then

6.4.2008.6766.4.2008.676 (9.182) A(s, f, ν) =

∫
ei(τh(y,z)−sf(y))a′(y, z, τ)dzdτdy, a|dy| 12 ν = a′|dy|.

Consider the inverse Fourier transform in s

6.4.2008.6776.4.2008.677 (9.183) u(t) =

∫
ei(τh(y,z)−sf(y)+st)a′(y, z, τ)dzdτdyds.

A cutoff keeping τ > 1 and r = s/τ bounded from above an below can be inserted
here making on a C∞ change to u. It then follows that

6.4.2008.6786.4.2008.678 (9.184) h̃(t, y, z) = h(y, z)− rf(y) + rt

defines a hypersurface parameterizing N∗{t = 0} which means that u is conormal
to 0 and its Fourier transform A(s, f, ν) is equivalently a classical symbol. �

5Note that this shows something rather less than obvious, which is worth checking by hand.

Namely if one takes a C∞ perturbation of f to f + εg then if ε is small enough and df + εdf =

λ′ ∈ Λ then the condition (
6.4.2008.673
9.180) must hold at the new point λ′ – even though the dimension

of the tangent space may well be different (it can only be larger). This is just the stability of
transversality.
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9.6. Hamilton-Jacobi theory

Let X be a C∞ manifold and suppose p ∈ C∞(T ∗X\0) is homogeneous of
degree m. We want to find characteristic hypersurfaces for p, namely hypersurfaces
(locally) through x̄ ∈ X

19.119.1 (9.185) H = {f(x) = 0} h ∈ C∞(x)h(x̄) = 0, dh(x̄) 6= 0

such that

19.219.2 (9.186) p(x, dh(x)) = 0.

Here we demand that (
19.2
9.186) hold near x̄, not just on H itself. To solve (

19.2
9.186) we

need to impose some additional conditions, we shall demand

19.319.3 (9.187) p is real-valued

and

19.419.4 (9.188) dfibrep 6= 0 or Σ(p) = {p = 0} ⊂ T ∗X\0.

This second condition is actually stronger than really needed (as we shall see) but
in any case it implies that

19.519.5 (9.189) Σ(P ) ⊂ T ∗X\0 is a C∞ conic hypersurface

by the implicit function theorem.
The strategy for solving (

19.2
9.186) is a geometric one. Notice that

19.619.6 (9.190) Λh = {(x, dh(x)) ∈ T ∗X\0}

actually determines h up to an additive constant. The first question we ask is –
precisely which submanifold Λ ⊂ T ∗X\0 corresponds to graphs of differentials of
C∞ functions? The answer to this involves the tautologous contact form.

19.719.7 (9.191)
α : T ∗X −→ T ∗(T ∗X) 6⊂ π̃ ◦ α = Id

α(x, ξ) = π̃∗ξ ∈ T ∗(x,ξ)(T
∗X).

Here π̃ : T ∗(T ∗X) −→ T ∗X is the projection. Notice that if x1, . . . , xn are local
coordinates in X then x1, . . . , xn, ξ1, . . . , ξn are local coordinates T ∗X, where ξ ∈
T ∗xX is written

19.819.8 (9.192) ξ =
n∑
i=1

ξidxi.

Since x1, . . . , xn, ξ1, . . . , ξn are local coordinates in T ∗X they together with the dual
coordinates Ξ1, . . . ,Ξn, X1, . . . , Xn are local coordinates in T ∗(T ∗X) where

19.919.9 (9.193) ζ ∈ T ∗(x,ξ)(T
∗X) =⇒ ζ =

n∑
j=1

Ξjdxj +

n∑
j=1

Xjdξj .

In these local coordinates

19.1019.10 (9.194) α =

n∑
j=1

ξjdxj !

The first point is that α is independent of the original choice of coordinates, as is
evident from (

19.7
9.191).



238 9. THE WAVE KERNEL

19.11 Lemma 9.10. A submanifold Λ ⊂ T ∗X\0 is, near (x̄, ξ̄) ∈ Λ, of the form
(
19.6
9.190) for some h ∈ C∞(X), if

19.1219.12 (9.195) π : Λ −→ X is a local diffeomorphism

and

19.1319.13 (9.196) α restricted to Λ is exact.

Proof. The first condition, (
19.12
9.195), means that Λ is locally the image of a

section of T ∗X :

(9.197) Λ = {(x, ζ(x)), ζ ∈ C∞(X;T ∗X)}.
Thus the section ζ gives an inverse Z to π in (

19.12
9.195). It follows from (

19.7
9.191) that

(9.198) Z∗α = ζ.

Thus if α is exact on Λ then ζ is exact on X, ζ = dh as required. �

Of course if we are only working locally near some point (x̄, ξ̄) ∈ Λ then (
19.13
9.196)

can be replaced by the condition

19.1419.14 (9.199) ω = dα = 0 on X.

Here ω = dα is the symplectic form on T ∗X :

19.1519.15 (9.200) ω =

n∑
j=1

dξj ∧ dxj .

19.16 Definition 9.5. A submanifold Λ ⊂ T ∗X of dimension equal to that of X is
said to be Lagrangian if the fundamental 2-form, ω, vanishes when pulled back to
Λ.

By definition a symplectic manifold is a C∞ manifold S with a C∞ 2-form
ω ∈ C∞(S; Λ2) fixed satisfying two constraints

19.1719.17 (9.201) dω = 0

19.1819.18 (9.202) ω ∧ · · · ∧
n factors

ω 6= 0 dimS = 2n.

A particularly simple example of a symplectic manifold is a real vector space, nec-
essarily of even dimension, with a non-degenerate antisymmetric 2-form:

19.1919.19 (9.203)

{
ω : E × E −→ R
ω̃ : E ←→ E∗.

Here ω̃(v)(w) = ω(v, w) ∀ w ∈ E. Now (
19.17
9.201) is trivially true if we think of ω as

a translation-invariant 2-form on E, thought of as a manifold.
Then a subspace V ⊂ E is Lagrangian if

19.2019.20 (9.204)
ω(v, w) = 0 ∀ v, w ∈ V
2 dimV = dimE.

Of course the point of looking at symplectic vector spaces and Lagrangian subspaces
is:

19.21 Lemma 9.11. If S is a symplectic manifold then TzS is a symplectic vector
space for each z ∈ S. A submanifold Λ ⊂ S is Lagrangian iff TzΛ ⊂ TzS is a
Lagrangian subspace ∀ z ∈ Λ.
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We can treat ω, the antisymmetric 2-form on E, as though it were a Euclidean
inner product, at least in some regards! Thus if W ⊂ E is any subspace set

19.2219.22 (9.205) Wω = {v ∈ E;ω(v, w) = 0 ∀ w ∈W}.

19.23 Lemma 9.12. If W ⊂ E is a linear subspace of a symplectic vector space then
dimWω + dimW = dimE; W is Lagrangian if and only if

19.2419.24 (9.206) Wω = W.

Proof. Let W 0 ⊂ E∗ be the usual annihilator:

(9.207) W 0 = {α ∈ E∗;α(v) = 0 ∀ v ∈W}.

Then dimW 0 = dimE − dimW. Observe that

19.2519.25 (9.208) ω̃ : Wω ←→W 0.

Indeed if α ∈W 0 and ω̃(v) = α then

(9.209) α(w) = ω̃(v)(w) = ω(v, w) = 0 ∀ w ∈W

implies that v ∈ Wω. Conversely if v ∈ Wω then α = ω̃(v) ∈ W 0. Thus dimWω +
dimW = dimE.

Now if W is Lagrangian then α = ω̃(w), w ∈W implies

(9.210) α(v) = ω̃(w)(v) = ω(w, v) = 0 ∀ v ∈ w.

Thus ω̃(W ) ⊂ W 0 =⇒ W ⊂ Wω, by (
19.25
9.208), and since dimW = dimWω, (

19.24
9.206)

holds. The converse follows similarly. �

The “lifting” isomorphism ω̃ : E ←→ E∗ for a symplectic vector space is like the
Euclidean identification of vectors and covectors, but “twisted”. It is of fundamental
importance, so we give it several names! Suppose that S is a symplectic manifold.
Then

19.2619.26 (9.211) ω̃z : TzS ←→ T ∗z S ∀ z ∈ S.

This means that we can associate (by the inverse of (
19.26
9.211)) a vector field with

each 1-form. We write this relation as

19.2719.27 (9.212)
Hγ ∈ C∞(S;TS) if γ ∈ C∞(S;T ∗S) and

ω̃z(Hγ) = γ ∀ z ∈ S.

Of particular importance is the case γ = df, f ∈ C∞(S). Then Hdf is written
Hf and called the Hamilton vector field of f. From (

19.27
9.212)

19.2819.28 (9.213) ω(Hf , v) = df(v) = vf ∀ v ∈ TzS, ∀ z ∈ S.

The identity (
19.28
9.213) implies one important thing immediately:

19.2919.29 (9.214) Hff ≡ 0 ∀ f ∈ C∞(S)

since

(9.215) Hff = df(Hf ) = ω(Hf , Hf ) = 0

by the antisymmetry of ω. We need a generalization of this:

19.30 Lemma 9.13. Suppose L ⊂ S is a Lagrangian submanifold of a symplectic man-
ifold then for each f ∈ I(S) = {f ∈ C∞(X); f � {s = 0}, Hf is tangent to Λ.
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Proof. Hf tangent to Λ means Hf (z) ∈ TzΛ ∀ z ∈ Λ. If f = 0 on Λ then
df = 0 on TzΛ, i.e. df(z) ∈ (TzΛ)0 ⊂ (TzS) ∀ z ∈ Λ. By (

19.24
9.206) the assumption

that Λ is Lagrangian means ω̃z(df(z)) ∈ TzΛ, i.e. Hf (z) ∈ TζΛ as desired. �

This lemma gives us a necessary condition for our construction of a Lagrangian
submanifold

19.3119.31 (9.216) Λ ⊂ Σ(P ).

Namely Hp must be tangent to Λ! We use this to construct Λ as a union of integral
curves of Hp. Before thinking about this seriously, let’s look for a moment at the
conditions we imposed on p, (

19.3
9.187) and (

19.4
9.188). If p is real then Hp is real (since

ω is real). Notice that

19.3219.32 (9.217) If S = T ∗X then each fibre T ∗xX ⊂ T ∗X is Lagrangian .

Remember that on T ∗X,ω = dα, α = ξ ·dx the canonical 1-form. Thus T ∗xX is just
x = const, so dx = 0, so α = 0 on T ∗xX and hence in particular ω = 0, proving
(
19.32
9.217). This allows us to interpret (

19.4
9.188) in terms of Hp as

19.3319.33 (9.218) (
19.4
9.188)←→ Hp is everywhere transversal to the fibres T ∗xX.

Now we want to construct a little piece of Lagrangian manifold satisfying
(
19.31
9.216). Suppose z ∈ Σ(P ) ⊂ T ∗X\0 and we want to construct a piece of Λ

through z. Since π∗(Hp(z)) 6= 0 we can choose a local coordinate, t ∈ C∞(X), such
that

19.3419.34 (9.219) π∗(Hp(z))t 6= 0, i.e. Hp(π
∗t)(z) 6= 0.

Consider the hypersurface through π(z) ∈ X,
19.3519.35 (9.220) H = {t = t(z)} =⇒ π(z) ∈ H.

Suppose f ∈ C∞(H), df(π(z)) = 0. In fact we can choose f so that

19.3619.36 (9.221) f = f ′ � H, f ′ ∈ C∞(X), df ′(π(z)) = z

where z ∈ Ξ(P ) was our chosen base point.

19.37 Theorem 9.2. (Hamilton-Jacobi) Suppose p ∈ C∞(T ∗X\0) satisfies (
19.3
9.187)

and (
19.4
9.188) near z ∈ T ∗X\0, H is a hypersurface through π(z) as in (

19.34
9.219), (

19.31
9.216)

and f ∈ C∞(H) satisfies (
19.36
9.221), then there exists f̃ ∈ C∞(X) such that

19.3819.38 (9.222)

Λ = graph (df̃) ⊂ Σ(P ) near z

f̃ � H = f near π(z)

df̃(π(z)) = z

and any other such solution, f̃ ′, is equal to f̃ in a neighbourhood of π(z).

Proof. We need to do a bit more work to prove this important theorem, but
let us start with the strategy. First notice that Λ ∩ π−1(H) is already determined,
near π(z).

To see this we have to understand the relationship between df(h) ∈ T ∗H and

df̃(h) ∈ T ∗X, h ∈ H, f̃ � H = f. Observe that H = {t = 0} lifts to T ∗HX ⊂ T ∗X a
hypersurface. By (

19.29
9.214), Ht is tangent to T ∗HX and non-zero. In local coordinates

t, x, . . . , xn−1, the x’s in H,

(9.223) Ht = − ∂

∂τ
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where τ, ξ1, . . . , ξn are the dual coordinates. Thus we see that

19.3919.39 (9.224) πH : T ∗HX −→ T ∗H πH(β)(v) = β(v), v ∈ ThH ⊂ ThX,

is projection along ∂τ . Now starting from f ∈ C∞(H) we have

(9.225) Λf ⊂ T ∗H.

Notice that if f̃ ∈ C∞(X), f̃
∣∣H = f then

19.4019.40 (9.226) Λf̃ ∩ T
∗
HX has dimension n− 1

and

19.4119.41 (9.227) πH(Λf̃ ∩ T
∗
HX) = Λf .

The first follows from the fact that Λf̃ is a graph over X and the second from the

definition, (
19.39
9.224). So we find �

19.42 Lemma 9.14. If z ∈ Σ(P ) and H is a hypersurface through π(z) satisfying
(
19.34
9.219) and (

19.35
9.220) then πPH : (Σ(P )∩T ∗HX) −→ T ∗H is a local diffeomorphism in

a neighbourhood z; if (
19.36
9.221) is to hold then

19.4319.43 (9.228) Λf̃ ∩ T
∗
HX = (πPH)−1(Λf ) near z.

Proof. We know that Hp is tangent to Σ(P ) but, by assumption (
19.36
9.221) is not

tangent to T ∗HX at z. Then Σ(P )∩T ∗HX does have dimension 2n−1−1 = 2(n−1).
Moreover πH is projection along ∂τ which cannot be tangent to Σ(P )∩T ∗HX (since
it would be tangent to Σ(P )). Thus πPH has injective differential, hence is a local
isomorphism.

So this is our strategy:
Start with f ∈ C∞(H), look at Λf ⊂ T ∗H, lift to Λ ∩ T ∗HX ⊂ Σ(P ) by πPH .

Now let

(9.229) Λ =
⋃
{Hp − curves through (πPH)−1(Λf )}.

This we will show to be Lagrangian and of the form Λf̃ , it follows that

19.4419.44 (9.230) p(x, df̃) = 0, f̃ � H = f.

�

9.7. Riemann metrics and quantization

Metrics, geodesic flow, Riemannian normal form, Riemann-Weyl quantization.

9.8. Transport equation

The first thing we need to do is to finish the construction of characteristic
hypersurfaces using Hamilton-Jacobi theory, i.e. prove Theorem XIX.37. We have
already defined the submanifold Λ as follows:

1) We choose z ∈ Σ(P ) and t ∈ C∞(X) s.t. Hpπ
∗(t) 6= 0 at dz, then selected

f ∈ C∞(H), H = {t = 0} ∩ Ω,Ω 3 πz s.t.

20.120.1 (9.231) z(v) = df(v) ∀ v ∈ TπzH.

Then we consider

20.220.2 (9.232) Λf = graph{df} = {(x, df(x)), x ∈ H} ⊂ T ∗H
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as our “initial data” for Λ. To move it into Σ(P ) we noted that the map

20.320.3 (9.233) Σ(P ) ∩ T ∗HX
‖

{t=0 in T∗X}

−→ T ∗H

is a local diffeomorphism near z, df(π(z)) by (
20.1
9.231). The inverse image of Λf in

(
20.3
9.233) is therefore a submanifold Λ̃f ⊂ Σ(p) ∩ T ∗HX of dimension dimX − 1 =

dimH. We define

20.420.4 (9.234) Λ =
⋃{

Hp − curves of length ε starting on Λ̃f
}
.

So we already know:

20.520.5 (9.235) Λ ⊂ Σ(P ) is a manifold of dimension n,

and

20.620.6 (9.236) π : Λ −→ X is a local diffeomorphism near n,

What we need to know most of all is that

20.720.7 (9.237) Λ is Lagrangian.

That is, we need to show that the symplectic two form vanishes identically on
Tz′Λ, ∀ z′ ∈ Λ (at least near z). First we check this at z itself! Now

20.820.8 (9.238) TzΛ = TzΛ̃f + sp(Hp).

Suppose v ∈ TzΛ̃f , then

20.920.9 (9.239) ω(v,Hp) = −dp(v) = 0 since Λ̃f ⊂ Σ(P ).

Of course ω(Hp, Hp) = 0 so it is enough to consider

20.1020.10 (9.240) ω|(TzΛ̃f × TzΛ̃f ).

Recall from our discussion of the projection (
20.3
9.233) that we can write it as projection

along ∂τ . Thus

20.1120.11 (9.241)
ωX(v, w) = ωH(v′, w′) if v, w ∈ Tz(THX),

(c∗H)∗v = v′(c∗H)∗w = w′ ∈ Tz(T ∗H)

where z = df(π(z)). Thus the form (
20.10
9.240) vanishes identically because Λf is La-

grangian.
In fact the same argument applies at every point of the initial surface Λ̃f ⊂ Λ :

20.1220.12 (9.242) Tz′Λ is Lagrangian ∀ z′ ∈ Λ̃f .

To extend this result out into Λ we need to use a little more differential geometry.
Consider the local diffeomorphisms obtained by exponentiating Hp :

20.1320.13 (9.243) exp(εHp)(Λ ∩ Ω) ⊂ Λ ∀ ε small, Ω 3 z small.

This indeed is really the definition of Λj more precisely,

20.1420.14 (9.244) Λ =
⋃

ε small

exp(εHp)(Λ̃f ).

The main thing to observe is that, on T ∗H, the local diffeomorphisms exp(εHp) are
symplectic:

20.1520.15 (9.245) exp(εHp)
∗ωX = ωX .
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Clearly (
20.15
9.245), (

20.13
9.243) and (

20.12
9.242) prove (

20.7
9.237). The most elegant wary to prove

(
20.15
9.245) is to use Cartan’s identity (valid for Hp any vector field, ω any form)

20.1620.16 (9.246)
d

dε
exp(εHp)

∗ω = exp(εHp)
∗(LHpω)

where the Lie derivative is given explicitly by

20.1720.17 (9.247) LV = d ◦ ιV + ιV ◦ d,

cV being contradiction with V (i.e. α(·, ·, . . . ) −→ α(V, ·, ·, . . . )). Thus

20.1820.18 (9.248) LHpω = d(ω(Hp, ·)) + ιV (dω)
‖
0

= d(dp) = 0.

Thus from (
20.5
9.235), (

20.6
9.236) and (

20.7
9.237) we know that

20.1920.19 (9.249) Λ = graph(df̃), f̃ ∈ C∞(X), near π(z),

must satisfy the eikonal equation

20.2020.20 (9.250) p(x, df̃(x)) = 0 near π(z), Hf̃ � H = f

where we may actually have to add a constant to f̃ to get the initial condition –
since we only have df̃ = df on TH.

So now we can return to the construction of travelling waves: We want to find

20.2120.21 (9.251) u ∈ I∗(X,G; Ω
1
2 ) G = {f = 0}

such that u is elliptic at z ∈ Σ(p) and

20.2220.22 (9.252) Pu ∈ C∞(X).

So far we have noticed that

20.2320.23 (9.253) σm+M (Pu) = σm(P ) � N∗G · σ(u)

so that

20.2420.24 (9.254) N∗G ⊂ Σ(p)⇐⇒ p(x, df) = 0 on f = 0

implies

20.2520.25 (9.255) Pu ∈ Im+M−1(X,G; Ω
1
2 ) near π(z)

which is one order smoother than without (
20.24
9.254).

It is now clear, I hope, that we need to make the “next symbol” vanish as well,
i.e. we want

20.2620.26 (9.256) σm+M−1(Pu) = 0.

Of course to arrange this it helps to know what the symbol is!

20.27 Proposition 9.6. Suppose P ∈ Ψm(X; Ω
1
2 ) and G ⊂ X is a C∞ hypersurface

characteristic for P (i.e. N∗G ⊂ Σ(P )) then ∀ u ∈ IM (X,G; Ω
1
2 )

20.2820.28 (9.257) σm+M−1(Pu) = (−iHp + a)σm(u)

where a ∈ Sm−1(N∗G) and Hp is the Hamilton vector field of p = σm(P ).
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Proof. Observe first that the formula makes sense since Λ = N∗G is La-
grangian, Λ ⊂ Σ(p) implies Hp is tangent to Λ and if p is homogeneous of degree
m (which we are implicitly assuming) then

20.2920.29 (9.258) LHp : Sr(Λ; Ω
1
2 ) −→ Sr+m−1(Λ; Ω

1
2 ) ∀ m

where one can ignore the half-density terms. So suppose G = {x1 = 0} locally,
which we can always arrange by choice of coordinates. Then

(9.259) X = N∗G = {(0, x′, ξ1, 0) ∈ T ∗X}.

To say N∗G ⊂ Σ(p) means p = 0 on Λ, i.e.

20.3020.30 (9.260) p = x1q(x, ξ) +
∑
j>1

ξjpj(x, ξ) near z

with q homogeneous of degree m and the pj homogeneous of degree m−1. Working

microlocally we can choose Q ∈ Ψm(X,Ω
1
2 ), Pj ∈ Ψm−1(X,Ω

1
2 ) with

20.3120.31 (9.261) σm(Q) = q, σm−1(Pj) = pj near z.

Then, from (
20.30
9.260)

20.3220.32 (9.262)

P = x1Q+DxjPj +R+ P ′, R ∈ Ψm−1(X; Ω
1
2 )z /∈WF ′(P ′), P ′ ∈ Ψm(X,Ω

1
2 ).

Of course P ′ does not affect the symbol near z so we only need observe that

20.3320.33 (9.263)

σr−1(x, u) = −dξ1σr(u)

∀ u ∈ Ir(X,G; Ω
1
2 )

σr(Dxju) = Dxjσr(u).

This follows from the local expression

20.3420.34 (9.264) u(x) = (2π)−1

∫
eix1ξ1a(x′, ξ1)dξ1.

Then from (
20.32
9.262) we get

20.3520.35 (9.265)

σm+M−1(Pu) = −Dξ1(qσM (u)) +
∑
j

Dxj (pjσM (u)) + r · σm(u)

= −i

∑
j>1

pj � Λ
∂

∂xj
− q � Λ

∂

∂ξi

σM (u) + a′σM (u).

Observe from (
20.30
9.260) that the Hamilton vector field of p, at x1 = ξ′ = 0 is just the

expression in parenthesis. This proves (
20.28
9.257). �

So, now we can solve (
20.26
9.256). We just set

20.3620.36 (9.266) σM (u)(exp(εHp)z
′) = eiεA exp(εHp)

∗[b] ∀ z′ ∈ Λ̃f = Λ ∩ {t = 0}.

where A is the solution of

20.3720.37 (9.267) HpA = a, A � t = 0 = 0 on Λ0

and b ∈ Sr(Λ0) is a symbol defined on Λ0 = Λ ∩ {t = 0} near z.
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20.38 Proposition 9.7. Suppose P ∈ Ψm(X; Ω
1
2 ) has homogeneous principal symbol

of degree m satisfying

20.3920.39 (9.268) p = σm(P ) is real

20.4020.40 (9.269) d fibre p 6= 0 on p = 0

and z ∈ Σ(p) is fixed. Then if H 3 π(z) is a hypersurface such that π∗(Hp) ∩ H
and G ⊂ H is an hypersurface in H s.t.

(9.270) z̄ = c∗H(z) ∈ H∗πzG

there exist a characteristic hypersurface G̃ ⊂ X for P such that G̃ ∩H = G near
π(z), z ∈ N∗πzG̃. For each

20.4120.41 (9.271) u0 ∈ Im+ 1
4 (H,G; Ω

1
2 ) with WF (u0) ⊂ γ,

γ a fixed small conic neighbourhood of z̄ n T ∗H there exists

20.4220.42 (9.272) u ∈ I(X, G̃; Ω
1
2 ) satisfying

20.4320.43 (9.273) u � G = u0 near πz ∈ H

20.4420.44 (9.274) Pu ∈ C∞ near πz ∈ X.

Proof. All the stuff about G and G̃ is just Hamilton-Jacobi theory. We can
take the symbol of u0 to be the b in (

20.36
9.266), once we think a little about half-

densities, and thereby expect (
20.43
9.273) and (

20.44
9.274) to hold, modulo certain singular-

ities. Indeed, we would get

20.4520.45 (9.275) u1 � G− u0 ∈ Ir+
1
4−1(H,G; Ω

1
2 ) near πz ∈ H

20.4620.46 (9.276) Pu ∈ Ir+m−2(X, G̃; Ω
1
2 ) near πz ∈ X.

So we have to work a little to remove lower order terms. Let me do this informally,
without worrying too much about (

20.43
9.273) for a moment. In fact I will put (

20.45
9.275)

into the exercises!
All we really have to observe to improve (

20.46
9.276) to (

20.44
9.274) is that

20.4720.47 (9.277)
g ∈ Ir(X, G̃; Ω

1
2 ) =⇒ ∃ u ∈ Ir+m−1(X; G̃; Ω

1
2 )

s.t. Pu− g ∈ Ir−1(X, G̃; Ω
1
2 )

which we can then iterate and asymptotically sum. In fact we can choose the
solution so u � H ∈ C∞, near πz̄. To solve (

20.47
9.277) we just have to be able to solve

20.4820.48 (9.278) −i(Hp + a)σ(u) = σ(g)

which we can do by integration (duHamel’s principle). �

The equation (
20.48
9.278) for the symbol of the solution is the transport equation.

We shall use this construction next time to produce a microlocal parametrix for P !
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9.9. Problems

20.49 Problem 9.2. Let X be a C∞ manifold, G ⊂ X on C∞ hypersurface and
t ∈ C∞(X) a real-valued function such that

TT (9.279) dt 6= 0 on TpG ∀ p ∈ L = G ∩ {t = 0}.

Show that the transversality condition (
T
9.279) ensures that H = {t = 0} and

L = H ∩G are both C∞ submanifolds.

20.50 Problem 9.3. Assuming (
T
9.279) show that dt gives an isomorphism of line

bundles

(9.280) Ω
1
2 (H) ≡ Ω

1
2

H(X) ∼ Ω
1
2

H(X)/|dt| 12

and hence one can define a restriction map,

(9.281) C∞(X; Ω
1
2 ) −→ C∞(H; Ω

1
2 ).

20.51 Problem 9.4. Assuming 1 and 2, make sense of the restriction formula

(9.282) � H : Im
(
X,G; Ω

1
2

)
−→ Im+ 1

4

(
H,L; Ω

1
2

)
and prove it, and the corresponding symbolic formula

(9.283) σm+ 1
4

(u � H) = (ι∗H)
∗

(σm(u) � N∗LG)
/
|dτ | 12 .

NB. Start from local coordinates and try to understand restriction at that
level before going after the symbol formula!

9.10. The wave equation

We shall use the construction of travelling wave solutions to produce a para-
metrix, and then a fundamental solution, for the wave equation. Suppose X is a
Riemannian manifold, e.g. Rn with a ‘scattering’ metrice:

21.121.1 (9.284) g =

n∑
i,j=1

gij(x)dxidxj , gij = δij |x|R.

Then the associates Laplacian, on functions, i.e.

21.221.2 (9.285) ∆u = −
n∑

i,j=1

1
√
g

∂

∂xj
(δggij(x))

∂

∂xi
u

where gij(x) = (gij(x))−1 and g = det gij . We are interested in the wave equation

21.321.3 (9.286) Pu = (D2
t −∆)u = f on R×X

For simplicity we assume X is either compact, or X = Rn with a metric of the form
(
21.1
9.284).

The cotangent bundle of R×X is

(9.287) T ∗(R×X) ' T ∗R× T ∗X

with canonical coordinates (t, x, τ, ξ). In terms of this

21.421.4 (9.288) σ(P ) = τ2 − |ξ|2|ξ| =
n∑

i,j=1

gij(x)ξiξj .
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Thus we certainly have an operator satisfying the conditions of (
21.3
9.286) and (

21.4
9.288),

since

(9.289) d fibre p =

(
∂p

∂τ
,
∂p

∂ξ

)
= 0 =⇒ τ = 0 and gij(x)ξi = 0 =⇒ ξ = 0.

As initial surface we consider the obvious hypersurface {t = 0} (although it will
be convenient to consider others). We are after the two theorems, one local and
global, the other microlocal, although made to look global.

21.5 Theorem 9.3. If X is a Riemannian manifold, as above, then for every f ∈
C−∞c (R×X) ∃! u ∈ C−∞(R×X) satisfying

21.621.6 (9.290) Pu = f, u = 0 in t < inf{t̄; ∃(t̄, x) ∈ supp(f)}.

21.7 Theorem 9.4. If X is a Riemannian manifold, as above, then for every u ∈
C−∞(R×X),

21.821.8 (9.291) WF (u)\WF (Pu) ⊂ Σ(P )\WF (Pu)

is a union of maximally extended Ho-curves in the open subset Σ(P )\WF (Pu) of
Σ(P ).

Let us think about Theorem
21.5
9.3 first. Suppose x̄X is fixed on δx̄ ∈ C−∞(X; Ω)

is the Dirac delta (g measure) at x̄. Ignoring, for a moment, the fact that this is not
quite a generalized function we can look for the “forward fundamental solution” of
P with pole at (0, x̄) :

21.921.9 (9.292)
PEx̄(t, x) = δ(t)δx̄(x)

Ex̄ = 0 in t < 0.

Theorem
21.5
9.3 asserts its existence and uniqueness. Conversely if we can construct

Ex̄ for each x̄, and get reasonable dependence on x̄ (continuity is almost certain
once we prove uniqueness) then

21.1021.10 (9.293) K(t, x; t̄, x̄) = Ex̄(t− t̄, x)

is the kernel of the operator f 7→ u solving (
21.6
9.290).

So, we want to solve (
21.9
9.292). First we convert it (without worrying about

rigour) to an initial value problem. Namely, suppose we can solve instead

21.1121.11 (9.294)
PGx̄(t, x) = 0 in R×X

Gx̄(0, x) = 0, DtGx̄(0, x) = δx̄(x) in X.

Note that

21.1221.12 (9.295) (g(t, x, τ, 0) /∈ Σ(P ) =⇒ (t, x; τ, 0) /∈WF (G).

This means the restriction maps, to t = 0, in (
21.11
9.294) are well-defined. In fact so is

the product map:

21.1321.13 (9.296) Ex̄(t, x) = H(t)Gx̄(t, x).

Then if G satisfied (
21.11
9.294) a simple computation shows that Ex̄ satisfies (

21.9
9.292).

Thus we want to solve (
21.11
9.294).

Now (
21.11
9.294) seems very promising. The initial data, δx̄, is certainly conormal to

the point {x̄}, so we might try to use our construction of travelling wave solutions.
However there is a serious problem. We already noted that, for the wave equation,
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there cannot be any smooth characteristic surface other than a hypersurface. The
point is that if H has codimension k then

(9.297) N∗x̄H ⊂ T ∗x̄ (R×X) has dimension k.

To be characteristic we must have

21.1421.14 (9.298) N∗x̄H ⊂ Σ(P ) =⇒ k = 1

Since the only linear space contained in a (proper) cone is a line.
However we can easily ‘guess’ what the characteristic surface corresponding to

the point (x, x̄) is – it is the cone through that point:
This certainly takes us beyond our conormal theory. Fortunately there is a way

around the problem, namely the possibility of superposition of conormal solutions.
To see where this comes from consider the representation in terms of the Fourier

transform:

21.1521.15 (9.299) δ(x) = (2π)−n
∫
eixξdξ.

The integral of course is not quite a proper one! However introduce polar coordi-
nates ξ = rω to get, at least formally

21.1621.16 (9.300) δ(x) = (2π)−n
∞∫

0

∫
Sn−1

eirx·ωrn−1dr dω.

In odd dimensions rn−1 is even so we can write

21.1721.17 (9.301) δ(x) =
1

2(2π)n

∫
Sn−1

∞∫
−∞

eirx·ωrn−1dr dω, n odd .

Now we can interpret the r integral as a 1-dimensional inverse Fourier transform
so that, always formally,

21.1821.18 (9.302)

δ(x) =
1

2(2π)n−1

∫
Sn−1

fn(x · ω)dω

n odd

fn(s) =
1

(2π)

∫
eirsγn−1dr.

In even dimensions we get the same formula with

21.1921.19 (9.303) fn(s) =
1

2π

∫
eirs|r|n−1dr.

These formulas show that

21.2021.20 (9.304) fn(s) = |Ds|n−1δ(s).

Here |Ss|n−1 is a pseudodifferential operator for n even or differential operator
(= Dn−1

s ) if n is odd. In any case

21.2121.21 (9.305) fn ∈ In−1+ 1
4 (R, {0})!

Now consider the map

21.2221.22 (9.306) Rn × Sn−1 3 (x, ω) 7→ x · ω ∈ R.
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Thus C∞ has different

(9.307) ω · dx+ x · dω 6= 0 or x · ω = 0

So the inverse image of {0} is a smooth hypersurface R.

21.23 Lemma 9.15. For each n ≥ 2

21.2421.24 (9.308) fn(x, ω) =
1

2π

∫
ei(x·ω)r|r|n−1dr ∈ I n4− 1

4

(
R× Sn−1, R

)
.

Proof. Replacing |r|n−1 by ρ(r)|r|n−1 + (1 − ρ(r))|r|n−1, where ρ(r) = 0 n
r < 1

2 , ρ(r) = 1 in r > 1, expresses fn as a sum of a C∞ term and a conormal
distribution. Check the order yourself! �

21.25 Proposition 9.8. (Radon inversion formula). Under pushforward correspond-
ing to Rn × Sn−1@ > π1 >> Rn

21.2621.26 (9.309)
(π1)∗f

′
n = 2(2π)n−1δ(x),

f ′n = fn|dω||dx|.

Proof. Pair with a test function φ ∈ S(Rn) :

(9.310) (π1)∗f
′
n =

∫∫
fn(x · ω)φ(x)dx dω

by the Fourier inversion formula. �

So now we have a superposition formula expressing δ(x) as an integral:

21.2721.27 (9.311) δ(x) =
1

2(2π)n−1

∫
Sn−1

fn(x · ω)dω

where for each fixed ω fn(x ·ω) is conormal with respect to x ·ω = 0. This gives us
a strategy to solve (

21.11
9.294).

21.28 Proposition 9.9. Each x̄ ∈ X has a neighbourhood, Ux̄, such that for t̄ > 0
(independent of x̄) there are two characteristic hypersurfaces for each ω ∈ Sn−1

(9.312) H±x̄,ω) ⊂ (−t̄, t̄)× Ux̄
depending on x̄, ω, and there exists

(9.313) u±(t, x; x̄, ω) ∈ I∗((−t̄|t̄| × Ux̄, H±(x̄,ω))

such that

21.2921.29 (9.314) Pu± ∈ C∞

21.3021.30 (9.315)

{
u+ + ū � t = 0 = δx̄(x · ω) in Ux̄

Dt(u
+ + u−) � {t = 0} = 0 in Ux̄.

Proof. The characteristic surfaces are constructed through Hamilton-Jacobi
theory:

(9.316)
N∗H± ⊂ Σ(P ),

H0 = H± ∩ {t = 0} = {x · ω = 0}.
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There are two or three because the conormal direction to H0 at 0; ωdx, has two
Σ(P ) :

21.3121.31 (9.317) τ = ±1, (τ, ω) ∈ T ∗0 (R×X).

With each of these two surfaces we can associate a microlocally unique conormal
solution

21.3221.32 (9.318)
Pu± = 0, u± � {t = 0} = u±0

u±0 ∈ I∗(Rn, {x · ω = 0})
Now, it is easy to see that there are unique choices

21.3321.33 (9.319)
u+
δ + u−0 = δ(x · ω)

Dtu
+ +Dtu

− � {t = 0} = 0.

(See exercise 2.) This solves (
21.30
9.315) and proves the proposition (modulo a fair bit

of hard work!).
�

So now we can use the superposition principle. Actually it is better to add the
variables ω to the problem and see that

21.3421.34 (9.320)
u±(t, x;ω, x̄) ∈ I∗(R× Rn × Sn−1 × Rn;H±)

H± ⊂ R× Rn × Sn−1 × Rn

being fixed by the condition that

(9.321) H± ∩ R× Rn × {ω} × {x̄} = H±x̄,ω.

Then we set

21.3521.35 (9.322) G′x̄(t, x) =

∫
Sn−1

(u+ + u−)(x, x;ω, x̄).

This satisfies (
21.11
9.294) locally near x̄ and modulo C∞. i.e.

21.3621.36 (9.323)


PG′x̄ ∈ C∞((−t̄(t̄))× Ux̄)

G′x̄ � {t = 0} = xv,

vi ∈ C∞

DtG
′
x̄ = δx̄(x) + v2

Let us finish off by doing a calculation. We have (more or less) shown that
u± are conormal with respect to the hypersurfaces H±. A serious question then
is, what is (a bound one) the wavefront set of G′x̄? This is fairly easy provided we
understand the geometry. First, since u± are conormal,

(9.324) WF (u±) ⊂ N∗H±.
Then the push-forward theorem says

21.3721.37 (9.325)

WF (G±) ⊂ {(t, x, τ, ξ); ∃ (t, x, τ, ξ, ω, w) ∈WF (u±)}

G± = (π1)∗u
± =

∫
Sn−1

u±(t, s;ω, x̄)dω

so here

(9.326) (t, x, τ, ξ, ω, w) ∈ T ∗(R× Rn × Sn−1) = T ∗(R× Rn)× T ∗Sn−1.
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We claim that the singularities of G′x̄ lie on a cone:

(9.327) WF (G′x̄) ⊂ Λx̄ ⊂ T ∗(R× Rn)

where Λx̄ is the conormal bundle to a cone:

21.3821.38 (9.328)
Λx̄ = cl{(t, x; τ, ξ); t 6= 0, D(x, x̄) = ±t,

(τ, ξ) = τ(1,∓dxD(x, x̄))

where D(x, x̄) is the Riemannian distance from x to x̄.

9.11. Forward fundamental solution

Last time we constructed a local parametrix for the Cauchy problem:

22.122.1 (9.329)


PG′x̄ = f ∈ C∞(Ω) (0, x̄) ∈ Ω ⊂ R×X
G′x̄ � t = 0 = u′

DtG
′
x̄ � {t = 0} = δx̄(x) + u′′ u′, u′′ ∈ C∞(Ω0)

where P = D2
t − ∆ is the wave operator for a Riemann metric on X. We also

computed the wavefront set, and hence singular support of Gx̄ and deduced that

22.222.2 (9.330) sing · supp .(Gx̄) ⊂ {(t, x); d(x, x̄) = |t|}

in terms of the Riemannian distance.

22.322.3 (9.331)

This allows us to improve (
22.1
9.329) in a very significant way. First we can chop

Gx̄ off by replacing it by

22.422.4 (9.332) φ

(
t2 − d2(x, x̄)

ε2

)
.

where φ ∈ C∞(R) has support near 0 and is identically equal to 1 in some neigh-
bourhood of 0. This gives (

22.1
9.329) again, with G′x̄ now supported in say d2 < t2 +ε2.

22.522.5 (9.333)

Next we can improve (
22.1
9.329) a little bit by arranging that

22.622.6 (9.334) u′ = u′′ = 0, Dk
t f
∣∣
t=0

= 0 ∀ k.

This just requires adding to G′ a C∞, v, function, so that

22.722.7 (9.335) v
∣∣
t=0

= u′, Dtv
∣∣
t=0

= −u′′, Dk
t (Pu)

∣∣
t=0

= −Dk
t f
∣∣
t=0

k > 0.

Once we have done this we consider

(9.336) E′x̄ = iH(t)G′x̄

which now satisfies

22.822.8 (9.337)
PE′x̄ = δ(t)δt̄(x) + Fx̄, Fx̄ ∈ C∞(Ωx̄)

supp(E′x) ⊂ {d2(x, x̄) ≤ t2 + ε2} ∩ {t ≥ 0}.

Here F vanishes in t < 0, so vanishes to infinite order at t = 0.
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Next we remark that we can actually do all this with smooth dependence of x̄.
This should really be examined properly, but I will not do so to save time. Thus
we actually have

22.922.9 (9.338)


E′(t, x, x̄) ∈ C−∞(P (−∞, ε)×X ×X)

PE′ = δ(t)σx̄(x) + F

suppE′ ⊂ {d2(x, x̄) ≥ t2 + ε2} ∩ {t ≥ 0}.
We can, and later shall, estimate the wavefront set of E. In case X = Rn we can
take E to be the exact forward fundamental solution where |x| or x̄ ≥ R, so

22.1022.10 (9.339)
supp(F ) ⊂ {t ≥ 0} ∩ {|x|, |x̄| ≤ R} ∩ {d2 ≤ t2 + ε2}

F ∈ C∞((−∞, ε)×X ×X).

Of course we want to remove F, the error term. We can do this because it is
a Valterra operator, very similar to an upper triangular metric. Observe first that
the operators of the form (

22.10
9.339) form an algebra under t-convolution:

22.1122.11 (9.340) F = F1 ◦ F1, F (t, x, x̄) =

t∫
0

∫
F1(t,−t′, x, x′)F2(t1, x1, x̄)dx′dt′.

In fact if one takes the iterates of a fixed operator

(9.341) F (k) = F (k−1) ◦ F
One finds exponential convergence:

22.1222.12 (9.342)
∣∣Dα

xD
p
tF

(k)(t, x, x̄)
∣∣ ≤ Ck+1N, δ

k!
|t|N in t < ε− δ ∀ N.

Thus if F is as in (
22.10
9.339) then Id+ F has inverse Id+ F̃ ,

22.1322.13 (9.343) F̃ =
∑
j≥1

(−1)jF (j)

again of this form.
Next note that the composition of E′ with F̃ is again of the form (

22.10
9.339), with

R increased. Thus

22.1422.14 (9.344) E = E′ + E′ ◦ F
is a forward fundamental solution, satisfying (

22.9
9.338) with F ≡ 0.

In fact E is also a left parametrix, in an appropriate sense:

22.15 Proposition 9.10. Suppose u ∈ C−∞((−∞, ε)×X) is such that

22.1622.16 (9.345) supp(u) ∩ [−T, τ ]×X is compact ∀ T and for τ < ε

then Pu = 0 =⇒ u = 0.

Proof. The trick is to make sense of the formula

22.1722.17 (9.346) 0 = E · Pu = u.

In fact the operators G with kernel G(t, x, x̄), defined in t < ε and such that
G ∗ φ ⊂ C∞ ∀ φ ∈ C∞ and

22.1822.18 (9.347) {t ≥ 0} ∩ {d(x, x̄) ≤ R} ⊃ supp(G)

act on the space (
22.16
9.345) as t-convolution operators. For this algebra E ∗ P = Id so

(
22.17
9.346) holds! �
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We can use this proposition to prove that E itself is unique. Actually we want
to do more.

22.19 Theorem 9.5. If X is either a compact Riemann manifold or Rn with a scat-
tering metric then P has a unique forward fundamental solution, ω.

22.2022.20 (9.348) supp(E) ⊂ {t ≥ 0}, PE = Id

and

22.2122.21 (9.349) supp(E) ⊂ {(t, x, x̄) ∈ R×X ×X; d(x, x̄) ≤ t}

and further

22.2222.22 (9.350) WF ′(E) ⊂ Id∪F+

where F+ is the forward bicharacteristic relation on T ∗(R×X)

22.2322.23 (9.351)

ζ = (t, x, τ, ξ) /∈ Σ(P ) =⇒ F+(ζ) = ∅
ζ = (t, x, τ, ξ) ∈ Σ(P ) =⇒ F+(ζ) = {ζ ′ = (t′, x′, τ ′, ξ′)

t′ ≥ t× ζ ′ = exp(THp)ζ for some T}.

Proof. (1) Use E1 defined in (−∞, ε×X to continue E globally.
(2) Use the freedom of choice of {t = 0} and uniqueness of E to show that

(
22.21
9.349)can be arranged for small, and hence all,

(3) Then get (
22.23
9.351) by checking the wavefront set of G.

�

As corollary we get proofs of (
22.5
9.333) and (

22.6
9.334).

Proof of Theorem XXI.5.

(9.352) u(t, x) =

∫
E(t− t′, x, x′)f(t′, x′)dx′dt′.

�

Proof of Theorem XXI.6. We have to show that if both WF(Pu) 63 z and
WF(u) 63 z then exp(δHp)z /∈WF (u) for small δ. The general case that follows from
the (assumed) connectedness of Hp curves. This involves microlocal uniqueness of
solutions of Pu = f. Thus if φ ∈ C∞(R) has support in t > −δ, for δ > 0 small
enough, π∗t(z) = t̄

(9.353) P (φ(t− t̄)u) = g has z /∈WF (g),

and vanishes in t < δ. Then

(9.354)
φ(t− t̄)u = E × g

=⇒ exp(τHp)(z) /∈WF (u) for small τ.

�
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9.12. Operations on conormal distributions

I want to review and refine the push-forward theorem, in the general case,
to give rather precise results in the conormal setting. Thus, suppose we have a
projection

23.123.1 (9.355) X × Y@ > x >> X

where we can view X × Y as compact manifolds or Euclidean spaces as desired,
since we actually work locally. Suppose

23.223.2 (9.356) Q ⊂ X × Y is an embeded submanifold.

Then we know how to define and examine the conormal distribution associated to
Q. If

23.323.3 (9.357) u ∈ Im(X × Y,Q; Ω)

when is π∗(u) ∈ C−∞(X; Ω) conormal? The obvious thing we ned is a submanifold
with respect to what it should be conormal! From our earlier theorem we know
that

23.423.4 (9.358) WF (π∗(u)) ⊂ {(x, ξ); ∃ (x, ξ, y, 0) ∈WF (u) ⊂ N∗Q}.
So suppose Q = {qj(x, y) = 0, j = 1, . . . , k}, k = codimQ. Then we see that

23.523.5 (9.359) (x̄, ξ̄, ȳ, 0) ∈ N∗Q⇐⇒ (x̄, ȳ) ∈ Q, ξ̄ =

k∑
j=1

τjdxqj ,

k∑
j=1

τjdyqj = 0.

Suppose for a moment that Q has a hypersurface, i.e. k = 1, and that

23.623.6 (9.360) Q −→ π(Q) is a fibration

then we expect

23.7 Theorem 9.6. π∗ : Im(X × Y,Q,Ω) −→ Im
′
(X,π(Q)).

Proof. Choose local coordinates so that

Q = {x1 = 0}(9.361)

u =
1

2π

∫
eix1ξ1a(x′, y, ξ1)dξ1(9.362)

π∗u =
1

2π

∫
eix1ξ1b(x′, ξ1)dξ1(9.363)

b =

∫
a(x′, y, ξ)dy.(9.364)

�

Next consider the case of restriction to a submanifold. Again let us suppose
Q ⊂ X is a hypersurface and Y ⊂ X is an embedded submanifold transversal to
Q :

23.823.8 (9.365)

Q t Y = QY

i.e. TqQ+ TqY = TqX ∀ q ∈ Qy
=⇒ Qy is a hypersurface in X.

Indeed locally we can take coordinates in which

23.923.9 (9.366) Q = {x1 = 0}, Y = {x′′ = 0}, x = (x1, x
′, x′′).
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23.10 Theorem 9.7.

(9.367) C∗Y : Im(X,Q) −→ Im+ k
4 (Y,QY )k = codimY in X.

Proof. In local coordinates as in (
23.9
9.366)

(9.368)

u =
1

2π

∫
eix1ξ1a(x(x′, x′′, ξ1))dξ,

c∗u =
1

2π

∫
eix1ξ1a(x′, 0, ξ1)dξ1.

Now let’s apply this to the fundamental solution of the wave equation. Well rather
consider the solution of the initial value problem

23.1123.11 (9.369)


PG(t, x, x̄) = 0

G(0, x, x̄) = 0

DtG(0, x, x̄) = δx̄(x).

We know that G exists for all time and that for short time it is

23.1223.12 (9.370) G−
∫

Sn−1

(u+(t, x, x̄;ω) + u−(t, x, x̄;ω))dω + C∞

where u± are conormal for the term characteristic hypersurfaces Hp satisfying

23.1323.13 (9.371)
N∗H± ⊂ Σ(P )

H± ∩ {t = 0} = {(x− x̄) · ω = 0}

Consider the 2× 2 matrix of distribution

23.1423.14 (9.372) U(t) =

(
DtG G
D2
tG DtG

)
.

Since WFU ⊂ Σ(P ), in polar τ 6= 0 we can consider this as a smooth function of
t, with values in distribution on X ×X. �

23.15 Theorem 9.8. For each t ∈ R U(t) is a boundary operator on L2(X)⊕H ′(X)
such that

23.1623.16 (9.373) U(t)

(
u0

u1

)
=

(
u(t)
Dtu(t)

)
where u(t, x) is the unique solution of

23.1723.17 (9.374)

(D2
t −∆)u(t) = 0

u(0) = u0

Dt + u(0) = u1.

Proof. Just check it! �

Consider again the formula (
23.12
9.370). First notice that at x = x̄, t = 0, dH± =

dt± d(x− x̄)ω) (by construction). so

23.1823.18 (9.375) H± t {x = x̄} = {t = 0} ⊂ R×X ↪→ R×X × Y × Sn−1.

Moreover the projection

23.1923.19 (9.376) R×X × Sn−1 −→ R
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clearly fibres {t = 0} over {t = 0} ∈= {0} ⊂ R. Then we can apply the two
theorems, on push-forward and pull-back, above to conclude that

23.2023.20 (9.377) T (t) =

∫
X

G(t, x, x̄) � x = x̄dx ∈ C−∞(R)

is conormal near t = 0 i.e. C∞ in (−ε, ε)\{0} for some ε > 0 and conormal at 0.
Moreover, we can, at least in principle, work at the symbol of T (t) at t = 0. We
return to this point next time.

For the moment let us think of a more ‘fundamental analytic’ interpretation of
(
23.20
9.377). By this I mean

23.2123.21 (9.378) T (t) = trU(t).

Remark 9.1. Trace class operators ∆λ; Smoother operators are trace order,
tr =

∫
K(x, x)

(9.379)

∫
U(t)φ(t) is smoothing

(9.380) 〈T (t), φ(t)〉 = tr〈U(t), φ(t)〉.

9.13. Weyl asymptotics

Let us summarize what we showed last time, and a little more, concerning the
trace of the wave group

24.1 Proposition 9.11. Let X be a compact Riemann manifold and U(t) the wave
group, so

(9.381) U(t) : C∞(X)×C∞(X) 3 (u0, u1) 7→ (u, (t), D+ tu(t)) ∈ C∞(X)×C∞(X)

where u is the solution to

24.224.2 (9.382)

(D2
t −∆)u(t) = 0

u(0) = u0

Dtu(0) = u1.

The trace of the wave group, T ∈ S ′(R), is well-defined by

24.324.3 (9.383) T (φ) = TrU(φ), U(φ) =

∫
U(t)φ(t)dt ∀ φ ∈ S(R)

and satisfies

24.424.4 (9.384) T = Y (

1 +

∞∑
j=1

2 cos(tλj)


(9.385) where 0 = λ0 < λ2

1 ≤ λ2
2 . . . λj ≥ 0

is the spectrum of the Laplacian repeated with multiplicity

24.524.5 (9.386) sing . supp(T ) ⊂ L ∪ {0} ∪ −L
where L is the set of lengthes of closed geodesics of X and

24.624.6 (9.387)

if ψ ∈ C∞c (R), ψ(t) = 0 if |t| ≥ inf L − ε, ε > 0,

ψT ∈ I(R, {0})
σ(ψT ) =
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Proof. We have already discussed (
24.4
9.384) and the first part of (

24.6
9.387) (given

(
24.5
9.386)). Thus we need to show (

24.5
9.386), the Poisson relation, and compute the

symbol of T as a cononormal distribution at 0 .
Let us recall that if G is the solution to

24.724.7 (9.388)

(D2
t = ∆)G(t, x, x̄) = 0

G(0, x, x̄) = 0

DtG(0, x, x̄) = δx̄(x)

then

24.824.8 (9.389) T = π∗(ι
∗
∆2DtG),

where

24.924.9 (9.390) ι∆ : R×X ↪→ R×X ×X

is the embedding of the diagonal and

24.1024.10 (9.391) π : R×X −→ R

is projective. We also know about the wavefront set of G. That is,

24.1124.11 (9.392)
WF (G) ⊂ {(t, x, x̄, τ, ξ, ξ̄); τ2 = |ξ|2 = |ξ̄|2,
exp(sHp)(0, x̄, τ, ξ̄) = (t, x, τ, ξ), some s}.

Let us see what (
24.11
9.392) says about the wavefront set of T. First under the

restriction map to R×∆

24.1224.12 (9.393)
WF (ι∗∆DtG) ⊂ {(t, y, τ, η); ∃

(t, x, y, τ, ξ, ξ̄); η = ξ − ξ̄}.

Then integration gives

24.1324.13 (9.394) WF (T ) ⊂ {(t, τ); ∃ (t, y, τ, 0) ∈WF (DtG)}.

Combining (
24.12
9.393) and (

24.13
9.394) we see

24.1424.14 (9.395)

t ∈ sing . supp(T ) =⇒ ∃ (t, τ) ∈WF (T )

=⇒ ∃ (t, x, x, τ, ξ, ξ) ∈WF (DtG)

=⇒ ∃ s s.t. exp(sHp)(0, x, τ, ξ) = (t, x, τ, ξ).

Now

(9.396) p = τ2 − |ξ|2, so Hp = 2τ∂t −Hg, g = |ξ|2,

Hg being a vector field on T ∗X. Since WF is conic we can take |ξ| = 1 in the last
condition in (

24.14
9.395). Then it says

24.1524.15 (9.397) s = 2τt, exp(tH 1
2 g

)(x, ξ) = (x, ξ),

since τ2 = 1.
The curves in X with the property that their tangent vectors have unit length

and the lift to T ∗X is an integral curve of H 1
2 g

are by definition geodesic, parame-

terized by arclength. Thus (
24.15
9.397) is the statement that |t| is the length of a closed

geodesic. This proves (
24.5
9.386).
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So now we have to compute the symbol of T at 0. We use, of course, our local
representation of G in terms of conormal distributions. Namely

24.1624.16 (9.398) G =
∑
j

φjGj , φj ∈ C∞(X),

where the φj has support in coordinate particles in which

24.1724.17 (9.399)

Gj(t, x, x̄) =

∫
Sn−1

(u+(t, x, x̄;ω) + u−(t, x, x̄;ω)) dω,

upm =
1

2π

∫
ξ

eih±(t,x,x̄,ω)ξa±(x, x̄, ξ, ω)dξ.

Here h± are solutions of the eikonal equation (i.e. are characteristic for P )

24.1824.18 (9.400)

|∂th±|2 = |h±|2

h±
∣∣
t=0

= (x− x̄) · ω
±∂th± > 0,

which fixes them locally uniquely. The a± are chosen so that

24.1924.19 (9.401) (u+ + u±
∣∣
t=0

= 0, (Dtu+Dtu−)
∣∣
t=0

δ((x− x̄) · ω)Pu± ∈ C∞.

Now, from (
24.17
9.399)

(9.402) u+ + u−
∣∣
t=0

=
1

2π

∫
e((x−xx̄)·ω)ξ(a+ + a−)(x, x̄, ξ, ω)dξ = 0

so a+ − a−. Similarly

24.2024.20 (9.403)

Dtu+ +Dtu−
∣∣
t=0

=
1

2π

∫
ei((x−x̄)·ω)ξ

[
(Dth+)a+ + (Dth−)a−

]
dξ

=
1

2(2π)n−1
fn((x− x̄) · ω)

From (
24.18
9.400) we know that Dth± = ∓i|dx(x − x̄) · ω| = ∓i|ω| where the length is

with respect to the Riemann measure. We can compute the symbols or both sides
in (

24.20
9.403) and consider that

24.2124.21 (9.404) −2i|ω|a+ ≡
1

2(2π)n−1
|ξ|n−1 = Dth+a+ +Dth−a−

∣∣
t=0

is necessary to get (
24.19
9.401). Then

24.2224.22 (9.405)

T (t) = 2π∗(ι
∗
∆DtG)

=
1

2π

∑
j,±

2

∫
X

∫
Sn−1

eih±(t,x,x,ω)ξ(Dth±a±)(x, x̄, ω, ξ)dξdωdx.

Here dx is really the Riemann measure on X. From (
24.21
9.404) the leading part of this

is

(9.406)
2

2π

∑
j±

∫
X

∫
Sn−1

eih±(t,x,x,ω)ξ 1

4(2π)n−1
|ξ|n−1dξdωdx

since any term vanishes at t contributes a weaker singularity. Now

(9.407) h± = ±|ω|t+ (x− x̄) · ω + 0(t2).
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From which we deduce that

24.2324.23 (9.408)
ψ(t)T (t) =

1

2π

∫
eitτa(τ)dτ

a(τ) ∼ Cn Vol(X)|τ |n−1Cn =

where Cn is a universal constant depending only on dimension. Notice that if n is
odd this is a “little” function.

The final thing I want to do is to show how this can be used to describe the
asymptotic behaviour of the eigenvalue of ∆ : �

24.24 Proposition 9.12. (“Weyl estimates with optimal remainder”.) If N(λ) is
the number of eigenvalues at ∆ satisfying λ2

1 ≤ λ, counted with multiplicity, the

24.2524.25 (9.409) N(λ) = Cn Vol(X)λn + o(λn−1)

The estimate of the remainder terms is the here – weaker estimates are easier
to get.

Proof. (Tauberian theorem). Note that

(9.410) T = F(µ) where N(λ) =

λ∫
0

µ(λ),

µ(λ) being the measure

(9.411) µ(λ) =
∑

λ2
j∈spec(∆)

δ(λ− λj).

Now suppose ρ ∈ S(R) is even and
∫
ρ = 1, ρ ≥ 0. Then Nρ(λ) =

∫
(λ′)ρ(λ− λ′) is

a C∞ function. Moreover

24.2624.26 (9.412)
d̂

dλ
Nρ(λ) = µ̂ · ρ̂.

Suppose we can choose ρ so that

24.2724.27 (9.413) ρ ≥ 0,

∫
ρ = 1, ρ ∈ S, ρ̂(t) = 0, |t| > ε

for a given ε > 0. Then we know µ̂ρ̂ is conormal and indeed

24.2824.28 (9.414)

d

dλ
Nρ(λ) ∼ C Vol(X)λn−1 + . . .

=⇒ Nρ(λ) ∼ C ′Vol(X)λn + lots.

So what we need to do is look at the difference

24.2924.29 (9.415) Nρ(λ)−N(λ) =

∫
N(λ− λ′)ρ(λ′)−N(λ)ρ(λ′).

It follows that a bound for N

24.3024.30 (9.416) |N(λ+ µ)−N(λ)| ≤ ((1 + |λ|+ |µ|)n−1(1 + |λ|)
gives

(9.417) N(λ)−Nρ(λ) ≤ Cλn−1

which is what we want. Now (
24.31
9.418) follows if we have

24.3124.31 (9.418) N(λ+ 1)−N(λ) ≤ C(1 + |λ|) t/λ.
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This in turn follows from the positivity of ρ, since

24.3224.32 (9.419)

∫
ρ(λ− λ′)µ(λ′) ≤ C(1 + |λ|)n−1.

Finally then we need to check the existence of ρ as in (
24.27
9.413). If φ is real and

even so is φ̂. Take φ with support in (− ε
2 ,

ε
2 ) and construct φ∗φ, real and even with

φ. �

9.14. Problems

19.45 Problem 9.5. Show that if E is a symplectic vector space, with non-degenerate
bilinear form ω, then there is a basis v1, . . . , vn, w1, . . . , wn of E such that in terms
of the dual basis of E∗

DD (9.420) ω =
∑
j

v∗j ∧ w∗j .

Hint: Construct the wj , vj successive. Choose v1 6= 0. Then choose w1 so that
ω(v1, w1) = 1. Then choose v2 so ω(v1, v2) = ω(w1, v2) = 0 (why is this possible?)
and w2 so ω(v2, w2) = 1, ω(v1, w2) = ψ(w1, w2) = 0. Then proceed and conclude
that (

D
9.420) must hold.

Deduce that there is a linear transformation T : E −→ R2n so that ω = T ∗ωD,
with ωD given by (

19.15
9.200).

19.46 Problem 9.6. Extend problem
19.45
9.5 to show that T can be chosen to map a

given Lagrangian plane V ⊂ E to

(9.421) {x = 0} ⊂ R2n

Hint: Construct the basis choosing vj ∈ V ∀ j!

19.47 Problem 9.7. Suppose S is a symplectic manifold. Show that the Poisson
bracket

(9.422) {f, g} = Hfg

makes C∞(S) into a Lie algebra.



CHAPTER 10

K-theory

KTheory
This is a brief treatment of K-theory, enough to discuss, and later to prove, the

Atiyah-Singer index theorem. I am starting from the smoothing algebra discussed
earlier in Chapter

I.cal
4 in order to give a ‘smooth’ treatment of K-theory (this approach

is in fact closely related to the currently-in-vogue subject of ‘smooth K-theory’).
In particular the K-groups K1

c(X) and K0
c(X) of any manifold X, corresponding to

compactly-supported classes, are defined. The elementary properties are derived
and important isomorphism between them are discussed. There is a plethora of
such maps which are listed here to try to help keep them straight:-

The clutching construction, Proposition
9.11.2007.322
10.6

clu : K1
c(X) −→ K0

c(R×X).
14.5.2008.82014.5.2008.820 (10.1)

The 1-dim isotropic index, Proposition
22.11.2007.356
10.9

Indiso : K1
c(R×X) −→ K0

c(X).
14.5.2008.82214.5.2008.822 (10.2)

The 1-dim Toeplitz index, elliptics on the circle §
Toind
10.7

IndTo : K1
c(R×X) −→ K0

c(X)
14.5.2008.82314.5.2008.823 (10.3)

The N-dim isotropic index, quantize elliptic symbols

Indiso : K1
c(R2N−1 ×X) −→ K0

c(X).
14.5.2008.82514.5.2008.825 (10.4)

The N-dim odd semiclassical index, quantize invertible matrices, Proposition
5.5.2008.780
10.14

Indodd
iso,sl : K1

c(R2N ×X) −→ K1
c(X).

14.5.2008.82614.5.2008.826 (10.5)

The N-dim even semiclassical index, quantize projections

Indeven
iso,sl : K0

c(R2N ×X) −→ K0
c(X).

14.5.2008.82714.5.2008.827 (10.6)

N-dim isotropic index, quantize elliptic symbols

Indiso : K0
c(E) −→ K0

c(X).
14.5.2008.82814.5.2008.828 (10.7)

Odd semiclassical index quantize invertible matrices

Thomodd = Indodd
iso,sl : K1

c(E) −→ K1
c(X).

14.5.2008.82914.5.2008.829 (10.8)

Even semiclassical index quantize projections

Thom = Indeven
iso,sl : K0

c(E) −→ K0
c(X).

14.5.2008.82414.5.2008.824 (10.9)

The Bott map, tensor with βE

Bott = Thom−1 : K0
c(X) −→ K0

c(E).
12.5.2008.79712.5.2008.797 (10.10)

The three maps before the last are for a real vector bundle E over X with symplectic
structures on the fibres – they are the same as the preceeding three in the case of a
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trivial bundle except that the first of those then involves the inverse of the clutching
construction.

10.1. What do I need for the index theorem?

Here is a summary of the parts of this chapter which are used in the proof of
the index theorem to be found in Chapter

Index
12.

(1) Odd K-theory (K1
c(X)) defined as stable homotopy classes of maps into

GL(N,C), or as homotopy classes of maps into G−∞.
(2) Even K-theory (Kc(X)) defined as stable isomorphism classes of Z2-graded

bundles.
(3) The gluing identification of K1

c(X) and Kc(R×X).
(4) The isotropic index map K1

c(R×X) −→ Kc(X) using the eigenprojections
of the harmonic oscillator to stabilize the index.

(5) Bott periodicity – proof that this map is an isomorphism and hence that
Kc(X) ≡ Kc(R2 ×X).

(6) Thom isomorphism Kc(V ) −→ Kc(X) for a complex (or symplectic) vector
bundle over X. In particular the identification of the ‘Bott element’ βV ∈
Kc(V ) which generates Kc(V ) as a module over Kc(X).

With this in hand you should be able to proceed to the proof of the index
theorem in K-theory in Chapter

Index
12. If you want the ‘index formula’ which is a

special case of the index theorem in cohomology you need a bit more, namely the
discussion of the Chern character and Todd class below.

10.2. Odd K-theory

First recall the ‘smoothing group’

7.11.2007.2687.11.2007.268 (10.11) G−∞iso (Rn) =
{
A ∈ Ψ−∞iso (Rn); ∃ B ∈ Ψ−∞iso (Rn), Id +B = (Id +A)−1

}
.

Note that the notation is potentially confusing here. Namely, I am thinking of
G−∞iso (Rn) as the subset consisting of those A ∈ Ψ−∞iso (Rn) such that Id +A is
invertible. The group product is then not the usual product on Ψ−∞iso (Rn) since

(Id +A1)(Id +A2) = Id +A1 +A2 +A1A2.

Just think of the operator as ‘really’ being Id +A but the identity is always there
so it is dropped from the notation.

One consequence of the fact that Id +A is invertible if and only if det(Id +A) 6=
0 is that1

22.11.2007.33022.11.2007.330 (10.12) G−∞iso (Rn) ⊂ Ψ−∞iso (Rn) = S(R2n) = Ċ∞(R2n) is open and dense.

In view of this there is no problem in understanding what a smooth map into
G−∞iso (Rn) is. Namely, it is a map into Ψ−∞iso (Rn) which has range in G−∞iso (Rn) and
the following statment can be taken as a definition of smoothness, but it is just
equivalent to the standard notion of a smooth map with values in a topological

1See Problem
22.11.2007.328
10.8 if you want a proof not using the Fredholm determinant.
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vector space. Namely if X is a manifold then
7.11.2007.2697.11.2007.269 (10.13)

C∞(X;G−∞) =

{a ∈ C∞(X × R2n); a ≡ 0 at X × S2n−1, a(x) ∈ G−∞iso (Rn) ∀ x ∈ X},

C∞c (X;G−∞) ={a ∈ C∞(X × R2n); a ≡ 0 at X × S2n−1,

a(x) ∈ G−∞iso (Rn) ∀ x ∈ X,∃ K b X s.t. a(x) = 0 ∀ x ∈ X \K}.

Notice that ‘compact supports’ here means that the actual operator we have in
mind, which is Id +a, reduces to the identity outside a compact set.

The two spaces in (
7.11.2007.269
10.13) (they are the same if X is compact) are groups.

They are in fact examples of gauge groups (with an infinite-dimensional target
group), where the composite of a and b is the map a(x)b(x) given by composition
in G−∞iso (Rn). Two elements a0, a1 ∈ C∞c (X;G−∞iso ) are said to be homotopic (in
fact smoothly homotopic, but that is all we will use) if there exists a ∈ C∞c (X ×
[0, 1]t;G

−∞
iso ) such that a0 = a

∣∣
t=0

and a1 = a
∣∣
t=1

. Clearly if b0 and b1 are also
homotopic in this sense then a0b0 is homotopic to a1b1, with the homotopy just
being the product of homotopies. This gives the group property in the following
definition:-

7.11.2007.270 Definition 10.1. For any manifold

7.11.2007.2717.11.2007.271 (10.14) K1
c(X) = C∞c (X;G−∞iso (Rn))/ ∼

is the group of equivalence classes of elements under homotopy.

Now, we need to check that this is a reasonable definition, and in particular see
how is it related to K-theory in the usual sense. To misquote Atiyah, K-theory is
the topology of linear algebra. So, the basic idea is that G−∞iso (Rn) is just a version
of GL(N,C) where N =∞ (but smoother than the usual topological versions). To
make this concrete, recall that finite rank elements are actually dense in Ψ−∞iso (Rn).
Using the discussion of the harmonic oscillator in Chapter

I.cal
4 we can make this even

more concrete. Let π(N) be the projection onto the span of the first N eigenvalues
of the harmonic oscillator (so if n > 1 it is projecting onto space of dimension a
good deal larger than N, but no matter). Thus π(N) ∈ Ψ−∞iso (Rn) is an operator of
finite rank, exactly the sum of the dimensions of these eigenspaces. Then, from the
discussion in Chapter

I.cal
4

7.11.2007.2727.11.2007.272 (10.15)
f ∈ S(Rn) =⇒ π(N)f → f in S(Rn) as N →∞,

A ∈ Ψ−∞iso (Rn) =⇒ π(N)Aπ(N) → A in Ψ−∞iso (Rn) as N →∞.

The range of π(N) is just a finite dimensional vector space, so isomorphic to

CM (where M depends on N and n, the simplest case is n = 1 since then M = N).
We will choose a fixed linear isomorphism to CM by choosing a particular basis of
eigenfunctions of the harmonic oscillator. If a ∈ Ψ−∞iso (Rn) then π(N)aπ(N) becomes

a linear operator on CM , so an element of the matrix algebra.

7.11.2007.274 Proposition 10.1. The ‘finite rank elements’ in C∞c (X;G−∞iso (Rn)), those for
which π(N)A = Aπ(N) = A for some N, are dense in C∞c (X;G−∞(Rn)).

These elements are really to be thought of as finite rank perturbations of the iden-
tity.
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Proof. This just requires a uniform version of the argument above, which in
fact follows from the pointwise version, to show that

7.11.2007.2737.11.2007.273 (10.16) A ∈ C∞c (X; Ψ−∞iso ) =⇒ π(N)Aπ(N) → A in C∞c (X; Ψ−∞iso (Rn)).

From this it follows that if A ∈ C∞c (X;G−∞iso (Rn)) (meaning if you look back,
that Id +A is invertible) then Id +π(N)A is invertible for N large enough (since it
vanishes outside a compact set). �

7.11.2007.276 Corollary 10.1. The groups K1
c(X) are independent of n, the dimension of

the space on which the group acts (as is already indicated by the notation).

In fact this shows that π(N)aπ(N) and a are homotopic in C∞c (X;G−∞iso (Rn))

provided N is large enough. Thus each element of K1
c(X) is represented by a finite

rank family in this sense (where the order N may depend on the element and the
identity needs to be added). Any two elements can then be represented by finite
approximations for the same N. Thus there is a natural isomophism between the
groups corresponding to different n’s by finite order approximation. In fact this
approximation argument has another very important consequence.

7.11.2007.275 Proposition 10.2. For any manifold K1
c(X) is an Abelian group, i.e. the group

product is commutative.

Proof. In view of the preceeding result it suffices to take n = 1 so N and the
rank of π(N) are the same. As shown above, given two elements [a], [b] ∈ K1

c(X) we

can choose representatives a, b ∈ C∞c (X;G−∞iso (Rn)) such that π(N)a = aπ(N) = a
and π(N)b = bπ(N) = b. Thus they are represented by elements of C∞(X; GL(N,C))
for some large N (so the actual element is Id(N) +π(N)aπ(N)). Now, the range of
π(2N) contains two N dimensional spaces, the ranges of π(N) and π(2N)−π(N). Since
we are picking bases in each, we can identify these two N dimensional spaces and
then represent an element of the 2N -dimensional space as a 2-vector of N -vectors.
This decomposes 2N ×2N matrices as 2×2 matrices with N ×N matrix elements.
In fact this tensor product of the 2× 2 and N ×N matrix algebras gives the same
product as 2N×2N matrices (as follows easily from the definitions). Now, consider
a rotation in 2 dimensions, represented by the rotation matrix

7.11.2007.2777.11.2007.277 (10.17)

(
cos θ − sin θ
sin θ cos θ

)
.

This rotates the standard basis e1, e2 to e2, −e1 as θ varies from 0 to π/2. If we
interpret it as having entries which are multiples of the identity as an N×N matrix,
and then conjugate by it, we get a curve

7.11.2007.2787.11.2007.278 (10.18)

a(x, θ) =

(
cos θ sin θ
− sin θ cos θ

)(
a 0
0 IdN

)(
cos θ − sin θ
sin θ cos θ

)
=

(
a cos2 θ + sin2 θ (Id−a) sin θ cos θ

(Id−a) sin θ cos θ cos2 θ + a sin2 θ

)
.

This is therefore an homotopy between a represented as an N ×N matrix and the
same element acting on the second N dimensional subspace, i.e. it becomes

7.11.2007.2797.11.2007.279 (10.19)

(
IdN 0

0 a

)
.
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This commutes with the second element which acts only in the first N dimensional
space, so, because of homotopy equivalence, the product in K1

c(X) is commutative.
�

So now we see that K1
c(X) is an Abelian group associated quite naturally to the

space X. I should say that the notation is not quite standard. Namely the standard
notation would be K1(X), without any indication of the ‘compact supports’ that
are involved in the definition. I prefer to put this in explicitly. Of course if X is
compact it is not necessary.

6.5.2008.789 Lemma 10.1. Any proper smooth map f : X −→ Y induces a homomorphism
f∗ : K1

c(Y ) −→ K1
c(X) by composition; the map f∗ only depends on the homotopy

class of f in proper smooth maps.

This makes K1
c into a contraviant functor on the category of manifolds and proper

maps to the category of abelian groups, if you like to think in those terms.

Proof. If a ∈ C∞c (Y ;G−∞iso ) then f∗a = a ◦ f ∈ C∞c (X;G−∞iso ) where the
compactness of the support is a consequence of the assumed properness of the
map – that f−1(K) b X for any K b Y. Homotopies lift to homotopies, so it is
straightforward to check that this is a homomorphism at the level of K1

c and that
it only depends on the homotopy class of f. �

Thus, since it is contravariant, ‘pull-back’ is the natural operation on K-theory.
The index theory that we discuss in Chapter

Index
12 is concerned with the ‘wrong-way’

map, i.e. push-forward, for K-theory.

6.5.2008.790 Lemma 10.2 (Excision). The inclusion of any open set i : U −→ X induces a
natural map

6.5.2008.7916.5.2008.791 (10.20) i! : K1
c(U) −→ K1

c(X).

Proof. Any smooth map with compact support a ∈ C∞c (U ;G−∞) can be
extended as the identity to give a smooth map ã ∈ C∞c (X;G−∞) so fixed by the

properties ã = a on U, Ã = 0 on X \U. Homotopies also extend in this way so this
induces the natural map (

6.5.2008.791
10.20). �

A fundamental role is played below by the following result computing the odd
K-theory of the product S×X of a general manifold and a circle.

7.11.2007.280 Proposition 10.3. For any manifold the natural projection, π : X × S −→ X,
the inclusion ι : X × R −→ X × S given by the 1-point compactification of R and
the inclusion p1 : X 3 x 7−→ (x, 1) ∈ X × S, lead to a split short exact sequence

7.11.2007.2827.11.2007.282 (10.21) 0 //K1
c(X × R)

ι! //K1
c(X × S)

p∗1 //K1
c(X)

π∗

gg
//0

and hence an isomorphism

6.5.2008.7926.5.2008.792 (10.22) K1
c(X × S) = K1

c(X × R)⊕K1
c(X)

Proof. Certainly π◦p1 = IdX so p∗1 ◦π∗ = Id shows that p∗1 must be surjective
and π∗ injective. Since 1 ∈ S is not in the image of ι, every class in the image of ι!
has a representative which is equal to the identity on the image of p1, so pulls back
to zero in K1

c(X), so p∗1 ◦ ι! = 0.
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Since an element in C∞c (X × S;G−∞) which vanishes at X × {1} is homotopic
through such elements to one which vanishes near X × {1} (and with supports
uniformly compact) this sequence corresponds to the short exact sequence of groups

7.11.2007.2847.11.2007.284 (10.23)
{
a ∈ C∞c (X × S;G−∞iso ); a(x, 1) = 0 ∀ x ∈ X

}
−→

C∞c (X × S;G−∞iso ) −→ C∞c (X;G−∞iso ).

Under homotopy this becomes the direct sum decomposition (
6.5.2008.792
10.22). �

Thus there are two Abelian groups K1
c(X) and K1

c(X × R) associated to the
manifold X with direct sum naturally K1

c(S×X). As we shall see below it is perfectly
natural to define the even K-theory of X to be K0

c(X) = K1
c(X ×R) (although the

notation Kc
−2(X) would be even better) and to denote the sum of the two terms

as

22.11.2007.33222.11.2007.332 (10.24) K*
c(X) = K1

c(S×X).

We will not do this now, only because it is potentially confusing and instead will
give a more standard definition of K0

c(X) and then define a natural index map (the
isotropic index)

6.5.2008.7936.5.2008.793 (10.25) Indiso : K1
c(X × R)

'−→ K0
c(X).

If you know a little algebraic topology, you will see that the discussion above
starts from the premise that G−∞iso (Rn) is a classifying space for odd K-theory. So
this is true by fiat. The corresponding classifying space for even K-theory is then
the pointed loop group, the set of maps

7.11.2007.2867.11.2007.286 (10.26) G−∞iso,sus(R
n) = {a ∈ C∞(S;G−∞iso (Rn); a(1) = Id}.

10.3. Computations

Let us pause for a moment to compute some simple cases. Namely

22.11.2007.351 Lemma 10.3.

22.11.2007.35022.11.2007.350 (10.27) K1({pt}) = {0}, K1
c(R) = Z, K1(S) = Z.

Proof. The first two of these statements follow directly from the next two
results. The third is a direct consequence of (

6.5.2008.792
10.22) and the first two. �

23.11.2007.375 Lemma 10.4. The group G−∞iso (Rn) is connected.

Proof. If a ∈ G−∞iso (Rn), the curve [0, 1] 3 t 7−→ (1 − t)a + tπ(N)aπ(N) lies

in G−∞iso (Rn) for N sufficiently large. Thus it suffices to show that GL(n,C) is
connected for large N ; of course2

23.11.2007.37923.11.2007.379 (10.28) GL(N,C) is connected for all N ≥ 1.

�

23.11.2007.376 Proposition 10.4. A closed loop in γ : S −→ G−∞iso (Rn) is contractible (ho-
motopic through loops to a constant loop) if and only if the composite map

23.11.2007.37723.11.2007.377 (10.29) γ̃ = det ◦γ : S −→ C∗

2See Problem
23.11.2007.380
10.12
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is contractible, so

23.11.2007.37823.11.2007.378 (10.30) π1(G−∞iso (Rn)) = Z
with the identification given by the winding number of the Fredholm determinant.

Proof. Again, as in the previous proof but now a loop can be deformed into
GL(N,C) so it is certainly enough to observe that3

23.11.2007.38123.11.2007.381 (10.31) π1 (GL(N,C)) = Z for all N ≥ 1.

�

An explicit generator of π1(G−∞iso ) is given by the stabilization of the loop into
GL(N,C) = C \ {0} which is the identity map on the circle embedded in C :

15.5.2008.83015.5.2008.830 (10.32) γ(θ) = e2πiθ.

10.4. Vector bundles

The notion of a complex vector bundle was briefly discussed earlier in Sec-
tion

Bundles
6.2. Recall from there the notion of a bundle isomorphism and that a bundle

is said to be trivial, over some set K, if there is a bundle isomorphism from its re-
striction to K to K ×Ck. The direct sum of vector bundles and the tensor product
are also briefly discussed there.

To see that there is some relationship between K-theory as discussed above and
vector bundles consider K1(X) for a compact manifold, X. First note that if V is
a complex vector bundle over X and e : V −→ V is a bundle isomorphism, then
e defines an element of K1(X). To see this we first observe we can always find a
complement to V.

22.11.2007.333 Proposition 10.5. Any vector bundle V which is trivial outside a compact
subset of X can be complemented to a trivial bundle, i.e. there exists a vector
bundle E, also trivial outside a compact set, and a bundle isomorphism

22.11.2007.33422.11.2007.334 (10.33) V ⊕ E −→ X × CN .

Proof. This follows from the local triviality of V. Choose a finite open cover
Ui of X with M elements in which one set is U0 = X \K for K compact and such
that V is trivial over each Ui. Then choose a partition of unity subordinate to Ui
– so only the φ0 ∈ C∞(X) with support in U0 does not have compact support. If
fi : V

∣∣
Ui
−→ Ck × Ui is a trivialization over Ui (so the one over U0 is given by the

assumed triviality outside a compact set) consider

22.11.2007.33522.11.2007.335 (10.34) F : V −→ X × CkM , u(x) 7−→
M⊕
i=1

fi(φi(u(x)).

This embeds V as a subbundle of a trivial bundle of dimension N = kM since the
map F is smooth, linear on the fibres and injective. Then we can take E to be the
orthocomplement of the range of F which is identified with V. �

Thus, a bundle isomorphism e of V can be extended to a bundle isomorphism
e⊕ IdE of the trivial bundle. This amounts to a map X −→ GL(MN,C) which can
then be extended to an element of C∞(X;G−∞iso (Rn)) and hence gives an element
of K1

c(X) as anticipated. It is straightforward to check that the element defined in

3Proof in Problem
23.11.2007.382
10.13
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K1(X) does not depend on choices made in its construction, only on e (and through
it of course on V ).

This is one connection between bundles and K1
c . There is another, similar, con-

nection which is more important. Namely from a class in K1
c(X) we can construct

a bundle over S×X. One way to do this is to observe that Proposition
22.11.2007.333
10.5 asso-

ciates to a bundle V a smooth family of projections πV ∈ C∞c (X;M(N,C)) which
is trivial outside a compact set, in the sense that it reduces to a fixed projection
there. Namely, πV is just (orthogonal) projection onto the range of V. We will need
to think about equivalence relations later, but certainly such a projection defines a
bundle as well, namely its range.

For the following construction choose a smooth function Θ : R −→ [0, π] which
is non-decreasing, constant with the value 0 on some (−∞,−T ], constant with value
π/2 on [−T/2, T/2] and constant with the value π on [T,∞), for some T > 0, and
strictly increasing otherwise. It may also be convenient to assume that Θ is ‘odd’
in the sense that

27.11.2007.38427.11.2007.384 (10.35) Θ(−t) = π −Θ(t).

This is just a function which we can used to progressively ‘rotate’ through angle π
but staying constant initially, near the middle and near the end. If a ∈ GL(N,C),
consider the rotation matrix

14.5.2008.81714.5.2008.817 (10.36) S(θ, a) =

(
cos(θ) IdN − sin(θ)a−1

sin(θ)a cos(θ) IdN

)
∈ GL(2N,C).

This is invertible, in fact

14.5.2008.81814.5.2008.818 (10.37)

S(θ, a)S(θ′, a) = S(θ + θ′, a), S(0, a) = Id,

d

dθ
S(θ, a) = S(θ +

π

2
, a) =

(
0 −a−1

a 0

)
S(θ, a),

Now, for a compact manifold X, consider a ∈ C∞(X;CN ) which is everywhere
invertible then

22.11.2007.33822.11.2007.338 (10.38) R×X 3 (t, x) 7−→ Ra(t, x) = S(Θ(t), a(x))

has inverse Ra(−t, x) and is equal to the identity in |t| > T. We will use this to
construct a bundle on R × X which is trivial for t > 0. The idea is that Ra(t, x)
‘rotates by π/2’ as t runs over (−∞, 0). Set

22.11.2007.33922.11.2007.339 (10.39) Π∞ =

(
1 0
0 0

)
, Π′a(t, x) =

{
Ra(t, x)Π∞Ra(−t, x) t ≤ 0

RId(t, x)Π∞RId(−t, x) t ≥ 0.

Clearly, Π′a(t, x) is smooth in t ≤ 0, and in t ≥ 0, and is constant outside a compact
set. In fact Π′a is globally smooth, since near t = 0, Θ(t) = π/2, by construction,
so

14.5.2008.81914.5.2008.819 (10.40) Π′a(0, x) =

(
0 a−1

−a 0

)
Π∞

(
0 −a−1

a 0

)
=

(
0 0
0 IdN

)
is independent of a and hence smooth. Thus in fact Π′a(t, x) is constant near
t = ±∞ where it takes the value Π∞, which is projection onto the first CN .
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Note, for later reference that

27.11.2007.38527.11.2007.385 (10.41)
Π′a(t, x) =

(
cos2(Θ(t)) IdN cos(Θ(t)) sin(Θ(t))a−1(x)

sin(Θ(t)) cos(Θ(t))a(x) sin2(Θ(t))

)
, t ≤ 0

has entries linear in a and a−1.

Notice that if the conjugating matrix in (
14.5.2008.819
10.40) did not jump as it does at

t = 0, but for instance we continued conjugating by Ra(t, x) in t ≥ 0 instead of
switching to a = Id, then the bundle which is the range of the family of projections
would be globally isomorphic to the range of Π∞, with Ra(t, x) being the global
isomorphism. In particular if a = Id this is indeed the case, so that at least a = Id
corresponds to a trivial bundle.

This was all under the assumption that X is compact and the construction will
not quite work if it is not, since then since then Π′a outside a compact set, even
when a = Id . To cover the non-compact case we need to ‘undo’ the twisting at
infinity in X which we do with a global isomorphism (not constant at infinity!) and
consider instead

14.5.2008.82114.5.2008.821 (10.42) Πa(t, x) = RId(−t, x)Π′a(t, x)RId(t, x).

In case X is compact this is a global isomorphism, constant outside a compact set,
and so gives the same bundle up to isomorphism. In the form (

14.5.2008.821
10.42) the projection

is actually constant in t ≥ 0.

22.11.2007.336 Lemma 10.5. An element a ∈ C∞(X; GL(N,C)) equal to the identity outside
a compact set defines, through (

14.5.2008.821
10.42), a smooth family of matrices with values in

the projections, Πa ∈ C∞(R × X;M(2n,C)), which is constant outside a compact
subset and so defines a vector bundle over R×X which is trivial outside a compact
set.

We will see below that this is one of the important identification maps for
K-theory that we need to understand, in fact it leads to (

14.5.2008.820
10.1).

So, by now it should not be so surprising that the K-groups introduced above
are closely related to the ‘Grothendieck group’ constructed from vector bundles.
The main issue is the equivalence relation.

9.11.2007.316 Definition 10.2. For a manifold X, Kc(X) is defined as the set of equivalence
classes of pairs of complex vector bundles (V,W ), both trivial outside a compact
set and with given trivializations a, b there, under the relation (V1,W1; a1, b1) ∼
(V2,W2; a2, b2) if and only if there is a bundle S and a bundle isomorphism

9.11.2007.3179.11.2007.317 (10.43) T : V1 ⊕W2 ⊕ S −→ V2 ⊕W1 ⊕ S

which is equal to (a2 ⊕ b2)−1(a1 ⊕ b2)⊕ IdS outside some compact set.

Note that if X is compact then the part about the trivializations is completely void,
then we just have pairs of vector bundles (V,W ) and the equivalence relation is the
existence of a stabilizing bundle S and a bundle isomorphism (

9.11.2007.317
10.43).

This is again an Abelian group with the group structure given at the level of
pairs of bundles (Vi,Wi), i = 1, 2 by4

9.11.2007.3189.11.2007.318 (10.44) [(V1,W1)] + [V2,W2)] = [(V1 ⊕ V2,W1 ⊕W2)]

4See Problem
9.11.2007.319
10.11 for the details.
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with the trivializations (a1⊕a2), (b1⊕ b2). In particular [(V, V )] is the zero element
for any bundle V (trivial outside a compact set).

The equivalence relation being (stable) bundle isomorphism rather than some
sort of homotopy may seen strange, but it is actually more general.

22.11.2007.340 Lemma 10.6. If V is a vector bundle over [0, 1]t ×X which is trivial outside a
compact set then V0 = V

∣∣
t=0

and V1 = V
∣∣
t=1

are bundle isomorphic over X with
an isomorphism which is trivial outside a compact set.

Proof. The proof is ‘use a connection and integrate’. We can do this explicitly
as follows. First we can complement V to a trivial bundle so that it is identified with
a constant projection outside a compact set, using Proposition

22.11.2007.333
10.5. Let the family

of projections be πV (t, x) in M ×M matrices. We want to differentiate sections of
the bundle with respect to t. Since they are M -vectors we can do this, but we may
well not get sections this way. However defining the (partial) connection by

22.11.2007.34122.11.2007.341 (10.45) ∇tv(t) = v′(t)− π′V v(t) =⇒ (Id−πV )∇tv(t) = ((Id−πV )v(t))′ = 0

if πV v = v, i.e. if v is a section. Now, by standard results on the existence, uniquenss
and smoothness of solutions to differential equations, the condition ∇tv(t) = 0
fixes a unique section with v(0) = v0 ∈ V0 fixed. Then define F : V0 −→ V1 by
Fv0 = v(1). This is a bundle isomorphism. �

9.11.2007.322 Proposition 10.6. For any manifold X the construction in Lemma
22.11.2007.336
10.5 gives

the ‘clutching’ isomorphism

9.11.2007.3239.11.2007.323 (10.46) clu : K1
c(X) 3 [a] −→ [(Πa,Π

∞
a )] = Kc(R×X)

where Π∞a is the constant projection to which Πa restricts outside a compact set.

Proof. The range of the projection Πa in Lemma
22.11.2007.336
10.5 fixes an element of

Kc(R×X) but we need to see that it is independent of the choice of a representing
[a] ∈ K1

c(X). A homotopy of a gives a bundle over [0, 1]×X and then Lemma
22.11.2007.340
10.6

shows that the resulting bundles are isomorphic. Stabilizing a, i.e. enlarging it
by an identity matrix adds a constant projection to Πa and the same projection
projection to Π∞a . Thus the map in (

9.11.2007.323
10.46) is well defined. So we need to show

that it is an isomorphism. First we should show that it is additive. Recall that
the addition in K1

c(X) is defined either by composition in G−∞iso or by taking the
direct sum. The direct sum of two bundle isomorphisms valued in GL(N,C) is
then a bundle isomorphism in GL(2N,C) and the construction above leads to the
corresponding direct sum of the two projections valued in 2N×2N matrices, giving
a 4N × 4N projection and this is the addition in K0

c so clu is a homomorphism.
If V is a bundle over R×X which is trivial outside a compact set, we can embed

it as in Proposition
22.11.2007.333
10.5 so it is given by a family of projections πV (this of course

involves a bundle isomorphism). Now, using the connection as in (
22.11.2007.341
10.45) we can

define an isomorphism of the trivial bundle π∞V . Namely, integrating from t = −T to
t = T defines an isomorphism a. The claim is that (Πa,Π

∞
a ) = (V, V∞). I leave the

details to you, there is some help in Problem
22.11.2007.342
10.10. Conversely, this construction

recovers a from Πa so shows that (
9.11.2007.323
10.46) is injective and surjective. �
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10.5. Isotropic index map

Now, (
9.11.2007.323
10.46) is part of Bott periodicity. The remaining part is that, for any

manifold X there is a natural isomorphism

22.11.2007.34422.11.2007.344 (10.47) K1
c(R×X) −→ Kc(X).

If we regard this as an identification (and one has to be careful about orientations
here) then it means that we have identified

22.11.2007.34522.11.2007.345 (10.48) K0
c(X) = K1

c(R×X) = Kc(X) = Kc(R2 ×X)

as is discussed more below. For the moment what we will work on is the definition
of the map in (

22.11.2007.344
10.47). This is the ‘isotropic’ (or ‘Toeplitz’5) index map.

So, we get to the start of the connection of this stuff with index theory. An
element of K1

c(R×X) is represented by a map from R×X to GL(N,C), for some
N, and with triviality outside a compact set. In particular this map reduces to the
identity near ±∞ in R so we can join the ends using the radial compactification of
R 7−→ S and get a map

ã ∈ C∞(S×X; GL(N,C)), ã = Id near {1} ×X and outside a compact set.

This indeed is essentially the implied definition of K0
c(X) before (

6.5.2008.793
10.25). Now,

we can interpret ã as the principal symbol of an elliptic family in Ψ0
iso(R;CN )

depending smoothly on x ∈ X (and reducing to the identity outside a compact
set). Let’s start with the case X = {pt} so there are no parameters.

22.11.2007.348 Proposition 10.7. If A ∈ Ψ0
iso(R;CN ) is elliptic with principal symbol a =

σ0(A) ∈ C∞(S; GL(N,C)) then the index of A is given by the winding number of
the determinant of the symbol

22.11.2007.34922.11.2007.349 (10.49) Indiso(A) = −wn(det(a)) = − 1

2πi

∫
S

tr(a−1 da

dθ
)dθ

and if a = Id near {1} ∈ S then Indiso(A) = 0 if and only if [a] = 0 ∈ K1
c(S).

Proof. ****Expand This follows from Proposition
23.11.2007.376
10.4. First, recall what the

winding number is. Then check that it defines the identification (
23.11.2007.378
10.30). Observe

that the index is stable under homotopy and stabilization and that the index of a
product is the sum of the indices. Then check one example with index 1, namely
for the annihilation operator will suffices. For general A with winding number m,
compose with m factors of the creation operator – the adjoint of the annihilation
operator. This gives an operator with symbol for which the winding number is
trivial. By Proposition

23.11.2007.376
10.4 it can be deformed to the identity after stabilization,

so its index vanishes and (
22.11.2007.349
10.49) follows. �

Now for the analytic step that allows us to define the full (isotropic) index map.

22.11.2007.352 Proposition 10.8. If a ∈ C∞c (R×X; GL(N,C)) (so it reduces to the identity
outside a compact set) then there exists A ∈ C∞(X; Ψ0

iso(R;CN )) with σ0(A) = a,
A constant in X \ K for some compact K and such that null(A) is a (constant)
vector bundle over X.

5See Problem
22.11.2007.346
?? for this alternative approach.
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Proof. We can choose a B ∈ C∞(X; Ψ0
iso(R;CN )) with σ(B) = a by the

surjectivity of the symbol map. Moreover, taking a function ψ ∈ C∞(X) which is
equal to 1 outside a compact set in X but which vanishes where a 6= Id, (1−ψ)B+
ψ Id has the same principal symbol and reduces to Id outside a compact set.

The problem with this initial choice is that the dimension of the null space
may change from point to point. However, we certainly have a parametrix GB ∈
C∞(X; Ψ0

iso(R;CN )) which we can take to be equal to the identity outside a compact
set, by the same method, and which then satisfies

22.11.2007.35322.11.2007.353 (10.50) GBB = Id +R1, BGB = Id +R2, Ri ∈ C∞c (X; Ψ−∞iso (R;CN ).

So, recall the finite rank projection π(N) onto the span of the firstN eigenspaces.

We know that R1π(N) → R1 in Ψ−∞iso (R;CN ) and this is true uniformly on X since
the support in X is compact. So, if N is large enough supx∈X ‖R1(x)(Id−π(N))‖ <
1
2 . Composing the first equation in (

22.11.2007.353
10.50) on the right with Id−π(N) we find that

22.11.2007.35422.11.2007.354 (10.51) GBB(Id−π(N)) = (Id +R1(Id−π(N)))(Id−π(N))

where the fact that Id−π(N) is a projection is also used. Now

(Id +R1(Id−π(N)))
−1 = Id +S1

where S1 ∈ C∞c (X; Ψ−∞iso (R)) by the openness of G−∞iso (R). So if we set A =
B(Id−π(N)) and G = (Id +S1)GB we see that

22.11.2007.35522.11.2007.355 (10.52) GA = Id−π(N).

In particular the null space of A(x) for each x is exactly the span of π(N) – it cer-
tainly annihilates this set but can annihilate no more in view of (

22.11.2007.355
10.52). Moreover

A has the same principal symbol as B and is constant outside a compact set in
X. �

Now, once we have chosen A as in Proposition
22.11.2007.352
10.8 it follows from the constancy

of the index that family A(x)∗ also has null spaces of constant finite dimension, and
indeed these define a smooth bundle over X which, if X is not compact, reduces
to π(N) near infinity – since A = Id−π(N) there. Thus we arrive at the isotropic
index map.

22.11.2007.356 Proposition 10.9. If A is as in Proposition
22.11.2007.352
10.8 the the null spaces of A∗(x)

form a smooth vector bundle Nul(A∗) over X defining a class [(π(N),Nul(A∗))] ∈
Kc(X) which depends only on [a] ∈ K1

c(R×X) and so defines an additive map

22.11.2007.35722.11.2007.357 (10.53) Indiso : K1
c(R×X) −→ Kc(X).

Proof. In the earlier discussion of isotropic operators it was shown that an
elliptic operator has a generalized inverse. So near any particular point x̄ ∈ X we
can add an element E(x̄) ∈ Ψ−∞iso (R;CN ) to G(x̄) so that H(x̄) = G(x̄) +E(x̄) is a
generalized inverse, H(x̄)A(x̄) = Id−π(N), A(x̄H(x̄) = Id−π′(x̄) where π′(x̄) is a
finite rank projection onto a subspace of S(R). Then H(x) = G(x) +E(x̄) is still a
parametrix nearby and

22.11.2007.35822.11.2007.358 (10.54) H(x)A(x) = Id−π(N), A(x)H(x) = Id−p(x) near x̄

where p(x) must have constant rank. Indeed, it follows that p(x)π′(x̄) is a smooth
bundle isomorphism, near x̄, from the range of π′(x̄) to the null space of A∗. This
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shows that the null spaces of the A∗(x) form a bundle, which certainly reduces to
π(N) outside a compact set. Thus

22.11.2007.35922.11.2007.359 (10.55) [(π(N),null(A∗))] ∈ Kc(X).

Next note the independence of this element of the choice of N. It suffices to
show that increasing N does not change the class. In fact increasing N to N + 1
replaces A by A(Id−π(N+1)) which has null bundle increased by the trivial line
bundle (Id(N+1)−π(N)). The range of A then decreases by the removal of the trivial
bundle A(x)(Id(N+1)−π(N)) and null(A∗) increases correspondingly. So the class
in (

22.11.2007.359
10.55) does not change.
To see that the class is independent of the choice of A, for fixed a, consider two

such choices. Initially the choice was of an operator with a as principal symbol,
two choices are smoothly homotopic, since tA+ (1− t)A′ is a smooth family with
constant symbol. The same construction as above now gives a pair of bundles over
[0, 1] ×X, trivialized outside a compact set, and it follows from Lemma

22.11.2007.340
10.6 that

the class is constant. A similar discussion shows that homotopy of a is just a family
over [0, 1]×X so the discussion above applies to it and shows that the bundles can
be chosen smoothly, again from Lemma

22.11.2007.340
10.6 the class is constant. �

It is important to understand what the index tell us.

22.11.2007.368 Proposition 10.10. If a ∈ C∞c (R × X; GL(N,C)) then Indiso(a) = 0 if and
only if there is a family A ∈ C∞(X; Ψ0

iso(R;CN )) with σ0(A) = a which is constant
outside a compact set in X and everywhere invertible.

Proof. The definition of the index class above shows that a may be quan-
tized to an operator with smooth null bundle and range bundle such with Indiso(a)
represented by (π(N), p

′) where p′ is the null bundle of the adjoint. If A can be
chosen invertible this class is certainly zero. Conversely, if the class vanishes then
after stabilizing with a trivial bundle π(N) and p′ become bundle isomorphic. This
just means that they are isomorphic for sufficiently large N with the isomorphism
being the trivial one near infinity. However this isomorphism is itself an element of
C∞(X; Ψ−∞iso (R;CN )) which is trivial near infinity. Adding it to A gives an invertible
realization of the symbol, proving the Proposition. �

10.6. Bott periodicity

Now to the proof of Bott periodicity. Choose a ‘Bott’ element, which in this
case is a smooth function

22.11.2007.36122.11.2007.361 (10.56) β(t) = eiΘ(t) =⇒

{
β : R −→ C∗, β(t) = 1 for |t| > T,

arg β(t) increasing over (0, 2π) for t ∈ (−T, T )

where Θ satisfies (
27.11.2007.384
10.35) and the preceeding conditions. Thus β has winding number

one but is constant near infinity.
We first show

22.11.2007.360 Proposition 10.11. The map (
22.11.2007.357
10.53) is surjective with explicit left inverse

generated by mapping a smooth projection (constant near infinity) to

22.11.2007.36222.11.2007.362 (10.57) (πV , π
∞
V ) 7−→ β(t)−1πV + (Id−πV ) ∈ C∞c (R×X; GL(N,C)).
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Proof. The surjectivity follows from the existence of a left inverse, so we need
to investigate (

22.11.2007.362
10.57). Observe that β(t)−1, when moved to the circle, is a symbol

with winding number 1. By Proposition
22.11.2007.348
10.7 we may choose an elliptic operator

b ∈ Ψ0
iso(R) which has a one-dimensional null space and has symbol in the same

class in K1
c(R) as β−1. In fact we could take the annihilation operator, normalized

to have order 0. Then we construct an elliptic family BV ∈ Ψ0
iso(R;CN ) by setting

22.11.2007.36322.11.2007.363 (10.58) BV = πV (x)b+ (Id−πV (x)), x ∈ X.
The null space of this family is clearly πV ⊗N, where N is the fixed one-dimensional
vector space null(b). Thus indeed

22.11.2007.36422.11.2007.364 (10.59) Indiso(BV ) = [(πV , π
∞
V )] ∈ Kc(X).

This proves the surjectivity of Indiso, the index map in this isotropic setting. �

With some danger of repeating myself, if X is compact the ‘normalizing term’ at
infinity π∞V is dropped. You will now see why we have been dragging this non-
compact case along, it is rather handy even if interest is in the compact case.

This following proof that Indiso is injective is a variant of the ‘clever’ argument
of Atiyah (maybe it is very clever – look at the original proof by Bott or the much
more computational, but actually rather enlightening, argument in

Atiyah1
[1]).

9.11.2007.324 Proposition 10.12. For any manifold X, the isotropic index map in (
22.11.2007.344
10.47),

(
22.11.2007.357
10.53) is an isomorphism

9.11.2007.3259.11.2007.325 (10.60) Indiso : K1
c(R×X)

'−→ Kc(X).

Proof. Following Proposition
22.11.2007.360
10.11 only the injectivity of the map remains

to be shown. Rather than try to do this directly we use another carefully chosen
homotopy.

So, we need to show that if a ∈ C∞c (R ×X; GL(N,C)) has Indiso(a) = 0 then
0 = [a] ∈ K1

c(Rs ×X). As a first step we use the construction of Proposition
9.11.2007.322
10.6

and Lemma
22.11.2007.336
10.5 to construct the image of [a] in Kc(R2 ×X). It is represented by

the projection-valued matrix

22.11.2007.36522.11.2007.365 (10.61) Πa(t, s, x) ∈ C∞c (R2 ×X;M(2N,C))

which is constant near infinity. Then we use the surjectivity of the index map in
the case

22.11.2007.36622.11.2007.366 (10.62) Indiso : Kc(R× (R2 ×X)) −→ Kc(R2 ×X)

and the explicit lift (
22.11.2007.363
10.58) to construct

22.11.2007.36722.11.2007.367 (10.63)
e ∈ C∞c (R2 ×X; GL(2N,C)), e(r, t, s, x) = β(r)Πa(t, s, x) + (Id−Πa(t, s, x)),

Indiso(e) = [Πa,Π
∞
a ] ∈ Kc(R2 ×X).

Here the ‘r’ variable is the one which is interpreted as the variable in the circle at
infinity on R2 to turn e into a symbol and hence a family of elliptic operators with
the given index. However we can rotate between the variables r and s, which is an
homotopy replacing e(r, t, s, x) by e(−s, t, r, x). Since the index map is homotopy
invariant, this symbol must give the same index class. Now, the third variable here
is the argument of a, the original symbol. So the quantization map just turns a and
a−1 which appears in the formula for Πa – see (

27.11.2007.385
10.41) – into any operator with these

symbols. By Proposition
22.11.2007.368
10.10 a (maybe after a little homotopy) is the symbol of



10.7. TOEPLITZ INDEX MAP 275

an invertible family. Inserting this in place of a and its inverse for a−1 gives an
invertible family of operators with symbol e(−s, t, r, x)6. Thus Indiso(e) = 0, but
this means that

22.11.2007.37022.11.2007.370 (10.64) 0 = [(Πa,Π
∞
a )] ∈ Kc(R2 ×X) =⇒ 0 = [a] ∈ K1

c(R×X).

This shows the injectivity of the isotropic index map and so that (
9.11.2007.325
10.60) is an

isomorphism. �

What does this tell us? Well, as it turns out, lots of things! For one thing the
normalization conditions extend to all Euclidean space:-

22.11.2007.37122.11.2007.371 (10.65) K1
c(Rk) =

{
{0} k even

Z k odd,
K0

c(Rk) =

{
Z k even

{0} k odd.

This in turn means that we understand a good deal more about G−∞iso (Rn).

22.11.2007.372 Theorem 10.1 (Bott periodicity). The homotopy groups G−∞iso (Rn) are

22.11.2007.37322.11.2007.373 (10.66) πj(G
−∞
iso (Rn)) =

{
{0} k even

Z k odd.

Indeed Bott proved this rather directly using Morse theory.

10.7. Toeplitz index map
Toind

Although the map from K1
c(R×X) to Kc(X) has been discussed here in terms

of the quantization of symbols to isotropic pseudodifferential operators it could
equally, and more conventionally, be done by quantization to ‘Toeplitz operators’.
The advantage of the isotropic quantization is that it extends directly to higher
dimensions. The Toeplitz algebra is the ‘compression’ of the pseudodifferential
algebra on the circle to the positive Fourier components, some form of the Hardy
space. This is discussed in §

Toeplitz
6.9. In the Toeplitz context, π(N) is projection onto

the span of the first N exponentials exp(ilθ), 1 ≤ l ≤ N.

3.5.2008.774 Proposition 10.13. If A ∈ C∞(X; Ψ0
To(S;Ck)) is an elliptic family of Toeplitz

operators, which is constant outside a compact subset of X and has σ(A)(1, x) ≡
Idk×k then for N sufficiently large A(Id−π(N)) and its adjoint have null spaces

forming a smooth vector bundle over X, the class [(Nul(A),Nul(A∗))] ∈ K0
c(X)

depends only on the class in of the symbol in K1
c(R× S) and the map so defined

3.5.2008.7753.5.2008.775 (10.67) IndTo : K1
c(R×X) −→ K0

c(X)

is equal to the isotropic index map discussed above.

Notice that the assumption that the symbol of A is equal to the identity at θ = 1 on
the circe, for all x ∈ X, means that it can be interpreted (after a little deformation)
as defining an element in the compactly supported K-group on the left in (

3.5.2008.775
10.67),

where R is identified with S \ {1} by the map
3.5.2008.7763.5.2008.776 (10.68)

R 3 t 7−→ exp(iΘ(t)), Θ ∈ C∞(R), Θ′(t) ≥ 0, Θ(t) = 0, t << 0, Θ(t) = 2π, t >> 0.

where the orientation is important.

6See Problem
22.11.2007.369
10.1 for some more details
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22.11.2007.369 Problem 10.1. Go through the argument for the stability of the null bundle
and the independence of choices, it is essentially the same as for the isotropic case
but using the properties of the Toeplitz algebra, and smoothing operators on the
circle instead.

Proof. The proof of the stability of the index etc, leading to the map (
3.5.2008.775
10.67)

is essentially the same as in the isotropic case so is omitted. It remains to show
that quantization by Toeplitz operators gives the same index map as quantization
by istropic operators.

The shift operator, which is multiplication by e−iθ followed by projection back
onto the Hardy projection, is elliptic and has index 1 as a Toeplitz operator. Its
symbol is homotopic, after the identification (

3.5.2008.776
10.68), with the symbol of the anni-

hilation operator in the isotropic algebra (after change of order using the square
root of the harmonic oscillator), which also has index 1 and is the Bott element.
Thus the two indexes agree on this element, with X a point. The argument of
sujectivity for the isotropic index above, which involves twisting the annihilation
operator with a bundle on X applies equally well in the Toeplitz setting. Thus
both maps are surjective and the injectivity of the isotropic index shows that these
element span K1

c(R×X), so the two maps give the same isomorphism. �

10.8. The isotropic-semiclassical index (or quantization) maps
Oddiso

Especially since the geometric version of the odd index plays a considerable
role in the proof of the index theorem of Atiyah and Singer below, we next discuss
the ‘odd’ version of the isotropic index theorem which arises from the semiclassical
limit for isotropic operators. This is used in the next section to obtain the Thom
isomorphism in K-theory.

We shall show that for any even dimensional Euclidean space the symbol map
for isotropic smoothing operators leads to the isomorphism in (

14.5.2008.826
10.5):

5.5.2008.7795.5.2008.779 (10.69) Indodd
iso : K1

c(R2N ×X) −→ K1
c(X)

for any manifold X. This is consistent with the other Bott periodicity constructions,
as is shown below.

5.5.2008.780 Proposition 10.14. If a ∈ C∞(R2n × X; GL(N,C)) has compact support, in
the sense that a = Id outside a compact set, the there exists A′ ∈ C∞c (X; Ψ−∞sl iso(Rn);CN )
such that σsl(A

′) = a − IdN and then for small ε > 0 [IdN +Aε] ∈ K1
c(X) depends

only on [a] ∈ K1
c(R2n ×X) and gives the isomorphism (

5.5.2008.779
10.69).

Proof. The main step is the existence of the semiclassical family, reducing to
the identity outside a compact set, but this is shown in Chapter

I.cal
4.

The fact that [Aε], for ε > 0 so small that Aδ is invertible for all 0 < δ < ε, only
depends on a follows from the homotopy equivalence of all possible semiclassical
quantizations. The independence of choices follows from similar arguments to those
above – homotopies induce homotopies and stability leads to stability. �

The even isotropic-semiclassical index map is defined in a similar way using the
quantization of projections.

17.5.2008.831 Proposition 10.15. If p ∈ C∞(R2n × X;M(N,C)) is a family of projec-
tions which takes a fixed value p∞ outside some compact set then there exists
Q ∈ C∞c (X; Ψ−∞sl iso(Rn);CN ) such that p∞ + Q is a family of projections with
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p∞ + σsl(Q) = p and for ε > 0 sufficiently small [p∞ + Qε] ∈ K0
c(X) only de-

pends on [p] ∈ K0
c(R2n ×X) and this leads to the isomorphism (

14.5.2008.827
10.6).

Proof. �

It is important that these two maps are consistent with each other, under
iteration and with Bott periodicity, as discussed in the preceeding section.

17.5.2008.832 Lemma 10.7. The isotropic-semiclassical quantization maps and the clutching
map (

9.11.2007.323
10.46) lead to the commutative diagrammes of isomorphisms

17.5.2008.83317.5.2008.833 (10.70) K1
c(R2n ×X)

clu //

Indodd
iso

��

K0
c(R× R2n ×X)

Indeven
iso

��
K1

c(X)
clu

// K0
c(R×X).

and

17.5.2008.83417.5.2008.834 (10.71) K0
c(R2 × R2n ×X)

clu−1
//

Indeven
iso

��

K1
c(R× R2n ×X)

Indiso //

Indodd
iso

��

K0
c(R2n ×X)

Indeven
iso

��
K0

c(R2 ×X)
clu−1

// K1
c(R×X)

Indiso // K0
c(X).

Proof. This commutativity of (
17.5.2008.833
10.70) is immediate from the explicit formula

for the clutching construction in (
14.5.2008.821
10.42) and (

27.11.2007.385
10.41). Namely, if A is an isotropic-

semiclassical quantization of a then A−1 quantizes a−1 and inserting A and A−1 into
(
27.11.2007.385
10.41) gives an isotropic-semiclassical quantization of Πa to a family of projections

defining ΠA.
The left square in (

17.5.2008.834
10.71) is (

17.5.2008.833
10.70) for X replaced by R × X and written

backwards. The commutativity of the right square follows from the formula for
the inverse of the isotropic index. Again this is given by an explicit formula, lift
a projection to an invertible family, as in (

22.11.2007.362
10.57). Thus the commutativity of the

square with the horizontal maps inverted follows and since these are isomorphisms
(
17.5.2008.834
10.71) is also commutative. �

5.5.2008.782 Lemma 10.8. For any manifold X

17.5.2008.83617.5.2008.836 (10.72)
Indeven

iso = (Indiso ◦ clu−1)n : K0
c(R2n ×X) −→ K0

c(X),

Indodd
iso = (clu−1 ◦ Indiso)n : K1

c(R2n ×X) −→ K1
c(X)

are the Bott periodicity maps and for any N and M and either parity p, the dia-
gramme

17.5.2008.83717.5.2008.837 (10.73) Kp
c(X2M ×X)

Indpiso

&&
Kp

c(X2N+2M ×X)

Indpiso

55

Indpiso // Kp
c(X)

commutes.

Proof. To prove (
17.5.2008.837
10.73) �



278 10. K-THEORY

10.9. Complex and symplectic bundles

In Chapter
I.cal
4 the algebra of istropic pseudodifferential on a symplectic vector

space F is discussed. For example the algebra of operators of order 0 is just a
non-commutative product on the space of smooth functions on the radial compact-
ification of F, C∞(F ). This product varies smoothly with the symplectic form used
to define it. Now suppose that E −→ X is a real vector bundle over a manifold X
which has a symplectic structure, that is a section

12.5.2008.79912.5.2008.799 (10.74)
ω ∈ C∞(X; Λ2F ′),

v ∈ Fx, ωx(v, w) = 0 ∀ w ∈ Fx =⇒ v = 0

is given. Then the isotropic algebras on the fibre combine to a smooth bundle
of algebras. It is this bundle of algebras which we will use to discuss the Thom
isomorphism. Since the Thom isomorphism in K-theory is usually thought of in
terms of complex bundles, not realy symplectic bundles, we recall the relationship
between them here.

Recall that any complex vector space F has an underlying real vector space, FR,
which is the same set with only real multiplication allowed. Then multiplication
by i on F becomes a real isomorphism J : FR −→ RR with the property that
J2 = − Id . Conversely, on a real vector space with such an isomorphism, complex
multiplication, defined with multiplication by z = α+ iβ being α+βJ, is a complex
vector space with the original real vector space underlying it.

12.5.2008.798 Lemma 10.9. A real vector bundle of even rank admits a complex structure
if and only if it admits a symplectic structure and the homotopy classes of these
structures are in 1-1 correspondence.

If X is not compact, this correspondence of complex or symplectic structures ex-
tends to those which are trivialized outside a compact set.

Proof. This is really just the corresponding construction in linear algebra.
Any complex vector space F admits an Hermitian structure, a sequilinear positive
definite form:

12.5.2008.80012.5.2008.800 (10.75)
h : F × F −→ C,

h(z1v1 + z2v2, w) = z1h(v1, w) + z2h(v2, w), h(v, w) = h(w, v), h(v, v) ≥ 0, h(v, v) = 0 =⇒ v = 0.

To see this, just take the Euclidean inner product with respect to a basis. The
imaginary part of h,

12.5.2008.80112.5.2008.801 (10.76) ωh(v, w) = =h(v, w)

is a symplectic form on FR. Moreover h(v, w) = ωh(v, Jw) + iω(v, w) so the Her-
mitian structure can be recovered from the symplectic strucure and J. Conversely,
if V is a real vector space with symplectic form ωV then choosing a real Euclidean
structure g on V defines a linear map J ′ : V −→ V by

12.5.2008.80212.5.2008.802 (10.77)
ωV (v, J ′w) = g(v, w) =⇒

ωV (v, J ′w) = g(v, w) = g(w, v) = ωV (w, J ′v) = −ωV (Jv,w).

Thus g(J ′v, w) = ωV (J ′v, J ′w) = −ωV (J ′w, J ′v) = −g(J ′w, v) = −g(v, J ′w) shows
that J ′ is skew-adjoint with respect to g and g((J ′)2v, w) = −g(J ′v, J ′w) shows
that its square is negative definite and self-adoint. Thus −(J ′)2 = A2 where A is



10.10. THOM ISOMORPHISM 279

a positive definite real self-adjoint matrix, with respect to g, which commutes with
J ′ (since iJ ′ is self-adjoint and its eigenvectors are eigenvectors of A2 and hence A.
Thus J = A−1J ′ is a complex structure, J2 = − Id .

For a symplectic vector bundle, this construction can be carried out smoothly,
simply by choosing a smooth family of real metrics on the fibres. The construction
of J from J ′ is determined and hence is easily seen to yield a smooth homorphism
J of the real bundle, and hence a smooth complex structure. Moreover both the
construction of a complex structure from the symplectic and of the symplectic
structure from the complex can lift to homotopies, since they can be carried out
smoothly in parameters. �

10.10. Thom isomorphism

The even semiclassical isotropic index map is shown above to generate an iso-
morphism

12.5.2008.79512.5.2008.795 (10.78) Indiso,sl : K0
c(R2N ×X) −→ K0

c(X)

for any manifold X. Here the product can be interpreted as a trivial even-rank
bundle over X. The Thom isomorphism extends this to the bundles discussed in
the previous section.

3.5.2008.778 Proposition 10.16. If F −→ X is an even-rank real vector bundle over X,
trivial outside a compact set and with a symplectic structure constant outside a
compact set then semiclassical isotropic quantization gives an isomorphism

12.5.2008.79612.5.2008.796 (10.79)
Thom : K0

c(F ) −→ K0
c(X) with inverse

K0
c(X) 3 [V] 7−→ [V⊗ bE ] ∈ K0

c(E)

where bE ∈ K0
c(E) is the Bott element corresponding to the harmonic oscillator.

Proof. We first show that isotropic quantization of projections on the fibres
descends to an index map in the bundle case (

12.5.2008.796
10.79) in the bundle case. Certainly

an element of K0
c(F ) is represented by a smooth map F −→ M(N,C) for some N

with values in the projections and constant outside a compact subset of F (which
of course projects to a compact subset of X). Mainly we just need to show that the
previous discussion extends smoothly to this case and also that there is a smooth
‘Bott element’ βF ∈ K0

c(F ), so represented by a family of projections, such that
Ind(F ) = [C] is a trivial one-dimensional bundle. Then the second line in (

12.5.2008.796
10.79)

gives a left inverse of the index,

12.5.2008.80512.5.2008.805 (10.80) Ind(π∗[V]⊗ βE) = [V] ∈ K0
c(X).

As for the original isotropic index, this proves that the index map is surjective for
any symplectic bundle F as in the statement above. So only the injectivity remains
to be shown.

If F is a real vector bundle with symplectic structure then it is shown above that
it can be realized as the underlying real vector bundle for a complex vector bundle
with the symplectic structure being the imaginary part of an Hermitian structure
on E. If F is trivial, with constant symplectic structure outside a compact set, then
E can be taken to be trivial with complex Hermitian structure outside a compact
set. Then E can be embedded as a subbundle of a trivial complex bundle CN with
constant inclusion outside a compact set. Extending the Hermitian structure to
the whole bundle, as a direct sum, and constant outside a compact set, shows that
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F can be complemented to a trivial bundle with direct symplectic forms constant
outside a compactum. Let the complementary bundle be G so F ⊕ G = R2k for
some k. Now we have maps

12.5.2008.80412.5.2008.804 (10.81) K0
c(R2k ×X)

Ind //

IndG &&

K0
c(X).

K0
c(F )

IndF

::

We claim that this diagramme commutes. *** This is supposed to be done back in
the isotropic chapter, namely that when quantizing a projection on the product of
two vector spaces one can first quantize in one subspace and then the other. For
the moment the more complicated case of the adiabatic limit has already been done
so this should be clear enough.

From the commutativity of (
12.5.2008.804
10.81) it follows that IndF is an isomorphism.

Indeed, the bottom two are injective and top is known to be an isomorphism from
the preceeding discussion. Thus IndF must also be surjective and hence is an
isomorphism and IndG is IndF for a different bundle and base. �

10.11. Chern forms

I would not take this section seriously yet, I am going to change it.
Let’s just think about the finite-dimensional groups GL(N,C) for a little while.

Really these can be replaced by G−∞iso (Rn), as I will do below, but it may be a strain
to do differential analysis and differential topology on such an infinite dimensional
manifold, so I will hold off for a while.

Recall that for a Lie group G the tangent space at the identity (thought of as
given by an equivalence to second order on curves through Id), g, has the structure
of a Lie algebra. In the case of most interest here, GL(n,C) ⊂M(N,C) is an open
subset of the algebra of N×N matrices, namely the complement of the hypersurface
where det = 0. Thus the tangent space at Id is just M(N,C) and the Lie algebra
structure is given by the commutator

8.11.2007.2878.11.2007.287 (10.82) [a, b] = ab− ba, a, b ∈ gl(N,C) = M(N,C).

At any other point, g, of the group the tangent space may be naturally identified
with g by observing that if c(t) is a curve through g then g−1c(t) is a curve through
Id with the equivalence relation carrying over. This linear map from TgG to g is
herlpfully denoted

8.11.2007.2888.11.2007.288 (10.83) g−1dg : TgG −→ g.

In this notation ‘dg’ is the differential of the identity map of G at g. This ‘Maurier-
Cartan’ form as a well-defined 1-form on G with values in } – which is a fixed vector
space.

The fundamental property of this form is that

8.11.2007.2898.11.2007.289 (10.84) d(g−1dg) = −1

2
[g−1dg, g−1dg].

In the case of GL(N,C) this can be checked directly, and written slightly differently.
Namely in this case as a ‘function’ ‘g’ is the identity on G but thought of as the
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canonical embedding GL(N,C) ⊂ M(N,C). Thus it takes values in M(N,C), a
vector space, and we may differentiate directly to find that

8.11.2007.2908.11.2007.290 (10.85) d(g−1dg) = −dgg−1dg ∧ dg
where the product is that in the matrix algebra. Here we are just using the fact
that dg−1 = −g−1dgg−1 which comes from differentiating the defining identity
g−1g = Id . Of course the right side of (

8.11.2007.290
10.85) is antisymmetric as a function on

the tangent space TgG × TgG and so does reduce to (
8.11.2007.289
10.84) when the product is

repalced by the Lie product, i.e. the commutator.
Since we are dealing with matrix, or infinite matrix, groups throughout, I will

use the ‘non-intrinsic’ form (
8.11.2007.290
10.85) in which the product is the matrix product,

rather than the truly intrinsic (and general) form (
8.11.2007.289
10.84).

8.11.2007.291 Proposition 10.17 (Chern forms). If tr is the trace functional on N ×N ma-
trices then on GL(N,C),

8.11.2007.2928.11.2007.292 (10.86)
tr((g−1dg)2k) = 0 ∀ k ∈ N,

β2k−1 = tr((g−1dg)2k−1) is closed ∀ k ∈ N.

Proof. This is the effect of the antisymmetry. The trace idenitity, tr(ab) =
tr(ba) means precisely that tr vanishes on commutators. In the case of an even
number of factors, for clarity evaluation on 2k copies of Tg GL(N,C), given for
ai ∈M(N,C), i = 1, . . . , 2k, by the sum over

8.11.2007.2938.11.2007.293 (10.87)

tr((g−1dg)2k)(a1, a2, . . . , a2k) =
∑
e

sgn(e) tr(g−1ae(1)g
−1ae(2) . . . g

−1ae(2k)) =

−
∑
e

sgn(e) tr(g−1ae(2k)g
−1ae(1) . . . g

−1ae(2k−1)) = − tr((g−1dg)2k)(a1, a2, . . . , a2k).

In the case of an odd number of factors the same manipulation products a
trivial identity. However, notice that

8.11.2007.2948.11.2007.294 (10.88) g−1dgg−1 = −d(g−1)

is closed, as is dg. So in differentiating the odd number of wedge products each pair
g−1dgg−1dg is closed, so (tr being a fixed functional)

8.11.2007.2958.11.2007.295 (10.89) dβ2k−1 = tr(dg−1)(g−1dgg−1dg)2k−2) = − tr((g−1dg)2k) = 0

by the previous discussion. �

Now, time to do this in the infinite dimensional case. First we have to make
sure we know that we are talking about.

8.11.2007.296 Definition 10.3 (Fréchet differentiability). A function on an open set of a
Fréchet space, O ⊂ F, f : O −→ V, where V is a locally convex topological space
(here it will also be Fréchet, and might be Banach) differentiable at a point u ∈ O
if there exists a continuous linear map D : F −→ V such that for each continuous
seminorm ‖ · ‖α on V there is a continuous norm ‖ · ‖i on F such that for each
ε > 0 there exists δ > 0 for which

8.11.2007.2978.11.2007.297 (10.90) ‖v‖i < δ =⇒ ‖f(u+ v)− f(u)− Tv‖α ≤ ε‖v‖i.
This is a rather strong definition of differentiability, stronger than the Gâteaux
definition – which would actually be enough for most of what we want, but why
not use the stronger condition when it holds?
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8.11.2007.298 Proposition 10.18. The composition of smoothing operators defines a bilinear
smooth map

8.11.2007.2998.11.2007.299 (10.91) Ψ−∞iso (Rn)×Ψ−∞iso (Rn) −→ Ψ−∞iso (Rn), ‖ab‖k ≤ Ck‖a‖k+N‖b‖k+N

(where the kth norm on u is for instance the Ck norm on 〈z〉ku and inversion is a
smooth map

8.11.2007.3008.11.2007.300 (10.92) G−∞iso (Rn) −→ G−∞iso (Rn).

Proof. I did not define smoothness above, but it is iterated differentiability,
as usual. In fact linear maps are always differentiable, as follows immediately from
the definition. The same is true of jointly continuous bilinear maps, so the norm
estimates in (

8.11.2007.299
10.91) actually prove the regularity statement. The point is that the

derivative of a bilinear map P at (ā, b̄) is the linear map

8.11.2007.3018.11.2007.301 (10.93) Qā,b̄(a, b) = P (a, b̄)+P (ā, b), P (ā+a, b̄+b)−P (ā, b̄)−Qā,b̄(a, b) = P (a, b).

The bilinear estimates themselves follow directly by differentiating and estimating
the integral composition formula

8.11.2007.3028.11.2007.302 (10.94) a ◦ b(z, z′) =

∫
a(z, z′′)b(z′′, z′)dz′′.

The shift in norm on the right compared to the left is to get a negative factor of
〈z′′〉 to ensure integrability.

Smoothness of the inverse map is a little more delicate. Of course we do know
what the derivative at the point g, evaluated on the tangent vector a is, namely
g−1ag−1. So to get differentiability we need to estimate

8.11.2007.3038.11.2007.303 (10.95) (g + a)−1 − g−1 + g−1ag−1 = g−1a

∑
k≥0

(−1)k+1g−1(ag−1)k

 ag−1.

This is the Neumann series for the inverse. If a is close to 0 in Ψ−∞iso (Rn) then
we know that ‖a‖L2 is small, i.e. it is bounded by some norm on Ψ−∞iso (Rn). Thus
the series on the right converges in bounded operators on L2(Rn). However the
smoothing terms on both sides render the whole of the right side smoothing and
with all norms small in Ψ−∞iso (Rn) when a is small.

This proves differentiability, but in fact infinite differentiability follows, since
the differentiability of g−1 and the smoothness of composition, discussed above,
shows that g−1ag−1 is differentiable, and allows one to proceed on inductively. �

We also know that the trace functional extends to Ψ−∞iso (Rn) as a trace func-
tional, i.e. vanishing on commutators. This means that the construction above of
Chern classes on GL(N,C) extends to G−∞iso (Rn).

Proposition 10.19. (Universal Chern forms) The statements (
8.11.2007.292
10.86) extend8.11.2007.304

to the infinite-dimensional group G−∞iso (Rn) to define deRham classes [β2k−1] in
each odd dimension.

In fact these classes generate (not span, you need to take cup products as well) the
cohomology, over R, of G−∞iso (Rn).

Proof. We have now done enough to justify the earlier computations in this
setting. �
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8.11.2007.305 Proposition 10.20. If X is a manifold and a ∈ C∞c (X;G−∞iso (Rn) then the

forms a∗β2k−1 define deRham classes in Hc
2k+1(X;R) which are independent of

the homotopy class and so are determined by [a] ∈ K1
c(X). Combining them gives

the (odd) Chern character

8.11.2007.3068.11.2007.306 (10.96) Cho([a]) =
∑
k

c2k−1a
∗β2k−1.

the particular constants chosen in (
8.11.2007.306
10.96) corresponding to multiplicativity under

tensor products, which will be discussed below.

Proof. The independence of the (smooth) homotopy class follows from the
computation above. Namely if at ∈ C∞c (X×[0, 1];G−∞iso (Rbn) then B2k−1 = a∗tβ2k−1

is a closed (2k − 1)-form on X × [0, 1]. If we split it into the two terms

8.11.2007.3078.11.2007.307 (10.97) B2k−1 = b2k−1(t) + γ2k−1(t) ∧ dt

where b2k−1(t) and γ2k−1(t) are respectively a t-dependent 2k− 1 and 2k− 2 form,
then

8.11.2007.3088.11.2007.308 (10.98)

dB2k−1 = 0⇐⇒ ∂

∂t
b2k−1(t) = dXγ2k−2(t) and hence

b(1)2k−1 − b(0)2k−1 = dµ2k−2, µ2k−2 =

∫ 1

0

dtγ2k−2(t)

shows that b(1)2k−1 and b(0)2k−1, the Chern forms of a1 and a0 are cohomologous.
�

The even case is very similar. Note above that we have defined even K-classes
on X as equivalence classes under homotopy of elements a ∈ C∞c (X;G−∞iso,sus(Rn).

The latter group consists of smooth loops in G−∞iso (Rn) starting and ending at Id .
This means there is a natural (smooth) map

8.11.2007.3108.11.2007.310 (10.99) T : G−∞iso,sus(R
n)× S −→ G−∞iso (Rn), (a, θ) 7−→ a(θ).

This map may be used to pull back the Chern forms discussed above to the product
and integrate over S to get forms in even dimensions:-

8.11.2007.3118.11.2007.311 (10.100) β2k =

∫ 2π

0

tr(g−1dg)2k+1, k = 0, 1, . . . .

8.11.2007.312 Proposition 10.21. The group G−∞iso,sus(Rn) has an infinite number of compo-

nents, labelled by the ‘index’ β0 in (
8.11.2007.311
10.100), the other Chern forms define cohomol-

ogy classes such that for any map

8.11.2007.3138.11.2007.313 (10.101) Ch([a]) =

∞∑
k=0

c2ka
∗β2k

defines a map K0
c(X) −→ Heven(X).

The range of this map spans the even cohomology, this is a form of a theorem of
Atiyah-Hurzebruch.

If f : X −→ Y is a smooth map then it induces a pull-back operation on vector
bundles (see Problem

9.11.2007.321
10.2) and this in turn induces an operation

9.11.2007.321 Problem 10.2.
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9.11.2007.3209.11.2007.320 (10.102) f∗ : K(Y ) −→ K(X).

Now we can interpret Proposition
8.11.2007.309
?? in a more K-theoretic form.

10.12. Chern character

We have seen above that the ‘unnormalized’ Chern forms Tr((a−1da)2k+1) are
well-defined closed forms on the group G−∞ and allow manipulation in the uisual
way. In particular they each pull back to give cohomology classes associated to a
given odd K-class on a manifold. It is important for us to understand the behaviour
of these forms under the basic maps in K-theory that we have defined above. The
most important is the isotropic/Toeplitz index map (

22.11.2007.344
10.47). For the moment, we

will take X to be compact even though this is not necessary.
The inverse of (

22.11.2007.344
10.47) we know explicitly, that is we know how to represent a

bundle as the index bundle of a family of isotropic (or Toeplitz) operators. Namely
if E is a vector bundle over X then it can be embedded as a subbundle of a trivial
bundle so there is a smooth family of projections Π ∈ C∞(X;M(N,C)) such that
we may identify E = Ran(Π). Then E (as an element of K(X)) is the index bundle
for any isotropic family with symbol

28.4.2008.71428.4.2008.714 (10.103) a(x, θ) = e−iθΠ(x) + (IdN −Π(x)), Π(x)2 = Π(x).

So, it is naturally of interest to compute the (odd) Chern forms of a on S×X.
Computing away,

28.4.2008.71528.4.2008.715 (10.104)
a−1da =

(
eiθΠ + Id−Π

) (
−ie−iθdθΠ + (e−iθ − 1)dXΠ

)
= eiθ(e−iθ − 1)ΠdXΠ + (e−iθ − 1)(Id−Π)dXΠ− idθΠ.

As a form on a product manifold we may decompose

28.4.2008.71628.4.2008.716 (10.105) Tr((a−1da)2k+1) = dθ ∧ α+ β

where α and β are forms on X depending smoothly on θ. Since we know it is closed
it follows that

28.4.2008.71728.4.2008.717 (10.106) dθ(∂θβ − dXα) + dXβ = 0 =⇒ dXβ = 0, dXα = ∂θβ.

Expanding α and β in Fourier series

28.4.2008.71828.4.2008.718 (10.107) α =
∑
k∈Z

eikθαk, β =
∑
k∈Z

eikθβk

it follows from (
28.4.2008.717
10.106) that all the βk with k 6= 0 are exact. In fact all the terms

in (
28.4.2008.716
10.105) corresponding to k 6= 0 are exact since

29.4.2008.77329.4.2008.773 (10.108) dθ ∧ eikθαk + eikθβk = d(
1

ik
eikθαk).

So the only cohomology which can arise comes from the terms α0 and β0 since
separately dα0 = 0 and dβ0 = 0.

28.4.2008.719 Problem 10.3. Show that β0 arising from the Chern form in (
28.4.2008.716
10.105) is coho-

mologous to a constant (i.e. is exact except in form degree 0. What is the constant?
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So, we most want to compute α0. By definition α is the contraction of Tr((a−1da)2k+1)
with ∂θ. Watching out for normalizations it follows from antisymmetry and (

28.4.2008.715
10.104)

that

28.4.2008.72028.4.2008.720 (10.109) α = −iTr
(
Π(eiθ(e−iθ − 1)Π(dXΠ) + (e−iθ − 1)(Id−Π)(dXΠ))2k

)
where you should note that for a projection Π(dXΠ) = Π(dXΠ)(Id−Π) (meaning
that the differential is completely off-diagonal with respect to the projection at that
point). So in fact

28.4.2008.72128.4.2008.721 (10.110) α = −i(eikθ(e−iθ − 1)2k Tr
(
ΠdXΠ(Id−Π)dXΠ)k

)
.

Thus

28.4.2008.72228.4.2008.722 (10.111) α0 = − i

2π

∫ 2π

0

eikθ(e−iθ − 1)2kdθTr(ωk), ω = Π(dXΠ)(Id−Π)(dXΠ).

The constant here can be readily evaluated and is (perhaps)

28.4.2008.72328.4.2008.723 (10.112) − i

2π

∫ 2π

0

eikθ(e−iθ − 1)2kdθ = −i (2k)!

k!
.

Now, ω is in fact the curvature of a connection on the bundle E = Ran(Π).
Namely, d can be applied to sections of Ran(Π) but will not give a new section
of the bundle (with values in 1-forms as well), however ∇Πs = Πds = ΠdΠs is a
connection since it distributes over functions

∇Π(fs) = dfs+ f∇Πs.

The curvature of this connection is easily computed, especially if one uses extension
of the distribution law to all forms

∇(sα) = dαs+ (−1)kα∇s, α ∈ C∞(X; Λk),

since then

28.4.2008.72628.4.2008.726 (10.113) (∇Π)2s = Πd(Πds) = Π(dΠ)(Id−Π)(dΠ) = ω.

Thus for this one connection we see that α0 is a multiple of Tr(ωk). The basic
observation of Chern-Weil theory is

28.4.2008.727 Lemma 10.10. For any connection ∇ on a complex vector bundle E the forms

tr(ωk) ∈ C∞(X; Λ2k), ω = ∇2,

are closed and represent a fixed deRham cohomology class.

Proof. The crucial point is that (
28.4.2008.728
10.10) is always a closed form. The connec-

tion ∇ acts on sections of E but also defines a connection on the bundle hom(E)
of homomorphisms. Namely if b ∈ C∞(X; hom(E)) then

(∇b)s = ∇(bs)− b∇s = [∇, b]s
is a connection. As before it extends to homomorphisms with values in forms and
in this sense Bianchi’s identity holds

28.4.2008.73028.4.2008.730 (10.114) ∇ω = 0 =⇒ ∇ωk = 0.

Indeed, (
28.4.2008.730
10.114) just comes from the associativity of operators, that ∇(∇)2 =

(∇)2∇.
Locally on a coordinate patch in X over which the bundle E is trivial, i.e. can be

identified with CN , any connection takes the form d+γ where γ is a homomorphism
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of CN with values in 1-forms on X in the open set. Then the connection acting on
homomorphisms becomes ∇b = db+ [γ, b] and so

28.4.2008.73128.4.2008.731 (10.115) d tr(ωk) = tr(dωk) = tr(dωk + [γ, ωk]) = tr(∇ωk) = 0

using the trace identity.
Thus, tr(ωk) is a closed form for the curvature of any connection on E. To see

that its cohomology class does not depend on which connection is used, observe that
any two connections ∇i i = 0, 1 are connected by a smooth path of connections,
∇t = (1 − t)∇0 + t∇1, t ∈ [0, 1]. This 1-parameter family of connections is also a
connection on E pulled back from X to X × [0, 1] in the sense that it defines

28.4.2008.73228.4.2008.732 (10.116) ∇s(t, x) = ∇ts(t, x) + dt∂ts(t, x).

The Chern form tr(∇2) is therefore closed as a form on X × [0, 1] from which it
follows that tr(∇2

0) and tr(∇2
1), which are its pull-backs to t = 0 and t = 1, are

cohomologous by the analogue of (
28.4.2008.717
10.106). �

This means that the cohomology classes

28.4.2008.73328.4.2008.733 (10.117) Ch(E,∇) = tr(ωk), Ch(E) = [Ch(E,∇)] ∈ H2k(X)

are well-defined.

28.4.2008.734 Lemma 10.11. The Chern forms in (
28.4.2008.733
10.117) define maps

28.4.2008.73528.4.2008.735 (10.118) K(X) −→ H2k(X), k ∈ N0.

Proof. For the formal difference (E+, E−) of two bundles the Chern classes
are just the differences. To see that this gives a well-defined map (

28.4.2008.735
10.118) we need

to check that it respect equivalence classes. Invariance under bundle isomorphisms
is obvious enough ****. To see invariance under stability, that (E+ ⊕ F,E− ⊕ F )
defines the same class as (E+, E−) it suffices to consider the Chern classes of sums
of bundles. In fact the Chern classes are additive, since we can always take as
connection on a sum the direct sum of connections on the summands. Then the
curvature is the direct sum of the curvatures and it follows that

28.4.2008.73628.4.2008.736 (10.119) Ch(E ⊕ F,∇E ⊕∇F ) = Ch(E,∇E) + Ch(F,∇F )

at the level of forms, and hence certainly at the level of cohomolgy. �

It is also straightforward to see what happens to these Chern forms for the
tensor product of two bundles. Again on E ⊗ F on can take as connection the
tensor product of connections on the bundles. Then

28.4.2008.73728.4.2008.737 (10.120) (∇E ⊗∇F )2 = (∇E)2 ⊗ IdE + IdE ⊗(∇F )2

and it follows that the Chern forms decompose (for this connection)

28.4.2008.73828.4.2008.738 (10.121) trE⊗F (ωE⊗F )k =

k∑
j=0

(
k

j

)
trE((ωE)j) ∧ tr((ωF )k−j).

From the properties of the exponential and binomial coefficients it follows that
the Chern character, formally a sum of all the Chern forms,

28.4.2008.73928.4.2008.739 (10.122) Ch(E) = tr(exp(ω)) =

∞∑
k=0

1

k!
tr(ωk) ∈ C∞(X; Λ∗)
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defines a map which is both additive and multiplicative
28.4.2008.74028.4.2008.740 (10.123)

Ch : K0(X) −→ Heven(X), Ch(e+ f) = Ch(e) + Ch(f), Ch(ef) = Ch(e) ∧ Ch(f)

in cohomolgy (where you might prefer to think of wedge as the cup product). The
basic normalization ensures that the constant terms is the (effective) rank of the
bundle. A second normalization is possible, multiplying the curvature by a constant.
This is frequently chosen so that the term of degree 2 is integral, i.e. is in the image
of the integral cohomology.

Now, having normalized the even Chern character, consider the second map
involved in Bott periodicity. Namely the injection

28.4.2008.74128.4.2008.741 (10.124) K1(X) −→ K0(S×X).

Here we use an element a ∈ C∞(X; GL(N,C)) to define a vector bundle over S×X
by ‘clutching’. The bundle can be defined in terms of its global section, so set, for
ε > 0 small,

28.4.2008.74228.4.2008.742 (10.125)
C∞(S×X;Ea) =

{
s ∈ C∞([0, 2π + ε);CN ); s(t+ 2π, x) = a(x)s(t, x), t ∈ [0, ε)

}
.

28.4.2008.743 Problem 10.4. Go through the proof that there is a smooth vector bundle
over S×X such that C∞(S×X;Ea), as defined in (

28.4.2008.742
10.125), is the space of global

sections. Hint:- Define the fibre as a quotient of the putative space of sections.

We wish to consider the Chern character of the bundle Ea and related it to a
sum of forms on X. To do so we need to choose a connection on Ea; this can be
thought of as a differential operator on sections. Namely if ρ ∈ C∞(R) has ρ(t) = 1
in t < 1 and ρ(t) = 0 in t > π then

28.4.2008.74428.4.2008.744 (10.126) ∇s(t) = dXs+ dt∂ts+ ρ(t)a−1das

is a well-defined operator

28.4.2008.74528.4.2008.745 (10.127) ∇ : C∞(S×X;Ea) −→ C∞(S×X;Ea ⊗ Λ1).

Indeed, if ε > 0 is small enough, ρ(t) = 1 in t < ε and

28.4.2008.74628.4.2008.746 (10.128) ∇s(2π + t, x) = ds(2π + t, x) = das(t, x) = a(∇s(t, x)).

It is convenient to choose ρ so that ρ′ ≤ 0.

12.5.2008.806 Lemma 10.12. The bundle Ea is isomorphic to the range of Πa in Lemma
22.11.2007.336
10.5.

Proof. We proceed to show that Ea can be embedded as a subbundle of C2N

as a bundle over S×X. Consider Ea⊕Ea−1 . This is defined by the same construction
as Ea with a replaced by

12.5.2008.80812.5.2008.808 (10.129)

(
a 0
0 a−1

)
acting on C2N . It was shown above that this matrix is trivial as an odd K-class,
i.e. can be connected to the identity. This can be done explicitly, for instance the
family B(r)=

12.5.2008.80912.5.2008.809 (10.130)

(
a cos(θ(r)) IdN sin(θ(r))
− IdN sin(θ(r)) a−1 cos(θ(r))

)
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connects it to

12.5.2008.81012.5.2008.810 (10.131)

(
0 IdN

− IdN 0

)
if θ : [0, 1] −→ [0, 2π] is weakly increasing and constant at 0 and 2π near the end
points. Reversing the curve with a replaced by the identity connects (

12.5.2008.808
10.129) to

the identity.
Now, to embed Ea as a subbundle of C2N it suffices to consider the bundle

EB(t) over S×X × I where B(r), for r ∈ I, is the curve connecting (
12.5.2008.808
10.129) to the

identity. Thus EB(r) is Ea ⊕Ea−1 at one end of the interval and C2N at the other.
Choosing a connection on EB(r) and integrating from Ea and integrating from one

side to the other embeds Ea as a subbundle of C2N .
It remains to show that this subbundle is isomorphic to the range if Πa as

defined in before Lemma
22.11.2007.336
10.5; to do so consider in more detail the connection on

EB(r). From (
28.4.2008.744
10.126) the ∂r component of the connection is

12.5.2008.81112.5.2008.811 (10.132)

∇∂rs = ∂rs+ ρ(t)B(r)−1(∂rB(r))s =

{
∂rs+ ρ(t)Θ′(r)A1(x)s r ∈ [0, π2 ]

∂rs+ ρ(t)Θ′(−r)A2s r ∈ [π2 , π]

A1(x) =

(
0 a−1(x)

−a(x) 0

)
, A2 =

(
0 Id(x)
− Id 0

)
.

The induced connection on homomorphisms acts by conjugation, so the projection
in C2N which gives the embedding is the solution of

12.5.2008.81212.5.2008.812 (10.133) ∂rΠ(r) + ρ(t)Θ′(r)[A(x),Π(r)] = 0, Π(0) =

(
Id 0
0 0

)
.

We will do this in two stages, corresponding to the two subintervals for B(r).
It is natural to look for Π(r) = Q(r)Π(0)Q(r)−1 with Q invertible. Then the
differential condition (

12.5.2008.812
10.133) can be replaced by

12.5.2008.81312.5.2008.813 (10.134)
∂rQ(r) + ρ(t)Θ′(r)A1(x)Q(r) = 0 =⇒ ∂r(Q(r)−1) + ρ(t)Θ′(r)Q(r)−1A1(x) = 0,

where Q(0) = Id . This is satisfied by

12.5.2008.81412.5.2008.814 (10.135) Q(r) = S(ρ(t)Θ(r),−a−1)

where S(θ, a) is defined in (
22.11.2007.338
10.38).

Thus after the first interval of integration the projection is

12.5.2008.81512.5.2008.815 (10.136) S(2πρ(t),−a−1)Π(0)S(−2πρ(t),−a−1).

In the second interval of the homotopy, a is replaced by the identity so Ea is
embedded in C2N through the projection

12.5.2008.81612.5.2008.816 (10.137) S(−2πρ(t),− Id)S(2πρ(t),−a−1)Π(0)S(−2πρ(t),−a−1)S(2πρ(t),− Id).

This is the same as Πa(t, x) in (
22.11.2007.339
10.39) except that all the signs are wrong at

once!**** Better try to get the orientations right! �

Now the curvature of this connection over S×X is

28.4.2008.74728.4.2008.747 (10.138) ∇2 = (d+ ρ(t)a−1da)2 = ρ′(t)dta−1da+ (ρ2(t)− ρ(t))(a−1da)2.
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The Chern character form of Ea with respect to this connection is

28.4.2008.74828.4.2008.748 (10.139) tr
∑
k

1

k!
(ρ′(t)dta−1da+ (ρ2(t)− ρ(t))(a−1da)2)k.

From this even-degree sum of closed forms on S×X we can extract an odd-degree
sum of forms on X by integration over S. Changing variable from t to ρ(t) gives

28.4.2008.74928.4.2008.749 (10.140)

Chodd(a) =
∑
k

1

(k − 1)!

∫ 1

0

a−1da((ρ2(t)− ρ(t))(a−1da)2))k−1

=

∫ 1

0

tr(a−1da exp(w(s)))ds, w(s) = s(s− 1)(a−1da)2.

28.4.2008.750 Proposition 10.22. The odd Chern character, defined by (
28.4.2008.749
10.140), gives an

additive map

28.4.2008.75128.4.2008.751 (10.141) K1(X) −→ Hodd(X)

which has the multiplicative property

28.4.2008.75228.4.2008.752 (10.142) Chodd(a⊗ IdE) = Chodd(a) ∧ Ch(E)

for any vector bundle E over X.

Proof. This follows directly from the discussion above. The multiplicativity
in (

28.4.2008.752
10.142) is a consequence of the fact that if a ⊗ IdE is used to define a bundle

over S×X following the clutching construction above then the resulting bundle is
Ea ⊗ E. Then (

28.4.2008.752
10.142) is a consequence of the multiplicativity of the even Chern

character under tensor products. �

In fact it is rather useful to generalize the formula in (
28.4.2008.749
10.140) by allowing a

to be an isomorphism of a general bundle F over X, rather than a trivial bundle.
Then a defines a class by stabilization, meaning that if F is complemented to a
trivial bundle then a is extended by the identity on the complement. Proceeding
directly the space of global sections of the new bundle over S×X is defined by the
obvious replacement of (

28.4.2008.742
10.125):

28.4.2008.75428.4.2008.754 (10.143)
C∞(S×X;Ea) = {s ∈ C∞([0, 2π + ε);F ); s(t+ 2π, x) = a(x)s(t, x), t ∈ [0, ε)} .

The trivial connection d in (
28.4.2008.744
10.126) can then be replaced by a connection ∇F on

F and used in the same way to define a connection

28.4.2008.75328.4.2008.753 (10.144) ∇s = (∇F + ρ(t)a−1∇a)s.

The formula for the odd Chern character in this more general setting is due (I
believe) to Fedosov (beware of possible sign errors below, to say the least)

28.4.2008.75528.4.2008.755 (10.145)

Chodd(a) =

∫ 1

0

tr(a−1∇a exp(w(s)))ds,

w(s) = (1− s)ωF + sa−1ωFa+ s(s− 1)(a−1da)2.

28.4.2008.756 Problem 10.5. Go through the derivation of (
28.4.2008.755
10.145) and correct it as neces-

sary!

28.4.2008.757 Problem 10.6. Formula (
28.4.2008.749
10.140) normalizes the constants in (

8.11.2007.306
10.96); what

are they?
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Going back to the discussion at the beginning of this section we can now deduce
the ‘Toeplitz index in cohomology’.

28.4.2008.758 Proposition 10.23. Under the isotropic/Toeplitz index map (
22.11.2007.344
10.47),

28.4.2008.75928.4.2008.759 (10.146) Ch(Ind(a)) = − 1

2πi

∫
S

Chodd(a).

Of course this is consistent with (
28.4.2008.752
10.142) since we know that if E is a bundle over X

then Ind(a⊗ IdE) = Ind(a)⊗E, where this should really be thought of as products
in K-theory.

Proof. Check the constants, I haven’t. *** �

I also should discuss here the extension to non-compact manifolds. This is quite
straightforward.

10.13. Todd class
Toddclass

Now, we need to go on and see the effect on the Chern character, i.e. in
cohomology, of the Thom isomorphism; whoops it isn’t there yet ***. Thus, if E
is a complex (or symplectic) vector bundle over X then there is an isomorphism

28.4.2008.76028.4.2008.760 (10.147) Thom : K0
c(E) −→ K0(X)

which is given by the isotropic index map.

28.4.2008.761 Proposition 10.24. If E is a complex vector bundle over X then there is a
cohomology class Td(E) ∈ Heven(E) such that under the Thom isomorphism

28.4.2008.76228.4.2008.762 (10.148) Ch(Thom(f)) =

∫
E/X

Ch(f) ∧ Td(E).

Note that this Todd class Td(E) represents a ‘twisting’ in the behaviour of K-theory
as opposed to cohomology under push-forward.

Proof. We are supposed to know by now that the inverse of (
28.4.2008.760
10.147) is given

by ‘twisting with the Bott element’. That is, we know there is an element βE ∈
K0

c(E), the Bott element, represented by a family of harmonic oscillators, which
has index class, Thom(βE), a trivial 1-dimensional line bundle.

Consider first the case that E is a trivial line bundle, hence a trivial bundle
with fibre R2 as a real space. Thus we know about Bott periodicity and in fact we
get a commutative diagramme

29.4.2008.76429.4.2008.764 (10.149) K0
c(X × R2)

' //

Ch

��

K1
c(X × R)

' //

Chodd

��

K0
c(X)

Ch

��
Heven

c (X × R2)
' // Hodd

c (X × R)
' // Heven

c (X).

The top row we know to be isomorphisms and the two bottom maps are also
isomorphisms, given by integration. We have defined the odd Chern character so
that the left square commutes. We also know that the Bott element, the symbol
e−iθ on the circle, induces an element of K1

c(R×X) which is mapped to the trivial
line by the index map, the second map on the top, and has Chern character equal
to 1. The commutativity of the right square then follows from the multiplicativity



10.13. TODD CLASS 291

of the Chern character in (
28.4.2008.752
10.142). This proves (

28.4.2008.762
10.148) in the case that E is a

trivial line bundle.
Since we have not assumed that X is compact here the case of a general rank

n trivial complex or rank 2n real bundle follows by iteration of (
29.4.2008.764
10.149); again the

Todd class is 1.
Now, as with the Thom isomorphism for K-theory, we pass to the general

case by complementing a complex bundle E to a trivial bundle E ⊂ CN with
complementary bundle F. Then we know we have isomorphisms in K-theory and
cohomology leading to a commutative diagramme

29.4.2008.76529.4.2008.765 (10.150) Heven
c (E)

∫
E/X

&&

K0
c(E)

⊗βF

��

Ind &&

Ch′

hh

K0
c(X)

Ch // Heven
c (X)

K0
c(X × CN )

Ind

88

Ch

vv
Heven

c (X × CN )

∫
F

OO

∫

88

Here all three inner maps and all three outer maps are isomorphisms. The inner
triangle commutes and the outer triangle also commutes, being fibre integration.
The quadrangle towards the lower right commutes, this being the case of a trivial
bundle just discussed. Thus the diagramme without the dotted arrow is commuta-
tive. Moreover there is only one way to get the left quadrangle to commute, namely
by defining

29.4.2008.76629.4.2008.766 (10.151) Ch′(e) =

∫
F

Ch(e⊗ βF )

where the integral is over the fibres of F. Then the whole diagramme commutes and
gives us the formula in cohomology that we want. On the other hand, Ch(e⊗βF ) =
π∗Ch(e)⊗Ch(βF ) where π is the projection from CN ×X to E along the fibres of
F. Since

29.4.2008.76729.4.2008.767 (10.152)

∫
f

π∗a ∧ b = a ∧
∫
F

b

for any form b on CN × X with compact support relative to the fibres of F, the
integral being fibre integration, we conclude that

29.4.2008.76829.4.2008.768 (10.153) Ch′(e) = Ch(e) ∧ Td(E), Td(E) =

∫
F

Ch(βF )

with the Todd class being, by definition, a form on the total space of E, but not
with compact support. �
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10.14. Stabilization

In which operators with values in Ψ−∞iso are discussed.

10.15. Delooping sequence

The standard connection between even and odd classifying groups.

10.16. Looping sequence

The quantized connection between classifying groups.

10.17. C∗ algebras

10.18. K-theory of an algeba

10.19. The norm closure of Ψ0(X)

10.20. Problems

6.5.2008.786 Problem 10.7. There is a natural adjoint map on Ψ−∞iso (Rn) so we could also
look at the unitary subgroup

6.5.2008.7876.5.2008.787 (10.154) U−∞iso (Rn) =
{
A ∈ G−∞iso (Rn); (Id +A)−1 = Id +A∗

}
.

Show that the natural inclusion induces an homotopy equivalence, so there is a
natural identification

6.5.2008.7886.5.2008.788 (10.155) K1
c(X) ' C∞c (X;U−∞iso )/ ∼

where the equivalence relation is again homotopy.

22.11.2007.328 Problem 10.8. Remind yourself of the proof that G−∞iso (Rn) ⊂ Ψ−∞iso (Rn) is
open. Since G−∞iso (Rn) is a group, it suffices to show that a neighbourhood of
0 ∈ Ψ−∞iso (Rn) is a neighbourhood of the identity. Show that the set ‖A‖B(L2) <

1
2 ,

given by the operator norm, fixes an open neighbourhood of 0 ∈ Ψ−∞iso (Rn) (this is
the L2 continuity estimate). The inverse of Id +A for A in this set is given by the
Neumann series and the identity (which follows from the Neumann series)

22.11.2007.32922.11.2007.329 (10.156) (Id +A)−1 = Id +B = Id−A+A2 −ABA
in which a prioiri B ∈ B(L2) shows that B ∈ Ψ−∞iso (Rn) by the ‘corner’ property
of smoothing operators (meaning ABA′ ∈ Ψ−∞iso (Rn) if A,A′ ∈ Ψ−∞iso (Rn) and
B ∈ B(L2).

22.11.2007.343 Problem 10.9. Additivity of the map (
9.11.2007.323
10.46).

22.11.2007.342 Problem 10.10. Details that (
9.11.2007.323
10.46) is an isomorphism.

9.11.2007.319 Problem 10.11. Check that (
9.11.2007.318
10.44) is well-defined, meaning that if (V1,W2)

is replaced by an equivalent pair then the result is the same. Similarly check that
the operation is commutative and that it make K(X) into a group.

23.11.2007.380 Problem 10.12. Check that you do know how to prove (
23.11.2007.379
10.28). One way

is to use induction over N, since it is certainly true for N = 1, GL(1,C) = C∗.
Proceeding by induction, note that an element a ∈ GL(N,C) is fixed by its effect
on the standard basis, ei. Choose N − 1 elements aej which form a basis together
with e1. The inductive hypothesis allows these elements to be deformed, keeping
their e1 components fixed, to ek, k > 1. Now it is easy to see how to deform the
resulting basis back to the standard one.
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23.11.2007.382 Problem 10.13. Prove (
23.11.2007.381
10.31). Hint:- The result is very standard for N = 1.

So proceed by induction over N. Given a smooth curve in GL(N,C), by truncating
its Fourier series at high frequencies one gets, by the openness of GL(N,C), a
homotopic curve which is real-analytic, denote it a(θ). Now there can only be a
finite number of points at which e1 · a(θ)e1 = 0. Moreover, by deforming into
the complex near these points they can be avoided, since the zeros of an analytic
function are isolated. Thus after homotopy we can assume that g(θ) = e1 ·a(θ)e)1 6=
0. Composing with a loop in which e1 is roatated in the complex by 1/g(θ), and
e2 in the opposite direction, one reduces to the case that e1 · a(θ)e)1 = 0 and then
easily to the case a(θ)e1 = e1, then induction takes over (with the determinant
condition still holding). Thus it is enough to do the two-dimensional case, which is
pretty easy, namely e1 rotated in one direction and e2 by the inverse factor.





CHAPTER 11

Hochschild homology

11.1. Formal Hochschild homology

The Hochschild homology is defined, formally, for any associative algebra. Thus
if A is the algebra then the space of formal k-chains, for k ∈ N0 is the (k + 1)-fold
tensor product

(11.1) A⊗(k+1) = A⊗A⊗ · · · ⊗ A.

The ‘formal’ here refers to the fact that for the ‘large’ topological algebras we shall
consider it is wise to replace this tensor product by an appropriate completion,
usually the ‘projective’ tensor product. At the formal level the differential defining
the cohomolgy is given in terms of the product, ?, by

HHdifferentialHHdifferential (11.2)
b(a0 ⊗ a1 ⊗ · · · ⊗ ak) = b′(a0 ⊗ a1 ⊗ · · · ⊗ ak) + (−1)k(a0 ? ak)⊗ a1 ⊗ · · · ⊗ ak−1,

b′(a0 ⊗ a1 ⊗ · · · ⊗ ak) =

k−1∑
j=0

(−1)ja0 ⊗ · · · ⊗ aj−1 ⊗ aj+1 ? aj ⊗ aj+2 ⊗ · · · ⊗ ak.

Lemma 11.1. Both the partial map, b′, and the full map, b, are differentials,
that is

(11.3) (b′)2 = 0 and b2 = 0.

Proof. This is just a direct computation. From (
HHdifferential
11.2) it follows that

(11.4) (b′)2(a0 ⊗ a1 ⊗ a2 ⊗ · · · ⊗ am)

=

m−1∑
j=2

j−2∑
p=0

(−1)j(−1)p(· · · ⊗ ap+1 ? ap ⊗ · · · ⊗ aj−1 ⊗ aj+1 ? aj ⊗ aj+2 ⊗ · · · ⊗ am)

−
m−1∑
j=1

(· · · ⊗ aj+1 ? aj ? aj−1 ⊗ · · · )−
m−2∑
j=0

(· · · ⊗ aj+21 ? aj+1 ? aj ?⊗ · · · )

+

m−3∑
j=0

m−1∑
p=j+2

(−1)j(−1)p−1(a0⊗· · ·⊗aj−1⊗aj+1?aj⊗aj+2⊗· · ·⊗ap+1?ap⊗· · · ) = 0.

295
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Similarly, direct computation shows that

(b− b′)b′(a0 ⊗ · · · ⊗ am) = (−1)m−1(a1 ? a0 ? am ⊗ · · · am−1)

+

m−2∑
i=1

(−1)i+m−1(a0 ? am ⊗ · · · ⊗ ai+1 ? ai ⊗ · · · ) + (a0 ? am ? am−1 ⊗ · · · ),

b′(b− b′)(a0 ⊗ · · · ⊗ am) = (−1)m(a1 ? a0 ? am ⊗ · · · am−1)

+

m−2∑
i=1

(−1)i+m(a0 ? am ⊗ · · · ⊗ ai+1 ? ai ⊗ · · · ) and

(b− b′)2(a0 ⊗ · · · ⊗ am) = −(a0 ? am ? am−1 ⊗ · · · )
so

(11.5) (b− b′)b′ + b′(b− b′) = −(b− b′)2.

�

The difference between these two differentials is fundamental, roughly speaking
b′ is ‘trivial’.

24.89 Lemma 11.2. For any algebra with identity the differential b′ is acyclic, since
it satifies

b′s+ sb′ = Id where(11.6)

s(a0 ⊗ · · · ⊗ am) = Id⊗a0 ⊗ · · · ⊗ am.(11.7)

Proof. This follows from the observation that

(11.8) b′(Id⊗a0 ⊗ · · · ⊗ am) = a0 ⊗ · · · ⊗ am +

m∑
i=1

(−1)i(Id⊗ · · · ai ? ai−2 ⊗ · · · ).

�

Definition 11.1. An associative algebra is said to be H-unital if its b′ complex
is acyclic.

Thus the preceeding lemma just says that every unital algebra is H-unital.

11.2. Hochschild homology of polynomial algebras

Consider the algebra C[x] of polynomials in n variables1, x ∈ Rn (or x ∈ Cn it
makes little difference). This is not a finite dimensional algebra but it is filtered by
the finite dimensional subspaces, Pm[x], of polynomials of degree at most m;

C[x] =

∞⋃
m=0

Pm[x], Pm[x] ⊂ Pm+1[x].

Furthermore, the Hochschild differential does not increase the total degree so it is
enough to consider the formal Hochschild homology.

The chain spaces, given by the tensor product, just consist of polynomials in
n(k + 1) variables

(C[x])
⊗̂(k+1)

= C[x0, x1, . . . , xk], xj ∈ Rn.

1The method used here to compute the homology of a polynomial algebra is due to Sergiu
Moroianu; thanks Sergiu.
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Furthermore composition acts on the tensor product by

p(x0)q(x1) = p⊗ q 7−→ p(x0)q(x0)

which is just restriction to x0 = x1. Thus the Hochschild differential can be written

b : C[x0, . . . , xk] −→ C[x0, . . . , xk−1],

(bq)(x0, x1, . . . , xk−1) =

k−1∑
j=0

(−1)jp(x0, . . . , xj−1, xj , xj , xj+1, . . . , xk−1)

+ (−1)kq(x0, x1, . . . , xk−1, x0).

One of the fundamental results on Hochschild homology is

Theorem 11.1. The Hochschild homology of the polynomail algebra in n vari-
ables is

24.9124.91 (11.9) HHk(C[x]) = C[x]⊗ Λk(Cn),

with the identification given by the map from the chain spaces

C[x0, . . . , xk] 3 q −→
∑

1≤ji≤n

∂

∂xj11
. . .

∂

∂xjkk
p
∣∣
x=x0=x1=···=xk

dxj11 ∧ · · · ∧ dx
jk
k .

Note that the appearance of the original algebra C[x] on the left in (
24.91
11.9) is

not surprising, since the differential commutes with multilplication by polynomails
in the first variable, x0

b(r(x0)q(x0, . . . , xk)) = r(x0)(bq(x0, . . . , xk)).

Thus the Hochschild homology is certainly a module over C[x].

Proof. Consider first the cases of small k. If k = 0 then b is identically 0. If
k = 1 then again

(bq)(x0) = q(x0, x0)− q(x0, x0) = 0

vanishes identically. Thus the homology in dimension 0 is indeed C[x].
Suppose that k > 1 and consider the subspace of C[x0, x1, . . . , xk] consisting of

the elements which are independent of x1. Then the first two terms in the definition
of b cancel and

(bq)(x0, x1, . . . , xk−1) =

k−1∑
j=2

(−1)jp(x0, . . . , xj−1, xj , xj , xj+1, . . . , xk−1)

+ (−1)kq(x0, x1, . . . , xk−1, x0), ∂x1
q ≡ 0.

It follows that bq is also independent of x1. Thus there is a well-defined subcomplex
on polynomails independend of x1 given by

C[x0, x2, . . . , xk] 3 q 7−→ (b̃q)(x0, x2, . . . , xk−1)

=

k−1∑
j=2

(−1)jp(x0, x2, x2, x3 . . . , xk−1) +

k−1∑
j=3

(−1)j

p(x0, . . . , xj−1, xj , xj , xj+1, . . . , xk−1) + (−1)kq(x0, x2, . . . , xk−1, x0)

The reordering of variables (x0, x2, x3, . . . , xk) −→ (x2, x3, . . . , xk, x0) for each k,

transforms b̃ to the reduced Hochschild differential b′ acting in k variables. Thus b̃
is acyclic.
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Similarly consider the subspace of C[x0, x1, . . . , xk] consisting of the polynomi-
als which vanish at x1 = x0. Then the first term in the definition of b vanishes and
the action of the differential becomes

24.9224.92 (11.10) (bq)(x0, x1, . . . , xk−1) = p(x0, x1, x1, x2, . . . , xk−1)+

k−1∑
j=2

(−1)jp(x0, . . . , xj−1, xj , xj , xj+1, . . . , xk−1)

+ (−1)kq(x0, x1, . . . , xk−1, x0), if b(x0, x0, x2, . . . ) ≡ 0.

It follows that bq also vanishes at x1 = x0.
By Taylor’s theorem any polynomial can be written uniquely as a sum

q(x0, x1, x2, . . . , xk) = q′1(x0, x1, x2, . . . , xk) + q′′(x0, x2, . . . , xk)

of a polynomial which vanishes at x1 = x0 and a polynomial which is independent
of x1. From the discussion above, this splits the complex into a sum of two sub-
complexes, the second one of which is acyclic. Thus the Hochschild homology is
the same as the homology of b, which is then given by (

24.92
11.10), acting on the spaces

24.9324.93 (11.11) {q ∈ C[x0, x1, . . . , xk]; q(x0, x1, . . . ) = 0} .
This argument can be extended iteratively. Thus, if k > 2 then b maps the

subspace of (
24.93
11.11) of functions independent of x2 to functions independent of x2

and on these subspaces acts as b′ in k−2 variables; it is therefore acyclic. Similar it
acts on the complementary spaces given by the functions which vanish on x2 = x1.
Repeating this argument shows that the Hochschild homology is the same as the
homology of b acting on the smaller subspaces

24.9424.94 (11.12)
{q ∈ C[x0, x1, . . . , xk]; q(. . . , xj−1, xj , . . . ) = 0, j = 1, . . . , k} ,

(bq)(x0, x1, . . . , xk−1) = (−1)kq(x0, x1, . . . , xk−1, x0).

Note that one cannot proceed further directly, in the sense that one cannot reduce
to the subspace of functions vanishing on xk = x0 as well, since this subspace is
not linearly independent of the previous ones2

xk − x0 =

k−1∑
j=0

(xj1 − xj).

It is precisely this ‘non-transversality’ of the remaining restriction map in (
24.94
11.12)

which remains to be analysed.
Now, let us we make the following change of variable in each of these reduced

chain spaces setting

y0 = x0, y1 = xj − xj−1, for j = 1, . . . , k.

Then the differential can be written in terms of the pull-back operation

EP : Rnk ↪→ Rn(k+1), EP (y0, y1, . . . , yk−1) = (y0, y1, . . . , yk−1,−
k−1∑
j=1

yj),

bq = (−1)kE∗P q,

2Hence Taylor’s theorem cannot be applied.
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The variable x0 = y0 is a pure parameter, so can be dropped from the notation (and
restored at the end as the factor C[x] in (

24.91
11.9)). Also, as already noted, the degree

of a polynomial (in all variables) does not increase under any of these pull-back
operations, in fact they all preserve the total degree of homogeneity so it suffices to
consider the differential b acting on the spaces of homogeneous polynomials which
vanish at the origin in each factor

Qmk = {q ∈ Cm[y1, . . . , yk]; q(sy) = smq(y), q(y1, . . . , yj−1, 0, yj+1, . . . , yk) = 0}
b : Qmk −→ Qmk−1, bq = (−1)∗E∗P q.

To analyse this non-transversality further, let Ji ⊂ C[y1, . . . , yk] be the ideal
generated by the n monomials yli, l = 1, . . . , n. Thus, by Taylor’s theorem,

Ji = {q ∈ C[y1, . . . , yk]; q(y1, y2, . . . , yj−1, 0, yj , yk) = 0.

Similary set

JP = {q ∈ C[y1, . . . , yk]; q(y1, . . . ,−
k−1∑
j=1

yj) = 0)

For any two ideals I and J, let I · J be the span of the products. Thus for these
particular ideals an element of the product is a sum of terms each of which has a
factor vanishing on the corresponding linear subspace. For each k there are k + 1
ideals and, by Taylor’s theorem, the intersection of any k of them is equal to the
span of the product of those k ideals. For the k coordinate ideals this is Taylor’s
theorem as used in the reduction above. The general case of any k of the ideals
can be reduced to this case by linear change of coordinates. The question then, is
structure of the intersection of all k+1 ideals. The proof of the theorem is therefore
completed by the following result. �

Lemma 11.3. The intersection Qmk ∩ JP = Qm · JP for every m 6= k and

24.9524.95 (11.13) Qkk ∩ JP = Λk(Cn).

Proof. When m < k the ideal Qmk vanishes, so the result is trivial.
Consider the case in (

24.95
11.13), when m = k. A homogeneous polynomial of

degree k in k variables (each in Rn) which vanishes at the origin in each variable is
necessarily linear in each variable, i.e. is just a k-multilinear function. Given such
a multilinear function q(y1, . . . , yk) the condition that bq = 0 is just that

24.9624.96 (11.14) q(y1, . . . , yk−1,−y1 − y2 − · · · − yk−1) ≡ 0.

Using the linearity in the last variable the left side can be expanded as a sum of
k − 1 functions each quadratic in one variables yj and linear in the rest. Thus the
vanishing of the sum implies the vanishing of each, so

q(y1, . . . , yk−1, yj) ≡ 0 ∀ j = 1, . . . , k − 1.

This is the statement that the multlinear function q is antisymmetric between the
jth and kth variables for each j < k. Since these exchange maps generate the
permutation group, q is necessarily totally antisymmetric. This proves the isomor-
phism (

24.95
11.13) since Λk(Cn) is the space of complex-valued totally antisymmetric

k-linear forms.3

Thus it remains to consider the case m ≥ k+1. Consider a general element q ∈
Qmk ∩JP . To show that it is in Qmk ·JP we manipulate it, working modulo Qmk ∩JP ,

3Really on the dual but that does not matter at this stage.
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and use induction over k. Decompose q as a sum of terms ql, each homogeneous in
the first variable, y1, of degree l. Since q vanishes at y1 = 0 the first term is q1,
linear in y1. The condition bq = 0, i.e. q ∈ JP , is again just (

24.96
11.14). Expanding in

the last variable shows that the only term in bq which is linear in y1 is

q1(y1, . . . , yk−1,−y2 − · · · − yk−1).

Thus the coefficient of y1,i, the ith component of y1 in q1, is an element of Qm−1
k−1

which is in the ideal JP (Rk−1), i.e. for k − 1 variables. This ideal is generated by
the components of y2 + · · ·+ yk. So we can proceed by induction and suppose that
the result is true for less than k variables for all degrees of homogeneity. Writing
y2 + · · · + yk = (y1 + y2 + · · · + yk) − y1 It follows that, modulo Qmk · JP , q1 can
be replaced by a term of one higher homogeneity in y1. Thus we can assume that
qi = 0 for i < 2. The same argument now applies to q2; expanded as a polynomial
in y1 the coefficients must be elements of Qm−2

k−1 ∩ JP . Thus, unless m− 2 = k − 1,

i.e. m = k + 1, they are, by the inductive hypothesis, in Qm−2
k−1 · JP (Rk−1) and

hence, modulo Qmk · JP , q2 can be absorbed in q3. This argument can be continued
to arrange that qi ≡ 0 for i < m − k + 1. In fact qi ≡ 0 for i > m − k + 1 by the
assumption that q ∈ Qmk .

Thus we are reduced to the assumption that q = qm−k+1 ∈ Qmk ∩JP is homoge-
neous of degree m−k+1 in the first variable. It follows that it is multilinear in the
last k−1 variables. The vanishing of bq shows that it is indeed totally antisymmet-
ric in these last k− 1 variables. Now for each non-zero monomial consider the map
J : {1, 2, . . . , n} −→ N0 such that J(i) is the number of times a variable yl,i occurs
for some 1 ≤ l ≤ k. The decomposition into the sum of terms for each fixed J is
preserved by b. It follows that we can assume that q has only terms corresponding
to a fixed map J. If J(i) > 1 for any i then a factor y1,i must be present in q, since
it is antisymmetric in the other k− 1 variables. In this case it can be written y1,iq

′

where bq′ = 0. Since q′ is necessarily in the product of the indeals J2 · . . . Jk · JP it
follows that q′ ∈ Qm · JP . Thus we may assume that J(i) = 0 or 1 for all i. Since
the extra variables now play no rôle we may assume that n = m is the degree of
homogeneity and each index i occurs exactly once.

For convenience let us rotate the last k−1 variables so the last is moved to the
first position. Polarizing q in the first variable, it can be represented uniquely as
an n-multilinear function on Rn which is symmetric in the first n− k+ 1 variables,
totally antisymmetric in the last k − 1 and has no monomial with repeated index.
Let Mk−1(n) be the set of such multilinear funtions. The vanishing of bq now
corresponds to the vanishing of the symmetrization of q in the first n−k+2 variables.
By the antisymmetry in the second group of variables this gives a complex

Mn(n)
bn // Mn−1(n)

bn−1 // . . .
b2 // M1(n)

b1 // M0
b0 // 0.

The remaining step is to show that this is exact.
Observe that dim(Mk(n)) =

(
n
k

)
since there is a basis of Mk(n) with elements

labelled by the subsets I ⊂ {1, . . . , n} with k elements. Indeed let ω be a non-
trivial k-multilinear function of k variables and let ωI be this function on Rk ⊂ Rn
identified as the set of variables indexed by I. Then if a ∈ M0(n − k) is a basis of
this 1-dimensional space and aI is this function on the complementary Rn−k the
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tensor products aIωI give a basis. Thus there is an isomorphism

Mk 3 q =
∑

I⊂{1,...,n},|I|=k

cIaI ⊗ ωI 7−→
∑

I⊂{1,...,n},|I|=k

cI ⊗ ωI ∈ Λk(Rn).

Transfered to the exterior algebra by this isomorphism the differential b is
just contraction with the vector e1 + e2 + · · · + en (in the first slot). A linear
transformation reducing this vector to e1 shows immediately that this (Koszul)
complex is exact, with the null space of bk on Λk(Rn) being spanned by those ωI
with 1 ∈ I and the range of bk+1 spanned by those with 1 /∈ I. The exactness of
this complex completes the proof of the lemma. �

11.3. Hochschild homology of C∞(X)

The first example of Hochschild homology that we shall examine is for the
commutative algebra C∞(X) where X is any C∞ manifold (compact or not). As
noted above we need to replace the tensor product by some completion. In the
present case observe that for any two manifolds X and Y

(11.15) C∞(X)⊗ C∞(Y ) ⊂ C∞(X × Y )

is dense in the C∞ topology. Thus we simply declare the space of k-chains for
Hochschild homology to be C∞(Xk+1), which can be viewed as a natural comple-
tion4 of C∞(X)⊗(k+1). Notice that the product of two functions can be written in
terms of the tensor product as

(11.16) a · b = D∗(a⊗ b), a, b ∈ C∞(X), D : X 3 z 7−→ (z, z) ∈ X2.

The variables in Xk+1 will generally be denoted z0, z1, . . . , zk. Consider the
‘diagonal’ submanifolds

(11.17) Di,j = {(z0, z1, . . . , zk); zi = zj}, i, j = 0, . . . ,m, i 6= j.

We shall use the same notation for the natural embedding of Xk as each of these
submanifolds, at least for j = i+ 1 and i = 0, j = m,

Di,i+1(x0, . . . , zm−1) = (z0, . . . , zi, zi, zi+1, . . . , zm−1) ∈ Di,i+1, i = 0, . . . ,m− 1

Dm,0(z0, . . . , zm−1) = (z0, . . . , zm−1, z0).

Then the action of b′ and b on the tensor products, and hence on all chains, can be
written

b′α =

m−1∑
i=0

(−1)iD∗i,i+1α, bα = b′α+ (−1)mD∗m,0α.(11.18)

4One way to justify this is to use results on smoothing operators. For finite dimensional
linear spaces V and W the tensor product can be realized as

V ⊗W = hom(W ′, V )

the space of linear maps from the dual of W to V. Identifying the topological dual of C∞(X)

with C−∞c (X; Ω), the space of distributions of compact support, with the weak topology, we can

identify the projective tensor product C∞(X)⊗̂C∞(X) as the space of continuous linear maps from

C−∞c (X; Ω) to C∞(X). These are precisely the smoothing operators, corresponding to kernels in

C∞(X ×X).
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HH.ciX Theorem 11.2. The differential b′ is acyclic and the homology5 of the complex

(11.19) . . .
b−→ C∞(Xk+1)

b−→ C∞(Xk)
b−→ . . .

is naturally isomorphic to C∞(X; Λ∗).

Before proceeding to the proof proper we note two simple lemmas.

HL.ciX Lemma 11.4. 6For any j = 0, . . . ,m − 1, each function α ∈ C∞(Xk+1) which
vanishes on Di,i+1 for each i ≤ j can be written uniquely in the form

α = α′ + α′′, α′, α′′ ∈ C∞(Xk+1)

where α′′ vanishes on Di,i+1 for all i ≤ j + 1 and α′ is independent of zj+1.

Proof. Set α′ = π∗j+1(D∗j,j+1α) where πj : Xk+1 −→ Xk is projection off the
jth factor. Thus, essentially by definition, α′ is independent of zj+1. Moreover,
πj+1Dj,j+1 = Id so D∗j,j+1α

′ = D∗j,j+1α and hence D∗j,j+1α
′′ = 0. The decomposi-

tion is clearly unique, and for i < j,

(11.20) Dj,j+1 ◦ πj+1 ◦Di,i+1 = Di,i+1 ◦ Fi,j
for a smooth map Fi,j , so α′ vanishes on Di,i+1 if α vanishes there. �

24.33 Lemma 11.5. For any finite dimensional vector space, V, the k-fold exterior
power of the dual, ΛkV ∗, can be naturally identified with the space of functions

(11.21){
u ∈ C∞(V k);u(sv) = skv, s ≥ 0, u � (V i×{0}×V k−i−1) = 0 for i = 0, . . . , k−1

and u � G = 0, G = {(v1, . . . , vk) ∈ V k; v1 + · · ·+ vk = 0}
}
.

Proof. The homogeneity of the smooth function, u, on V k implies that it is a
homogeneous polynomial of degree k. The fact that it vanishes at 0 in each variable
then implies that it is multlinear, i.e. is linear in each variable. The vanishing on
G implies that for any j and any vi ∈ V, i 6= j,

(11.22)
∑
i 6=j

u(v1, . . . , vj−1, vi, vj+1, . . . , vk) = 0.

Since each of these terms is quadratic (and homogeneous) in the corresponding
variable vi, they must each vanish identically. Thus, u vanishes on vi = vj for each
i 6= j; it is therefore totally antisymmetric as a multlinear form, i.e. is an element
of ΛkV ∗. The converse is immediate, so the lemma is proved. �

Proof of Theorem
HH.ciX
11.2. The H-unitality7 of C∞(X) follows from the proof

of Lemma
24.69
11.61 which carries over verbatim to the larger chain spaces.

By definition the Hochschild homology in degree k is the quotient

(11.23) HHk(C∞(X)) =
{
u ∈ C∞(Xk+1); bu = 0

}/
bC∞(Xk+2).

The first stage in identifying this quotient is to apply Lemma
HL.ciX
11.4 repeatedly. Let

us carry through the first step separately, and then do the general case.

5This homology is properly referred to as the continuous Hochschild homology of the topo-
logical algebra C∞(X).

6As pointed out to me by Maciej Zworski, this is a form of Hadamard’s lemma.
7Meaning here the continuous H-unitality, that is the acyclicity of b′ on the chain spaces

C∞(Xk+1).
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For j = 0, consider the decomposition of u ∈ C∞(Xk+1) given by Lemma
HL.ciX
11.4,

thus
24.3724.37 (11.24)

u = u0 + u(1), u0 ∈ π∗1C∞(Xk), u(1) ∈ J
(k)
1 =

{
u ∈ C∞(Xk+1);u � D0,1 = 0

}
.

Now each of these subspaces of C∞(Xk+1) is mapped into the corresponding sub-
space of C∞(Xk) by b; i.e. they define subcomplexes. Indeed,

u ∈ π∗1C∞(Xk) =⇒ D∗0,1u = D∗1,2u so

u = π∗1v =⇒ bu = π∗1Bv, B
∗v = −

k−1∑
i=1

(−1)iD∗i,i+1u+ (−1)kD∗k−1,0v.

For the other term

24.3624.36 (11.25) bu(1) =

k−1∑
i=1

(−1)iD∗i,i+1u(1) + (−1)kD∗k,0u(1) =⇒ bu(1) ∈ J
(k−1)
1 .

Thus, bu = 0 is equivalent to bu0 = 0 and bu(1) = 0. From (
24.35
11.3), defining an

isomorphism by

(11.26) E(k−1) : C∞(Xk) −→ C∞(Xk), E(k−1)v(z1, . . . , zk) = v(z2, . . . , zk, z1),

it follows that

24.4124.41 (11.27) B = −E−1
(k−1)b

′E(k−1)

is conjugate to b′. Thus B is acyclic so in terms of (
24.37
11.24)

24.3924.39 (11.28) bu = 0 =⇒ u− u(1) = bw, w = π∗1v
′.

As already noted this is the first step in an inductive procedure, the induction
being over 1 ≤ j ≤ k in Lemma

HL.ciX
11.4. Thus we show inductively that

24.3824.38 (11.29) bu = 0 =⇒ u− u(j) = bw,

u(j) ∈ J
(k)
j =

{
u ∈ C∞(Xk+1);u � Di,i+1 = 0, 0 ≤ i ≤ j − 1

}
.

For j = 1 this is (
24.39
11.28). Proceeding inductively we may suppose that u = u(j) and

take the decomposition of Lemma
HL.ciX
11.4, so

24.4024.40 (11.30) u(j) = u′ + u(j+1), u(j+1) ∈ J
(k)
j+1, u

′ = π∗j+1v ∈ J
(k)
j .

Then, as before, bu(j) = 0 implies that bu′ = 0. Furthermore, acting on the space

π∗j+1C∞(Xk) ∩ Jk(j), b is conjugate to b′ acting in k + 1 − j variables. Thus, it is

again acyclic, so u(j) and u(j+1) are homologous as Hochschild k-cycles.
The end point of this inductive procedure is that each k-cycle is homologous

to an element of

24.4224.42 (11.31) J (k) = J
(k)
k =

{
u ∈ C∞(Xk+1);D∗i,i+1u = 0, i ≤ i ≤ k − 1

}
.

Acting on this space bu = (−1)kD∗k,0u, so we have shown that

24.4324.43 (11.32)

HHk(C∞(X)) = M (k)/
(
M (k) ∩ bC∞(Xk+1)

)
, M (k) =

{
u ∈ J (k);D∗k,ou = 0

}
.
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Now consider the subspace

24.4424.44 (11.33) M̃ (k) =
{
u ∈ C∞(Xk+1);

u =
∑

finite, 0≤j≤k−1

(f(zj)− f(zj+1))uf,j , uf,j ∈M (k), f ∈ C∞(X).
}
.

If u = (f(zj)− f(zj+1))v, with v ∈M (k) set

24.4524.45 (11.34) w(z0, z1, . . . , zj , zj+1, zj+2, . . . , zk+1)

= (−1)j(f(zj)− f(zj+1))v(z0, . . . , zj , zj+2, zj+3, . . . , zk).

Then, using the assumed vanishing of v, bw = u.8 Thus all the elements of M̃ (k)

are exact.
Let us next compute the quotient M (k)/M̃ (k). Linearizing in each factor of X

around the submanifold z0 = z1 = · · · = zk in V k defines a map

24.4724.47 (11.35) µ : M (k) 3 u −→ u′ ∈ C∞(X;TX ⊗ · · · ⊗ T ∗X).

The map is defined by taking the term of homogeneity k in a normal expansion
around the submanifold. The range space is therefore precisely the space of sections
of the k-fold tensor product bundle which vanish on the subbundle defined in each
fibre by v1 + · · ·+ vk = 0. Thus, by Lemma

24.33
11.5, µ actually defines a sequence

24.4824.48 (11.36) 0 −→ M̃ (k) ↪→M (k) µ−→ C∞(X; ΛkX) −→ 0.

24.90 Lemma 11.6. For any k, (
24.48
11.36) is a short exact sequence.

Proof. So far I have a rather nasty proof by induction of this result, there
should be a reasonably elementary argument. Any offers? �

From this the desired identification, induced by µ,

24.4924.49 (11.37) HHk(C∞(X)) = C∞(X; ΛkX)

follows, once is is shown that no element u ∈ M (k) with µ(u) 6= 0 can be exact.
This follows by a similar argument. Namely if u ∈M (k) is exact then write u = bv,
v ∈ C∞(Xk) and apply the decomposition of Lemma

HL.ciX
11.4 to get v = v0 +v(1). Since

u = 0 on D1,0 it follows that bv0 = 0 and hence u = bv1). Proceeding inductively

we conculde that u = bv with v ∈M (k+1). Now, µ(bv) = 0 by inspection. �

11.4. Commutative formal symbol algebra

As a first step towards the computation of the Hochschild homology of the
algebra A = ΨZ(X)/Ψ−∞(X) we consider the formal algebra of symbols with
commutative product. Thus,

24.5024.50 (11.38) A =
{

(aj)
∞
j=−∞; aj ∈ C∞(S∗X;P (j)), aj = 0 for j >> 0

}
.

Here P (k) is the line bundle over S∗X with sections consisting of the homogeneous
functions of degree k on T ∗X \ 0. The multiplication is as functions on T ∗X \ 0, so

(aj) · (bj) = (cj), cj =

∞∑
k=−∞

aj−kbk

8Notice that v(z0, . . . , zj , zj+2, . . . , zk+1) vanishes on zi+1 = zi for i < j and i > j + 1 and

also on z0 + z1 + · · ·+ zk+1 = 0 (since it is independent of zj+1 and bv = 0.
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using the fact that P (l) ⊗ P (k) ≡ P (l+k). We take the completion of the tensor
product to be

HochchainsHochchains (11.39) B(k) =
{
u ∈ C∞((T ∗X \ 0)k+1);u =

∑
finite

uI ,

uI ∈ C∞(S∗X;P (I0) ⊗ P (I1) ⊗ · · · ⊗ P (Ik)), |I| = k
}
.

That is, an element of B(k) is a finite sum of functions on the (k + 1)-fold product
of T ∗X \ 0 which are homogeneous of degree Ij on the jth factor, with the sum
of the homogeneities being k. Then the Hochschild homology is the cohomology of
the subcomplex of the complex for C∞(T ∗X)

24.5424.54 (11.40) · · · b−→ B(k) b−→ B(k−1) b−→ · · ·

24.53 Theorem 11.3. The cohomology of the complex (
24.54
11.40) for the commutative

product on A is

24.5524.55 (11.41) HHk(A) ≡
{
α ∈ C∞(T ∗X \ 0; Λk(T ∗X);α is homogeneous of degree k

}
.

11.5. Hochschild chains

The completion of the tensor product that we take to define the Hochschild
homology of the ‘full symbol algebra’ is the same space as in (

Hochchains
11.39) but with the

non-commutative product derived from the quantization map for some Riemann
metric on X. Since the product is given as a formal sum of bilinear differential
operators it can be take to act on an pair of factors.

HH.psiHH.psi (11.42) . . .
b(?)−→ B(k) b(?)−→ B(k−1) b(?)−→ . . .

The next, and major, task of this chapter is to describe the cohomology of this
complex.

24.56 Theorem 11.4. The Hochschild homolgy of the algebra, ΨZ
phg(X)/Ψ−∞phg (X),

of formal symbols of pseudodifferential operators of integral order, identified as the
cohomology of the complex (

HH.psi
11.42), is naturally identified with two copies of the

cohomology of S∗X9

24.5824.58 (11.43) HHk(A; ◦) ≡ H2n−k(S∗X)⊕H2n−1−k(S∗X).

11.6. Semi-classical limit and spectral sequence

The ‘classical limit’ in physics, especially quantuum mechanics, is the limit in
which physical variables become commutative, i.e. the non-commutative coupling
between position and momentum variables vanishes in the limit. Formally this
typically involves the replacement of Planck’s constant by a parameter h → 0. A
phenomenon is ‘semi-classical’ if it can be understood at least in Taylor series in
this parameter. In this sense the Hochschild homology of the full symbol algebra
is semi-classical and (following

Brylinski-Getzler1
[4]) this is how we shall compute it.

The parameter h is introduced directly as an isomorphism of the space A
Lh : A −→ A, Lh(aj)

∗
j=−∞ = (hjaj)

∗
j=−∞, h > 0.

9In particular the Hochschild homology vanishes for k > 2 dimX. For a precise form of the
identification in (

24.58
11.43) see (

HHcoId
??).
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Clearly Lh ◦ Lh′ = Lhh′ . For h 6= 1, Lh is not an algebra morphism, so induces a
1-parameter family of products

24.5924.59 (11.44) α ?h β = (L−1
h )(Lhα ? Lhβ).

In terms of the differential operators, associated to quantization by a particular
choice of Riemann metric on X this product can be written

24.6024.60 (11.45) α ?h β = (cj)
∗
j=−∞, cj =

∗∑
k=0

∗∑
l=−∗

hkPk(aj−l−k, bl).

It is important to note here that the Pk, as differential operators on functions on
T ∗X, do only depend on k, which is the difference of homogeneity between the
product aj−l+kbl, which has degree j + k and cj , which has degree j.

Since A with product ?h is a 1-parameter family of algebras, i.e. a deformation
of the algebra A with product ? = ?1, the Hochschild homology is ‘constant’ in h.
More precisely the map Lh induces a canonical isomorphism

L∗h : HHk(A; ?h) ≡ HHk(A; ?).

The dependence of the product on h is smooth, so it is reasonable to expect the
cycles to have smooth representatives as h→ 0. To investigate the consider Taylor
series in h and define

Fp,k =
{
α ∈ B(k); ∃ α(h) ∈ C∞([0, 1)h;B(k)) with α(0) = α and

bhα ∈ hpC∞([0, 1)h;Bk−1)
}
,

(11.46)

Gp,k =
{
α ∈ B(k); ∃ β(h) ∈ C∞([0, 1)h;B(k+1)) with

bhβ(h) ∈ hp−1C∞([0, 1)h;B(k) and (t−p+1bhβ)(0) = α
}
.

24.6124.61 (11.47)

Here bh is the differential defined by the product ?h.
Notice that the Fp,k decrease with increasing p, since the condition becomes

stronger, while Gp,k increases with p, the condition becoming weaker.10 We define
the ‘spectral sequence’ corresponding to this filtration by

Ep,k = Fp,k/Gp,k.

These can also be defined successively, in the sense that if

F ′p,k =
{
u ∈ Ep−1,k;u = [u′], u′ ∈ Fp,k

}
G′p,k =

{
e ∈ Ep−1,k;u = [u′], ]u′ ∈ Gp,k

}
then Ep,k ≡ F ′p,k/G′p,k.

The basic idea11 of a spectral sequence is that each Ep =
⊕

k Ep,k, has defined
on it a differential such that the next spaces, forming Ep+1, are the cohomology
space for the complex. This is easily seen from the definitions of Fp,k as follows.
If α ∈ Fp,k let β(t) be a 1-parameter family of chains as in the defintion. Then
consider

24.6224.62 (11.48) γ(t−pbhβ)(0) ∈ B(k−1).

10If α ∈ Gp,k and β(h) is the 1-parameter family of chains whose existence is required for

the definition then β′(h) = hβ(h) satisfies the same condition with p increased to show that

α ∈ Gp+1,k.
11Of Leray I suppose, but I am not really sure.
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This depends on the choice of β, but only up to a term in Gp,k−1. Indeed,
let β′(t) is another choice of extension of α satisfying the condition that bhβ

′ ∈
hpC∞([0, 1);B(k−1) and let γ′ be defined by (

24.62
11.48) with β replaced by β′. Then

δ(t) = t−1(β(h) − β′(h)) satisfies the requirements in the definition of Gp,k−1, i.e.
the difference γ′ − γ ∈ Gp,k−1. Similarly, if α ∈ Gp,k then γ ∈ Gp,k.12 The map so
defined is a differential

b(p) : Ep,k −→ Ep,k−1, b
2
(p) = 0.

This follows from the fact that if µ = b(p)α then, by definition, µ = (t−pbhβ)(0),

where α = β(0). Taking λ(t) = t−pbhβ(t) as the extension of µ it follows that
bhλ = 0, so b(p)µ = 0.

Now, it follows directly from the definition that F0,k = E0,k = B(k) since
G0,k = {0}. Furthermore, the differential b(0) induced on E0 is just the Hochschild
differential for the limiting product, ?0, which is the commutative product on the
algebra. Thus, Theorem

24.53
11.3 just states that

E1,k =

∗⊕
k=−∞

{
u ∈ C∞(T ∗X \ 0; Λk);u is homogeneous of degree k

}
.

To complete the proof of Theorem
24.56
11.4 it therefore suffices to show that

E2,k ≡ H2n−k(S∗X)⊕H2n−1−k(S∗X),24.6324.63 (11.49)

Ep,k = E2,k, ∀ p ≥ 2, and24.6424.64 (11.50)

HHk(ΨZ
phg(X)/Ψ−∞phg (X)) = lim

p→∞
Ep,k.24.6524.65 (11.51)

The second and third of these results are usually described, respectively, as the
‘degeneration’ of the spectral sequence (in this case at the ‘E2 term’) and the
‘convergence’ of the spectral sequence to the desired cohomology space.

11.7. The E2 term

As already noted, the E1,k term in the spectral sequence consists of the formal
sums of k-forms, on T ∗X \0, which are homogeneous under the R+ action. The E2

term is the cohomology of the complex formed by these spaces with the differential
b(1), which we proceed to compute. For simplicity of notation, consider the formal

tensor prodoct rather than its completion. As already noted, for any α ∈ B(k) the
function bhα is smooth in h and from the definition of b,

24.6624.66 (11.52)
d

dh
bhα(0) =

k−1∑
i=0

(−1)ia0 ⊗ · · · ⊗ ai−1 ⊗ P1(ai+1, ai)⊗ ai+2 ⊗ · · · ⊗ ak

+ (−1)kP1(a0, ak)⊗ a1 ⊗ · · · ⊗ ak−1, α = a0 ⊗ · · · ⊗ ak.

The general case is only more difficult to write, not different.13 This certainly
determines b1α if α is a superposition of such terms with b0α = 0. Although (

24.66
11.52)

is explicit, it is not given directly in terms of the representation of α, assumed to
satisfy b0α = 0 as a form on T ∗X \ 0.

12Indeed, α is then the value at h = 0 of β(t) = t−p+1bhφ(t) which is by hypothesis smooth;

clearly bhβ ≡ 0.
13If you feel it necessary to do so, resort to an argument by continuity towards the end of

this discussion.
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To get such an explicit formula we shall use the symplectic analogue of the
Hodge isomorphism. Recall that in any local coordinates on X, xi, i = 1, . . . , n,
induce local coordinates xi, ξi in the part of T ∗X lying above the coordinate patch.
In these canonical coordinates the symplectic form (which determines the Poisson
bracket) is given by

24.7324.73 (11.53) ω =

n∑
k=1

dξk ∧ dxk.

This 2-form is non-degenerate, i.e. the n-fold wedge product ωn 6= 0. In fact this
volume form fixes an orientation on T ∗X. The symplectic form can be viewed as
a non-degenerate antisymmetric bilinear form on Tq(T

∗X) at each point q ∈ T ∗X,
and hence by duality as a bilineear form on T ∗q (T ∗X). We denote this form in the
same way as the Poisson bracket, since with the convention

{a, b}(q) = {da, db}q
they are indeed the same. As a non-degenerate bilinear form on T ∗Y, Y = T ∗X
this also induces a bilinear form on the tensor algebra, by setting

{e1 ⊗ · · · ⊗ ek, f1 ⊗ · · · ⊗ fk, } =
∏
j

{ej , fj}.

These bilinear forms are all antisymmetric and non-degenerate and restrict to be
non-degnerate on the antisymmetric part, ΛkY, of the tensor algebra. Thus each of
the form bundles has a bilinear form defined on it, so there is a natural isomorhism

24.7224.72 (11.54) Wω : ΛkqY −→ Λ2n−k
q Y, α ∧Wωβ = {α, β}ωn, α, β ∈ C∞(Y,ΛkY ),

for each k.

24.74 Lemma 11.7. In canonical coordinates, as in (
24.73
11.53), consider the basis of k-

forms given by all increasing subsequences of length k,

I : {1, 2, . . . , k} −→ {1, 2, . . . , 2n},
and setting

24.7624.76 (11.55) αI = dzI(1) ∧ dzI(2) ∧ · · · ∧ dzI(k),

(z1, z2, . . . , z2n) = (x1, ξ1, x2, ξ2, . . . , xn, ξn).

In terms of this ordering of the coordinates

24.7524.75 (11.56) Wω(αI) = (−1)N(I)αW (I)

where W (I) is obtained from I by considering each pair (2p−1, 2p) for p = 1, . . . , n,
erasing it if it occurs in the image of I, inserting it into I if neither 2p− 1 nor 2p
occurs in the range of I and if exactly one of 2p − 1 and 2p occurs then leaving it
unchanged; N(I) is the number of times 2p appears in the range of I without 2p−1.

Proof. The Poisson bracket pairing gives, on 1-forms,

−{dxj , dξj} = 1 = {dξj , dxj}
with all other pairings zero. Extending this to k-forms gives

{αI , αJ} = 0 unless (I(j), J(j)) = (2p− 1, 2p) or (2p, 2p− 1) ∀ j and

{αI , αJ} = (−1)N , if (I(j), J(j)) = (2p− 1, 2p) for N values of j

and (I(j), J(j)) = (2p− 1, 2p) for N − k values of j.
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From this, and (
24.72
11.54), (

24.75
11.56) follows. �

From this proof if also follows that N(W (I)) = N(I), so W 2
ω = Id . We shall

let

24.7724.77 (11.57) δω = Wω ◦ d ◦Wω

denote the differential operator obtained from d by conjugation,

δω : C∞(T ∗X \ 0; Λk) −→ C∞(T ∗X \ 0,Λk−1).

By construction δ2
ω = 0. The exterior algebra of a symplectic manifold with this

differential is called the Koszul complex.14 All the αI are closed so

24.7924.79 (11.58)

δω(aαI) = Wω

(∑
j

∂a

∂zj
dzj
)
∧ (−1)N(I)αW (I)

=
∑
j

∂a

∂zj
(−1)N(I)Wω(dzj ∧ αW (I)),

Observe that15

Wω

(
dz2p−1 ∧ αW (I)

)
= ι∂/∂z2pαI

Wω

(
dz2p ∧ αW (I)

)
= ι∂/∂z2p−1

αI ,

where, ιv denotes contraction with the vector field v. We therefore deduce the
following formula for the action of the Koszul differential

24.8124.81 (11.59) δω(aαI) =

2n∑
i=1

(
Hzia

)
ι∂/∂ziαI .

24.67 Lemma 11.8. With E1 identified with the formal sums of homogeneous forms
on T ∗X \ 0, the induced differential is

24.6824.68 (11.60) b(1) =
1

i
δω.

Proof. We know that the bilinear differential operator 2iP1 is the Poisson
bracket of functions on T ∗X. Thus (

24.66
11.52) can be written

24.6924.69 (11.61) 2ib1α =

k−1∑
i=0

(−1)ia0 ⊗ · · · ⊗ ai−1 ⊗ {ai+1, ai} ⊗ ai+2 ⊗ · · · ⊗ ak

+ (−1)k{a0, ak} ⊗ a1 ⊗ · · · ⊗ ak−1, α = a0 ⊗ · · · ⊗ ak.

The form to which this maps under the identification of E2 is just

24.7024.70 (11.62) 21b1α =

k−1∑
i=0

(−1)ia0 ∧ dai−1 ∧ · · · ∧ d{ai+1, ai} ∧ dai+2 ∧ ak

+ (−1)k{a0, ak} ∧ da1 ∧ · · · ∧ dak−1

14Up to various sign conventions of course!
15Check this case by case, as the range of I meets the pair {2p − 1, 2p} in {2p − 1, 2p},

{2p− 1}, {2p} or ∅. Both sides of the first equation are zero in the second and fourth case as are
both sides of the second equation in the third and fourth cases. In the remaining four individual
cases it is a matter of checking signs.
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Consider the basis elements αI for k-forms. These arise as the images of the
corresponding functions in local coordinates on Xk+1

α̃I(z0, z1, . . . , zk) =
∑
σ

(−1)sgnσ(z1,σI(1) − z0,σI(1))

× z2,σI(1) − z1,σI(1)) . . . (z1,σI(m) − z0,σI(m−1)).

Since these functions are defined in local coordinates they are not globally
defined on (T ∗X\0)k+1. Nevertheless they can be localized away from z0 = · · · = zm
and then, with a coefficient (aj(z0))∗j=−∞, aj ∈ C∞(T ∗X \ 0) homogeneous of
degree j with support in the coordinate patch, unambiguously define elements of
E1 which we can simply denote as a(z0)α̃I ∈ E1. These elements, superimposed
over a coordinate cover, span E1. Consider b(1)α̃ given by (

24.70
11.62). In the sum, the

terms with P1 contracting between indices other than 0, 1 or m, 0 must give zero
because the Poisson bracket is constant in the ‘middle’ variable. Futhermore, by
the antisymmetry of α̃, the two remaining terms are equal so

ib(1)

(
aα̃I

)
=
∑
σ∈Pk

(
HzσI(1)a

)
(−1)sgn(σ)dzσI(2) ∧ · · · ∧ dzσI(k)

=
∑
i

(
Hzia

)
ι∂/∂iαI .

Since this is just (
24.81
11.59) the lemma follows. �

With this lemma we have identified the differential on the E1 term in the spec-
tral sequence with the exterior differential operator. To complete the identification
(
24.63
11.49) we need to compute the corresponding deRham groups.

24.82 Proposition 11.1. The cohomology of the complex

. . .
d−→

∗∑
j=−∞

C∞hom(j)(T
∗X \ 0; Λk)

d−→
∗∑

j=−∞
C∞hom(j)(T

∗X \ 0; Λk+1)
d−→ . . .

in dimension k is naturally isomorphic to Hk(S∗X)⊕Hk−1(S∗X).

Proof. Choose a metric on X and let R = |ξ| denote the corresponding length
function on T ∗X \ 0. Thus, identifying the quotient S∗X = (T ∗X \ 0)/R+ with
{R = 1} gives an isomorphism T ∗X \ 0 ≡ S∗X × (0,∞). Under this map the
smooth forms on T ∗X \0 which are homogeneous of degree j are identified as sums

C∞hom(j)(T
∗X \ 0,Λk) 3 αj

= Rj
(
α′j + α′′j ∧

dR

R

)
, α′j ∈ C∞(S∗X; Λk), α′′j ∈ C∞(S∗X; Λk−1).

24.8624.86 (11.63)

The action of the exterior derivative is then easily computed

dαj = βj , βj = Rj
(
β′j + βj −′′ ∧

dR

R

)
,

β′j = dα′j , β
′′
j = dα′′j + j(−1)k−1α′j .

Thus a k-form (αj)
∗
j=−∞ is closed precisely if it satisfies

24.8424.84 (11.64) jα′j = (−1)kdα′′j , dα
′
j = 0∀ j.

It is exact if there exists a (k − 1)-form (γj)
∗
j=−∞ such that

24.8524.85 (11.65) α′j = dγ′j , α
′′
j = dγ′′j + j(−1)kγ′j .
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Since the differential preserves homogeneity it is only necessary to analyze these
equations for each integral j. For j 6= 0, the second equation in (

24.84
11.64) follows

from the first and (
24.85
11.65) then holds with γ′j = 1

j (−1)kα′′j and γ′′j = 0. Thus the

cohomology lies only in the subcomplex of homogeneous forms of degree 0. Then
(
24.84
11.64) and (

24.85
11.65) become

dα′0 = 0, dα′′0 = 0 and α′0 = dγ′0, α
′′
0 = dγ′′0

respectively. This gives exactly the direct sum of Hk(S∗X) and Hk−1(S∗X) as the
cohomology in degree k. The resulting isomorphism is independent of the choice of
the radial function R, since another choice replaces R by Ra, where a is a smooth
positive function on S∗X. In the decomposition (

24.86
11.63), for j = 0, α′′0 is unchanged

whereas α′0 is replaced by α′0 +α′′0 ∧ d log a. Since the extra term is exact whenever
α′′0 is closed it has no effect on the identification of the cohomology. �

Combining Proposition
24.82
11.1 and Lemma

24.67
11.8 completes the proof of (

24.63
11.49).

We make the identification a little more precise by locating the terms in E2.

24.87 Proposition 11.2. Under the identification of E1 with the sums of homoge-
neous forms on T ∗X \ 0, E2, identified as the cohomology of δω, has a basis of
homogeneous forms with the homogeneity degree j and the form degree k confined
to

24.8824.88 (11.66) k − j = dimX, −dimX ≤ j ≤ dimX, dimX ≥ 2.

Proof. Provided dimX ≥ 2, the cohomology of S∗X is isomorphic to two
copies of the cohomology of X, one in the same degree and one shifted by dimX −
1.16 The classes in the first copy can be taken to be the lifts of deRham classes from
X, while the second is spanned by the wedge of these same classes with the Todd
class of S∗X. This latter, n − 1, class restricts to each fibre to be non-vanishing.
Thus in local representations the first forms involve only the base variable and
in the second each terms has the maximum number, n − 1, of fibre forms. The
cohomology of the complex in Proposition

24.82
11.1 therefore consists of four copies of

H∗(X) consisting of these forms and the same forms wedged with dR/R.
With this decomoposition of the cohomology consider the effect on it of the map

Wω. In each case the image forms are again homogeneous. A deRham class on X in
degree l therefore has four images in E2. One is a form of degree k1 = 2n− l which
is homogeneous of degree j1 = n− l. The second is a form of degree k2 = 2n− l− 1
which is homogeneous of degree j2 = n − l − 1. The third image is of form degree
k3 = n− l+1 and homogeneous of degree j3 = −l+1 and the final image is of form
degree k4 = n − l and is homogeneous of degree j4 = −l. This gives the relations
(
24.88
11.66). �

11.8. Degeneration and convergence

Now that the E2 term in the spectral sequence has been explicitly computed,
consider the induced differential, b(2) on it. Any homogeneous form representing a
class in E2 can be represented by a Hochshild chain α of the same homogeneity.
Thus an element of E2 in degree k corresponds to a function on C∞((T ∗X)\)k+1)
which is separately homogeneous in each variable and of total homogeneity k − n.
Furthermore it has an extension β(t) as a function of the parameter h, of the same

16That is, just as though S∗X = Sn−1 ×X, where n = dimX.
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homogeneity, such that btβ(t) = t2γ(t). Then b(2)α = [γ(0)], the class of γ(0) in E2.
Noting that the differential operator, Pj , which is the jth term in the Taylor series
of the product ?h reduces homogeneity by j and that bh depends multilinearly on
?h it follows tha b(r) must decrease homogeneity by r. Thus if the class [γ(0)] must
vanish in E2 by (

24.88
11.66). We have therefore shown that b(2) ≡ 0, so E3 = E2. The

same argument applies to the higher differentials, defining the Er ≡ E2 for r ≥ 2,
proving the ‘degeneration’ of the spectral sequence, (

24.64
11.50).

The ‘convergence’ of the spectral sequence, (
24.65
11.51), follows from the same anal-

ysis of homogneities. Thus, we shall define a map from E2 to the Hochschild ho-
mology and show that it is an isomorphism.

11.9. Explicit cohomology maps

11.10. Hochschild holomology of Ψ−∞(X)

11.11. Hochschild holomology of ΨZ(X)

11.12. Morita equivalence



CHAPTER 12

The index theorem and formula

Index

Using the earlier results on K-theory and cohomology the families index theo-
rem of Atiyah and Singer is proved using a variant of their ‘embedding’ proof. The
index formula in cohomology (including of course the formula for the numerical
index) is then derived from this.

12.1. Outline

The index theorem of Atiyah and Singer is proved here in K-theory, using the
results from Chapter

KTheory
10 and then the cohomological version is derived from this.

Here are the main steps carried out below:-

(1) Fibrations of manifolds, M −→ B, are discussed and shown to be embed-
dable in a trivial fibration following Whitney’s embedding theorem.

(2) The ‘semiclassical index’ is defined using semiclassical smoothing oper-
ators, first for odd K-theory and then for even K-theory; it there is an
innovation here, this is it. Both exhibit ‘excision’.

(3) The odd and even semiclassical index maps are shown to be related by
suspension, using a calculus combining semiclassical smoothing operators
and standard pseudodifferential operators.

(4) The odd (and hence the even) semiclassical index is shown to be natural
for iterated fibrations.

(5) The group of homotopy classes of sections of the bundle G−∞(M/B;E)
is shown to reduce to Kc(B) using smooth families of projections approx-
imating the identity.

(6) The notion of an elliptic family of pseudodifferential operators on the fibres
of a fibration is introduced and the analytic index Inda : Kc(T ∗(M/B))←→
Kc(B) is defined.

(7) The analytic and semiclassical index maps are shown to be equal by defin-
ing a combined analytic-semiclassical index which extends both.

(8) The topological index map is defined using embeddings and the Thom
isomorphism and is shown to be equal to the analytic and semiclassical
index maps.

Subsequently the special case of Dirac operators is treated and the formula for
the Chern character of the index bundle is deduced.

Maybe other things will go in here, η forms, determinant bundle etc.

12.2. Fibrations

Instead of just considering families of pseudodifferential operators on a manifold
but depending smoothly on parameters in some other manifold we allow ‘twisting
by the diffeomorphism group’ and consider the more general setting of a family of

313
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pseudodifferential operators on the fibres of a fibration, so the parameters are the
variables in the base of the fibration and the operators act on the fibres, which are
diffeomorphic to a fixed manifold. This indeed is the setting for the ‘families index
theorem’ of Atiyah and Singer.

So, first we need a preliminary discussion of fibrations. A map between two
manifolds

7.12.2007.4497.12.2007.449 (12.1) φ : M −→ B

is a fibration, with typical fibre a manifold Z, if it is smooth, surjective and has the
‘local product’ property:-

7.12.2007.4507.12.2007.450 (12.2)
Each b ∈ B has an open neighbourhood U ⊂ B

for which there exists a diffeomorphism FU giving a commutative diagramme

φ−1(U)
FU //

φ
##

Z × U

πU
||

U.

Here of course, πU is projection onto the second factor. In particular this means
that each fibre φ−1(b) = Zb is diffeomorphic to Z, and in such a way that the
diffeomorphism can be chosen locally to be smooth in b ∈ B. However there is
no chosen diffeomorphism and of course in general the diffeomorphism cannot be
chosen globally smoothly in b – other wise the fibration is trivial in the sense that
there exists a diffeomorphism giving a commutative diagramme

7.12.2007.4517.12.2007.451 (12.3) M
F //

φ   

Z ×B

πB{{
B.

I use the notation

7.12.2007.4527.12.2007.452 (12.4) Z M

φ

��
B

to denote a fibration, the headless arrow meaning that there is no chosen diffeo-
morphism onto the fibres; often people put an arrow there.

One standard source of fibrations is the implict function theorem.

7.12.2007.453 Proposition 12.1. 1 If φ : M −→ B is a smooth map between connected
smooth compact manifolds which is a submersion, i.e. the differential φ∗ : TmM −→
Tφ(m)B is surjective for every m ∈M, then φ is a fibration.

It is easy to see that this implication can fail if M is not compact.
We will discuss operators on the fibres of a fibration below. First however

we consider one of the important steps in the proof of the Atiyah-Singer theorem,
namely the embedding of a fibration.

1See Problem
7.12.2007.454
12.1
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7.12.2007.455 Proposition 12.2. Any fibration of compact manifolds can be embedded in a
trivial fibration to give a commutative diagramme

7.12.2007.4567.12.2007.456 (12.5) M
ι //

φ   

RM ×B

πB
zz

B.

Proof. Following Whitney, simply embed M in RM for some M. This is easy
to do, much the same way as vector bundle can be complemented to a trivial
bundle.2 Then let ι be the product of this embedding and φ, giving a map into
RM ×B. �

Vector bundles give particular examples of fibrations. There are various stan-
dard constructions on fibrations, in particular the fibre product.

7.12.2007.458 Lemma 12.1. If φi : Mi −→ B, i = 1, 2 are two fibrations with the same base
and typical fibres Zi, then

M1 ×B M2 = {(m1,m2) ∈M1 ×M2;φ1(m1) = φ2(m2)} ⊂M1 ×M2

is an embedded submanifold and the restriction of φ1 × φ2 to it gives a fibration

7.12.2007.4607.12.2007.460 (12.6) Z1 × Z2 M1 ×B M2

φ1×φ2

��
B.

Proof. Just look at local trivializations. �

It has become standard to denote ‘relative objects’ for a fibration, meaning
objects on the fibres, using the formal notation M/B for the fibres. Thus T (M/B)
is the fiber tangent bundle. It is a bundle over the total space M with fibre at
m ∈ M the tangent space to the fibre through m, φ−1(φ(m)), at m. To see that
it is a bundle, just look at local trivializations of the fibration. Its dual bundle
is T ∗(M/B), with fibre at m the cotangent space for the fibre. This will play a
significant role in what we do below.

12.3. Smoothing families

Philosophically, it is often a good idea to think of a space like C∞(M), the
smooth functions (or more generally sections of some vector bundle) on the total
space of a fibration as an infinite-dimensional bundle over the base. The fibre at
b is just C∞(Zb), the smooth functions on the fibre, and a local trivialization of
the fibration gives a local trivialization of this bundle. To be consistent with the
notation above I suppose this bundle should be denoted C∞(M/B) = C∞(M) (or
C∞c (M/B) = C∞c (M) if M is not compact but B is) thought of as a bundle over B.

Next let us consider smoothing operators on the fibres of a fibration from this
point of view. Recall that the densities on a manifold form a trivial, but not
canonically trivial, real line bundle over the manifold. If this bundle is trivialized

2See Problem
7.12.2007.457
12.2 for more details.
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then the smoothing operators on Z are identified with the smooth functions (their
Schwartz kernels) on Z × Z. Really this is more invariantly written

7.12.2007.4617.12.2007.461 (12.7) Ψ−∞(Z) = C∞(Z × Z;π∗RΩ(Z))

where π∗RΩ(Z) is the density bundle over Z, pulled back to the product under the
projection onto to the right-hand factor.

7.12.2007.462 Lemma 12.2. For a fibration (
7.12.2007.452
12.4) the densities bundles on the fibres form a

trivial bundle, denoted Ω(M/B), over the total space and the bundle of (compactly-
supported) smoothing operators on the fibres may be identified as

7.12.2007.4637.12.2007.463 (12.8) Ψ−∞c (M/B) = C∞c (M ×B M ;π∗RΩ(M/B))

where πR is the right projection from the total space of the fibre product to the total
space of the fibration.

Proof. Perhaps this is more a definition than a Lemma. The fibre density
bundle is just the density bundle for T (M/B). It is then easy to see that an element
on the right in (

7.12.2007.463
12.8) defines a smoothing operator on each fibre of the fibration

and these operators vary smoothly when identified in a local trivialization of the
fibration. This leads to the notation on the left. �

Again Ψ−∞c (M/B) can be thought of as a (big) bundle over B.
So, now to something a little less formal. As noted above, one case of a fibration

is a vector bundle. If we consider a symplectic (or complex) we have discussed the
Thom isomoprhism in K-theory above. In doing this we have used, rather exten-
sively, the projections π(N) onto the first N eigenspaces of the harmonic oscillators.
Since the index theorem is an geometric extension, to a general fibration, of the
Thom isomorphism, we need some replacement for these ‘exhausting projections’ in
the general case. Unfortunately there is nothing3 to take the place of the harmonic
oscillators on the fibres. Of course there are similar objects, such as the Lapla-
cians for some family of fibre metrics, but the eigenvalues of such operators are not
constant. As a result the eigenspaces are not even smooth and there is not simple
replacement for π(N). But we really want these, so we have to construct them a
little more crudely. I will do this using the embedding construction above; this is
a similar argument to the core of the proof of the Atiyah-Singer theorem but in a
much simpler setting.

First we note an extension result using these same π(N)’s, or just π(1), the
projection onto the ground state of the harmonic oscllator.

7.12.2007.464 Proposition 12.3. Let W be a symplectic vector bundle over a compact man-
ifold Z then there is a natural embedding as a subalgebra

7.12.2007.4657.12.2007.465 (12.9) Ψ−∞(Z) ↪→ Ψ̇−∞(W̄ ; Λ∗),

into the algebra of smoothing operator on the total space of the bundle of radial of
the fibres of W which vanish to infinite order at the boundary, acting on sections
of the exterior algebra, in which an operator on Z is identified with an operator on
the ground state of the bundle of harmonic oscillators.

3As far as I know, please correct me if you know better.
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Proof. The point here is simply that the bundle of ground states of the (bun-
dle of) harmonic oscillators is canonically trivial. Indeed all these functions (and
the projections onto them) are positive, so there is a unique choice of unit length
basis. A smoothing operator on the manifold is then lifted to the same smoothing
operator acting on this line bundle, so as a smoothing operator on the total space
it is projection onto this bundle, followed by the action of the smoothing operator.
Clearly this forms a subalgebra as claimed, since the Schwartz functions correspond
to the functions vanishing at infinity on the radial compactification. �

Now, suppose the total space of W is mapped diffeomorphically to an open
subset of a smooth manifold in such a way that S(W ), the space of functions which
are Schwartz on the fibres, is identified with the smooth functions with support in
the closure of the image set. Then the algebra on the right in (

7.12.2007.465
12.9) is identified as

the subalgebra of the smoothing operators on this manifold with supports in the
closure of the image.

12.4. Semiclassical index maps

As noted above, the index theorem may be thought of as the essential unique-
ness of the push-forward map in K-theory. Given a fibration of manifolds as in
(
7.12.2007.452
12.4) we will first define a ‘semiclassical index map’

25.2.2008.53225.2.2008.532 (12.10) Indsl : K1
c(T ∗(M/B)) −→ K1

c(B).

In fact we will do this separately for odd and even K-theory and then compare the
results. First we need to discuss the family of fibrewise semiclassical algebras on
the fibres of φ.

In accordance with the general notation for fibrations the space of semiclassical
families of smoothing operators is denoted Ψ−∞sl (M/B;E) where E is a vector
bundle over M. Repeating again the general principal, this is the space of sections
(defined explicitly below) of an infinite dimensional bundle over B whose fibre above
b ∈ B consists of the (space of families of) semiclassical smoothing operators on
Zb = φ−1(b). There is of course a lot more notation like this below.

Since we have defined the semiclassical algebra on sections of any bundle over
any manifold, Ψ−∞sl (Zb;Eb) is well defined. Thus A ∈ Ψ−∞sl (M/B;E) consists of

an element of Ψ−∞sl (Zb;Eb) for each b ∈ B, where we only need to specify the
meaning of smoothness in b ∈ B. Locally in B the notion of smoothness if obvious
enough, since the bundle is trivialized and the meaning of smooth dependence
on parameters, which is in any case straightforward, is explained in §

Semiclassicalalgebra
6.10. It is

therefore only necessary to check that this notion is invariant under diffeomorphisms
of the fibres, depending smoothly on the base. I ask you to do this in problems
below.****

The results derived earlier for the semiclassical algebra can now be restated
for fibrations. The most significant one is the existence and behaviour of the semi-
classical symbol map. Here we recall that the semiclassical symbol is ‘not quite’
a function on the fibrewise cotangent bundle. It is a (Schwartz) function on the
slightly different bundle denoted slT ∗(M/B) which is discussed in Section

Semiclassicalalgebra
6.10. In

particular this bundle is bundle-isomorphic to T ∗(M/B) but not equal, i.e. not
canonically isomorphic, to it.
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25.2.2008.533 Proposition 12.4. For any fibration the algebra of uniformly properly sup-
ported smoothing operators on the fibres, Ψ−∞sl (M/B;E), gives a short exact, mul-
tiplicative, sequence

25.2.2008.53425.2.2008.534 (12.11)

0 // εΨ−∞sl (M/B;E) �
� // Ψ−∞sl (M/B;E)

σsl// S(slT ∗(M/B); hom(E)) // 0.

Recall that εΨ−∞sl (M/B;E) is just this lazy man’s notation for sections which are
of the form εA where A is another semiclassical family.

Proof. *** Part of this proof will be shifted back to the section on the semi-
classical calculus on a single manifold where slT ∗Z has already been used but not
defined.

In §
TanCotan
3.9 there is a rather pedantic definition of the cotangent bundle of a man-

ifold. Namely the fibre at a point p ∈ M is defined to be the ‘linearization’ of the
space of functions vanishing at p, that is the quotient

25.2.2008.53525.2.2008.535 (12.12)

T ∗pM = {f ∈ C∞(M); f(p) = 0}
/
{
∑
finite

figi; fi, gi ∈ C∞(M), fi(p) = gi(p) = 0}.

Suppose we take the product of M and an interval [0, 1]. Then

25.2.2008.53625.2.2008.536 (12.13) π∗T ∗(p,ε)M =

{f ∈ C∞(M × [0, 1]); ∂εf = 0, f(p, ε) = 0}
{
∑

finite

figi; fi, gi ∈ C∞(M × [0, 1]), ∂εfi = ∂εgi = 0, fi(p, ε) = gi(p, ε) = 0}

is a rather complicated-looking definition of the pull-back to M× [0, 1] of the cotan-
gent bundle to M, under the projection π : M × [0, 1] −→M at (p, 0) ∈M × [0, 1].
The latter is just defined to be T ∗pM and the definition (

25.2.2008.536
12.13) is obviously isomor-

phic to T ∗pM since all the functions are independent of ε, that is it is simply the
same definition as (

25.2.2008.535
12.12); i.e. this discussion appears moronic.

Let us just change this slightly by inserting factors of ε−1. Namely set
25.2.2008.53725.2.2008.537 (12.14)

slT ∗Mp = {f ∈ C∞(M × (0, 1]); εf ∈ C∞(M × [0, 1]), ∂ε(εf) = 0, f(p, 0) = 0}
/
E ,

E = {h ∈C∞((0, 1)×M); εh =
∑
finite

figi

for fi, gi ∈ C∞(M × [0, 1]), ∂εfi = ∂εgi = 0, fi(p) = gi(p) = 0}.

Of course this second definition just involves inserting a factor of ε. So, given that
we know what ε is,

25.2.2008.53825.2.2008.538 (12.15) slT ∗Mp
×ε // T ∗Mp.

On the other hand, suppose that we think of [0, 1] as a compact, connected, non-
empty, 1-dimensional manifold with boundary. That is, we permit ourselves to
make diffeomorphisms in ε. The differential condition ∂εf = 0 is invariant under
diffeomorphisms, although ∂ε itself is not. However, ε just becomes a defining
function for 0 ∈ [0, 1], it could as well be 2ε or even εT (ε) with T > 0 and smooth.
The result of this is that the isomorphism (

25.2.2008.538
12.15) is not well-defined. The left side

is well-defined for [0, 1] as a manifold and it is always isomorphic to T ∗pM, but it
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is not canonically isomorphic to T ∗pM. The result is that slT ∗M is a well-defined
vector bundle over M, bundle isomorphic to T ∗M but not canonically so.

Now, the claim is that the semiclassical symbol really gives a function on T ∗Z,
not as one might naively think, on T ∗Z – however the error in so thinking will
likely never show up! Notice that this is clear from the definition of the semiclas-
sical symbol in local coordinates, i.e. back on Rn. There we took the kernel of the
semiclassical family,

25.2.2008.53925.2.2008.539 (12.16) ε−nB(ε, z,
z − z′

ε
),

changed variable to Z = z−z′
ε , restricted the result to ε = 0 and then took the

Fourier transform to get a function b(z, ζ) on Rn × Rn which is Schwartz in the
second variables. Under change of variables we showed before that this transforms
as a function on T ∗Rn, so in the case of manifolds gives a function on T ∗M. However,
this depends on knowing precisely what ε is. If you think of the variable ε/2 instead
the resulting function will be b(z, ζ/2). Note that you might expect a change by
an overall factor of 2n but this does not happen because this is absorbed in the
measure when we take the Fourier transform. On the other hand the discussion
above shows that after the new identification with slT ∗M

25.2.2008.54025.2.2008.540 (12.17) B ∈ Ψ−∞sl (M) =⇒ σsl(B) ∈ S(slT ∗M) is well-defined.

The case of semiclassical families acting on a vector bundle on the total space
of a fibration just involves the invariance under diffeomorphisms, and the behaviour
under multiplcation by smooth functions, of the semiclassical smoothing algebra.
That is, the exact sequence (

25.2.2008.534
12.11), including its multiplicativity, just comes from

the same result on each fibre. �

One direct way to see why the image space in (
25.2.2008.534
12.11) is the right one is to define

σsl(B) by ‘oscillatory testing’. This is done in Euclidean space in Problem****.
Restating this result more invariantly we get

25.2.2008.541 Lemma 12.3. If A ∈ Ψ−∞sl (M/B;E), u ∈ C∞(M ;E) and f ∈ C∞(M) is real-
valued then

25.2.2008.54225.2.2008.542 (12.18) lim
ε↓0

e−if(z)/εB(eif(z)/εu = σsl(
df

ε
)u ∈ C∞(M ;E)

with the limit existing in this space.

Notice that we need to interpret df/ε ∈ C∞(M ; slT ∗M) as a section for (
25.2.2008.542
12.18) to

make sense. Going back to the formal definition (
25.2.2008.537
12.14) we can do this by defining

its value at z̄ ∈M to be the class of (f(z)− f(z̄))/ε.
Now, having the semiclassical algebra on the fibres at our disposal we can

construct the corresponding index.

25.2.2008.543 Proposition 12.5. If a ∈ C∞c (slT ∗(M/B); homE) is such that Id +a is ev-
erywhere invertible and A ∈ Ψ−∞sl (M/B;E) is uniformly properly supported and
has σsl(A) = a then for ε > 0 sufficiently small, Id +A(ε) ∈ G−∞(M/B;E) and
[Id +A] ∈ K1(B) depends only on [Id +a] ∈ K1

c(T ∗(M/B) so defining

25.2.2008.54425.2.2008.544 (12.19) Indsl : K1
c(T ∗(M/B)) −→ Kc(B).
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Proof. Note that we are making the effort here not to assume that the fibres
are compact – nor does the base need to be compact. The main point is that the
quantized family of operators is invertible for small ε > 0 with inverse of the same
type. Indeed, the discussion in Section ?? shows that there is no problem in con-
structing a semiclassical family which inverts the quantization to infinite order, so
up to an error term which is a standard family of smoothing operators vanishing
to infinte order at ε = 0. Here all families are uniformly properly supported and
so such a perturbation of the identity is invertible with inverse of the same form.
Thus it remains only to show that the K-class defined by this invertible section
of G−∞(M/B;E) is independent of choices. Since any two semiclassical quantiza-
tions are homotopic for small enough ε > 0, independence of choice and homotopy
invariance under deformation of a follows from the same construction. Stability is
also immediate, so the map(

25.2.2008.544
12.19) is well-defined as desired. �

Having defined this ‘odd semiclassical index map’ we note that there is also an
even version, defined using the discussion of projections in Proposition

7.2.2008.516
3.11. Recall

that the K-theory with compact supports of a non-compact space X, in this case
slT ∗(M/B), is represented by equivalence classes of smooth families of projections
π : X −→ GL(N,C), where π2 = π and π is constant outside a compact set.
Equivalence of two such projections πi corresponds to the existence of maps a,
b : X −→ M(N,C) also constant outside a compact set and such that aπib = π2.
This just means that π2bπ2 is an isomorphism from the range of π2 to the range of
π1 with inverse π2aπ1.

31.3.2008.611 Proposition 12.6. The semiclassical quantization of projections to projections,
in Proposition

7.2.2008.516
3.11, induces a push-forward, or index, map in even K-theory for

any fibration with compact fibres

31.3.2008.61231.3.2008.612 (12.20) Ind0
sl : K0

c(T ∗(M/B)) −→ K0(B).

Proof. Two semiclassical families of projections with the same symbol are
homotopic through projections so the map (

31.3.2008.612
12.20), in which the index of π is the

formal difference of the pair P 	π∞ of its quantization and the constant projection
‘at infinity’ is well-defined up to homotopy. Finite rank approximation shows that it
defines an element of the K-theory B and it is straightforward to show independence
of choices. �

12.5. Bott periodicity and the semiclassical index

*** Take E = CN below, since we know we can do this in constructing the
index maps.

In the preceeding section two versions of the index map, as pushforward in
K-theory for a fibration, have been defined. Next we show that they are ‘equal’.

31.3.2008.605 Proposition 12.7. For any fibration with compact fibres, the diagramme

31.3.2008.58931.3.2008.589 (12.21) K1
c(R× T ∗(M/B))

Ind1
sl //

��
Indiso

��

K1
c(R×B)

Indiso

��
K0

c(T ∗(M/B))
Ind0

sl // K0(B)
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commutes, where the vertical maps are the realizations of Bott periodicity discussed
in (

22.11.2007.357
10.53).

The top map is, as indicated, the odd semiclassical index for the fibration M×R −→
B × R with an extra factor of R. Clearly the relative cotangent bundle for this
fibration is R× T ∗(M/B).

Of course the problem with proving such a result is that the vertical map are
defined by isotropic quantization and the horizontal maps by semiclassical quanti-
zation. As usual, the approach adopted here is to construct an algebra of operators
which includes both quantizations naturally (i.e. the correspond to the symbol
maps). In this case this is relatively straightforward because isotropic quantization
is itself rather simple. Thus the algebra Ψ0

iso(Rn) arises from a non-commutative

product on C∞(R2n). Similarly we now the that the algebra of semiclassical oper-
ators on the fibres of M can also be identified with a space of smooth functions on
a manifold, namely

31.3.2008.59031.3.2008.590 (12.22)
Ψ−∞sl (M/B;E) = ε−d

{
A ∈ C∞(M2

sl; Hom(E)⊗ ΩR);A ≡ 0 at {ε = 0} \ ff
}
.

Here

31.3.2008.59131.3.2008.591 (12.23) M2
sl = [[0, 1]×M2

φ, {0} ×∆]

is obtained by the blow up of the diagonal at ε = 0 in the fibre product.
What we want is really the completed tensor product of these two algebras.

Thus consider
31.3.2008.59231.3.2008.592 (12.24)

Ψ0,−∞
iso− sl(R

n ×M/B;E)

=
{
A ∈ ε−dC∞(R2n ×M2

sl; Hom(E)⊗ ΩR);A ≡ 0 at {ε = 0} \ ff
}
.

As spaces of amplitudes (i.e. before quantization) we can define the spaces of other
(real or complex) orders by

31.3.2008.59631.3.2008.596 (12.25) Ψm,−∞
iso− sl(R

n ×M/B;E) = ρ−mΨ0,−∞
iso− sl(R

n ×M/B;E)

where ρ ∈ C∞(R2n) is a boundary defining function, i.e. a non-vanishing real elliptic
symobl of order −1 in the isotropic calculus.

31.3.2008.593 Proposition 12.8. The space in (
31.3.2008.592
12.24) is an algebra under (the continuous

extension of) the isotropic product on Rn for symbols with values in the smoothing
operators on the fibres of φ : M −→ B. There are two short exact symbol sequences
which are multiplicative

31.3.2008.59431.3.2008.594 (12.26)

Ψ−1,−∞
iso− sl (Rn ×M/B;E) �

� // Ψ0,−∞
iso− sl(Rn ×M/B;E)

σiso // C∞(Sn−1; Ψ−∞sl (M/B;E)

εΨ0,−∞
iso− sl(Rn ×M/B;E)�

� //Ψ0,−∞
iso− sl(Rn ×M/B;E)

σsl //S(slT ∗(M/B); Ψ0
iso(Rn;E))
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which have a common double symbol map
31.3.2008.59731.3.2008.597 (12.27)

C∞(Sn−1; Ψ−∞sl (M/B;E))

σsl

))
Ψ0,−∞

iso− sl(Rn ×M/B;E)

σiso

66

σsl ((

S(Sn−1 × slT ∗(M/B); hom(E)),

S(slT ∗(M/B); Ψ0
iso(Rn;E))

σiso

55

and combine to give a joint symbol sequence

31.3.2008.59531.3.2008.595 (12.28) εΨ−1,−∞
iso− sl (Rn ×M/B;E) ↪→ Ψ0,−∞

iso− sl(R
n ×M/B;E)

σiso⊕σsl−→ C∞(Sn−1; Ψ−∞sl (M/B;E))⊕ S(slT ∗(M/B); Ψ0
iso(Rn;E))

which is exact in the centre and has range precisely the subspace satisfying the
compatibility condition in (

31.3.2008.597
12.27), that

31.3.2008.59831.3.2008.598 (12.29) σslσiso = σisoσsl.

Proof. I will do this ***. The main point is that these are just smooth
functions and we can do the quantizations separately in each of the spaces treating
the other variables as parameters and then reverse the discussion – really just as
though it is a finiter rather than a completed tensor product. Everything should
work out pretty well. �

Proof of Proposition
31.3.2008.605
12.7. Now – and really this is essentially the same

argument as recurs below in the proof of multiplicativity – we consider the quanti-
zation procedure determined by this algebra. Starting with a ‘double symbol’

31.3.2008.60631.3.2008.606 (12.30) ã ∈ S(R× slT ∗(M/B) s.t. (Id +ã)−1 = Id +b̃, b̃ ∈∈ S(R× slT ∗(M/B),

we take the radial compactification of the line into S and so realize ã as an element
a of the image space in (

31.3.2008.597
12.27),

31.3.2008.59931.3.2008.599 (12.31)
a ∈ S(S×slT ∗(M/B); hom(E)) s.t. (Id +a)−1 = Id +b, b ∈ S(S×slT ∗(M/B); hom(E))

we proceed to ‘quantize’ a in two ways. First, we can use semiclassical quantization
to choose a family

31.3.2008.60031.3.2008.600 (12.32) α′ ∈ C∞(S; Ψ−∞sl (M/B;E)) s.t. σsl(α
′) = a.

Here the circle just consists of parameters which should be added to both the base
and the fibre and so do not contribute at all to the fibre quantization. It follows
that Id +α′ is invertible for small ε > 0 and that, by definition of semiclassical
quantization,

31.3.2008.60731.3.2008.607 (12.33) Indsl([Id +ã]) = [Id +α′] ∈ K1
c(R×B).

Secondly we can proceed in the opposite way and construct a family

31.3.2008.60131.3.2008.601 (12.34) α′′ ∈ S(slT ∗(M/B); Ψ0
iso(Rn;E)) s.t. σiso(α′′) = a.
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From the discussion of isotropic quantization, the invertibility of Id +a means that
Id +α′′ is a Fredholm family. In fact we know that for N sufficiently large,

31.3.2008.60231.3.2008.602 (12.35) (Id +α′′)(Id−π(N)) has null space precisley the range of π(N),

where π(N) is the projection onto the span of the first N eigenspaces of the harmonic
oscillator (extended to act on sections of E ****). Then we can choose a generalized
inverse Id +β′′ of Id +α′′ with

31.3.2008.60331.3.2008.603 (12.36)

β′′ ∈ S(slT ∗(M/B); Ψ0
iso(Rn;E)) and

(Id +β′′)(Id−π′)(Id +α′′)(Id−π(N)) = (Id−π(N)),

(Id +α′′)(Id−π(N))(Id +β′′)(Id−π′) = (Id−π′)

π′π′ = π′, π′ − π(N) ∈ S(slT ∗(M/B); Ψ0
iso(Rn;E)).

Note that I have written things out this way to avoid having to allow the main
families to remain trivial at infinity on slT ∗(M/B) – although there has to be non-
triviality there in order to get the errors to be represented by projections in this way.
Then, from the definition of the Bott periodicity map by isotropic quantization,

31.3.2008.60831.3.2008.608 (12.37) Indiso([Id +ã]) = [π(N) 	 π′] ∈ K0
c(slT ∗(M/B))

is the left vertical map in (
31.3.2008.589
12.21).

So, as it should be, the semiclassical quantization is easier.
Using the properties of the algebra, we can find a common element A ∈

Ψ0,−∞
iso− sl(Rn ×M/B;E) such that σsl(A) = α′′ and σiso(A) = α′. Moreover, Id +A

has a ‘two-sided parameterix’ Id +B, B ∈ Ψ0,−∞
iso− sl(Rn × M/B;E) which can be

constructed so that, as elements of the semiclassical-isotropic algebra

31.3.2008.60931.3.2008.609 (12.38)
(Id +B)(Id +A) = Id−π1, (Id +A)(Id +B) = Id−π2,

πi ∈ Ψ−∞,−∞iso− sl (M/B;E), π2
i = πi, i = 1, 2.

Now, of necessity

31.3.2008.61031.3.2008.610 (12.39) σsl(π1) = π(N), σsl(π2) = π′.

Now, we claim that for ε > 0 small,

31.3.2008.60431.3.2008.604 (12.40)
Ind(Id +A) = [π1 	 π2] = Ind0

sl(π(N), π
′) = Indsl Ind0

iso(Id +ã) and

Ind(Id +A) = Indiso(Id +α′) = Indiso Indsl(Id +ã).

The first equality on the top line in (
31.3.2008.604
12.40) is the essentially definition of the

index in the isotropic algebra (here extended a bit because of the values in the
smoothing algebra) because of (

31.3.2008.609
12.38). The second equality follows from the defi-

nition of the even semiclassical index map and (
31.3.2008.610
12.39) and the third equality is the

combination of this and (
31.3.2008.608
12.37). Similarly the second line in (

31.3.2008.604
12.40) follows from

the choice of A as a semiclassical quantization of α′. �

12.6. Hilbert bundles and projections
Hilbert-bund

** This section, or parts of it, may need to be moved back into the K-theory
chapter.

As is well-known, all infinite-dimensional separable Hilbert spaces (here al-
ways over C) are isomorphic. Namely, if one takes as model `2, the space of
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square-summable complex sequences, then an isomorphism to a separable infinite-
dimensional Hilber space, H, corresponds exactly to a choice of complete orthonor-
mal basis in H and such can be constructed by the application of the Gram-Schmidt
orthonormalization procedure to any countable dense subset. The group U(H) of
unitary operators on H is then an infinite-dimensional analogue of U(N), the group
of N × N unitary matrices. However, in contrast the the finite dimensional case,
U(H) is contractible. In the infinite-dimensional setting it is necessary to specify the
topology in which this contractibility is to take place. The ‘serious’ theorem here is
Kuiper’s theorem that the unitary group is contractible in the norm topology. We
will only use the weaker result,

11.4.2008.686 Proposition 12.9. For any infinite-dimensional separable Hilbert space, U(H)
is contractible in the strong topology, meaning there is a map

11.4.2008.68711.4.2008.687 (12.41)
U(H)× [0, 1] 3 (U, t) =⇒ Ut ∈ U(H) s.t. Utv −→ v in H ∀ v ∈ H, U ∈ U(H).

Proof. One example of an infinite-dimensional separable Hilbert space is
L2([0, 1]) with an orthonormal basis given by the exponentials of period 1. Thus it
suffices to prove strong contractibility for this example. For given v ∈ L2([0, 1]),
U ∈ U(L2([0, 1])) and t ∈ [0, 1] set

11.4.2008.68811.4.2008.688 (12.42) vt(x) = v(tx), x ∈ [0, 1] and Utv(x) =

{
(Uvt)(x/t) 0 ≤ x ≤ t
v(x) x > t.

Thus Utv(x) is given by the identity operator on [t, 1] and by a rescaled version of
U on [0, 1]. Clearly Ut is linear and

11.4.2008.69011.4.2008.690 (12.43)∫ 1

0

|Utv(x)|2 =

∫ t

0

|Uvt(x/t)|2dx+

∫ 1

t

|v(x)|2dx = t‖vt‖2L2 +

∫ 1

t

|v(x)|2dx = ‖v‖2L2

so Ut is unitary. Similarly
11.4.2008.69111.4.2008.691 (12.44)

‖Utv−v‖L2([0,1]) = ‖Utv−v‖L2([0,t]) ≤ ‖Utv‖L2([0,t])+‖u‖L2([0,t]) ≤ 2‖v‖L2([0,t] → 0 as t→ 0

shows that Ut → Id strongly.
So, it suffices to check that the continuity of the map

11.4.2008.69211.4.2008.692 (12.45) U(H)×H× [0, 1] 3 (U, v) 7−→ Utv ∈ H

with respect to the strong topology on U(H). �

Note that the contraction constructed in (
11.4.2008.688
12.42) is multiplicative, namely

11.4.2008.69511.4.2008.695 (12.46) (UV )t = UtVt

as follows directly from the definition. This should be useful somewhere!
The main application we need of this contractibility is the existence of finite

rank approximations to the identity for fibre bundles. One way to do this is to note
the following general topological result.

11.4.2008.696 Proposition 12.10. If F :M−→ B is a topological fibre bundle over a com-
pact manifold and the typical fibre, Z is contractible, then F has a right inverse,
i.e. the bundle has a section.
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Proof. Maybe I will put a detailed proof in somewhere. This is pretty easy
using a triangulation but it might be better to have a proof using small geodesic
balls. �

Thus, for a fibration M −→ B consider the Hilbert spaces of square-integrable
sections of a vector bundle E over M these combine to give a bundle L2(M/B;E)
overB. Each of the fibres is unitarily equivalent to the fixed Hilbert space L2(Z;E

∣∣
Z

)
and we can consider the bundle P −→ B with fibre at b

11.4.2008.69711.4.2008.697 (12.47) Pb = {G : L2(Zb;E
∣∣
Zb

) −→ L2(Z;E
∣∣
Z

) unitary

consisting of all such unitary equivalences – this is a principal bundle for the action
of U(L2(Z;E

∣∣
Z

)) by composition. In fact the bundle is locally trivial for the norm
topology but we have only checked the contractibility of the fibre for the strong
topology. Applying Proposition

11.4.2008.696
12.10 we conclude that there is a section of B −→ P

which is strongly continuous – of course if we used Kuiper’s theorem we could show
that there is a norm-continuous section.

11.4.2008.694 Proposition 12.11. For any fibration M −→ B, Hermitian vector bundle
E over M and choice of smooth positive fibre density, there are sections ei ∈
C∞(M ;E), i ∈ N, which form an orthonormal basis in each fibre.

Proof. As discussed before the statement of the Proposition, the bundle P has
a strongly continuous section G. Then for any orthonormal basis fi of L2(Z;E

∣∣
Z

)

the sections e′i = G−1fi ∈ C0(B;L2(M/B;E)) are continuous and form an orthonor-
mal basis at each point. Now, we can approximate such continuous-L2 sections by
smooth sections e′′i ∈ C∞(M ;E) as closely as we wish. In particular we can choose
these smooth sections so that

11.4.2008.69811.4.2008.698 (12.48) sup
b∈B
‖e′i − e′′i ‖ ≤ 2−i−4, i ≥ 1.

Now, we claim that these new sections can in turn be modified to a smooth or-
thonormal basis. Certainly from (

11.4.2008.698
12.48), the operator

11.4.2008.69911.4.2008.699 (12.49) Tbu =
∑
i

〈u, e′i(b)〉e′′i (b) has ‖Tb − Id ‖L2 ≤

(∑
i

‖e′i − e′′i ‖2
) 1

2

≤ 1/4

so is invertible. Thus the finite span of the e′′i is certainly dense and they are
independent. Gram-Schmidt orthonormalization therefore gives an orthonormal
basis all elements of which are smooth. �

The main use we put such a smooth orthonormal basis to is the construction
of approximate identities which give uniform, i.e. norm convergent, finite rank ap-
proximations to smoothing operators.

11.4.2008.700 Proposition 12.12. Having chosen a smooth orthonormal basis ei ∈ C∞(M ;E)
for a fibration M −→ B (corresponding to a choice of Hermitian structure and
smooth fibre densities) the orthogonal projections π(N) onto the span of the first N
elements are such that

11.4.2008.70111.4.2008.701 (12.50) ‖π(N)Aπ(N) −A‖L2(M/B;E) → 0 as N →∞ ∀ A ∈ Ψ−∞(M/B;E).

Proof. This follows from the compactness of smoothing operators on L2. �
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12.7. Adiabatic limit

The main content of the K-theory version of the families index theorem of
Atiyah and Singer is that there really is only one way to define an index map,
essentially because this is a push-forward map in K-theory. We start the proof
by showing this in one particular case. Namely we have shown above **** that if
M is a compact manifold which is fibred over B then the K-theory of B can be
realized as the homotopy classes of sections of the bundle of groups G−∞(M/B;E)
for any bundle E over M. That is, instead of maps from B into G−∞(Z) it is fine
to consider the twisted case where Z is the varying fibre of φ : M −→ B. The proof
above is by deformation to finite rank, i.e. in both cases sections can be replaced
by maps into GL(N ;C) for some appropriately large N depending on the section.

Now, suppose that the total space M of a fibration is itself the base of another
fibration

4.3.2008.5454.3.2008.545 (12.51) Z̃ M̃

φ̃

��
ψ

��

Z M

φ

��
B.

In this setting we will show that the ‘adiabatic calculus’ of smoothing operators
gives a quantization map

13.3.2008.55913.3.2008.559 (12.52) K1(T ∗(M/B)) −→ K1(B)

which is defined in terms of smoothing operators on the fibres of φ̃ : M̃ −→M.
To define this we need to investigate the adiabatic algebra of smoothing oper-

ators for a fibration and then for an iterated fibration. First we start with the case
that the overall base, B is a point. Thus M may be replaced by Z and we consider
a fibration, with compact fibres

13.3.2008.56013.3.2008.560 (12.53) Z̃ Y

φ̃

��
Z

13.3.2008.561 Definition 12.1. A smooth family of smoothing operators, A ∈ C∞((0, 1]δ; Ψ−∞(Y ;E))

(for a vector bundle over Y ) is an adiabatic family for the fibration φ̃ in (
13.3.2008.560
12.53)

if and only if its Schwartz kernel (also denoted A) has the following properties as
δ ↓ 0 :

(1) If χ̃ ∈ C∞(Y 2) has support disjoint from the fibre diagonal {(p, p′) ∈
Y 2; φ̃(p) = φ̃(p′)} then

13.3.2008.56213.3.2008.562 (12.54) χ̃A ∈ δ∞C∞([0, 1]; Ψ−∞(Y ;E))

i.e. is smooth down to δ = 0 where it vanishes to infinite order.
(2) If χ ∈ C∞(Z) has support in a coordinate patch over which φ̃ is trivial

(and E reduces to the pull-back of a bundle Ẽ over Z̃) with coordinate z
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then
13.3.2008.56313.3.2008.563 (12.55)

χ(z)Aχ(z′) = δ−mA′(z,
z − z′

δ
; Ψ−∞(Z̃; Ẽ)),

A ∈ C∞(Rm × Rm × Z̃ × Z̃; Hom(Ẽ)⊗ Ω(Z̃)R)

having compact support in the first variable and being Schwartz in the second.

The set space of such operators will be denoted Ψ−∞
ad(φ̃)

(Y ;E).

*** This is just a quick redefintion of the semiclassical cotangent bundle.
We may define a bundle πsl : slT ∗Z −→ Z as the restriction to δ = 0 of

the bundle over [0, 1]δ × Z which has global sections of the form α(δ, z)/δ where
α ∈ C∞([0, 1];T ∗Z) is a smooth 1-form on Z (depending smoothly on δ.) This
bundle is bundle isomorphic to T ∗Z (since it is so over (0, 1)×Z) but not naturally
so, however there is a well-defined homotopy class of bundle isomorphisms between
slT ∗Z and T ∗Z. We may then pull the fibration Y −→ Z back to a fibration
π∗Y −→ Z which has the same fibre, Z̃, but now has base slT ∗Z. This allows us to
define the smoothing operators on the fibres and also to see that Schwartz sections
are well-defined, giving the algebra S(slT ∗Z; Ψ−∞(π∗slY/

slT ∗Z;E)).

13.3.2008.564 Proposition 12.13. The adiabatic smoothing operators for a fibration form an
algebra of operators on C∞([0, 1] × Y ;E) with a multiplicative short exact symbol
sequence

13.3.2008.56513.3.2008.565 (12.56)

0 //δΨ−∞
ad(φ̃)

(Y ;E)�
� //Ψ−∞

ad(φ̃)
(Y ;E)

σad //S(slT ∗Z; Ψ−∞(π∗slY/
slT ∗Z;E)) //0.

Proof. The usual. �

Now, we can extend this construction to the iterated fibration (
4.3.2008.545
12.51), to define

a similar algebra Ψ−∞
ad(φ̃)

(M̃/B;E) for any bundle E over M̃. These are just smooth

families with respect to the variables in B with each operator being an adiabatic
family on the fibre above b ∈ B – so for the fibration of φ̃−1(Zb) ⊂ M̃ over Zb =
φ−1(b). Thus when δ ↓ 0 additional commutative variables appear in the fibre
slT ∗(Zb); combined with the variables in B this means that the adiabatic symbol
has parameters in slT ∗(M/B) as a bundle over M. So the multiplicative short exact
sequence (

13.3.2008.565
12.56) becomes

13.3.2008.56613.3.2008.566 (12.57)

δΨ−∞
ad(φ̃)

(M̃/B;E)�
� //Ψ−∞

ad(φ̃)
(M̃/B;E)

σad //S(slT ∗(M/B); Ψ−∞(π∗slM̃/slT ∗(M/B);E))

where I dropped off the zeros to save space.

13.3.2008.567 Proposition 12.14. If a ∈ C∞c (slT ∗(M/B);G−∞(π∗slM̃/slT ∗(M/B);E)), i.e.
is the sum of the identity and a family in the image of the symbol map in (

13.3.2008.566
12.57)

which has compact support such that the result is always invertible, then any adi-
abatic family A ∈ Ψ−∞

ad(φ̃)
(M̃/B;E) with σad(A) = a is such that Id +A(δ) ∈

G−∞(M̃/B;E) for 0 : δ < δ0 for δ0 > 0 small enough, and this defines unam-
biguously an index map

13.3.2008.56813.3.2008.568 (12.58) Indsl : K1(T ∗(M/B)) −→ K1(B)
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which (as the notation indicates) is equal to the semiclassical index map as previ-
ously defined.

Proof. The first step is to show homotopy invariance and stability as before.
Then, use the (*** currently non-existent) result above showing that smoothing
operators on a fibration can be uniformly approximated by finite rank families
to deform the symbol a to a finite rank operator i.e. acting on a trivial finite
dimensional bundle of C∞(M̃/M ;E) as a bundle over M, and then just observe
that a semiclassical quantization of this gives an adiabatic quantization. Hence the
maps are the same – the adiabatic quantization is just a more general construction
which is ‘retractible’ to the semiclassical case. �

12.8. Multiplicativity

One of the crucial properties of the semiclassical index, defined in (
25.2.2008.544
12.19) is

that it gives a commutative diagramme under iteration of fibrations. Thus suppose
we are again in the set-up of (

4.3.2008.545
12.51). The composite map is then a fibration and

we wish to prove that the same (semiclassical) index map arises by quantization in
‘one step’ and in ‘two steps’.

4.3.2008.546 Proposition 12.15. For an iterated fibration as in (
4.3.2008.545
12.51), the semiclassical

index map for ψ, the overall fibration, is the composite

4.3.2008.5474.3.2008.547 (12.59) Indsl(ψ) = Indsl(ψ) ◦ Indsl(φ̃∗) .

Notice that the map on the rightmost here is not quite the usual semiclassical index
map for φ̃ as a fibration from M̃ to M (with fibre Z̃), rather it is the semiclassical
index for the pull-back of this fibration to slT ∗(M/B) as a bundle over M to give
a fibration

4.3.2008.5484.3.2008.548 (12.60) Z̃ slT ∗(M/B)×M M̃

φ̃∗

��
slT ∗(M/B).

It is precisely for this purpose that the adiabatic-semiclassical algebra was
discussed earlier. Unfortunately, at the time of writing, the notation in the earlier
discussion has not been reversed – it is here but this is potentially confusing.

So consider the very special case where the iterated fibration (
4.3.2008.548
12.60) reverts to

a single fibration, namely B = {pt}. We can then declare M = Z and so write the
single fibration as

5.3.2008.5495.3.2008.549 (12.61) Z̃ M

φ̃

��
Z.

So, we proceed to construct the algebra Ψ−∞
sl ad(φ̃)

(M̃ ;E) of adiabatic-semiclassical

smoothing operators associated to this fibration. Going back to Section
AdsclEucl
2.20 we con-

sider 2-parameter families, where the parameters are ε > 0 and δ > 0 of smoothing
operators on M̃ (acting on sections of E). Thus

5.3.2008.5505.3.2008.550 (12.62) Ψ−∞
sl ad(φ̃)

(M̃ ;E) ⊂ C∞((0, 1)ε × (0, 1)δ; Ψ−∞(M̃ ;E))
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and we only need describe exactly the admissible behaviour of the kernels as ε ↓ 0
and δ ↓ 0, separately and jointly. Of course we do this in terms of the local families
discussed in Section

AdsclEucl
2.20.

Let zi, z̃j be local coordinates in M̃ with the zi coordinates in the base and z̃j
coordinates in the fibre. In M2 we take two copies of such local coordinates with
primed versions in the right factors. The fibre diagonal is the globally well-defined
manifold given locally by zi = z′i. The assumptions we make on the kernels are

• As δ ↓ 0 the kernels vanish rapidly with all derivatives in z 6= z′

• As ε ↓ 0 the kernels vanish rapidly with all derivatives in z 6= z′ or z̃ 6= z̃′.
• As δ ↓ 0 but ε ≥ ε0 > 0, the kernels a of the form

5.3.2008.5515.3.2008.551 (12.63) δ−kA(δ, ε, z̃, z̃′, z,
z − z′

δ
), A ∈ C∞([0, 1]× [ε0, 1]× Ũ , Ũ ′, U ;S(Rk))

near z = z′ (for possibly different coordinate patches U,U ′ in the fibres.)
• In ε < ε0 for ε0 > 0 sufficiently small, the kernels are uniformly of the

form

6.3.2008.5536.3.2008.553 (12.64) δ−n−kA(δ, ε, z̃,
z̃ − z̃′

ε
, z,

z − z′

εδ
), A ∈ C∞([δ0, 1]× [0, 1]× Ũ , U ;S(Rn))

near z = z′, z̃ = z̃′.

*** Describe the two tangent and cotangent bundles, adiabatic and semiclassical-
adiabatic.

The adiabatic-semiclassical calculus corresponds to a modified cotangent bun-
dle sl adT ∗M̃, over M̃ × [0, 1]ε× [0, 1]δ. Namely the fibre at any point is the quotient
of the space of smooth linear combinations

6.3.2008.5576.3.2008.557 (12.65)
df

ε
,
dg

εδ
, f ∈ C∞(M̃), g ∈ C∞(Z)

by the corresponding product with the ideal of functions vanishing at that point.
There are canonical isomorphisms

6.3.2008.5586.3.2008.558 (12.66)

sl adT ∗M̃
∣∣
δ>0
≡ slT ∗M̃,

sl adT ∗M̃
∣∣
ε>0
≡ adT ∗M̃ and

sl adT ∗M̃
∣∣
ε>0,δ>0

≡ T ∗M̃.

6.3.2008.554 Proposition 12.16. For a fibration (
5.3.2008.549
12.61) the space of operators Ψ−∞

sl ad(φ̃)
(M̃ ;E)

forms an alegbra under composition with two multiplicative exact symbol sequences
6.3.2008.5556.3.2008.555 (12.67)

δΨ−∞
sl ad(φ̃)

(M̃ ;E) // Ψ−∞
sl ad(φ̃)

(M̃ ;E)
σad// Ψ−∞sl (slT ∗(M/B)×M M̃/slT ∗(M/B))

εΨ−∞
sl ad(φ̃)

(M̃ ;E) // Ψ−∞
sl ad(φ̃)

(M̃ ;E)
σsl // C∞

(
[0, 1]δ;S(sl adT ∗M̃)

)
.

Furthermore the joint symbol map gives a short exact sequence

6.3.2008.5566.3.2008.556 (12.68) εδΨ−∞
sl ad(φ̃)

(M̃ ;E) // Ψ−∞
sl ad(φ̃)

(M̃ ;E)
σsl⊕σad // ⊕
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12.9. Analytic index

The analytic index map of Atiyah and Singer is defined for any fibration with
compact fibres

2.4.2008.6132.4.2008.613 (12.69) Inda : K0
c(T ∗(M/B)) −→ K0(B).

It starts with the realization of the K-theory as equivalence classes of pairs (E, a) of
a superbundle, i.e. pair or complex vector bundles E = (E+, E−), over M, the total
space of the fibration, and an isomorphism a ∈ C∞(S∗(M/B);E) between the pull-
backs to S∗(M/B), the boundary of the radial compactification of T ∗(M/B). From
the surjectivity of the symbol map for the algebra of pseudodifferential operators
on the fibres of φ : M −→ B,

2.4.2008.6142.4.2008.614 (12.70) Ψ0(M/B;E) −→ C∞(S∗(M/B);E)

we know there exists a family A ∈ Ψ0(M/B;E) with σ0(A) = a.
Since a is assumed to be invertible, A is, by definition, elliptic. Again from

the properties of the calculus we can choose B ∈ Ψ0(M/B;E−), E− = (E−, E+),
which is a two-sided parameterix for A, so

2.4.2008.6152.4.2008.615 (12.71) BA = Id−R+, AB = Id−R−, R± ∈ Ψ−∞(M/B;E±).

The existence of finite rank exhaustions π±N ∈ C∞(M/B;E±), for which π±NR
± 7−→

R in Ψ−∞(M/B;E±) for any element R of this space, allows A to be stabilized to
have finite rank. Namely, for N large enough, Id−R+(Id−π+

N ) is invertible, with
inverse necessarily of the form Id−S, S ∈ Ψ−∞(M/B;E+) and then

2.4.2008.6162.4.2008.616 (12.72)
(Id−R+)(Id−π+

N ) = (Id−R+(Id−π+
N ))(Id−π+

N ) =⇒ (Id−S)BA(Id−πN ) = Id−πN .
From this it follows that A(Id−πN ) has null space precisely the range of πN on
each fibre. In particular its null spaces form a smooth bundle over B and since it
has the same symbol we can replace A with A(Id−πN ). Since the numerical index
of a Fredholm family, such as A, is constant, the range of this new choice of A has
a finite dimensional complement of constant rank, which can be identified with the
null space of A∗ for choices of smooth inner products and a smooth family of fibre
densities. Let π− ∈ Ψ−∞(M/B;E−) be the family of projections onto this finite
dimensional bundle. Then

2.4.2008.6172.4.2008.617 (12.73) (Id−π−)A = A

and B can be replaced by the generalized inverse, which is the inverse of A as a
map from the range of Id−π− to the range of Id−πN extended as zero to the range
of π−. With this choice (

2.4.2008.615
12.71) is replaced by

2.4.2008.6182.4.2008.618 (12.74) BA = Id−π+
N , AB = Id−π−.

2.4.2008.619 Proposition 12.17 (Analytic index). The class [π+
N , π

−] ∈ K0(B) constructed
above for N large enough depends only on [a] ∈ K0

c(T ∗(M/B)) and not on the
choices made and gives a well-defined homomorphism (

2.4.2008.613
12.69).

Proof. Choices:

(1) a as representative of [a].
(2) A with symbol a
(3) N
(4) Adjoints, densities
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Increasing N to N ′ adds the bundle π+
N ′ − π

+
N to the null space of the quan-

tization of the symbol, changing A(Id+
N ) to A(Id+

N ′) and adds the image of this
bundle under A to the complement of the range – i.e. subtracts it from the range.
Thus it leaves the index class unchanged. Stabilizing a by adding the identity on
some bundle F which is added to both E+ and E− also does not change the index
and bundle isomorphisms of E± do not change the index either. All the other
equivalences can be done by smooth homotopies and this corresponds to adding an
interval (or if you want to be very careful, a circle – by reversing the homotopy
on the other side) to the base. Then the null and conull bundles are defined over
B × [0, 1] and it follows that their restrictions to the ends are bundle isomorphic.
Thus the analytic index is well-defined. �

The existence of an invertible family of pseudodifferential operators of any real
order shows that the definition of the index can be extended to elliptic families of
any (fixed) order.

12.10. Analytic and semiclassical index

We have now defined the analytic index in the form given by Atiyah and Singer
and also a similar map using semiclassical quantization of projections. The latter
has also been reduced to the odd semiclassical index by suspension. So the main
remaining step in the proof of the index theorem, in K-theory, of Atiyah and Singer
is the equality of the analytic and semiclassical index maps.

2.4.2008.621 Theorem 12.1 (Analytic=Semiclassical index). The maps (
2.4.2008.613
12.69) and (

31.3.2008.612
12.20)

are equal.

Obviously we need to ‘put the semiclassical and standard quantizations to-
gether.’ Once again we do this by developing (yet) another calculus of operators!
Fortunately in this case it is the semiclassical calculus for symbols of finite order,
rather than the smoothing operators used in the semiclassical calculus, and we have
been carrying this along for some time.

The main difference between the two index maps is the realizations of the
compactly supported K-theory of the fibrewise cotangent bundle on which they are
based. To remove irrelevancies, consider the more general case of a real vector
bundle V over a compact manifold B. The index may of Atiyah and Singer is based
on the identification of the K-theory with compact supports of V as the K-theory
of the radial compactification V̄ , relative to its boundary SV = (V \0/R+, together
with the fact that any vector bundle over V̄ is isomorphic to the pull-back of a
bundle over B.

Forgetting the latter fact we consider the more general ‘chain space’ for K-
theory consisting of triples (π+, π−, a) where π± ∈ C∞(V̄ ;M(N,C)) are smooth
families of projections, (π±)2 = π±, over the radial compactification and a ∈
C∞(SV ;M(N,C)) is an identificaiton of their ranges over SV, namely we demand
that

2.4.2008.6222.4.2008.622 (12.75) aπ+ = a, π−a = a, Nul(a) = (π+), Ran(a) = Ran(π−).

That is, a is precisely an isomorphism of the range of π+ to the range of π− over
the boundary of the radial compactication.

This could be said better!
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2.4.2008.623 Proposition 12.18. The triples (π+, π−, a) above give K1
c(V ) under the equiv-

alence relations of bundle isomorphism over V̄ for π±, homotopy for a and stabil-
ity, in the sense of taking direct sum with (p, p, Idp) where p ∈ C∞(V̄ ;M(N ′,C))
is some family of projections. Moreover the inclusion of (π, π∞, π∞), where π ∈
C∞(V̄ ,M(N,C)) is a family of projections constant near infinity (with constant
value π∞) and of (E, a) by complementing E− to a trivial bundle, induce retrac-
tions of the chain spaces.

Proof. Deformation. �

Now the idea is that if we can define a ‘big’ index map from these general triples
(π+, π−, a) which reduces to the semiclassical and the analytic index maps under
the inclusions of these chain spaces, then we prove the desired equality. In fact we
will simplify the ‘big’ chain space by arranging that

2.4.2008.6262.4.2008.626 (12.76) π+ ∈M(N,C)

is actually constant. We can do this by stabilizing to a trivial bundle. **** Do
more

To ‘quantize’ a general triple subject to (
2.4.2008.626
12.76), we first use Proposition ****

to choose a semiclassical family of projections Π− ∈ Ψ0
sl(M/B;CN ) with

2.4.2008.6242.4.2008.624 (12.77) σsl(Π
−) = π− and σ0(Π−) = π−

∣∣
S∗(M/B)

∀ ε > 0.

Then we choose a standard quantization of the family of matrices a, namely A′ ∈
Ψ0(M/B;CN ) with σ0(A′) = a. For ε > 0 but sufficiently small consider the family
of ‘Toeplitz’ operators

2.4.2008.6252.4.2008.625 (12.78) A = Π−A′Π+ ∈ Ψ0(M/B;CN ), Π+ = π+ ∈M(N,C).

Now, let πN be our usualy family of finite rank smooth projecitons approximation
the identity on the fibres of M/B. As in the standard case, we shall check that

2.4.2008.6272.4.2008.627 (12.79) A(Id−πN ) has null space Ran(πNπ
+)

where by arrangement, πNπ
+ is a family of projections, so defines a smooth bundle

over B. Now, (
2.4.2008.627
12.79) is just the usual parametrix argument. Let b be the inverse

of a as a map from Ran(π−) to Ran(π+). Thus it has the same properties as a in
(
2.4.2008.622
12.75) but with the signs reversed. Then quantize it to B′ ∈ Ψ0(M/B;CN ) and

replace this by B = Π+B′Π−. From the symbol calculus it follows that

2.4.2008.6282.4.2008.628 (12.80) BA = Π+(Id +R+)Π+, Π+R+Π+ = R+

where initially R+ ∈ Ψ−1(M/B;CN ). Then taking an asymptotic sum (Id +R),
with R ∈ Ψ−1(M/B;CN ) and Π+RΠ+ = R of the Neumann series for (Id +R)
and composing on the left with Π+(Id +R)Π+ gives (

2.4.2008.628
12.80) with error R+ ∈

Ψ−∞(M/B;CN ). Then (
2.4.2008.624
12.77) follows since R+(Id−ΠN )→ 0 in Ψ−∞(M/B;CN ).

Once the null space of A has been stabilized to a bundle, i.e. it is replaced
by A(Id−πN ) for N sufficiently large, it follows that its range inside the range
of the family Π− has finite dimensional complement, given by a smooth family of
projections π̃ ∈ Ψ−∞(M/B;CN with Π−π̃Π− = π̃. Then the index in this more
general setting is

2.4.2008.6292.4.2008.629 (12.81) Ind(π+, π−, A) = [Π+πN 	 π̃] ∈ K0(B).
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So, it remains to check that this is independent of the choices made in its
definition and that it reduces to the semiclassical index and the analytic index in
the corresponding special cases. ****

12.11. Atiyah-Singer index theorem in K-theory

In Theorem
2.4.2008.621
12.1 the two variants of the index map introduced above, have

been shown to be equal. The index theorem of Atiyah and Singer therefore reduces
to the equality of either of these and the topological index

16.4.2008.70216.4.2008.702 (12.82) Indt : K0
c(T ∗(M/B)) −→ K0(B)

which we proceed to define. As the name indicates this map does not involve any
‘analytic constructions’, except that Bott periodicity is involved which we proved
analytically. This third map (

16.4.2008.702
12.82) for a fibration (

5.3.2008.549
12.61) is defined using an

embedding into a trivial fibration as in Proposition
7.12.2007.453
12.1. The Collar Neighbourhood

Theorem shows that for each point in the base b ∈ B the corresponding fibre has
a neighbourhood Ωb ⊂ RM which is a bundle over Zb which is diffeomorphic (with
Zb mapped to the zero section) to the normal bundle of Zb ⊂ RM . Moverover this
is all smooth in b so that in

16.4.2008.70316.4.2008.703 (12.83) N oo //

  

Ω �
� // B × SM

��

M

OO

��
B.

the bundle maps are consistent.
Since Ω is smoothly (although by no means naturally) identified with a bundle

over M it follows that the relative cotangent bundle of Ω as a bundle over B is
smoothly identified as

16.4.2008.70416.4.2008.704 (12.84) T ∗(Ω/B) ' T ∗(M/B)⊕N ⊕N∗.
Since N ⊕N∗ is a symplectic bundle over M we know from the Thom isomorphism
that

16.4.2008.70516.4.2008.705 (12.85) K0
c(T ∗(Ω/B)) ' K0

c(T ∗(M/B)).

On the other hand Ω ↪→ B × RM is an open embedding of fibrations, so there is a
pull-back map for compactly supported K-theory:

16.4.2008.70616.4.2008.706 (12.86) K0
c(T ∗(Ω/B)) −→ K0

c(T ∗(RM )×B)

where on the right the relative cotangent bundle of RM ×B as a bundle over B is
written out. Finally T ∗(RM ) = R2M so using Bott periodicity combined with the
previous maps we define the topological index as the composite

16.4.2008.70716.4.2008.707 (12.87) Indt : K0
c(T ∗(M/B)) −→ K0

c(T ∗(Ω/B))
ι∗−→ K0

c(T ∗(RM )×B)) ≡ K0(B).

It is not immediately clear that this map is independent of the embedding of
the fibration which is used to define it. This is not difficult to show directly but
we will instead show that it is equal to something which we already know to be
independent of choices.
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16.4.2008.708 Theorem 12.2 (Index theorem in K-theory). The topological index map (
16.4.2008.707
12.87)

is equal to the analytic index map.

Proof. We will follow the proof in
Atiyah-Singer1
[2] at least in outline. That is, we follow

the semiclassical index through the diagramme (
16.4.2008.703
12.83) and check that the analytic

index factors through each step. In view of Theorem
2.4.2008.621
12.1 we can use either the

analytic or the semiclassical index map at each stage.
The first stage is to consider the iterated fibration

16.4.2008.71016.4.2008.710 (12.88) N // M // B.

Here, N is the normal bundle to the embedding of M. Theorem
4.3.2008.546
12.15 applies to

this iterated fibration and gives the commutativity of the three maps on the right,
corresponding to (

4.3.2008.547
12.59)

16.4.2008.70916.4.2008.709 (12.89) K0
c(T ∗(M/B)⊕ (N ⊕N∗))

Inda

��
Indsl

zz

K0
c(T ∗(M/B))

Thom

OO

Inda

��
K0(B).

Since we know that the analytic index is the inverse of the Thom isomorphism we
conclude that

16.4.2008.71216.4.2008.712 (12.90) Inda = Indsl ◦Thom .

The space on the top in (
16.4.2008.709
12.89) is diffeomorphic to Ω as a bundle over B so the

same identity (
16.4.2008.712
12.90) holds with the semiclassical index map for Ω. Thus we have

passed through the first map in (
16.4.2008.707
12.87) to start the commutative digramme

16.4.2008.71316.4.2008.713 (12.91) K0
c(T ∗(M/B))

Inda ((

//
Indt

oo

K0
c(T ∗(Ω/B))

Indsl

��

ι∗ // K0
c(T ∗(RM )×B))

Indslvv
K0(B).

Since we already know excision for the semiclassical index, the right triangle in
(
16.4.2008.713
12.91) also commutes. Then again Bott perioditicity is the same as the index map

(now thought of as ‘analytic’) so in fact the (
16.4.2008.713
12.91) shows that the topological index

in (
16.4.2008.707
12.87) also defines the analytic, or semiclassical, index. �

12.12. Chern character of the index bundle

In the case of the isotropic or Toeplitz index, which is to say the Thom isomor-
phism, we have already obtained a formula for the Chern character of the index in
Proposition

28.4.2008.761
10.24. Starting form this and following the proof above of the index

theorem in K-theory, the computation of the Chern character of the index bundle is
fairly straightforward. The main complication is that we have a plethora of index
maps and we have to keep them a little separated (even though the are all the
same). The simplest, and from the current perspective the most fundamental, is
the semiclassical odd index.
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29.4.2008.769 Theorem 12.3. For any fibration the Chern character of the semiclassical odd
index map is given by

29.4.2008.77029.4.2008.770 (12.92) Chodd(Indsl(a)) =

∫
T∗(M/B)

Chodd(a) ∧ Td(φ),

where the Todd class of the fibration is fibre integral of the Chern class of the Bott
element on the normal bundle to an embedding of the fibration in a trivial bundle
over the base.

Proof. The index map for a trivial bundle has been shown in §
Toddclass
10.13 to be

given by the integration of the Chern character over the fibres, in either the odd or
even cases. The index map itself is shown above to factor through this Thom case
by embedding

29.4.2008.77129.4.2008.771 (12.93) Ind(a) = Ind(ι(a⊗ βN ))

where βN is the Bott element on the fibres of the normal bundle to the embedding
and ι represents the inclusion (‘excision’) map for K-theory with compact supports
in a neighbourhood of the embedding of the total space of the fibration. Thus,
applying the bundle case and then the consistency properties of the Chern character,

29.4.2008.77229.4.2008.772 (12.94)

Chodd(Ind(a)) = Chodd(Ind(ι(a⊗ βN ))

=

∫
R2N

Chodd(ι(a⊗ βN )) =

∫
N⊕N∗

Chodd(a) ∧ Ch(βN )

=

∫
T∗(M/B)

Chodd(a) ∧ Td(φ).

Here the Todd class of the bundle is the integral over the fibres of the Bott element
on normal bundle to the embedding. �

Since Td(φ) is an absolute cohomology class on T ∗(M/B) it can also be identi-
fied, via the ‘easy’ Thom isomorphism, with the pull-back of a cohomology class on
M ; this is the usual interpretation. Of course one would like to know that Td(φ) is
determined by φ and not by the chosen embedding of M in a trivial bundle. How-
ever, the Todd class, being the Chern character of the Bott element, or harmonic
oscillator, is stable under the addition of trivial bundles – this again follows from
the discussion in §

Toddclass
10.13. Under duality it switches sign, since this is just reversing

the order of N and N∗. Since the embedding is into a trivial space we see that the
normal bundle is a summand of the tangent bundle to a trivial bundle. It follows
that its the Todd class is independent of choices. It can of course be identified with
a characteristic class but I will not do this here.

Other cases, even semiclassical and Atiyah-Singer now follow from the previous
identifications.

12.13. Dirac families

The most commonly encountered families of non-self-adjoint elliptic differential
operators, at least in a geometric setting, are Dirac operators. So we discuss these
briefly and derive the index formula in cohomology in that case. Indeed, computa-
tions based on the special properties of Dirac operators can be used to derive the
index formula in general.
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12.14. Spectral sections

Problems

7.12.2007.454 Problem 12.1. Proof of Proposition
7.12.2007.453
12.1.

7.12.2007.457 Problem 12.2. Embedding manifolds.



APPENDIX A

Bounded operators on Hilbert space

Some of the main properties of bounded operators on a complex Hilbert space,
H, are recalled here; they are assumed at various points in the text.

(1) Boundedness equals continuity, B(H).
(2) ‖AB‖ ≤ ‖A‖‖B‖
(3) (A− λ)−1 ∈ B(H) if |λ| ≥ ‖A‖.
(4) ‖A∗A‖ = ‖AA∗‖ = ‖A‖2.
(5) Compact operators, defined by requiring the closure of the image of the

unit ball to be compact, form the norm closure of the operators of finite
rank.

(6) Fredholm operators have parametrices up to compact errors.
(7) Fredholm operators have generalized inverses.
(8) Fredholm operators for an open subalgebra.
(9) Hilbert-Schmidt operators?

(10) Operators of trace class?
(11) General Schatten class?
1

1Known as Gerard, my PhD advisor
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Index of Mathematicians

Atiyah, Michael Francis: 1929–, 261

Bianchi, Luigi 1856–1928, 285
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Calderón, Alberto Pedro: 1920–1998,
185
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1984, 18

Fedosov, Boris , 289
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1830, 17
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Fredholm, Erik Ivar: 1866–1927, 77
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Grothendieck, Alexander: 1928-, 269

Hörmander, Lars Valter: 1931–, 51
Hardy, Godfrey Harold: 1877-1947,

275
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Keller, Joseph , 232

N.H. Kuiper, 324

Schur, Issai: 1875–1941, 49
Schwartz, Laurent: 1915–2002, 13
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Singer, Isadore Manual: 1925–, 261
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Todd, John Arthur: 1908–1994, 290
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