Contents

Versions 6
Outline and Practicalities 7

Chapter 1. Pseudodifferential operators, manifolds and compactification 9
1. Manifolds with corners 13
2. Compactification 15
3. Collar neighbourhood 18

Chapter 2. Symbols and conormal distributions at a point 23
1. Schwartz kernels 23
2. Topology and asymptotic summation 27
3. Integration 28
4. Wavefrontset 29
5. Restriction 30
6. Multiplicativity 31
7. Asymptotic completeness 31
8. $I^m_c(\mathbb{R}^n; \{0\})$ as a module 33
9. Action of Ψ^* on I^* 34
10. Problems 1 34

Chapter 3. The ring $\Psi^*(\mathbb{R}^n)$ 37
1. Coordinate invariance of $I^m_c(\mathbb{R}^n; \{0\})$ 37
2. Left/right invariance 39
3. Isotropic algebra 45
4. Problems 2 48

Chapter 4. Ellipticity and wavefront set 51
1. Ellipticity of symbols 52
2. Ellipticity of pseudodifferential operators 54
3. Wavefront set of a distribution 56

Chapter 5. Propagation of singularities 61
1. Hamiltonian mechanics 61
2. Hörmander’s Theorem 62
3. The Hamilton vector field 63
4. Construction of symbols 64
5. Proof of regularity 65
6. A question about the wave equation 67

Chapter 6. Smoothing operators and K-theory 69
1. Hilbert space and operators 69
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Spectral and scattering theory</td>
<td>148</td>
</tr>
</tbody>
</table>

Bibliography 149
Versions

v1 30 November, 2021: L1 and compactification
v2 31 January, 2022: L2 started
v2b 4 February, 2022: Some corrections from Paige
v3 7 February, 2022: L3
v3a 8 February, 2022: L3 reorganized, correction from Zach
v3b 9 February, 2022: Asymptotic completeness added to L3
v3c 9 February, 2022: Finished L3
v4 14 February, 2022: Problems 1 included, part of L5
v5 16 February, 2022: L6
v5a 16 February, 2022: More of L6
v6 17 February, 2022: Corrections from Paige, L6
v7 19 February, 2022: Most of L7
v7a 19 February, 2022: More on L7
v7b 20 February, 2022: First version of Problems 2
v7c 22 February, 2022: More handwritten notes
v7d 24 February, 2022: Corrections from Paige
v8 26 February, 2022: L8
v9 2 March, 2022: L9
v9a 2 March, 2022: More on L9, start of L10, corrections from Paige, precision in section on Elliptic symbols
v9b 4 March, 2022: Corrections, + version fixed
v9c 5 March, 2022: Revised propagation proof
v10 6 March, 2022: Smoothing operators for L10
v10a 7 March, 2022: Corrections
v10b 8 March, 2022: Bott periodicity statement
v11 9 March, 2022: L11
v11a 9 March, 2022: Minor
v12 9 March, 2022: L12 started
v12a 11 March, 2022: Collar nhbd
v12b 11 March, 2022: Isotropic section and corrections from Paige
v12c 14 March, 2022: Bott element
v13 15 March, 2022: L12/13
v13a 19 March, 2022: Hilbert space discussion added
v13b 20 March, 2022: Unipotent Grassmannian
v14 21 March, 2022: L14
v15 28 March, 2022: L15, corrections from Paige, Problems 3
v15a 28 March, 2022: Corrections
v15b 1 April, 2022: Corrections from Paige to Chapter K-theory
v16 6 April, 2022: Most of L17, L16 still to come
v17 7 April, 2022: Outline to end
v18 9 April, 2022: Most of L18
v18a 12 April, 2022: L18
v19 18 April, 2022: L19 in part
v19a 18 April, 2022: more of L19
v20 20 April, 2022: L20/21
v21 21 April, 2022: L21
v22 22 April, 2022: L22 – outline of proof of index theorem
Outline and Practicalities

[Revised: 24 January, 2022.]

In this course I hope to cover four (types of) theorems which involve microlocal analysis and in particular the theory of pseudodifferential operators. Namely

1. Hörmander’s theorem on the propagation of singularities
2. Weyl’s law for the distribution of eigenvalues
3. The Atiyah-Singer index theorem and K-theory
4. Hodge theory and boundaries

As a first step I will proceed to discuss the algebras of pseudodifferential operators on Euclidean space and on a compact manifold and then similar algebras (and related modules) on manifolds with boundary and for fibrations and more

\[\Psi^*(\mathbb{R}^n), \Psi^*(M), \Psi^*_*(M) \]

where the upper star is an order and the lower star is some sort of structural information.

To me the four results listed above are fundamental, and I like them! The first two are relatively closely related and both give realization of the ‘semiclassical limit’, the interplay between the non-commutative theory of (pseudo-)differential operators and the more familiar behaviour of analysis of functions. The latter two are more global but both involve the essential invertibility of (pseudo-)differential operators.

Let me briefly indicate what these theorems are about.

Hörmander’s theorem on the propagation of singularities is a precise version, and massive generalization, of ‘Huyghen’s Principle’. The latter describes the spreading of the singular edge of solutions of the wave equation. The precise version is one of the consequences of ‘microlocalization’, transferring analysis from ‘space’ to ‘phase space’ interpreted concretely as a manifold and its cotangent bundle respectively.

Weyl’s asymptotic formula describes, at ‘high energy’, the number of eigenvalues of a self-adjoint elliptic operator, on a compact manifold, in terms of the volume inside the energy surface in the cotangent bundle. The original theorem was actually about the eigenvalues of the Dirichlet problem on a domain in \(\mathbb{R}^2 \).

Elliptic (pseudo-)differential operators on a compact manifold are Fredholm – they are invertible modulo finite dimensional null space and complement of the range. The index, the difference of these two dimensions, is a very stable number in the sense that it only depends on the ‘topology’ defined by the leading part of the operator and the theorem gives a formula for it. One classical version of this is the Riemann-Roch theorem for the \(\overline{\partial} \) operator on (line bundles over) a compact Riemann surface. This already requires some effort to understand! There is a
one-dimensional real version of the theorem, due to Toeplitz, which states that the index of an elliptic Toeplitz operator on the circle (the projection onto the Hardy space, consisting of the functions smooth on and holomorphic on the interior of the disk, of multiplication by a non-vanishing smooth function) is equal to (minus) the winding number of the function.

You probably do know the Hodge theorem for a compact manifold without boundary as the identification of the deRham cohomology with the space of harmonic forms. For non-compact manifolds there is no simple generalization, rather there are many corresponding to structures ‘at infinity’ (meaning near the boundary).

Clearly, each of these theorems could easily expand to take the whole semester. Still I hope to show how they can be approached using pseudodifferential operators and ‘quantization’. In fact an alternative title for this course might be ‘Smooth quantization’. So most of the time will be devoted to preparing the background material, specifically pseudodifferential operators on \mathbb{R}^n, pseudodifferential operators on a manifold, families of pseudodifferential operators and then rings of pseudodifferential operators quantizing a Lie algebroid.

I plan to give 26 one-hour lectures in the 9:30-10:30 slot on Tuesdays and Thursdays and leave 20 minutes for questions and discussions (even short presentations by students); if there is sufficient interest I will organize another ‘discussion’ time, perhaps on Wednesdays in the afternoon. There will be notes for each topic (the precise correspondence to the individual lectures will depend on various things), which will include topics I will not have time to cover and will certainly include further references – to books, lecture notes and papers. With any luck at least some of the lectures should appear on my webpage before the beginning of the semester.

Problem sets: There will be approximately 5, every two weeks. Grading may be by discussion with me.

Grades: Graduate students are expected to participate actively. That is what ‘A’ means to me. By this I mean that I expect people to attend lectures and to ask questions. For undergraduates this course might be heavy lifting, it is for me, so please talk to me by early in the semester at the latest. We can discuss what you should expect. There are no exams.

Prerequisites: I will assume familiarity with manifolds and distributions, essentially as in 18.155 but plan to review pretty much everything.

Why don’t I just follow a book or my earlier lecture notes? This probably reflects some personal failing and general dissatisfaction with how things are done! I find it difficult to think through things without seeing some other way of approaching them. If it is not to your taste, I am sorry but that is the way it is. I may not get to all the results listed above, but I expect to at least get to the point where they are all within reach and that is really what I want to do – try to put these results in a general context that maybe encourages them to be exploited (i.e. applied) and extended.

In the interim, feel free to contact me with questions or comments.

CHAPTER 1

Pseudodifferential operators, manifolds and compactification

The main aim of this course is to describe various algebras of pseudodifferential operators. Let me start with a traditional ‘crypto-historical’ description of the ‘standard’ algebra of pseudodifferential operators on \mathbb{R}^n. I recall notation for functions below. Let’s assume you know about the spaces of smooth functions on Euclidean space and the successively larger subspaces of compactly supported functions, Schwartz functions and of functions with all derivatives bounded

\begin{equation}
C^\infty_c(\mathbb{R}^n) \subset S(\mathbb{R}^n) \subset C^\infty(\mathbb{R}^n) \subset C^\infty(\mathbb{R}^n)
\end{equation}

maybe including their topologies and duals.

For any multiindex $\alpha \in \mathbb{N}_0^n$, $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$ being the non-negative integers, the corresponding iterated partial derivative acts on each of these spaces

\begin{equation}
D^\alpha u(x) = i^{-|\alpha|} \frac{\partial^{\alpha_1}}{\partial x_1} \cdots \frac{\partial^{\alpha_n}}{\partial x_n} \cdots u(x), \quad |\alpha| = \alpha_1 + \cdots + \alpha_n
\end{equation}

where the normalizing power of i is inserted to help with notation for the Fourier transform.

These generate the commutative ring of differential operators with constant coefficients with general element

\begin{equation}
p(D) = \sum_{|\alpha| \leq m} c_\alpha D^\alpha, \quad c_\alpha \in \mathbb{C}.
\end{equation}

This is a filtered ring which is isomorphic to the ring of polynomials in n variables.

Similarly, each of the spaces in (1.1) is a ring, so multiplication of functions is defined. Combining these we consider linear partial differential operators which are given by sums

\begin{equation}
P(x, D)u = \sum_{|\alpha| \leq m} p_\alpha(x) D^\alpha u.
\end{equation}

In each case, when the coefficients are in one of the spaces (1.1), we get an operator – a continuous linear map – on the corresponding space.

Whilst this is probably very familiar, and the operator product is given explicitly by Leinbik' formula, it is very significant that these form a ring (and algebra) with product

\begin{equation}
P(x, D)Q(x, D) = \sum_{\gamma \leq \alpha, \beta} p_\alpha(x)q_\beta(x) D^{\alpha + \beta - \gamma}, \quad Q(x, D) = \sum_{|\beta| \leq m'} q_\beta(x) D^\beta.
\end{equation}

It is worth thinking a little more about what is going on here. First note that (1.4) is not as ‘natural’ as (1.3) in so far as we have chosen to write the ‘coefficients',
the function $p_\alpha(x)$ on the left. This is true in (1.3) as well but there the constants commute with the differentiation operators. Of course this is reflected in the fact that the product (1.3) is not commutative.

Now, let’s concentrate on the Schwartz space. For this we have the Fourier transform

$$\mathcal{F} : \mathcal{S}(\mathbb{R}^n) \rightarrow \mathcal{S}(\mathbb{R}^n), \quad \mathcal{F}u(\xi) = \hat{u}(\xi) = \int_{\mathbb{R}^n} e^{-ix\cdot\xi}u(x)dx. \quad (1.6)$$

It is a linear isomorphism. We know that

$$u \in \mathcal{S}(\mathbb{R}^n) \Rightarrow \mathcal{F}(D^n u)(\xi) = \xi^n \hat{u}(\xi). \quad (1.7)$$

The Fourier transform conjugates differentiation to multiplication. Of course a monomial such as ξ^α is not in the Schwartz space, but it does define an operator on it by multiplication.

So the inverse Fourier transform, $u(x) = (2\pi)^{-n}\int e^{ix\cdot\xi}\hat{u}(\xi)$, allows us to write

$$D^n u(x) = (2\pi)^{-n}\int_{\mathbb{R}^n} e^{ix\cdot\xi}\xi^\alpha \hat{u}(\xi)d\xi. \quad (1.8)$$

A linear partial differential operator, (1.4), is given by a finite sum so we can combine (1.8) with (1.4) and write

$$Pu(x) = (2\pi)^{-n}\int_{\mathbb{R}^n} p(x,\xi)\hat{u}(\xi)d\xi, \quad p(x,\xi) = \sum_{|\alpha| \leq m} p_\alpha(x)\xi^\alpha d\xi. \quad (1.9)$$

Since $\hat{u} \in \mathcal{S}(\mathbb{R}^n)$, the integral converges absolutely. If we just assume that the coefficients are in $C^\infty(\mathbb{R}^n)$ then the integral converges uniformly on compact subsets in $x \in \mathbb{R}^n$, with all its formal derivatives in x because of the obvious estimates

$$|D^\beta_x p(x,\xi)| \leq C_{K,\gamma}(1 + |\xi|)^m, \quad x \in K \subseteq \mathbb{R}^n, \quad \xi \in \mathbb{R}^n. \quad (1.10)$$

We can actually define the ‘standard’ space of pseudodifferential operators of order $m \in \mathbb{R}$ by considering those functions $a \in C^\infty(\mathbb{R}^n_x \times \mathbb{R}^n_\xi)$ which satisfy the symbol estimates

$$|D^\beta_\xi D^\beta_x a(x,\xi)| \leq C_{\beta,\gamma}(1 + |\xi|)^{|\beta|} + |\xi|^{m-|\beta|}, \quad \forall \gamma, \beta \in \mathbb{N}_0^n. \quad (1.11)$$

Notice that p in (1.9) satisfies these estimates for an integer m if the coefficients are in the space

$$C^\infty_c(\mathbb{R}^n) = \{ f \in C^\infty(\mathbb{R}^n); \sup_{x \in \mathbb{R}^n} |D^\gamma f(x)| < \infty \forall \gamma \}, \quad (1.12)$$

consisting of the smooth functions with all derivatives bounded.

The space of functions satisfying estimates (1.11) is often written $S^m_{1,0}$ as part of a more general class of spaces $S^m_{\rho,\delta}$ where the exponent $m - |\beta|$ is replaced by $m - \rho|\beta| + \delta|\alpha|$. I will make this notation more precise below, and will probably not talk about the general ρ, δ space – in fact there are many variants of such estimates (see for instance (1.8)) and we will already have enough things to think about.

It follows directly that if $a \in S^m_{1,0}$, in the sense that all the estimates (1.11) hold, then the direct generalization of (1.8) holds.

$$Au(x) = (2\pi)^{-n}\int_{\mathbb{R}^n} a(x,\xi)\hat{u}(\xi)d\xi \Rightarrow a : \mathcal{S}(\mathbb{R}^n) \rightarrow C^\infty_c(\mathbb{R}^n). \quad (1.13)$$

In fact much more is true:
Theorem 1.1. The space of operators, $\Psi^m(\mathbb{R}^n) = \Psi^m_{1,0}(\mathbb{R}^n)$ defined by symbols, a, satisfying (1.11) act on $\mathcal{S}(\mathbb{R}^n)$ and form a filtered \dagger-closed (\dagger for adjoint here) ring

$$\Psi^m(\mathbb{R}^n) \circ \Psi^m(\mathbb{R}^n) \subset \Psi^{m+m'}(\mathbb{R}^n), \forall m, m' \in \mathbb{R}.$$

This is the main content of the first chapter of [6], see also Grigis-Sjöstrand [3]. Probably the first place this result appeared in this form is [4].

The \dagger in the header of the theorem is to indicate that I will not prove it immediately but a full proof, and more, will follow later. It is not that it is so hard to prove such a result, it is rather that I prefer to approach it from a position of strength, so somewhat indirectly, in the sense that I want to give a good deal of background before proving it.

[Narrowed parts of a lecture are things I don’t expect to have time to cover.]

Still it is important to see what is straightforward to prove and what may require some more thought. First let’s make sure we do have (1.13).

Proof of (1.13): If $u \in \mathcal{S}(\mathbb{R}^n)$ then the product

$$a(x, \xi) \hat{u}(\xi) \in S^{-1}_m = \bigcap_{M \in \mathbb{R}} S^M_{1,0}$$

meaning that the estimates in (1.11) hold for all m. Indeed this is just the product rule for differentiation. Written out fully in terms of Leibniz’ formula

$$D^\beta_x D^\gamma_\xi (a(x, \xi) \hat{u}(\xi)) = \sum_{\gamma \leq \beta} \binom{\beta}{\gamma} D^\gamma_x D^\beta_\xi a(x, \xi) \cdot D^{\beta - \gamma}_\xi \hat{u}$$

Then one can apply the more obvious fact the product is rapidly decaying in ξ:

$$S^m_{1,0} \cdot \mathcal{S}(\mathbb{R}^n) \subset S^{m-k}_{1,0} \forall k \in \mathbb{R}.$$

The integral (1.13) is therefore convergent. Again, if you like to be precise, you can see that

$$S^m_{1,0} \subset C^0_{\infty}(\mathbb{R}^n; L^1(\mathbb{R}^n)), m < -n$$

since $(1 + |\xi|)^{-n-\epsilon} \in L^1(\mathbb{R}^n)$ if $\epsilon > 0$. Now we can use standard properties of Lebesgue (or improper Riemann) integrals to see that $Au \in C^0_{\infty}(\mathbb{R}^n)$ is a bounded continuous function and the same holds for all derivatives giving (1.13).

Now, I want to check a couple of other statements, weaker than Theorem 1.1. First the stronger mapping property that

$$A : \mathcal{S}(\mathbb{R}^n) \rightarrow \mathcal{S}(\mathbb{R}^n).$$

This is a matter of getting ‘decay’. Namely we need to show that for any monomial and any derivative

$$x^\gamma D^\alpha_x Au \in C^0_{\infty}(\mathbb{R}^n).$$

We can approach this one step at a time, asking just about $x_j A$. Note that we can certainly multiply by x_j but the operator $x_j A$ is not in general in $\Psi^m_{1,0}(\mathbb{R}^n)$ (for any m) since $x_j a(x, \xi)$ is not
bounded as $|x_j| \to \infty$ even for fixed ξ. However the integral in (1.13) still converges rapidly in ξ for x in compact sets if we replace a by $x_j a$ so

$$x_j A : \mathcal{S}(\mathbb{R}^n) \to C^\infty(\mathbb{R}^n)$$ \hfill (1.21)

for instance.

Lemma 1.1. In the sense of operators (1.21)

$$[x_j, A] = x_j A - Ax_j \in \Psi^{m-1}_{1,0}(\mathbb{R}^n).$$ \hfill (1.22)

Proof. We use ‘integration by parts’. Consider the operator Ax_j. The Fourier transform of $x_j u$, $u \in \mathcal{S}(\mathbb{R}^n)$ is $i \partial_{\xi_j} \hat{u}$ so

$$Ax_j u = (2\pi)^{-n} \int a(x, \xi) e^{ix\cdot \xi} i \partial_{\xi_j} \hat{u}(\xi) d\xi = x_j A(x, D) u + b_j(x, D)u,$$

where

$$b_j(x, \xi) = -i \partial_{\xi_j} a(x, \xi) \in S^{m-1}_{1,0}.$$ \hfill (1.24)

The rapid decay of $a(x, \xi) \hat{u}(\xi)$ in ξ means that

$$\int \partial_{\xi_j} (a(x, \xi) e^{ix\cdot \xi} \hat{u}(\xi)) d\xi = 0.$$ \hfill (1.23)

Proceeding by induction we conclude that

$$x^\gamma A(x, D) = \sum_{\delta \leq \gamma} B_\delta(x, D) x^\delta, \quad B_\delta(x, D) \in \Psi^{m-|\gamma|+|\delta|}_{1,0}.$$ \hfill (1.24)

Rather than $\Psi^m_{1,0}(\mathbb{R}^n)$, which will be denoted simply $\Psi^m(\mathbb{R}^n)$, we will be most interested in the smaller space which I will denote $\Psi^m_{\text{cl}}(\mathbb{R}^n)$ often called the ring (with the composition property (1.14)) of ‘classical’ pseudodifferential operators where the symbols a have the additional property:

Definition 1.1. A symbol in the sense of (1.11) is classical (also ‘polyhomogeneous’) if there exists a sequence $a_i \in C^\infty(\mathbb{R}^n_x \times (\mathbb{R}^n_\xi \setminus \{0\}))$ of homogeneous functions of degree $m - i$ (in the ξ variables)

$$a_i(x, t\xi) = t^{m-i} a(x, \xi), \quad t > 0, \quad (x, \xi) \in \mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$$

such that for (any) cutoff $\chi \in C_c^\infty(\mathbb{R}^n)$ with $\chi = 1$ near 0

$$a(x, \xi) - \sum_{i=0}^N (1 - \chi(\xi)) a_i(x, \xi) \in S^{m-N-1}.$$ \hfill (1.25)

These ‘classical’ symbols form a filtered subring $S^m_{\text{cl}} \subset S^m = S^m_{1,0}$. The relationship (1.20) (see Problem set 1) is often written

$$a \simeq \sum_i a_i$$ \hfill (1.27)

and a is then said to have a complete asymptotic expansion. Such ‘asymptotic summation’ (the existence of a given the a_i) is discussed below, it is closely related to E. Borel’s ‘Lemma’ on Taylor series. There is no statement of convergence of the series in (1.20) (although there is one lurking in the background) but you should be able to see that the a_i, assuming they exist are determined by the relations (1.20).
Now, when we insert such classical symbols in \((1.11)\) (or if you prefer, restrict to classical symbols) into the definition of pseudodifferential operators then the resulting space of constitutes a filtered subring \(\Psi^m_{cl}(\mathbb{R}^n) \subset \Psi^m(\mathbb{R}^n)\) which for positive integral \(m\) includes the differential operators of order \(m\) discussed above.

These two rings have many important properties but one of the most important is that one can recover the terms \(a_i\) in \((1.26)\) from the operator \(A\) and the leading term defines the principal symbol, \(\sigma_m\), as a map

\[
\Psi^m_{cl}(\mathbb{R}^n) \xrightarrow{\sigma_m} \{a_0 \in C^\infty(\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\}))\text{ homogeneous of degree }m\text{ in }\xi\},
\]

and this map is surjective, multiplicative and defines a short exact sequence

\[
\Psi^{m+m'}_{cl}(\mathbb{R}^n) \rightarrow \Psi^m_{cl}(\mathbb{R}^n) \rightarrow \{a_0 \in C^\infty(\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\}))\text{ homogeneous of degree }m\text{ in }\xi\}
\]

Here I have stuck with a cumbersome notation for the homogeneous space which will be refined below. There are similar exact sequences for the large algebra \(\Psi^*(\mathbb{R}^n)\) but the principal symbol lies in a quotient space.

So, we want to prove all these things and a lot more! However, I do not want to go there directly but rather map out the territory a bit first, in particular discussing the ‘symbol spaces’ concretely.

1. Manifolds with corners

This might appear to be a serious non-sequitor but I hope you will get used to the idea of these sections on background material and see a bit later why I am proceeding this way.

Both for ‘local’ analysis and the formulation of global results it is very convenient to focus on manifolds with corners as our basic ‘category of spaces’ (which it is as will be made precise later). There are several reasons to introduce these. An immediate one is to understand the symbol spaces and their generalizations. This I will get to next time. This allows me to introduce the spaces of conormal distributions which arise as the Schwartz kernels of the pseudodifferential operators we are interested in. Thinking about the kernels abstractly will allow us to generalize readily later. This involves manifolds with boundary, but then products will get you to manifolds with corners.

So, this is one of the basic settings for the course – analysis on manifolds with corners – but only taken as far as we need for the moment. Let me start with an explicit definition and then explain all the terms used in it. I’m assuming familiarity with the standard definition of a manifold without boundary.

Definition 1.2. A manifold, \(M\), is a metrizable, separable (so second countable) topological space with an open covering giving a (maximal) atlas of \(C^\infty\)-related coordinate patches modeled on \([0, \infty)\) and with embedded boundary hypersurfaces.

I will not assume connectedness without explicitly saying so, but the definition then requires all the components to have the same dimension.

So we are given a separable metric space, \(M\), but the ‘metrizable’ means we do not take the actual metric seriously, just the open sets it defines as the unions of open balls. A coordinate patch in such a topological space is a triple \((F, U, V)\)
consisting of a homeomorphism \(F : U \rightarrow V \) of an open subset \(U \subset M \) onto a (relatively) open subset \(V \subset [0, \infty)^n \). So this means there exists an open subset \(V' \subset \mathbb{R}^n \) such that the range \(V = V' \cap [0, \infty)^n \). The coordinates on the coordinate patch are the pull-backs of the coordinate functions \(x_i \) on \(\mathbb{R}^n \).

To make clear what ‘\(C^\infty \)-related’ for two such coordinate patches means, we need to define \(C^\infty(V) \) (I will not bother with lower regularity than \(C^\infty \)):

\[
C^\infty(V) = \{ u : V \rightarrow \mathbb{R} \text{ or } \mathbb{C}; \quad \exists V' \subset \mathbb{R}^n \text{ open } V = V' \cap [0, \infty)^n, \ u' \in C^\infty(V') \text{ and } u = u' \big |_V \}.
\]

So I am assuming you know about \(C^\infty(V') \) for open subsets of \(\mathbb{R}^n \).

Now the \(C^\infty \)-compatibility of two coordinate patches \((F_i, U_i, V_i) \), \(i = 1, 2 \), as introduced above, means that either \(U_1 \cap U_2 = \emptyset \) or else the transition maps

\[
F_{12} = F_1 \circ F_2^{-1} : F_2(U_1 \cap U_2) \rightarrow F_1(U_1 \cap U_2) \quad \text{and} \quad F_{21} = F_2 \circ F_1^{-1} : F_1(U_1 \cap U_2) \rightarrow F_2(U_1 \cap U_2)
\]

are \(C^\infty \) in the sense that \(F_{12}^*: C^\infty(F_1(U_1 \cap U_2)) \rightarrow C^\infty(F_2(U_1 \cap U_2)) \) and \(F_{21}^*: C^\infty(F_2(U_1 \cap U_2)) \rightarrow C^\infty(F_1(U_1 \cap U_2)) \); this is equivalent to saying either pull-back map is an isomorphism. This is also equivalent to saying that the pull-backs of the coordinate functions, under either of the maps \(F_i \), restrict to \(U_1 \cap U_2 \) to be \(C^\infty \) functions of the other coordinates.

So now an atlas is a covering by such (pairwise) \(C^\infty \)-compatible coordinate patches. If some coordinate patches are compatible with all the elements of an atlas then the combined collection is still an atlas – they are necessarily compatible amongst themselves as well. Hence any atlas is contained in a unique maximal atlas – all this is as in the boundaryless case.

If we just stop at this point then \(M \) is what I call a tied manifold although there is no general agreement on this. The missing point is the additional condition that ‘boundary hypersurfaces are embedded’. A point in a coordinate patch is a boundary point of codimension \(k \) if exactly \(k \) of the coordinate functions vanish on it (note that coordinate patches map into \([0, \infty)^n \) so by fiat all coordinates are non-negative – I will actually drop this requirement later but it makes things easier to state initially). By considering the differential of the transition map it follows that the codimension is well-defined at each point, it is independent of the coordinate patch used. This means that \(M \) has a stratification, a decomposition into disjoint pieces, based on the codimension

\[
M = M_0 \cup M_1 \cup \cdots \cup M_n
\]

where the \(M_j \) can be empty (from some \(k > 0 \) onward). The points of boundary codimension zero are the interior points of the manifold (there is a slight inconsistency between openness of subsets of \([0, \infty)^n \) and this, so the interior there is \((0, \infty)^n \), of course otherwise there would be no point in talking about the interior of a relatively open subset).

Each \(M_j \) itself is a manifold without boundary and the closures of the components of the \(M_j \) are called the boundary faces of codimension \(j \); the set of these boundary faces I will write as \(\mathcal{M}_j(M) \). In particular the boundary faces of codimension one, the \(H_i \in \mathcal{M}_1(M) \) are called the boundary hypersurfaces. The ‘boundary hypersurfaces are embedded’ part of the definition is just the statement that the restrictions of the coordinate patches to each \(H_i \) given them \(C^\infty \)-compatible atlases.
One consequence of this is functorial, that the boundary hypersurfaces (and in consequence all boundary faces) are themselves manifolds with corners. There are several useful ways to restate this condition but note how it fails for a ‘tear-shaped region’ in the plane.

The C^∞ functions on M are those that are C^∞ in each coordinate patch, meaning

$$f \in C^\infty(M) \iff (F^{-1})^*(f|_U) \in C^\infty(V) \text{ for each coordinate patch.}$$

This is equivalent to the same condition for any one compatible atlas.

The direct consequence of the ‘embedded’ requirement is that the boundary hypersurfaces have defining functions:

$$H_i \in \mathcal{M}_1(M) \implies \exists \rho_i \in C^\infty(M), \rho_i \geq 0, H_i = \{\rho_i = 0\},$$

where

$$d((F^{-1})^*\rho_i)(F(p)) \neq 0 \forall p \in H_i \text{ for all coordinate patches containing } p.$$

This last condition means that for each $p \in H_i$ there is a coordinate patch containing p in which ρ_i is a coordinate function.

If \tilde{M} is a manifold without boundary, i.e. $\tilde{M}_1 = \emptyset$, then $M \subset \tilde{M}$ is a(n embedded) submanifold if M has a covering by coordinate patches of \tilde{M} which restrict to give it the structure of a manifold with corners.

Theorem 1.2. For any manifold with corners there exists a manifold without boundary \tilde{M} of the same dimension in which M is embedded as a submanifold; if M is compact then \tilde{M} can be taken to be compact.

Although there is no quite canonical way of constructing such an extension, \tilde{M}, all the standard constructions of the tangent, cotangent, form bundles and other bundles associated to the frame bundle, pass over to the case of a manifold with corners in such a way that the restrictions for an extension of this type are canonical

$$TM = T\tilde{M}|_M, T^*M = T^*\tilde{M}|_M \text{ etc.}$$

However, there are important additional structures which arise from the boundary faces as I will discuss later.

So, which work in this degree of generality? Manifolds with corners are the smooth (i.e. C^∞) analogue of smooth algebraic varieties with divisors and they occur for similar reasons. One place manifolds with corners arise is through ‘compactification’.

2. Compactification

Although we will deal with non-compact manifolds, the ones that arise below have some ‘structure at infinity’. One way to describe what this means is through the notion of compactification.

Definition 1.3. A *compactification* of a manifold M is a compact manifold \overline{M} and a smooth injection $\iota : M \to \overline{M}$ which is a diffeomorphism to a (relatively of course) open dense submanifold.

Here, both M and \overline{M} may have corners. As always when introducing a new notion, we should specify when two compactifications are to be regarded as ‘the same’.
Definition 1.4. Two compactifications $\iota_i : M \to \overline{M}_i$ are equivalent if there exists a diffeomorphism $e : \overline{M}_1 \to \overline{M}_2$ giving a commutative diagramme

\[M \xrightarrow{\iota_1} \overline{M}_1 \xrightarrow{e} \overline{M}_2 \xleftarrow{\iota_2} M \]

Notice that the equivalence map e is unique if it exists since it is fixed on an open dense subset by (1.36). We also say that one compactification is finer than another if there is a smooth map e giving a commutative diagramme; again it if it exists it is determined. This defines a partial order on compactification – as we shall see below there can be non-comparable compactifications.

If M is compact it is a compactification of itself and it is unique in this sense of equivalence.

We might well want more structure for the compactification – for instance if M is a complex manifold then we might want \overline{M} to be complex and all maps to be holomorphic. There are important examples from algebraic geometry here. Most relevant at the moment is the projective compactification of a complex vector space $W \hookrightarrow \mathbb{P}W$ which I mention below but there are much more sophisticated examples to check out. There is the Deligne-Mumford compactification of the Riemann moduli spaces $\mathcal{M}_{g,n}$ (okay I hear a complaint from someone that the $\mathcal{M}_{g,n}$ are not quite manifolds, they are orbifolds in general, but take the number of punctures n large compared to the genus $g \geq 0$). Also there is the deConcini-Procesi ‘wonderful’ compactification of complex adjoint Lie groups (there is a real version of this compactification in [1]). Also, compactification of ‘Gravitational Instantons’ (aren’t the Physicists good at inventing names!).

The examples I will consider immediately are more prosaic, namely of a real finite-dimensional vector space V. This is both to illustrate the notion and for later reference. I will discuss

1. The one-point compactification(s) given by a sphere S^r.
2. The parabolic compactification gives a closed ball V^p.
3. The radial compactification also given by a closed ball $V = V^R$.

From the notation you can see that I have a preference for the radial compactification – I hope the discussion below shows why. Only the radial compactification is really used subsequently.

These can all be constructed using variants of stereographic projection. So, let’s start with $V = \mathbb{R}^n$, i.e. choose a basis. We embed \mathbb{R}^n into \mathbb{R}^{n+1} as the hyperplane

\[\mathbb{R}^n \ni x \mapsto (x, 1) \in P \subset \mathbb{R}^{n+1}. \]

In the first case consider the sphere S_n of radius $\frac{1}{2}$ centred at $(0, \frac{1}{2})$ and in the second and third cases take the sphere S_R of radius 1 centred at the origin. In both these latter cases a point of \mathbb{R}^n determines a unique line $L_1(x)$ or $L_R(x)$ through
the image of x in P and the centre of the corresponding sphere then
\[I_o : \mathbb{R}^n \rightarrow S_o, \quad I_o x \text{ is the other point in } S_o \cap L_o(x) \]
\[I_R : \mathbb{R}^n \rightarrow S_R^+, \quad I_R x \text{ is the other point in } S_R \cap L_1(x) \subset S_R^+ = S_R \cap \{x_{n+1} \geq 0\} \]
\[I_p : \mathbb{R}^n \rightarrow \mathbb{R}^n, \quad I_p x \text{ is the projection of } L_R x \text{ onto the closed unit ball in } \mathbb{R}^n \times \{0\} \]

In all three cases the full orthogonal group $O(n)$, acting on the first factor of $\mathbb{R}^n \times \mathbb{R}^n$ satisfies $I \cdot Ax = AL \cdot x$ for all $A \in O(n)$, effectively reducing the discussion to the case $n = 1$. Explicit formulae for the maps are easily derived:
\[I_o x = \left(\frac{x}{\sqrt{1 + |x|^2}}, \frac{1}{\sqrt{1 + |x|^2}} \right) \in S_o \subset \mathbb{R}^{n+1} \]
\[I_R = \left(\frac{x}{\sqrt{1 + (1 + |x|^2)^{-\frac{1}{2}}}}, \frac{1}{\sqrt{1 + (1 + |x|^2)^{-\frac{1}{2}}}} \right) \in S_R^+ \subset \mathbb{R}^{n+1} \]
\[I_p x = \left(\frac{x}{1 + |x|^2} \right) \in \mathbb{R}^n. \]

Thus, for the radial compactification $(1 + |x|^2)^{-\frac{1}{2}}$ is a boundary defining function and hence $|x|^{-1}$, which is a smooth function of it away from $x = 0$, is a defining function near the boundary. It follows that

\[\{ |x| > \epsilon > 0 \} \ni x \mapsto \left(\frac{1}{|x|}, \frac{x}{|x|} \right) \in [0, 1) \times S^{n-1} \]

extends to a smooth product decomposition of \mathbb{R}^n_R near the boundary. For the parabolic compactification it follows similarly that

\[\{ |x| > \epsilon > 0 \} \ni x \mapsto \left(\frac{1}{|x|^2}, \frac{x}{|x|} \right) \in [0, 1) \times S^{n-1} \]

is a product decomposition near the boundary.

It can be seen directly that

\[I_o \left(\frac{x}{|x|^2} \right) = SL_o \text{ where } S : S_o \setminus \{(0,1),(0,0)\} \rightarrow S_o \setminus \{(0,1),(0,0)\}, \]
\[\text{with } S(y,y_n) = (y, -y_n + 1) \]

is equatorial reflection on S_o.

In all cases it is clear either geometrically, or from the formulae (1.39), that the action of $O(n)$ extends smoothly from \mathbb{R}^n to the compactification. Similarly the scaling action by \mathbb{R}^+, with generator on \mathbb{R}^n

\[\sum_i x_i \frac{\partial}{\partial x_i} \]

extends smoothly. For the one-point compactification this follows from (1.42) and in the other two cases

\[\lim_{|x| \to \infty} \frac{tx}{(1 + t|x|^2)^{\frac{1}{2}}} = \frac{x}{(|x|^2)^{\frac{1}{2}}} \quad \text{and} \quad \lim_{|x| \to \infty} \frac{1}{(1 + t|x|^2)^{\frac{1}{2}}} = 0. \]
Thus in all cases the action of the conformal group \(O(n) \times \mathbb{R}^+ \) extends smoothly to the compactification.

Proposition 1.1. The action of the general linear group extends smoothly from \(\mathbb{R}^n \) to the radial and parabolic compactifications, but not to the one-point compactification; the translation action of \(\mathbb{R}^n \) extends smoothly to the radial and the one-point compactifications, but not to the parabolic compactification and there are smooth surjective maps, which are not diffeomorphisms, giving a commutative diagramme

\[
\begin{array}{c}
\text{GL}(n, R) \ltimes \mathbb{R}^n \\
\downarrow \\
\mathbb{S}^{n-1}_R \\
\downarrow \\
O(n) \ltimes (\mathbb{R}^+ \times \mathbb{R}^n) \\
\downarrow \\
\mathbb{S}^{n-1}_0 \quad \mathbb{R}^n \quad \mathbb{R}_p^n \quad \mathbb{B}_p^n \\
\downarrow \\
\mathbb{O}(n) \ltimes \mathbb{R}^n \end{array}
\]

Outline of proof. That the group actions extend as indicated follows by noting that the Lie algebra of \(\text{GL}(n, \mathbb{R}) \) consists of vector fields homogeneous of degree 0 and similarly the translations are homogeneous of degree \(-1\). Similar arguments show that the groups shown are the maximal subgroups of \(\text{GL}(n, R) \ltimes \mathbb{R}^n \) which extend to act smoothly on the one-point and parabolic compactifications. \(\Box \)

Corollary 1. The one-point compactification is defined for a vector space with conformal-Euclidean structure, the radial compactification is well-defined for an affine space and the parabolic compactification is well-defined for a vector space.

Both the radial and the parabolic compactifications have boundaryless variants, in which the bounding sphere is replaced by an embedded projective space \(\mathbb{S}^{n-1}/\pm \) by doubling across the boundary. The apparent advantage of this smaller compactification does not seem to be realized in practice.

Conjecture 1. The five compactifications are minimal in their respective categories (i.e. as manifolds with/without boundary) among compactifications with the invariance properties in (1.45).

Although, as noted above, it is the radial compactification which mostly appears below, other variants are relevant. In particular none of these compactifications are natural for products – the radial compactification of \(V_1 \times V_2 \) is not ‘comparable’ to the products of the radial compactifications. Still, the relationship between the radial compactification of the product of vector spaces and the product of the radial compactifications is significant and will be examined later.

3. Collar neighbourhood

Remark. Edited by Paige Dote

This theorem provides a rather precise description of a neighborhood of a closed embedded submanifold, \(Y \subset M \) where \(M \) is an \(n \)-dimensional manifold. The usual proof exploits the geodesic flow for a metric on \(M \), but here we give a related
approach using the notation of a radial vector field for \(Y \). This is very closely related to the linearization theorem of Sternberg.

A closed submanifold is a closed subset \(Y \subset M \) such that for each point \(\overline{y} \in Y \), there exists coordinates based at \(\overline{y} \) in \(M \) in terms of which \(Y \) is linear. Precisely, in a neighborhood \(U_{\overline{y}} \subset M \) of \(\overline{y} \), there exists functions \(x_i, y_j \in C^\infty(U_{\overline{y}}) \) for \(i = 1, \ldots, d \) and \(j = 1, \ldots, n - d \) with independent differentials and

\[
Y \cap U_{\overline{y}} = \{ x_1 = \cdots = x_d = 0 \}.
\]

These are adapted coordinates for \(Y \).

We note the following

Definition 1.5. A smooth vector field, \(V \), on \(M \) is tangent to \(Y \) if \(Vf \big|_Y = 0 \) for any \(f \in C^\infty(M) \) with \(f \big|_Y = 0 \). A smooth vector field vanishes on \(Y \) if \(Vf \big|_Y = 0 \) for all \(f \in C^\infty(M) \).

In adapted coordinates for \(Y \), \(V \) is tangent to \(Y \) if it takes the form

\[
V = \sum_{i,j=1}^{d} x_i a_{i,j} \partial_{x_j} + \sum_{k=1}^{n-d} b_k \partial_{y_k}
\]

where \(a_{i,j}, b_k \) are smooth coefficients.

Similarly, \(V \) vanishes on \(Y \) if

\[
V = \sum_{i,j=1}^{d} x_i a_{i,j} \partial_{x_j} + \sum_{i=1}^{d} \sum_{k=1}^{n-d} x_i b_{i,k} \partial_{y_j} = \sum_{i=1}^{d} x_i W_i
\]

Where the \(W_i \) are smooth as are the \(a_{i,j}, b_{i,k} \).

Definition 1.6. The differentials of functions which vanish on \(Y \) define the conormal bundle \(N^*Y \subset T^*_Y M \).

Hence, in adapted coordinates \(N^*Y \) has the basis

\[dx_1, \ldots, dx_d. \]

For each \(y \in Y \), \(N^*_y Y \) is the annihilator, in \(T^*_y M \), of \(T_y Y \subset T_y M \). By duality, the normal bundle \(NY = T_Y M/TY \) is spanned by

\[\partial_{x_1}, \ldots, \partial_{x_d}. \]

Theorem 1.3 (Collar, or normal, neighbourhood). For a closed embedded submanifold \(Y \subset M \) there is a neighborhood, \(T \), of the zero section \(O_N \subset NY \), a neighborhood \(\Omega \subset M \) of \(Y \), and a diffeomorphism \(F : T \to \Omega \) satisfying the additional conditions

\[
F(0_N) = Y \text{ is the natural identification and} \\
F_*: N(0_N) \to NY \text{ is the identity.}
\]

Here, the bundle projection identity from \(NY \) to \(Y \) restricts to a diffeomorphism \(\pi : O_N \to Y \) giving meaning to (1). Then, the tangent space to \(0_N \) is mapped to \(TY \) as the identity. It follows that the normal bundle to \(0_N \) in \(NY \) is mapped to the normal bundle \(NY \) by \(F \). Additionally, for any vector bundle, the normal bundle to the zero section is naturally identified with the bundle itself, so \(F_* \) lifts a bundle map for \(NY \) to \(NY \) which is required to be the identity in \(L \).
Adapted coordinates give such a collar neighbourhood locally, so the challenge is to make this global.

A vector field on M which vanishes on Y induces a linear map at each point of Y:

$$L(V, y) : N_y^*Y \to N_y^*Y$$

through

$$N(V, y)\xi = d(Vf)(y)$$

where, for $\xi \in NY$, $f \in C^\infty(M)$ has $f|_Y = 0$ and $df(y) = \xi$. In terms of (1.47),

$$N(V, y)dx_j = \sum_{i=1}^d a_{i,j}(y)dx_i.$$

Definition 1.7. A smooth (real) vector field, R, on M is radial on Y if it vanishes at Y and

$$L(V, y) = \text{Id}$$

for all $y \in Y$.

Lemma 1.2. There is a radial vector field for any closed embedded submanifold, and the difference between two such radial vector fields is locally a sum $\sum x_iW_i$ where the W_i are tangent to Y.

The existence of a radial vector field follows from a 'patching' argument. Locally, in adapted coordinates, we have an obvious radial vector field in the Euler field

$$R_0 = \sum_{i=1}^d x_i\partial_{x_i}.$$

which is the generator of the scaling action (1.48)

$$(x, y) \mapsto (tx, y), \ t > 0.$$

There is no constraint on a radial vector field away from Y at all. So one can take functions $\varphi_a \in C^\infty_c(M)$ with locally finite supports such that each $\text{supp} \varphi_a$ is contained in an adapted coordinate patch for Y and $\sum \varphi_a = 1$ in a neighborhood of Y. Then,

$$R = \sum_a \varphi_a R_{0,a}$$

is radial with the $R_{0,a}$ being the coordinate Euler vector fields.

As a smooth real vector field, there is a unique integral curve of R through each point of M. For R_0 these are curves with $x_i = e^t x_i$ and $y_i = y_i$ so that $x_i \downarrow 0$ as $t \to -\infty$. For a general radial vector field the same is true near Y in the sense that

Lemma 1.3. If R is a radial vector field for Y then Y has an open neighborhood such that the integral curves of R, as $t \to -\infty$, approach R smoothly in e^t with a non-vanishing limiting tangent vector at Y.

As remarked at the beginning, this is a linearization theorem in the spirit of Sternberg.

Proposition 1.2. Near any point of Y there are adapted coordinates in terms of which in which a given radial vector is the Euler vector field.
Proof. This can be seen using the homotopy method of M"oser. In any adapted coordinates, the radial vector field has the form
\[R = R_0 + \sum_{i,j,p} x_i x_j a_{i,j,p} \partial x_p + \sum_{i,k} x_i b_{i,k} \partial y_k \]
for smooth coefficients \(a_{i,j,p} \) and \(b_{i,k} \). If we pullback \(R \) under the scaling map (2), then we obtain the one parameter family
\[R_t = R_0 + \sum_{i,j,p} t x_i x_j a_{i,j,p} (tx) \partial x_p + \sum_{i,j} t x_i b_{i,k} (tx,y) \partial y_k. \]
This family is smooth down to \(t = 0 \), and \(R_t |_{t=0} = R_0 \). Since this is ‘exponential scaling’ in terms of \(R_0 \), we see that
\[t \frac{d}{dt} R_t = [R_0, R_t], \]
which can easily be checked directly. The \(t \)-dependent vector field
\[W_t = \frac{1}{t} (R_t - R_0) \]
is clearly smooth and vanishes at \(Y \). It follows that the integration of \(W_t \) defines a 1-parameter amily of diffeomorphisms, \(G_t \), fixing each point of \(Y \). Hence \(G_t \) is defined in a neighborhood \(U \) of the point in \(Y \) for all \(t \in [0,1] \) and
\[\frac{d}{dt} G_t^* f = G_t^* (W_t f), \]
with \(G_0 = \text{Id} \) for all \(f \in C^\infty(U) \).

The standard variation formula (really the chain rule) shows that
\[u G_t^* (R_t) = G_t^* \left(\frac{dR_t}{dt} + [W_t, R_t] \right). \]
From (1.51), it follows that \([W_t, R_t] = -\frac{1}{t} [R_0, R_t] \). So by (1.50),
\[\frac{dR_t}{dt} + [W_t, R_t] = 0. \]
Thus, \(G_t^* R_t \) is constant in \(t \) as a vector field near \(Y \), but by assumption \(G_0^* R_0 = R_0 \) and so
\[G_1^* R = R_0. \]
This gives a diffeomorphism locally fixing \(Y \) which reduces \(R \) to the Euler vector field.

The preceding lemma is an immediate consequence since the integral curves of \(R_0 \) are of the form \(x \mapsto tx \) and \(y = y \).

This shows the existence of a diffeomorphism as required for the Collar Neighborhood theorem, with the inverse mapping \(p \in U \) to the tangent vector at the end point.
Symbols and conormal distributions at a point

1. Schwartz kernels

Before tackling the properties of the ring \(\Psi^*(\mathbb{R}^n) \) of pseudodifferential operators on \(\mathbb{R}^n \), I want to look into the properties of the Schwartz kernels of these operators, so we can get a picture of them. We can ‘guess’ (it is easy to justify) that the Schwartz kernel of an operator \(A \in \Psi^m(\mathbb{R}^n) \), defined by a symbol \(a \) satisfying

\[
(1.1)
\]

\[
A(x,y) = (2\pi)^{-n} \int_{\mathbb{R}^n} a(x,\xi) e^{i(x-y)\cdot \xi} d\xi.
\]

Here I use the same letter for the operator and its Schwartz kernel – since the Schwartz kernel theorem (which I will talk a little about later) shows that they determine each other.

We can think of (1.1) in a couple of different ways – in general it is not a convergent integral. We can make a (formal at this stage) linear change of variables on \(\mathbb{R}^2n \) from \((x,y)\) to \((x,z)\), \(z = x - y \) and then

\[
(2.1)
A(x,y) = \alpha(x, x - y) \text{ where } \alpha(x, z) = (2\pi)^{-n} \int_{\mathbb{R}^n} a(x, \xi) e^{iz\cdot \xi} d\xi.
\]

Now the integral is a partial inverse Fourier transform. In fact, since \(a \) is smooth in \(z \) we can interpret the definition of \(\alpha \) in (2.1) as the inverse Fourier transform from \(\xi \) to \(z \) for each fixed \(x \). This in fact is what I will do today. Alternatively one can just check that the partial Fourier transform with respect to a decomposition of Euclidean space into a product behaves ‘correctly’.

So, for the moment, we have dispensed with the ‘coefficients’ and just look at the (commutative) algebra of constant-coefficient pseudodifferential operators where the composition operation is convolution.

Recall the convolution of distributions on \(\mathbb{R}^n \). On cannot define the convolution of arbitrary distributions, even arbitrary tempered distributions – this however is an issue of ‘growth’ rather than singularities. In particular the convolution

\[
(2.3)
\]

\(u \ast v \) is defined if either \(u \) or \(v \) has compact support

(but can be defined in other cases too). I will denote the space of distributions of compact support as

\[
(2.4)
\mathcal{C}^\infty_c(\mathbb{R}^n).
\]

So the space of distributions of compact support is actually a commutative ring, since the support of a convolution as in (2.3) satisfies

\[
(2.5)
supp(u \ast v) \subset supp(u) + supp(v).
\]
It is also the case that \(S(\mathbb{R}^n) \) is closed under convolution and we know that the Fourier transform satisfies
\[
\mathcal{F}(u * v) = \mathcal{F}(u) \mathcal{F}(v), \quad u, v \in S(\mathbb{R}^n).
\]
The ring we are interested in is contained in
\[
C_c^{-\infty}(\mathbb{R}^n) + S(\mathbb{R}^n)
\]
for which the identity (2.6) still holds. Note that
\[
\mathcal{F}(C_c^{-\infty}(\mathbb{R}^n) + S(\mathbb{R}^n)) \subset C^\infty(\mathbb{R}^n) \cap S'(\mathbb{R}^n).
\]
So, we are looking for are some interesting spaces of smooth functions on the dual \(\mathbb{R}^n \) which are closed under multiplication. You might ask, in view of the identification of the convolution kernels here with the inverse Fourier transforms of symbols, why is there any problem at all? There isn’t a problem for convolution as such because of (2.6) but recall that the Fourier transform does not ‘behave well’ on say the space \(L^\infty(\mathbb{R}^n) \). Of course the Fourier tranform maps this to a well-defined linear subspace of the tempered distributions – which includes for instance the delta functions at any point – but it is quite hard, in a certain sense I think impossible, to give a ‘direct’ characterization of the Fourier image of \(L^\infty \) and the same is true for our symbols which are modeled on \(L^\infty \) in the sense that they are defined by bounds. We will in fact ‘sandwich’ the image between spaces characterized directly (meaning without the Fourier tranform), but this still loses information which is rather vital to us!

In the notes related to the first lecture, I discussed the radial compactification of a real, finite-dimensional, vector space \(V \), to a ball \(V \). Ignoring all the niceties, for Euclidean space, \(\mathbb{R}^n \) with the standard Euclidean norm, we can identify the complement of the origin with the product
\[
\mathbb{R}^n \setminus \{0\} \ni x \mapsto \left(\frac{x}{|x|}, x\right) = (r, \omega) \in (0, \infty) \times S^{n-1}.
\]
The inversion map \(r \mapsto 1/r \) is a diffeomorphism of \((0, \infty) \) to itself ‘switching the ends’. This allows us to add the sphere at infinity of \(\mathbb{R}^n \) setting
\[
\mathbb{R}^n = \left(\mathbb{R}^n \cup [0, \infty) \times S^{n-1}\right) / I
\]
where
\[
I : \mathbb{R}^n \setminus \{0\} \ni x \mapsto \left(\frac{1}{|x|}, \frac{x}{|x|}\right) \in (0, \infty) \times S^{n-1}
\]
identifies the complement of the origin with the interior of the second part.

Thus \(\mathbb{R}^n \) is a compact manifold with boundary ‘obtained by introducing inverted polar coordinates near infinity’. The interior is \(\mathbb{R}^n \) and the boundary is ‘the sphere at infinity’.

This immediately gives us a ring of functions on \(\mathbb{R}^n \), namely
\[
C^\infty(\mathbb{R}^n) \hookrightarrow C^\infty(\mathbb{R}^n).
\]
I can write inclusion here for what is really the restriction from \(\mathbb{R}^n \) to its interior since this map is injective.

This is the space of ‘classical symbols on \(\mathbb{R}^n \) of order zero’ which I will write as
\[
S^0_{cl}(\mathbb{R}^n) = C^\infty(\mathbb{R}^n).
\]
I will approach the issue of characterizing this space precisely on \(\mathbb{R}^n \) below.
As a consequence of the discussion of radial compactification in § 1.1. Compactification, we can see that the coordinate vector fields on \(\mathbb{R}^n \) extend to be smooth on \(\mathbb{R}^n \). In fact

Proposition 2.1. The coordinate vector fields on \(\mathbb{R}^n \) extend to smooth vector fields on \(\mathbb{R}^n \) and span, over \(C^\infty(\mathbb{R}^n) \), all the smooth vector fields which are of the form

\[
\rho W, \ W \text{ smooth and tangent to the boundary of } \mathbb{R}^n.
\]

Here \(\rho \in C^\infty(\mathbb{R}^n) \) vanishes at the boundary.

Corollary 2. The space \(S^0_\text{cl}(\mathbb{R}^n) \) consists of smooth functions which satisfy the estimates

\[
\sup_{x \in \mathbb{R}^n} |(1 + |\xi|)|^{|a|} \partial_x^a (\xi) < \infty \forall \alpha.
\]

Note that I do not say that this characterizes \(S^0_\text{cl}(\mathbb{R}^n) = C^\infty(\mathbb{R}^n) \), because it does not.

Definition 2.1. We denote the subspace of \(C^\infty(\mathbb{R}^n) \) of functions satisfying all the estimates \((2.1.15) \) by

\[
S^0(\mathbb{R}^n) \supset S^0_\text{cl}(\mathbb{R}^n).
\]

These are the ‘symbols with bounds’ containing the classical symbols.

More generally, consider the function

\[
(1 + |x|^2)^{z/2}, \ z \in \mathbb{C}.
\]

This is certainly smooth on \(\mathbb{R}^n \). It is rather clear that

\[
(1 + |x|^2)^{z/2} \in C^\infty(\mathbb{R}^n) \iff z \in \mathbb{N}_0.
\]

Indeed, in \(x \neq 0 \) it can be written

\[
t^{-z}(1 + t^2)^{z/2}, \ t = 1/|x|.
\]

This is smooth down to \(t = 0 \), the boundary of \(\mathbb{R}^n \), if and only if \(-z \) is a non-negative integer.

We define the space of classical symbols of (complex) order \(z \) to be the products

\[
S^z_\text{cl}(\mathbb{R}^n) = (1 + |x|^2)^{z/2} C^\infty(\mathbb{R}^n) = (1 + |x|^2)^{z/2} S^0_\text{cl}(\mathbb{R}^n).
\]

The space of symbols (with bounds) or real order \(m \) is similarly defined to be

\[
S^m(\mathbb{R}^n) = (1 + |x|^2)^{m/2} S^0(\mathbb{R}^n).
\]

Why no complex order in the second case?

Exercise 1. Show that in terms of Definition 2.1

\[
S^z_\text{cl}(\mathbb{R}^n) \subset S^{Re z}(\mathbb{R}^n) \forall z \in \mathbb{C}.
\]
2. SYMBOLS AND CONORMAL DISTRIBUTIONS AT A POINT

Definition 2.2. The space of (Schwartz-) conormal distributions on \mathbb{R}^n, with respect to the origin is

$$I^{m+n/4}_s(\mathbb{R}^n) = \mathcal{F}^{-1}(S^m(\mathbb{R}^n)).$$

The corresponding spaces of classical (Schwartz-) conormal distributions at the origin where now z is allowed to be complex, are

$$I^{z+n/4}_{cl,s}(\mathbb{R}^n) = \mathcal{F}^{-1}(S^z_{cl}(\mathbb{R}^n)).$$

So

$$I^z_{cl,s}(\mathbb{R}^n) \subset I^{Re z}(\mathbb{R}^n).$$

Why the weird normalization of the order with the $n/4$? This is part of a bigger scheme that I hope will be explained later. It is the standard notion with the n interpreted as the codimension of the submanifold, here the origin, with respect to which we are defining conormality.

So, apart from the issue with the order these are just the inverse Fourier transforms of our ‘classical symbols’.

Theorem 2.1. If $u \in I^m_{cl,s}(\mathbb{R}^n) \subset \mathcal{S}'(\mathbb{R}^n)$ then

$$\text{singsupp}(u) \subset \{0\}$$

$$(1 - \phi)u \in \mathcal{S}(\mathbb{R}^n) \text{ if } \phi \in C^\infty_c(\mathbb{R}^n), \ 0 \notin \text{supp}(1 - \phi).$$

The conditions in (157.77) do not characterize the conormal distributions.

Proof. By definition a smooth function on \mathbb{R}^n is a ‘symbol with bounds’ of order m if it satisfies all the estimates (157.81). We can reexpress these in the form

$$\xi^\beta \partial^\alpha \xi^a = (1 + |\xi|)^mb, \ b \in L^\infty(\mathbb{R}^n) \forall \beta \text{ with } |\beta| \leq |\alpha|. \quad \square$$

I have made a rather mixed definition of classical and non-classical symbols here. The classical ones defined in terms of the radial compactification and the non-classical ones in terms of estimates on \mathbb{R}^n more directly, let me try to unravel this.

Lemma 2.1. The ‘residual symbol spaces’ are

$$S^{-\infty}(\mathbb{R}^n) = \bigcap_{m \in \mathbb{R}} S^m(\mathbb{R}^n) = \mathcal{S}(\mathbb{R}^n) = \mathcal{C}^\infty(\mathbb{R}^n) \subset S^z_{cl}(\mathbb{R}^n) \forall \ z \in \mathbb{C}.$$}

Here I am using the notation for any manifold with boundary

$$\mathcal{C}^\infty(M) = \{u \in C^\infty(M); u \text{ vanishes to infinite order at } \partial M\}.$$}

So these are the ‘trivial’ symbols in the case of \mathbb{R}^n.

Last time I talked about the symbol spaces $S^m(\mathbb{R}^n)$ and the space of distributions conormal at 0 defined as

$$I^{m+n/4}_s(\mathbb{R}^n; \{0\}) = \mathcal{F}^{-1}(S^m(\mathbb{R}^n)).$$

Since we know that the symbol spaces form a filtered ring under multiplication we deduce a corresponding result for convolution of the conormal spaces

$$I^M(\mathbb{R}^n; \{0\}) * I^{M'}(\mathbb{R}^n; \{0\}) = I^{M+M'-n/4}_s(\mathbb{R}^n; \{0\}).$$
2. Topology and asymptotic summation

First the topology on the symbols space $S^m(\mathbb{R}^n)$ is the Fréchet topology given by the norms defining the space

$$\|a\|_{m,N} = \sup_{\mathbb{R}^n,|\beta|<N} |(1+|\xi|)^{-m-|\beta|}\partial_\xi^\beta a(\xi)|, \quad N \in \mathbb{N}_0.$$ \hfill (2.33)

Certainly, $a \in S^m(\mathbb{R}^n)$ if and only if $a \in C^\infty(\mathbb{R}^n)$ and all these norms are finite.

Recall that a metric on a countably normed space, such as this, is defined by

$$d(u,v) = \sum_{N} 2^{-N} \frac{\|u-v\|_{m,N}}{1 + \|u-v\|_{m,N}}.$$ \hfill (2.34)

So the topology is metric, generated by the open balls with respect to (2.34). I say ‘a metric’ because replacing the sequence 2^{-N} by an positive, summable, sequence gives the same topology.

Proposition 2.2. The spaces $S^m(\mathbb{R}^n)$ are Fréchet spaces, so complete with respect to the translation-invariant distance (2.34). If it matters to you, they are Montel spaces.

The are not projective limits of Hilbert spaces, which is what the subtlety of density is about.

Proof. Convergence with respect to this distance is the same as convergence with respect to each of the norms $\|\cdot\|_{m,N}$ (without any uniformity in N). Thus a Cauchy sequence with respect to the metric (2.34) is Cauchy with respect to each of these norms and conversely. So all the derivatives converge locally uniformly and with respect to the distance with the limit in the space. \square

There is a topology on $S^\infty(\mathbb{R}^n) = \bigcup_m S^m(\mathbb{R}^n)$ but I will leave you to figure it out.

Exercise 2. Try to sort out (or look up) the inductive limit topology on $S^\infty(\mathbb{R}^n)$ defined by taking a set to be open if its intersection with each of the $S^m(\mathbb{R}^n)$ is open and show that the inclusions $S^m(\mathbb{R}^n) \rightarrow S^\infty(\mathbb{R}^n)$ are then continuous.

So the Fréchet topology on the symbol spaces induces a Fréchet topology on $I^M_0(\mathbb{R}^n, \{0\})$, since the Fourier tranform identifies this with $S^{M - \frac{n}{2}}(\mathbb{R}^n)$. This means we know what a continuous map into the cononal space (and also what a smooth map into it) means.

Now to density. The intersection of the symbol spaces is the space of Schwartz functions

$$S(\mathbb{R}^n) = S^\infty(\mathbb{R}^n) = \bigcap_m S^m(\mathbb{R}^n) = \mathcal{S}(\mathbb{R}^n).$$ \hfill (2.35)

Proposition 2.3. The ‘residual space’ $\mathcal{S}(\mathbb{R}^n)$ is dense in $S^m(\mathbb{R}^n)$ in the topology of $S^{m+\epsilon}(\mathbb{R}^n)$ for any $\epsilon > 0$. More precisely, there exist a sequence of ‘regularizing operators’ which are linear maps

$$\Phi_k : S^\infty(\mathbb{R}^n) \rightarrow \mathcal{S}(\mathbb{R}^n)$$ \hfill (2.36)
such that

\[a \in S^m(\mathbb{R}^n) \implies \Phi_k a \text{ is bounded in } S^m(\mathbb{R}^n) \]

and \(\Phi_k a \to a \) in the topology of \(S^{m+\epsilon}(\mathbb{R}^n) \) \(\forall \epsilon > 0 \).

Proof. The \(\Phi_k \) can be defined by cut-off. Take \(\phi \in C_\infty(\mathbb{R}^n) \) with \(\phi(\xi) = 1 \) in \(\{ |\xi| < 1 \} \) and set

\[\Phi_k a(\xi) = \phi(\xi/k)a(\xi) \in S(\mathbb{R}^n). \]

The difference

\[(\text{Id} - \Phi_k) a = (1 - \phi(\xi/k))a(\xi) \in S(\mathbb{R}^n) \subset S^m(\mathbb{R}^n) \]

since \(1 - \phi(\xi/k) \in S^0(\mathbb{R}^n) \).

Certainly \(1 - \phi(\xi/k) \) is uniformly bounded and the derivatives are

\[\partial_\xi^\beta (1 - \phi(\xi/k)) = -k^{-|\beta|}(\partial_\xi^\beta \phi)(\xi/k), \quad |\beta| > 0. \]

Since this function is supported in \(|\xi| < Ck \), for some constant \(C \), the product satisfies

\[\sup_\xi |\partial_\xi^\beta (1 - \phi(\xi/k))| \leq C_\beta (1 + Ck)^{|\beta|} k^{-|\beta|} < \infty \]

This shows that \(1 - \phi(\xi/k) \) is bounded with respect to all the seminorms for \(S^0(\mathbb{R}^n) \). It follows that \(\Phi_k a \) is bounded in \(S^m(\mathbb{R}^n) \).

The seminorms on \(S^r(\mathbb{R}^n) \) on the difference \(1 - \Phi_k \), which has support in \(|\xi| > k \), have an extra factor of \((1 + |\xi|)^{-\epsilon}\)

\[(1 + |\xi|)^{-r+|\beta|} \partial_\xi^\beta (1 - \phi(\xi/k)) = k^{-|\beta|}(1 + |\xi|)^{-r+|\beta|}(\partial_\xi^\beta (1 - \phi))(\xi/k) \implies \| 1 - \Phi_k \|_{r,N} \leq C_N k^{-\epsilon} \]

where \(C_N \) depends on \(\phi \) and \(N \). Thus \(1 - \phi(\xi/k) \to 0 \) with respect to each seminorm on \(S^r(\mathbb{R}^n) \) for \(\epsilon > 0 \). It follows that

\[\Phi_k a \to a \text{ in } S^r(\mathbb{R}^n) \forall \epsilon > 0. \]

We record the norm estimate which underlies \((2.37) \) for use below

Lemma 2.2. For \(a \in S^m(\mathbb{R}^n) \) and any \(m' > m \)

\[\| (\text{Id} - \Phi_k) a \|_{m',N} \leq C_{N,m,m'}\| a \|_{m,N} k^{m-m'} \]

where the constant is independent of \(a \) and \(k \).

3. Integration

Lemma 2.3. Integration in one of the variables, say the last, gives a continuous linear map

\[\int_\mathbb{R} dx_n : I^m_s(\mathbb{R}^n) \to I^{m-\frac{1}{4}}_s(\mathbb{R}^{n-1}), \quad \mathcal{F} \left(\int_\mathbb{R} u(x) dx_n \right) = \mathcal{F}(u)|_{\xi_n=0}. \]

Of course we can iterate this, integrating over \(k \) variables to get a conormal distribution with order decreased by \(k/4 \).
PROOF. The integral is defined since integration of both Schwartz functions and distributions of compact support is well-defined. Using the density we can suppose that $a \in \mathcal{S}(\mathbb{R}^n)$ and then

$$\int_{\mathbb{R}^n} dx_n (\mathcal{F}^{-1} a)(x', x_n) dx_n = (2\pi)^{-n} \int_{\mathbb{R}^n} dx_n \int_{\mathbb{R}^n} e^{ix' \cdot \xi} a(\xi) d\xi$$

$$= (2\pi)^{-n+1} \int_{\mathbb{R}^{n-1}} e^{ix' \cdot \xi'} a(\xi', 0) d\xi', \; x = (x', x_n), \; \xi = (\xi', \xi_n).$$

by the Fourier inversion formula in one dimension. Thus

$$\int_{\mathbb{R}^n} dx_n \mathcal{F}^{-1}(a) = \mathcal{F}^{-1}(a)\big|_{\xi_n=0}, \; a \in \mathcal{S}(\mathbb{R}^n).$$

Clearly, with Φ_k as defined above

$$\Phi_k(a\big|_{\xi_n=0}) = (\Phi_k(a))\big|_{\xi_n=0}$$

so the general case follows. \square

4. Wavefront set

The support of a function or distribution on \mathbb{R}^n is defined by

$$\text{supp}(u) = \left(\bigcup \{ U \subset \mathbb{R}^n; U \text{ is open and } u = 0 \text{ on } U \} \right)^\circ.$$ \hspace{1cm} (2.49)

This is really a notion defined for sheaves (the theory of which I will outline below in case you have not seen it). We define a related notion of symbols but this is only to do with growth at infinity.

If $V \subset S^{n-1}$ is open then the set

$$\mathbb{R}^+V = \{ \xi \in \mathbb{R}^n \setminus \{0\}; \frac{\xi}{|\xi|} \in V \}$$ \hspace{1cm} (2.50)

is what we mean by an open cone – an open subset of $\mathbb{R}^n \setminus \{0\}$ which is invariant under the radial \mathbb{R}^+ action. If $\psi \in C_0^\infty(V)$ and $\phi \in C_0^\infty(\mathbb{R})$ is identically equal to 1 near 0 then

$$\chi(\xi) = (1 - \phi(|\xi|))\psi\left(\frac{\xi}{|\xi|}\right) \in S^0(\mathbb{R}^n) \subset C^\infty(\mathbb{R}^n)$$ \hspace{1cm} (2.51)

where we define it to be identically zero in $|\xi| < \epsilon$ where $\phi(|\xi|) = 1$ on $|\xi| < \epsilon$. Thus, ϕ is only there to cut out the singularity the homogeneous function $\psi\left(\frac{\xi}{|\xi|}\right)$ is almost certain to have at the origin.

Lemma 2.4. An element of $C^\infty(\mathbb{R}^n)$ which is homogeneous of complex degree z vanishes identically unless $z \in \mathbb{N}_0$, in which case it is necessarily a polynomial.

Proof. The homogeneity statement is that

$$u(t\xi) = t^z u(\xi) \; \forall \; t > 0, \; \xi \in \mathbb{R}^n.$$ \hspace{1cm} (2.52)

Consider the derivatives of u at the origin. From (2.53) it follows that

$$\partial^\alpha u(0) = t^{|\alpha|} \partial^\alpha_u u(0) = t^z \partial^\alpha u(0).$$ \hspace{1cm} (2.53)

Thus either $z = |\alpha|$ or $\partial^\alpha u(0) = 0$. So, if z is not a non-negative integer then u must vanish to infinite order at 0. But then

$$t^{-z} u(tu) \to 0 \; \text{as} \; t \downarrow 0 \implies u \equiv 0.$$ \hspace{1cm} (2.54)

If $z = k$ then u is the sum of a polynomial and a function which vanishes to infinite order at 0 and the same argument shows that such a homogeneous function vanishes identically. \square
The product of \(a \in S^m(\mathbb{R}^n) \) and a function \(\chi \) as in \((2.57)\) is always in \(S^{m+1}(\mathbb{R}^{n-1}) \). However, it might be much smaller.

Definition 2.3. The cone-support of a symbol \(a \in S^m(\mathbb{R}^n) \) is the (relatively) closed subset of \(\mathbb{R}^n \)

\[
\text{conesupp}(a) = \left(\bigcup \{ x \in V; \chi a \in \mathcal{S}(\mathbb{R}^n) \ \forall \psi \in C^\infty(V) \} \right)^c.
\]

(2.55)

In fact the union of the \(V \) for which \(\psi a \in \mathcal{S}(\mathbb{R}^n) \) is still a \(V \) for which this holds – i.e. there is a maximal such \(V \). Clearly this cone-support is a cone, so the information it contains is the same as the corresponding closed subset of the sphere. It is traditional to think of it as a cone, partly because of the definition, but also because it has a little content as we will see later.

Exercise 3. Show that \(\text{conesupp}(a) = \emptyset \) iff \(a \in \mathcal{S}(\mathbb{R}^n) = S^{-\infty}(\mathbb{R}^n) \).

Definition 2.4. For \(u \in \mathcal{T}_0^M(\mathbb{R}^n; \{0\}) = \mathcal{S}^{-1}(S^M - \frac{1}{2}(\mathbb{R}^n)) \) we set

\[
\text{WF}(u) = \text{conesupp}(a), \quad u = \mathcal{S}^{-1}(a) \subset T_0^* \mathbb{R}^n \setminus \{0\} = \mathbb{R}^n \setminus \{0\}.
\]

(2.56)

It matters here that this is the inverse Fourier transform not the Fourier transform, otherwise there is a reflection. The identification of \(\mathbb{R}^n \setminus \{0\} \) as the cotangent fibre at 0 on \(\mathbb{R}^n \) might appear somewhat arbitrary but is justified by results below on coordinate-invariance. In any case, by definition the wavefront set (that is what \(\text{WF} \) stands for) of a conormal distribution at the origin in \(\mathbb{R}^n \) is a closed cone in \(T_0^* \mathbb{R}^n \setminus \{0\} \).

5. Restriction

What is this notion of wavefrontset good for? Notice in \((2.45)\) that integration and restriction are dual under Fourier transform, at least in this special case. In general we cannot expect to restrict a conormal distribution to \(x_n = 0 \) – for instance this is not reasonable for the delta function at the origin. Dually, we cannot expect to integrate a symbol, it may just be too large at infinity.

Lemma 2.5. If \(a \in S^m(\mathbb{R}^n) \) then

\[
\pm \varepsilon_n \notin \text{conesupp}(a) \implies \int d\varepsilon_n a(\pm \varepsilon_n, \xi_n) \in S^{m+1}(\mathbb{R}^{n-1}).
\]

(2.57)

Here \(\varepsilon_n = (0, \ldots, 0, 1) \) is the unit vector and this is not in \(\text{conesupp}(a) \) if and only if the half-line \(e^\pm \mathbb{R}^n \) does not meet \(\text{conesupp}(a) \). So you can interpret the condition in \((2.54)\) as saying

\[
\mathbb{R} \cdot \varepsilon_n \cap \text{conesupp}(a) = \emptyset.
\]

(2.58)

Proof. The condition on \(\text{conesupp}(a) \) means that we can find a cut-off function \(\psi \in C^\infty(\mathbb{S}^{n-1}) \) on the sphere which is non-vanishing at \(\pm \varepsilon_n \) and such that

\[
(1 - \phi(\xi)) \psi \left(\frac{\xi}{|\xi|} \right) a \in \mathcal{S}(\mathbb{R}^n).
\]

(2.59)

So this means that in a conic region

\[
\Gamma_\varepsilon = \{ \xi \in \mathbb{R}^n; |\xi| \leq e|\varepsilon| \}, \quad \varepsilon > 0
\]

(2.60)

the symbol \(a \) is rapidly decreasing with all its derivatives. In fact we can can assume that \(\psi = 1 \) near \(\pm \varepsilon_n \) and then write

\[
a = a' + \phi(|\xi|) + (1 - \phi(|\xi|)) \psi \left(\frac{\xi}{|\xi|} \right) \in S^m(\mathbb{R}^n),
\]

\[
a = 0 \text{ in } \Gamma_\varepsilon, \quad a - a' \in \mathcal{S}(\mathbb{R}^n).
\]

(2.61)

Since integration certainly maps \(\mathcal{S}(\mathbb{R}^n) \) into \(\mathcal{S}(\mathbb{R}^{n-1}) \) it suffices to consider \(a' \) in place of \(a \) and look at

\[
b(\xi) = \int d\varepsilon_n a(\xi', \xi_n).
\]

(2.62)
This integral certainly exists since for each ξ' the integrand is supported in $|\xi_n| \leq e^{-1}|\xi'|$. Thus from the leading symbol estimate for a we see that in $|\xi'| > 1$

$$|b(\xi')| \leq Ce^{\int|\xi_n|\leq e^{-1}|\xi'|} (|\xi'| + |\xi_n|)^m d\xi_n.$$

(2.63)

Now, changing the variable of integration to $\tau = \xi_n/|\xi'|$ it follows that

$$|b(\xi')| \leq Ce^{\int|\tau|\leq e^{-1}} |\xi'|^{m+1}(1 + |\tau|)^m d\tau \leq C'|\xi'|^{m+1}.$$

(2.64)

The same argument applies to all the ξ' derivatives, so

$b \in S_m^{m+1}(\mathbb{R}^{n-1}).$

(2.65)

\[\square \]

Corollary 3. Restriction to the coordinate hyperplane is well-defined as a linear map

$$|x_n=0 : \{ u \in I^M_M(\mathbb{R}^n; \{0\});\{dx_n,-dx_n\} \cap \text{WF}(u) = \emptyset \} \rightarrow I^M_{M+\frac{1}{2}}(\mathbb{R}^{n-1};\{0\}).$$

(2.66)

6. Multiplicativity

7. Asymptotic completeness

The main interest in symbols on \mathbb{R}^n is their behaviour ‘at infinity’ (which is the boundary of the radial compactification). This allows for a notion of ‘convergence’ which corresponds to the ‘asymptotic completeness’ in the following sense.

Theorem 2.2. If $a_j \in S^{m_j}(\mathbb{R}^n)$ is a sequence (we think of it as a series) of symbols with $m_j \to -\infty$ as $j \to \infty$ then there exists a symbol $a \in S^M(\mathbb{R}^n)$, $M = \sup m_j$ such that for every k

$$a - \sum_{j \leq k} a_j \in S^M(k), \ M(k) = \sup_{j > k} m_j$$

and a is determined up to an error in $S^{-\infty}(\mathbb{R}^n)$ by these conditions.

The relationship (2.67) between a and the a_j is interpreted as ‘a complete asymptotic expansion’ and written

$$a \sim \sum_j a_j.$$

(2.68)

Note that we are certainly not saying that the series on the right converges in any sense (well people say it converges asymptotically, just meaning the order $m_j \to -\infty$).

I have been a little vague here about the range of j, usually one takes $j \in \mathbb{N}_0$, so starting off at 0, but this is just a convention.

Proof. The ‘uniqueness’ (modulo $S^{-\infty}(\mathbb{R}^n)$) is immediate from (2.67) - given two such ‘asymptotic sums’ a and a' the difference satisfies

$$a' - a = (a' - \sum_{j \leq k} a_j) - (a - \sum_{j \leq k} a_j) \in S^{M(k)}(\mathbb{R}^n) \forall \ k \implies$$

$$a' - a \in S^{-\infty}(\mathbb{R}^n) = S(\mathbb{R}^n).$$

For existence, I will assume, as discussed below, without loss of generality that the m_j are strictly decreasing, just to simplify notation.
I will use the ‘approximation’ operators $(\text{Id} - \Phi_l)$ discussed above, where Φ_l is multiplication by $\phi(\xi/l)$ for $\phi \in C^\infty_c(\mathbb{R}^n)$ equal to 1 near 0. So these are cutoffs near infinity. The l will vary with j so we are looking for a sequence of integers

\begin{equation}
(2.70) \quad l(j) \to \infty \text{ in } \mathbb{N}.
\end{equation}

Here is what we want these integers to satisfy – they depend of course on the given sequence a_j.

\begin{equation}
(2.71) \quad \sum_{j>k} \|(\text{Id} - \Phi_{l(j)})a_j\|_{m_k,N} < \infty \quad \forall \ k, N.
\end{equation}

So this is a countable set of conditions we need to satisfy.

Let’s just examine one of the conditions (2.71). It makes sense, since the terms are in $S^{m_j} \subset S^{m_k}$ and $m_k - m_j > 0$ for $j > k$ by assumption. This is often called ‘absolute summability’ of the sequence with respect to the norm. It implies that the series is Cauchy with respect to this norm, and that is what we are after. That is we will ensure that the series

\begin{equation}
(2.72) \quad \sum_{j>k} (\text{Id} - \Phi_{l(j)})a_j \text{ is Cauchy with respect to } \| \cdot \|_{m_k,N}.
\end{equation}

For the moment of course just for one N and k.

We have, from Lemma 157.138, an estimate on each of these norms in (2.71)

\begin{equation}
(2.73) \quad \|(\text{Id} - \Phi_{l(j)})a_j\|_{m(k),N} \leq C_{N,k}(l(j))^{m_k-m_j} \|a_j\|_{m_k,N}
\end{equation}

(ultimately because the $m_j < m_k$). Here the constant does not depend on $l(j)$ – the dependence is the power. To make the series converge absolutely it suffices to arrange that

\begin{equation}
(2.74) \quad \|(\text{Id} - \Phi_{l(j)})a_j\|_{m(k),N} \leq j^{-2}
\end{equation}

for instance. In fact convergence is a property of the ‘tail’ of the sequence – the behaviour of any finite number of terms is irrelevant – so it is enough to arrange (2.74) from some j onwards. From (2.73) we see that we can ensure this by choosing $l(j)$ so that

\begin{equation}
(2.75) \quad l(j) > L(N,k,j)
\end{equation}

where for this N and k is some explicitly sequence which depends on the norms of the a_j.

Now, this shows we can choose the $l(j)$ so that any one of the series (labelled by k) converges absolutely with respect to any one of the norms $\| \cdot \|_{m_k,N}$. In fact by a ‘diagonalization’ procedure we can ensure that all the series are Cauchy with respect to all the norms (and hence converge in the corresponding symbol space). To do this, just arrange all the (N,k) as a sequence, parameterized by p, and demand that (2.73) hold for $j > p$.

So we can choose the integers $l(j)$ such that each of the series

\begin{equation}
(2.76) \quad \sum_{j>k} (\text{Id} - \Phi_{l(j)})a_j \text{ converges in } S^{m_k}(\mathbb{R}^n)
\end{equation}

in the strong sense that it converges absolutely with respect to each of the seminorms. Now set

\begin{equation}
(2.77) \quad a = a_0 + \sum_{j \geq 1} (\text{Id} - \Phi_{l(j)})a_j \in S^{m_0}(\mathbb{R}^n).
\end{equation}
This is our asymptotic sum. To check this observe that the difference with a finite sum can be written

\[a - \sum_{j \leq k+1} a_j = - \sum_{j \leq k+1} \Phi_{l(j)} a_j + \sum_{j > k+1} (\text{Id} - \Phi_{l(j)}) a_j. \]

The last sum here is in \(S^{m_{k+1}} \) and the finite sum is actually of compact support, so in \(S^{-\infty} \). The last term on the left is in the same space, \(S^{m_{k+1}} \) so (2.67) follows.

If we do not have a strictly decreasing sequence of orders, we can rearrange the sequence so that the order is weakly decreasing and then sum up an finite sequences of fixed order. This reduces the problem to the strictly decreasing case and, since we have arranged absolute convergence, we recover (2.67) in general.

Except that the topology is a little dubious, we have shown that a series with elements in \(S^{m_j} / S^{-\infty} \) ‘always converges’ if the \(m_j \to -\infty \). What this really means is that there exist representatives of the elements in \(S^{m_j} \) such that the series does converge and gives a well-defined limit in \(S^{\sup m_j} / S^{-\infty} \).

As I mentioned last time we will write the full symbol map

\[\sigma : I_s^m(\mathbb{R}^n ; \{0\}) \to S^{m} / S^{-\infty} \]

for the Fourier transform with Schwartz terms ‘dropped’.

8. \(I_s^m(\mathbb{R}^n ; \{0\}) \) as a module

The smooth functions of ‘slow growth’ form a (not very pleasant) linear space which I will denote by \(O(\mathbb{R}^n) \) which is a space of multipliers on \(S(\mathbb{R}^n) \). A smooth function is an element \(\psi \in O(\mathbb{R}^n) \) if for each multiindex \(\alpha \in \mathbb{N}_0^n \) there exists \(m_\alpha \) such that

\[\sup_{\xi} (1 + |\xi|)^{-m_\alpha} |D_\xi^\alpha \psi(\xi)| < \infty. \]

Thus multiplication gives a bilinear map

\[O(\mathbb{R}^n) \times S'(\mathbb{R}^n) \to S'(\mathbb{R}^n) \text{ which restricts to } O(\mathbb{R}^n) \times S(\mathbb{R}^n) \to S(\mathbb{R}^n). \]

Proposition 2.4. For any \(m \), multiplication defines a map

\[O(\mathbb{R}^n) \times I_s^m(\mathbb{R}^n ; \{0\}) \to I_s^m(\mathbb{R}^n ; \{0\}) \text{ with } \sigma(\psi u) \sim \sum_{\alpha \in \mathbb{N}_0^n} \frac{1}{\alpha!} \partial_\xi^\alpha \psi(0) D_\xi^\alpha \sigma(u). \]

The sum of the right does determine a unique element of \(S^{m} / S^{-\infty} \) as we showed last time using asymptotic summation. If we take a representative \(a \in S^{m} / S^{-\infty} \) – such as the actual Fourier transform of \(u \) – then the terms in the infinite sum are of orders \(m - \frac{n}{4} - |\alpha| \) so the sum ‘converges asymptotically’.

Proof. Since we know that \(u \in I_s^m(\mathbb{R}^n ; \{0\}) \) can be written as the sum of a compactly supported term and one in \(S'(\mathbb{R}^n) \) on which \(\psi \in O(\mathbb{R}^n) \) acts it suffices to suppose that both \(u \) and \(\psi \) are compactly supported. The Taylor series expansion

\[\psi = \sum_{|\alpha| \leq N} \frac{1}{\alpha!} \partial_\xi^\alpha \psi(0) + \sum_{|\alpha| = N+1} x^\alpha \mu_\alpha(x), \mu_\alpha \in C^\infty(\mathbb{R}^n) \]
can then be multiplied by a cut-off of compact support equal to 1 on supp(u) ∪ supp(ψ) showing that

$$\psi u = \sum_{|\alpha| \leq N} \frac{1}{\alpha!} \partial_x^\alpha \psi(0) x^\alpha u(x) + \sum_{|\alpha|=N+1} \mu'_\alpha(x) (x^\alpha u) \mu'_\alpha(x), \quad \mu'_\alpha \in \mathcal{C}_c^\infty(\mathbb{R}^n)$$

(2.84)

The terms in the first sum are in $I^0_s(\mathbb{R}^n; \{0\})$ as the inverse Fourier transforms of the

$$\frac{\psi}{\alpha!} \partial^\alpha_x \psi(0) \partial^\alpha_\xi \tilde{\psi}(\xi).$$

Similarly the terms in the second sum consists of products in

$$\mathcal{C}_c^\infty(\mathbb{R}^n) \cdot I^0_s(\mathbb{R}^n; \{0\}).$$

Let $v \in I^0_s(\mathbb{R}^n; \{0\})$ be an asymptotic sum of this series (2.85) which can be taken to have compact support. Then from (2.84)

$$\psi u - v = v_N + \sum_{|\alpha|=N+1} \mu'_\alpha(x) (x^\alpha u) \mu'_\alpha(x), \quad v_N \in I^0_s(\mathbb{R}^n; \{0\}).$$

(2.86)

For for $N > m + k + n$

$$I^m_s(\mathbb{R}^n; \{0\}) \subseteq \mathcal{C}^k(\mathbb{R}^n) \quad \implies \quad \psi u - v \in \bigcap \mathcal{C}^k(\mathbb{R}^n) = \mathcal{C}^\infty(\mathbb{R}^n).$$

So in fact $\psi u - v \in \mathcal{S}(\mathbb{R}^n)$.

The asymptotic formula (2.85) is a restatement of the conclusion that ψu is an asymptotic sum of the terms (2.85).

9. Action of Ψ^* on I^s

Proposition 2.5. Pseudodifferential operators act on conormal distributions giving a bilinear map

$$\Psi^m(\mathbb{R}^n) \times I^m_s(\mathbb{R}^n; \{0\}) \rightarrow I^{m+m'}_s(\mathbb{R}^n; \{0\})$$

with

$$\sigma_{m+m'}(Au) \sim \frac{1}{\alpha!} D^\alpha_x \partial^\alpha_\xi (a \sigma(u)), \quad A = Q_L(a)$$

(2.88)

10. Problems 1

P1

V2: Two corrections from Benjy.

Due date:- The sooner you get in solutions the sooner you will get them returned. I am hoping that you will do them by Feb 26 but am open to discussion – on the problems too of course!

I detected some resistance to the idea of radial compactification of \mathbb{R}^n in class so the main part of the first problem set is to work out some of the details. Quite a bit of this is already in the notes.

0 First recall, for background if nothing else, the basis of projective geometry (which seems to have disappeared as a subject taught to undergraduates not long before I started studying Mathematics). Define complex projective space as a quotient

$$\mathbb{F}^n = (\mathbb{C}^{n+1} \setminus \{0\}) / \mathbb{C}^* = \mathbb{S}^{2n+1} / \mathbb{T} = \mathbb{C}^n / \{0\}, \mathbb{S}^{2n+1} = (\mathbb{R}^{2n+2} \setminus \{0\}) / \mathbb{R}^+ = (\mathbb{C}^{n+1} \setminus \{0\}) / \mathbb{C}^+. $$

(2.89)
Check that this is a complex manifold and that \(\mathbb{C}^n \) is identified with an open dense subset by the inclusion

\[\mathbb{C}^n \ni z \mapsto (z, 1) \in \mathbb{C}^{n+1} \setminus \{0\} \hookrightarrow \mathbb{P}^n \]

and that the complement of the image may be identified with \(\mathbb{P}^{n-1} \).

(1) Now sort out the real (or more correctly a) real analogue of this. Take the embedding

\[\mathbb{R}^n \ni x \mapsto (x, 1) \in \mathbb{R}^n \times [0, \infty) \subset \mathbb{R}^{n+1} \]

and consider the quotient map

\[\iota : \mathbb{R}^n \longrightarrow (\mathbb{R}^n \times [0, \infty) \setminus \{0\}) / \mathbb{R}^+ = S^n_+ = \mathbb{R}^n \]

mapping into the upper half-sphere (see picture below); the last equation defines \(\mathbb{R}^n \). I take this as the definition of the radial compactification; show that the embedding is given explicitly by

\[\iota(x) = \left(\frac{x}{\sqrt{1 + |x|^2}}, \frac{1}{\sqrt{1 + |x|^2}} \right) \]

and deduce that \(t = (1 + |x|^2)^{-\frac{1}{2}} \in C^\infty(S^n_+) \) is a boundary defining function (vanishes only on the boundary and has differential non-zero there).

(2) Derive the Taylor series of \(a \in S_0^\infty(\mathbb{R}^n) = C^\infty(S^n_+) \) (this is the definition of the space of classical symbols of order 0 from lectures) in the form

\[\sum_{k=0}^{\infty} |x|^{-k} a_k \left(\frac{x}{|x|} \right), \quad a_k \in C^\infty(S^{n-1}), \quad |x| > 2 \iff t < \sqrt{2} \].

Deduce that Taylor series with remainder gives

\[|a - \sum_{k=0}^{N} |x|^{-k} a_k \left(\frac{x}{|x|} \right)| \leq C_N |x|^{-N-1}. \]

[We want similar estimates for derivatives too].

(3) Introduce projective coordinates on \(\mathbb{R}^n \) given by \(2n+1 \) coordinate patches on \(S^n_+ \). The first one is \(x \in \mathbb{R}^n \) defining the compactification. Then for each \(k = 1, \ldots, n \) set

\[D_k^\pm = \{ x \in \mathbb{R}^n; \pm x_k > 0 \}, \quad C_k^\pm = \{ p = (p_1, \ldots, p_{n+1}) \in S^n_+; \pm p_k > 0 \} \]

(note that this includes part of the boundary of \(S^n_+ \)) and show that the diffeomorphisms

\[C_k^\pm \ni x \mapsto \left(\frac{1}{\pm x_k}, \pm \frac{x_j}{x_k} \right) \in (0, \infty) \times \mathbb{R}^{n-1} \]

extend to diffeomorphism \(D_k^\pm \longrightarrow (0, \infty) \times \mathbb{R}^{n-1} \).

(4) Show that these projective coordinate systems give a coordinate cover of \(\mathbb{R}^n \).

(5) Write out formulæ for the images of the vector fields

\[\partial_{x_j}, \ x_i \partial_{x_j} \]

in these projective coordinate systems (note these span the Lie algebras of the translation group and \(\text{GL}(n, \mathbb{R}) \) respectively).
(6) Show that the \(x_i \partial_{x_j} \) extend to be smooth on \(\mathbb{R}^n \) (meaning smooth up to the boundary) and that they are elements of the Lie algebra \(\mathfrak{p}_{1.11} \).

(7) Show that the images of the \(x_i \partial_{x_j} \) span \(\mathcal{V}_b(\mathbb{R}^n) \) over \(\mathcal{C}^\infty(\mathbb{R}^n) \).

(8) Show that the \(\partial_{x_j} \) are also smooth up to the boundary of \(\mathbb{R}^n \) and span, over \(\mathcal{C}^\infty(\mathbb{R}^n) \) the space \(\mathfrak{p}_{1.14} \).

(9) Show that the space \(S^0(\mathbb{R}^n) \) of ‘symbols with bounds’ is identified with the space \(\mathfrak{p}_{1.15} \).

(10) Putting some of these things together show that \(S^0(\mathbb{R}^n) \subset S^0(\mathbb{R}^n) \).

(11) Deduce that an element \(a \in S^0(\mathbb{R}^n) \) is in \(S^0(\mathbb{R}^n) \) if and only if

\[
a \sim \sum_k (1 - \phi)(\xi)|\xi|^{-k} a_k\left(\frac{\xi}{|\xi|}\right)
\]

where \(\phi \in \mathcal{C}_c^\infty(\mathbb{R}^n) \) is equal to one near 0 (to make everything smooth) and the \(a_k \in \mathcal{C}^\infty(S^{n-1}) \).
CHAPTER 3

The ring $\Psi^*(\mathbb{R}^n)$

I will start today with the coordinate-invariance of conormal distributions at a point and proceed to discuss the fact that the formal adjoint of a pseudodifferential operator is also a pseudodifferential operator. These might seem to be rather unrelated results, but as we shall see the proofs are closely related.

1. Coordinate invariance of $I^m_c(\mathbb{R}^n; \{0\})$

Since we do not want to worry about the global behaviour of diffeomorphisms we will work locally near $0 \in \mathbb{R}^n$. If $\Omega \subset \mathbb{R}^n$ is an open neighbourhood of 0 set

$$I^m_c(\Omega; \{0\}) = \{ u \in \mathcal{I}_m^c(\mathbb{R}^n; \{0\}); \text{supp}(u) \subset \Omega \}.$$ (3.1)

Here of course we are thinking of Ω as an open subset of \mathbb{R}^n but we can also think of it as a manifold. For the conormal functions to make sense on a manifold we need:

Proposition 3.1. If $F : \Omega \to \Omega'$ is a diffeomorphism of open neighbourhoods of $0 \in \mathbb{R}^n$ with $F(0) = 0$ then

$$F^* : I^m_c(\Omega'; \{0\}) \to I^m_c(\Omega; \{0\}).$$ (3.2)

You should recall that the pull-back of distributions is well-defined under a diffeomorphism (not under a general smooth map). I will remind you of the 'issues' arising in the proof of this by duality – namely the need to think about densities – below. Using the density of $\mathcal{C}_c^\infty(\Omega)$ in $\mathcal{C}^\infty(\Omega)$ for any open set Ω and the fact that F^* extends by continuity I claim that (3.2) already has meaning.

Proof. First recall that the 'full symbol map' is still surjective if we restrict supports as in (3.1) since any $u' \in I^m_c(\mathbb{R}^n; \{0\})$ differs from an element of $I^m_c(\Omega; \{0\})$ by an element of $\mathcal{S}(\mathbb{R}^n)$. We will use this in the proof.

First we start with a simple case, when $F \in \text{GL}(n, \mathbb{R})$ is actually an invertible linear map. Then there is no problem with supports.

Lemma 3.1. Under pull-back by $L \in \text{GL}(n, \mathbb{R})$

$$L^* : I^m_S(\mathbb{R}^n; \{0\}) \to I^m_S(\mathbb{R}^n; \{0\}).$$ (3.3)

Proof. This corresponds to the fact the Fourier transform behaves 'well' under linear change of coordinates. For $u \in \mathcal{S}(\mathbb{R}^n)$ it follows directly that

$$\mathcal{F}(L^* u)(\xi) = \int_{\mathbb{R}^n} e^{-ix \cdot \xi} u(Lx) dx = \int_{\mathbb{R}^n} e^{-i(L^{-1}y) \cdot \xi} u(y) | \det L |^{-1} dy$$

$$= \int_{\mathbb{R}^n} e^{-iy \cdot \xi} u((L^{-1})^t y) | \det L |^{-1} dy = | \det L |^{-1} \hat{u}((L^{-1})^t \xi).$$ (3.4)

37
So the only issue is the constant factor, but this does not affect the fact that \(f(L^*u) \in S^{m-\frac{3}{2}}(\mathbb{R}^n) \) if \(\hat{u} \in S^{m-\frac{3}{2}}(\mathbb{R}^n) \). \(\square \)

Now, this allows us to simplify the general case in Proposition 3.1. Namely we can write \(F = LG \) where \(L \) is the Jacobian matrix of \(F \) at 0 and \(G : \Omega \rightarrow L^{-1}\Omega' \) still has \(G(0) = 0 \) and now has Jacobian equal to the identity at 0. Replacing \(G \) by \(F \) again we can therefore assume that

\[
F(x) = x + \sum_{ij} x_i x_j G_{ij}(x) \text{ in } |x| < \epsilon, \; G_{ij} \in \mathcal{C}^\infty.
\]

There is no problem in shrinking supports to a smaller neighbourhood of 0 since the conormal distributions are all smooth away from 0.

We can exploit the triviality of the Jacobian at 0 by observing that

\[
F_i(x) = x + t \sum_{ij} x_i x_j G_{ij}(x), \; t \in [0, 1]
\]

is a smooth family of diffeomorphisms of a fixed neighbourhood of 0 with image containing some fixed neighbourhood of 0 and with

\[
F_0(x) = x, \; F_1(x) = F(x).
\]

This allows us to replace the problem by a deformation problem, meaning we can get from beginning to end along a path (you might think this is actually harder). However we can now use the variation formula (really just the chain rule) that

\[
\frac{d}{dt}(F^*_t u) = F^*_t(V_t u) = \sum_{k,j,i} x_i x_j a_{i,j,k}(t, x) \partial_{x_k}.
\]

Here \(V_t \) is the \(t \)-dependent vector field which defines \(F_t \) by integration – \(F_t \) is the unique 1-parameter family of local diffeomorphisms which satisfies (3.8) (and \(F_0 = \text{Id} \)). It is important here that \(V_t \) vanishes to second order at 0 (meaning its coefficients vanish quadratically at 0 of course).

So how does this help us? We need another idea, which I learnt from Jürgen Moser in a rather different context. Namely we can suppose that \(u = u_t \) actually depends smoothly on \(t \) as a parameter (with values in the conormal distributions). Then the variation formula (3.8) becomes

\[
\frac{d}{dt}(F^*_t u) = F^*_t(V_t u_t + \frac{d}{dt} u_t).
\]

Now, the idea is that we try to choose \(u_t \) with \(u_1 = u \) so that \(V_t u_t + \frac{d}{dt} u_t = 0 \). We cannot manage this directly but what we can do is to choose \(u_t \in \mathcal{C}^\infty([0, 1]; I^m_c(\Omega')) \) so that

\[
V_t u_t + \frac{d}{dt} u_t \in \mathcal{C}^\infty([0, 1]; I^m_c(\Omega'));
\]

here \(\Omega' \) is some suitably small open neighbourhood of 0.

The idea is to solve (3.10) by successive steps and the crucial point here is that

\[
V_t : I^m_c(\Omega''); \{0\} \rightarrow I^{m-1}_c(\Omega'''; \{0\}), \forall m \in \mathbb{R}.
\]

This follows from Proposition 2.4 and the fact that

\[
\text{if } \Omega' \text{ is small enough we have that } x_i : I^m_c(\Omega''); \{0\} \rightarrow I^{m-1}_c(\Omega'''; \{0\}), \partial_{x_k} : I^m_c(\Omega''); \{0\} \rightarrow I^{m+1}_c(\Omega'''; \{0\}).
\]
So, we look for u_t as a formal, for the moment, sum

$$u_t \sim \sum_j v_j, \quad v_j \in C^\infty([0, 1]; I^{m-j}(\Omega', \{0\})).$$

Take

$$v_0 = u, \quad v_j = \int_1^t V_j v_{j-1}, \quad j \geq 1.$$

Then, slightly generalizing the asymptotic summation result (see Problems 2) to include the ‘parameter’ $t \in [0, 1]$, we can find u_t satisfying (157.173) and hence (157.170).

However, we do know that C^∞ is coordinate-invariant so we have proved the Proposition.

The question arises as to what the full symbol of F^*u might be. The answer is that it is not so simple to write out because of the iteration. We will deduce a few things about this complicated formula below, but for the moment notice that the ‘principal symbol’ is given by a relatively simple formula in terms of the Jacobian.

For differential operators it is conventional to write the coefficients ‘on the left’

$$P = \sum_{|\alpha| \leq m} p_\alpha(x) D_x^\alpha, \quad p_L(x, \xi) = \sum_{|\alpha| \leq m} p_\alpha(x) \xi^\alpha.$$

However one can just as well write them on the right

$$P = \sum_{|\alpha| \leq m} D_x^\alpha q_\alpha(x), \quad p_R(x, \xi) = \sum_{|\alpha| \leq m} q_\alpha(x) \xi^\alpha.$$

Lemma 3.2. The transformation (157.175) is that of a density on $T^*_0 \mathbb{R}^n$.

Lemma 3.3.

$$p_L(x, \xi) = \sum_{\beta \in \mathbb{N}_0^n} \frac{1}{\beta!} \partial^\beta_x \partial^\beta_\xi p_R(x, \xi),$$

$$p_R(x, \xi) = \sum_{\beta \in \mathbb{N}_0^n} (-1)^{|eta|} \frac{1}{\beta!} \partial^\beta_x \partial^\beta_\xi p_L(x, \xi).$$

Here of course only a finite number of terms are non-zero. The formal power series here are those of an exponential so we can write

$$p_L = \exp(D_x \cdot \partial_x) p_R, \quad p_R = \exp(-D_x \cdot \partial_x) p_L$$

to see that one is the inverse of the other.

Proof. Leibniz’ formula. □

For pseudodifferential operators we can do ‘the same thing’ but it is then not so clear that we get the same space of operators. For a differential operator with coefficients written on the right we see, again using the Fourier inversion formula on \mathcal{S} that the operator is given by the formula

$$\mathcal{F}(Pu)(\xi) = \int_{\mathbb{R}^n} e^{-iv \cdot \xi} p_R(y, \xi) u(y) dy, \quad u \in \mathcal{S}(\mathbb{R}^n).$$
Proposition 3.2. If \(p_R \in \mathcal{C}^\infty_\omega(\mathbb{R}^n; S^m(\mathbb{R}^n)) \) the operator defined by \(L^\infty \) is an element of \(\Psi^m(\mathbb{R}^n) \) with left-reduced symbol, \(p_L \), given asymptotically by (3.23).

Proof. We proceed very much as in the proof above. Namely, the Schwartz kernel of the operator \(P \) in (3.20) is

\[
P(x, y) = B(y, x - y), \quad B(y, z) = (2\pi)^{-n} \int_{\mathbb{R}^n} p_R(y, \xi) e^{i(x-y) \cdot \xi} d\xi
\]

where we may assume that \(p_R \) is of very low order to ensure absolute convergence of the integral (and sort the general case out by continuity). Thus the kernel is given by introducing the coordinates \(y \) and \(z = x - y \) in \(\mathbb{R}^{2n} \) and taking the partial inverse Fourier transform in \(z \).

So this is very similar to the original 'left-reduced' formula except we have switched \(x \) and \(y \) as the variable independent of \(z = x - y \) on \(\mathbb{R}^{2n} \). Using the same idea as above we can consider a 1-parameter family of ‘quantization maps’ including left and right as extreme cases

\[
Q_t(a_t) = (2\pi)^{-n} \int_{\mathbb{R}^n} a_t(tx + (1 - t)y, \xi) e^{i(x-y) \cdot \xi} d\xi, \quad t \in [0, 1]
\]

and again allow \(a \) to vary smoothly with \(t \). The full estimates we are considering on \(a \) are therefore

\[
\sup(1 + |\xi|)^{-m+|\beta|} |\partial_x^k D_\xi^\alpha a(t, x, \xi)| < \infty \quad \text{on} \quad [0, 1]_t \times \mathbb{R}^n_x \times \mathbb{R}^n_\xi.
\]

So again, the claim is that the space of kernels, distributions that is, on \(\mathbb{R}^{2n} \) defined by (3.22) is actually independent of \(t \).

To see this we compute, as before, the derivative in \(t \) and note that it can be written

\[
\frac{d}{dt} Q_t(a_t) = Q_t(i \sum_j \partial_x^j \partial_\xi^j a_t + \frac{d}{dt} a_t)
\]

where the first term comes from the chain rule and integration by parts since \(\frac{d}{dt}(tx + (1 - t)y) = x - y \) and \(x - y = -i \partial_x i(x - y) \cdot \xi \). So, now we want to choose \(a_t \) so that

\[
i \sum_j \partial_x^j \partial_\xi^j a_t + \frac{d}{dt} a_t \text{ is of order } - \infty.
\]

In this case we can solve (3.25) explicitly by taking

\[
a_t(x, \xi) \sim \sum_j \frac{t^j}{k!} (D_x \cdot \partial_\xi)^k a(x, \xi) = \exp(t D_x \cdot \partial_\xi) a
\]

in the sense of formal power series at \(t = 0 \).

If we choose \(a_t \) to be an asymptotic sum (uniform in the other variables) as in (3.26) then the 'error term' is

\[
\frac{d}{dt} Q_t(a_t) = Q_t(e_t(x, \xi)), \quad \sup(1 + |\xi|)^{-N} |\partial_x^k D_\xi^\alpha e_t| < \infty \quad \forall k, \alpha, \beta.
\]

So we can unload the last step in the proof on the following lemma.

Remark. Underivered Lecture 6

I did not finish the proof of left/right equivalence last time. Let me not start at precisely the place I left off, but instead consider the 'residual' operators.
LEMMA 3.4. For each \(t \in [0, 1] \) the quantization \(Q_t \), in (3.22) applied to the residual symbols, which satisfy

\[
(3.28) \quad \sup(1 + |\xi|^N|\partial_x^\alpha \partial_y^\beta a(x, \xi)|) < \infty \quad \forall \ N, \alpha, \beta
\]
gives the space of kernel of elements of \(\Psi^{-\infty}(\mathbb{R}^n) \) are precisely those smooth functions which satisfy

\[
(3.29) \quad \sup(1 + |x - y|^N|\partial_x^\alpha \partial_y^\beta A(x, y)|) < \infty \quad \forall \ N, \alpha, \beta.
\]

PROOF. The functions satisfying (3.25) are exactly the elements of the space \(C^\infty(\mathbb{R}_x^n; S(\mathbb{R}_\xi^n)) \). Consider the case \(t = 1 \), which is the ‘left quantization’ we started with. Since the Fourier transform is an isomorphism of \(S(\mathbb{R}^n) \), the space of kernels of elements of \(\Psi^{-\infty}(\mathbb{R}^n) \) consists of the functions

\[
(3.30) \quad A(x, y) = B(x, x - y),
\]

where \(B(x, z) \) is the (partial) inverse Fourier transform \(\xi \rightarrow z \)

\[
(3.31) \quad B(x, z) = (2\pi)^{-n} \int e^{iz\cdot\xi}a(x, \xi)d\xi \quad \Rightarrow \quad B \in C^\infty(\mathbb{R}_x^n; S(\mathbb{R}_\xi^n)).
\]

Thus, after this change of variable, the space of \(B \)'s satisfy the same estimates as the symbols they are defined by

\[
(3.32) \quad \sup_{x, z}(1 + |z|^N|\partial_x^\alpha \partial_z^\beta B|) < \infty.
\]

The general quantization for \(t \in [0, 1] \) replaces these kernels by the

\[
(3.33) \quad A_t(x, y) = B(tx + (1 - t)y, z)
\]

for the same space of \(B \)'s. In terms of the \(B \)'s themselves this corresponds to the change of coordinates \((x, z) \rightarrow (X = x - (1 - t)z, z) \). This is invertible and the coordinate vector fields transform to

\[
(3.34) \quad \partial_z = \partial_z - (1 - t)\partial_x, \quad \partial_x = \partial_x
\]

from which it is clear that the estimates (3.32) are invariant under such transformations. Thus

\[
(3.35) \quad Q_t(C^\infty(\mathbb{R}^n; S(\mathbb{R}^n))) = \Psi^{-\infty}(\mathbb{R}^n) \quad \forall \ t \in [0, 1].
\]

This takes care of the residual terms.

So, going back to the proof of Proposition 1.2 we are proceeding to construct a family \(a_t \in C^\infty([0, 1] \times \mathbb{R}^n; S^m(\mathbb{R}^n)) \) so that

\[
(3.36) \quad \frac{da_t}{dt} + i\partial_\xi \cdot \partial_x a_t \in C^\infty([0, 1] \times \mathbb{R}^n; S^{-\infty}(\mathbb{R}_\xi^n)), \quad a_1 \in C^\infty(\mathbb{R}^n; S^m(\mathbb{R}^n)) \text{ given}.
\]

To do this we choose successive families \(v_j \in C^\infty([0, 1] \times \mathbb{R}^n; S^{m-j}(\mathbb{R}^n)) \) by

\[
(3.37) \quad v_0 = a, \quad v_j = \frac{(1 - t)^j}{j!} (i\partial_\xi \cdot \partial_x)^j a.
\]

Here I have done the integrals explicitly, so these satisfy

\[
(3.38) \quad \frac{dv_0}{dt} = 0, \quad \frac{dv_j}{dt} + i\partial_\xi \cdot \partial_x v_{j-1} = 0 \quad j \geq 1, \quad v_0 = a, \quad v_j \big|_{t=0} = 0, \quad j \geq 1.
\]
Now we choose \(a_t \) as an asymptotic sum of the \(v_j \)'s. This goes beyond the earlier summation because of the presence of the parimeters \(t \in [0,1] \) and \(x \in \mathbb{R}^n \). What we want to do is to ensure that the cutoff series

\[
\sum_{j > k} \Phi_{n_k} v_j
\]

should converge absolutely with respect to the seminorms of \(C_\infty^\infty([0,1] \times \mathbb{R}^n; S^{m'}(\mathbb{R}^n)) \). All the terms have lower order than this. The point is that there are still only a countable number of norms, even though they now involve the supremum over \([0,1] \times \mathbb{R}^n\) as well. So absolute convergence can be ensured for each series by choosing the \(n_k \) large enough. Again this only involves a finite number of conditions on each \(n_k \).

Once we choose \(a_t \) to be such an asymptotic sum then we get (3.39) and following the discussion of the residual terms above, the complete the proof of Proposition 6.2.

2.1. Composition

So, finally we are in a position to prove the multiplicativity of (standard) pseudodifferential operators as in Theorem 1.1:

\[
A \in \Psi^m(\mathbb{R}^n), \ B \in \Psi^{m'}(\mathbb{R}^n) \implies A \circ B \in \Psi^{m+m'}(\mathbb{R}^n)
\]

where \(\sigma \) is the left-reduced full symbol.

Remark 1. The asymptotic formula in (3.40) is one version of ‘Moyal’s formula’.

Proof. First I suggest the standard proof, which I will not quite follow through. The idea is to write \(A \) in left-reduced form and \(B \) is right-reduced form – now that we know they are equivalent. Thus

\[
Au(x) = (2\pi)^{-n} \int a_L(x,\xi) e^{ix \cdot \xi} \hat{u}(\xi) d\xi,
\]

\[
\mathcal{F}(Bv)(\xi) = \int b_R(y,\xi) e^{-iy \cdot \xi} v(y) dy, \quad u, v \in \mathcal{S}(\mathbb{R}^n).
\]

We can assume that the symbols themselves are of order \(-\infty\) and use density. The composite is then

\[
(AB)v(x) = (2\pi)^{-n} \int e^{i(x-y) \cdot \xi} a_L(x,\xi) b_R(y,\xi) v(y) dy d\xi
\]

This is almost what we want, except the ‘amplitude’ in the integral depends explicitly on both \(x \) and \(y \), as well as \(\xi \). So we need to show that the kernel of the composite

\[
K(x,y) = (2\pi)^{-n} \int e^{i(x-y) \cdot \xi} a_L(x,\xi) b_R(y,\xi) d\xi \in \Psi^{m+m}(\mathbb{R}^n).
\]

This can be proved by an argument very similar to the left/right reduction. I leave the details to you!
Let’s return for a moment to the spaces of conormal distributions at the origin, \(I^m_\delta(\mathbb{R}^n; \{0\}) \). We can easily define conormal distributions at another point simply by translation. Thus, if \(p \in \mathbb{R}^n \),

\[
I^m_\delta(\mathbb{R}^n; \{p\}) = \{ u \in S'(\mathbb{R}^n); u(x + p) = T^*_q u \in I^m_\delta(\mathbb{R}^n) \}.
\]

This is made more convincing by the proof of coordinate invariance. Here \(T_q \) is translation by \(q \in \mathbb{R}^n \), \(T_q x = x + q \).

Exercise 4. Define, and the formulate (and prove) the coordinate-invariance of, the spaces \(I^m_\delta(\Omega; \{p\}) \) for \(p \in \Omega \subset \mathbb{R}^n \) open.

Lemma 3.5. The Schwartz kernels of elements of \(\Psi^m(\mathbb{R}^n) \) may be identified with the space

\[
c^\infty(\mathbb{R}^n; \mathcal{I}^m(\{0\})) \text{ by } A(x, y) \mapsto A(x - y, y).
\]

Proof.

Using earlier results we have another method. What we have shown above, in left/right reduction is that the kernel of an element of \(\Psi^m(\mathbb{R}^n) \)

If there is a little time left today I want to introduce another algebra of pseudodifferential operators. This is a sign of things to come. I have been rather hard on the ‘coefficient ring’ \(c^\infty(\mathbb{R}^n) \) which is involved in the ring \(\Psi^m(\mathbb{R}^n) \). What is a ‘nicer’ possibility? The one I have in mind is the symbol space itself. We can easily introduce the space of ‘symbol-valued symbols’ (in either direction)

\[
S^{m,k}(\mathbb{R}^n; \mathbb{R}^n) = \{ a \in c^\infty(\mathbb{R}^n_\ast; \xi); \sup(1 + |x|)^{-k+|\alpha|}(1 + |\xi|)^{-m+|\beta|}\partial_x^\alpha \partial_\xi^\beta a(x, \xi) < \infty, \forall \alpha, \beta \}.
\]

What I mean by symbol-valued symbols is that as a smooth map from the first set of variables,

\[
a : \mathbb{R}^n \longrightarrow S^m(\mathbb{R}^n).
\]

Moreover, if \(\| \cdot \|_{m,N} \) are the seminorms on \(S^m(\mathbb{R}^n) \) then the estimates (3.46) are equivalent to

\[
\sup_x (1 + |x|)^{-m+|\alpha|}\|\partial_x^\alpha a(x, \cdot)\|_{k,N} < \infty \forall \alpha.
\]

These defining conditions give seminorms. Here there are two orders and differentiation with respect to \(x \) lowers the first (but not the first) and differentiation with respect to \(\xi \) lowers the first but not the second.

Directly from (3.46) we see that

\[
k \leq 0 \implies S^{m,k}(\mathbb{R}^n; \mathbb{R}^n) \subset c^\infty(\mathbb{R}^n; S^m(\mathbb{R}^n)).
\]

It is also the case that

\[
(1 + |x|^2)^{k/2} \in S^{0,k}(\mathbb{R}^n; \mathbb{R}^n) \text{ and } S^{m,k}(\mathbb{R}^n; \mathbb{R}^n) : S^{m',k'}(\mathbb{R}^n; \mathbb{R}^n) = S^{m+m',k+k'}(\mathbb{R}^n; \mathbb{R}^n).
\]

Combining these two observations we see that

\[
(1 + |x|^2)^{-k/2} S^{m,k}(\mathbb{R}^n; \mathbb{R}^n) \subset c^\infty(\mathbb{R}^n; S^m(\mathbb{R}^n)).
\]
So, we can quantize these double symbols using left quantization and define

\[\Psi_{sc}^{m,k}(\mathbb{R}^n) = \{ A : \mathcal{S}(\mathbb{R}^n) \rightarrow \mathcal{S}(\mathbb{R}^n) \}; \]

\[A = (1 + |x|^2)^{k/2} Q_L [(1 + |x|^2)^{-k/2} a], \ a \in S^{m,k}(\mathbb{R}^n; \mathbb{R}^n) \].

This algebra was introduced by Shubin, \[MR0273463 \], but I call it the scattering algebra, which is the subscript \(sc \), because it has a direct extension to compact manifolds with boundary (as I hope we will see).

So, I am getting ahead of myself here:

Proposition 3.3. The scattering pseudodifferential operators from a double-filtered algebra

\[\Psi_{sc}^{m,k}(\mathbb{R}^n) \circ \Psi_{sc}^{m',k'}(\mathbb{R}^n) \subset \Psi_{sc}^{m+m',k+k'}(\mathbb{R}^n) \]

with residual space

\[\Psi_{sc}^{-\infty,-\infty}(\mathbb{R}^n) = \bigcap_{m,k} \Psi_{sc}^{m,k}(\mathbb{R}^n) \]

equal to the space of operators with kernels \(A \in \mathcal{S}(\mathbb{R}^n) \).

Maybe you would like to try your hand at proving this! You can easily see why it should be true because Moyal’s formula for the composite of two such operators gives

\[\sigma_L(AB) \sim \sum_{\alpha} \frac{1}{\alpha!} \partial_{\xi} \sigma_L(A) \cdot D_x \sigma_L(B) \] \[157.223 \]

and the individual terms here are in

\[S^{m-|\alpha|,k}(\mathbb{R}^n; \mathbb{R}^n) \cdot S^{m',k'-|\alpha|}(\mathbb{R}^n; \mathbb{R}^n) \subset S^{m+m',k+k'-|\alpha|}(\mathbb{R}^n; \mathbb{R}^n) \]

which is decreasing in both orders. It takes a little thought to prove that everything ‘works’ correctly; here is an outline of one approach – where I will use Kumano-go’s double symbols.

First go through the left/right reduction argument in this case. For convenience I take \(k \leq 0 \) because we can always recover the general case by multiplying by \((1 + |x|^2)^{k/2} \). So, we want to choose a 1-parameter family of double symbols, \[M_{\alpha} \in C^\infty([0,1]; S^{m,k}(\mathbb{R}^n; \mathbb{R}^n)) \]

so that the identity \[(157.225) \] holds in the new sense. Looking at \[(157.225) \] we can see that if \(v_0 = a \) is chosen in \(S^{m,k}(\mathbb{R}^n; \mathbb{R}^n) \) then the \(v_j \in C^\infty([0,1]; S^{m-\alpha,k-\alpha}(\mathbb{R}^n; \mathbb{R}^n)) \) have both orders decreasing. Going back to the asymptotic summation lemma we now need to do a little more with our cutoffs. So in this case we would consider all the series

\[\sum_{j>l} (1 - \phi(x/n_j)) \phi(\xi/n_j) v_j(t,x,\xi) \]

where we cut out the region where both \(|x| \) and \(|\xi| \) are less than \(n_j \). So on the support of \((1 - \phi(x/n_j)) \phi(\xi/n_j) \) either \(|x| > n_j \) or \(|\xi| > n_j \) but the symbol lies in the space \(S^{m-\alpha,\alpha-j}(\mathbb{R}^n; \mathbb{R}^n) \) with \(j > l \). So this is small in the symbol space \(S^{m-\alpha,k-\alpha}(\mathbb{R}^n; \mathbb{R}^n) \) if we choose \(n_j \) large enough. This means we can make all the series converge by an appropriate choice of the integers \(n_j \) and then the error term and then the error term

\[\frac{d}{dt} Q_t(a_1) \in \mathcal{S}(\mathbb{R}^n) \]

is a residual operator in the new sense. So we win and we see that \(Q_t(S^{m,k}(\mathbb{R}^n; \mathbb{R}^n)) = \Psi_{sc}^{m,k}(\mathbb{R}^n) \) for all \(t \in [0,1] \).
Now to Kumano-go’s result. Suppose we ‘overspecify’ the amplitude of the pseudodifferential operator by taking a ‘triple symbol’

$$b(x, y, \xi) \in S^{n,k,k}(\mathbb{R}^n; \mathbb{R}^n; \mathbb{R}^n) = S^k(\mathbb{R}^n); S^k(\mathbb{R}^n); S^{n,k}(\mathbb{R}^n)$$ \hspace{1cm} (3.59)

This means we consider smooth functions on \(\mathbb{R}^{3n}\) which satisfy

$$\sup(1 + |x|)^{-k+\alpha} (1 + |y|)^{-k+\beta} (1 + |\xi|)^{-m+|\beta|} |\partial_x^\alpha \partial_y^\beta \partial_\xi^\gamma b(x, y, \xi)|$$ \hspace{1cm} (3.60)

This defines a countably normed space. Notice that these are symbols ‘separately’ in all the variables, there is no joint decay.

Proposition 3.4. [Kumano-go] The ‘overspecified’ quantization map

$$Q : b \mapsto \int_{\mathbb{R}^n} e^{i(x-y)\cdot \xi} b(x, y, \xi) d\xi \in \Psi^{m,k}_{sc}(\mathbb{R}^n).$$ \hspace{1cm} (3.61)

Proof. We can think of the double symbols \(a(x, \xi, y, \xi')\) as special cases of the triple symbols which are independent of \(y\). Then (3.61) is standard quantization, so the range certainly contains \(\Psi^{m,k}_{sc}(\mathbb{R}^n)\). To see that it contains nothing more, we can use the same deformation argument as above and try to construct a family of triple symbols \(b_t\) so that the intermediate quantization maps

$$Q_t : b_t \mapsto \int_{\mathbb{R}^n} e^{i(x-y)\cdot \xi} b_t(x, tx + (1-t)y, \xi) d\xi$$ \hspace{1cm} (3.62)

have derivative a smoothing, here meaning Schwartz kernel. \(\Box\)

3. Isotropic algebra

There is a text on this by Parmeggiani [7].

Remark. Edited by Paige Dote.

The calculus \(\Psi^{*,*}_{sc}(\mathbb{R}^n)\), due to Shubin, is described above. Let me introduce yet another algebra of pseudodifferential operators on \(\mathbb{R}^n\). This one, as we will see later, has direct topological applications, whereas the scattering algebra is more of geometric significance. The symbols considered are the ‘pure symbols’ on \(\mathbb{R}^{2n} = \mathbb{R}^n \times \mathbb{R}^n\),

$$S^m(\mathbb{R}^{2n}) = \{ a \in C^\infty(\mathbb{R}^{2n}); \forall \alpha, \beta \in \mathbb{N}^n, \sup(1 + |x| + |\xi|)^{-m+|\alpha|+|\beta|} |\partial_x^\alpha \partial_\xi^\beta a| < \infty \}.$$ \hspace{1cm} (3.63)

So there is no difference in behavior between the \(x\) and \(\xi\) variables. That is what ‘isotropic’ is supposed to indicate here, meaning ‘the same in all directions’.

Rather than repeat the basic constructions again we can use the properties of \(\Psi^{*,*}_{sc}(\mathbb{R}^n)\) in view of the following Lemma:

Lemma 3.6. The pure symbols and symbol-valued symbols are related by the following:

$$S^m(\mathbb{R}^{2n}) \subset S^m(\mathbb{R}^n; S^m(\mathbb{R}^n)), \quad m \geq 0$$

$$S^m(\mathbb{R}^{2n}) \subset S^{m/2}(\mathbb{R}^n; S^{m/2}(\mathbb{R}^n)), \quad m \leq 0 \hspace{1cm} (3.63)$$

Proof. These results follow from

$$\max\{1 + |x|, 1 + |\xi|\} \leq (1 + |x| + |\xi|) \leq (1 + |x|)(1 + |\xi|).$$
This gives the leading estimates in the first two statements in (3.63) since \(a \in S^m(\mathbb{R}^{2n}) \) satisfies
\[
|a(x, \xi)| \leq (1 + |x|)^m (1 + |\xi|)^m, \quad m \geq 0
\]
\[
|a(x, \xi)| \leq (1 + |x|)^{m/2} (1 + |\xi|)^{m/2}, \quad m \geq 0.
\]

In \(S^m(\mathbb{R}^{2n}) \) an \(x \)-derivative corresponds to an extra decay factor of \((1 + |x| + |\xi|)^{-1} \leq (1 + |x|)^{-1}\) and a \(\xi \)-derivative does as well but \((1 + |x| + |\xi|)^{-1} \leq (1 + |\xi|)^{-1}\), giving all of the ‘double’ symbol estimates. The last statement follows from the second last.

Thus, using left quantization we can define
\[
(3.64) \quad \Psi^m_{\text{iso}}(\mathbb{R}^n) = Q_L(S^m(\mathbb{R}^{2n}_x, \xi))
\]
and it follows that
\[
(3.65) \quad \left\{
\begin{array}{l}
\Psi^m_{\text{iso}}(\mathbb{R}^n) \subset \Psi^m_{\text{sc}}(\mathbb{R}^n), \quad m \geq 0 \\
\Psi^m_{\text{iso}}(\mathbb{R}^n) \subset \Psi^{m/2,m/2}_{\text{sc}}(\mathbb{R}^n), \quad m \leq 0
\end{array}
\right.
\]

Theorem 3.1. The isotropic operators form an \(\ast \)-closed filtered algebra of operators with a well-defined principal symbol map giving a short exact sequence
\[
(3.66) \quad \Psi^m_{\text{iso}}(\mathbb{R}^n) \to \Psi^m_{\text{iso}}(\mathbb{R}^n) \xrightarrow{\sigma_m} S^m/S^{m-1}(\mathbb{R}^{2n}),
\]
\[
(3.67) \quad \sigma_{m+m'}(AB) = \sigma_m(A)\sigma_{m'}(B)
\]
for \(A \in \Psi^m_{\text{iso}}(\mathbb{R}^n), \ B \in \Psi^{m'}_{\text{iso}}(\mathbb{R}^n) \).

Proof. We know that the \(\Psi^m_{\text{sc}}(\mathbb{R}^n) \) is a (bi-)filtered algebra with products asymptotic to Moyal’s formula. Hence, in this sense,
\[
A \in \Psi^m_{\text{iso}}(\mathbb{R}^n), \ B \in \Psi^{m'}_{\text{iso}}(\mathbb{R}^n) \implies AB = Q_L(c)
\]
for some \(c \in S^k(\mathbb{R}^n; S^k(\mathbb{R}^n)) \) and some \(k \) where
\[
c \sim \sum_{\alpha} \frac{1}{\alpha!} (D_\xi^\alpha a)(D_\xi^\alpha b).
\]

The the series here has terms in in \(S^{k-j,k-j} \). Now since \(a \in S^m(\mathbb{R}^{2n}), \ b \in S^{m'}(\mathbb{R}^{2n}) \) the terms in the Moyal series are
\[
\frac{1}{\alpha!} \partial_{\xi}^\alpha a \cdot D_\xi^\alpha b \in S^{m+m'-2|\alpha|}(\mathbb{R}^{2n}).
\]

Thus, this series is asymptotic in the isotropic sense. It follows that we can choose an asymptotic sum
\[
S^{m+m'}(\mathbb{R}^{2n}) \ni \hat{c} \sim \sum_{\alpha} \frac{1}{\alpha!} \partial_{\xi}^\alpha a \cdot D_\xi^\alpha b.
\]

Hence, it follows from Lemma 3.6, despite the \(\frac{1}{2} \)s in the orders, that
\[
\hat{c} \sim \sum_{\alpha} \frac{1}{\alpha!} \partial_{\xi}^\alpha a \cdot D_\xi^\alpha b
\]
in the sense of symbol-valued symbols. From the uniqueness of the asymptotic sum in this sense, and the last part of Lemma 3.6, it follows that
\[
\Psi^m_{\text{iso}}(\mathbb{R}^n) \cdot \Psi^{m'}_{\text{iso}}(\mathbb{R}^n) \subset \Psi^{m+m'}_{\text{iso}}(\mathbb{R}^n)
\]
as claimed. Thus the Moyal product gives an asymptotic formula for the symbol of a product so (157.473) follows, with (157.474) essentially being the definition of σ_m.

The closure under passage to adjoints is similar.

Since these are lectures, one can ask rather impertinent questions such as: Why would one be interested in this? One practical answer is that the algebra is closely related to the harmonic oscillator on \mathbb{R}^n.

Definition 3.1 (Harmonic Oscillator). The harmonic oscillator, H, on \mathbb{R}^n is defined as

$$H = \Delta + |x|^2,$$

where $\Delta = \sum D_{x_i}^2 = -\sum \partial_{x_i}^2$.

Indeed, $H \in \Psi^2_{\text{iso}}(\mathbb{R}^n)$ is elliptic. I hope that somewhere below I will show how one can use the isotropic algebra to prove Thom isomorphism in K-theory. This is a very special case of the familiar Atiyah-Singer Index Theorem that I want to describe below. The isotropic algebra is also an integral part of the proof, at least for the proof I have in mind.

Now, for elliptic operators, such as H, in the isotropic calculus we can deduce the existence of a parameterix just as is done microlocally in the standard case in the next chapter and globally for manifolds later. It is significant that the error here is compact.

\[157.475\]

Proposition 3.5. If $A \in \Psi^m_{\text{iso}}(\mathbb{R}^n)$ is elliptic then it has a two-sided parameterix modulo the ideal $\Psi^{-\infty}_{5}(\mathbb{R}^n)$.

Proof. By definition, $A = Q_L(a)$ where $a \in S^m(\mathbb{R}^{2n})$ is globally elliptic. Thus for some $\delta > 0$

$$|a(x, \xi)| \geq \delta(|x| + |\xi|)^m \text{ in } |x| + |\xi| \geq \frac{1}{\delta},$$

then $b(x, \xi) = \frac{1-\varphi(x, \xi)}{a(x, \xi)} \in S^{-m}(\mathbb{R}^{2n})$ if $\varphi \in C^\infty_c(\mathbb{R}^{2n})$ is equal to 1 on the ball $|x| + |\xi| \leq \frac{1}{\delta}$.

\[\square\]
4. Problems 2

In this second problem set I would like you to go through some ‘symbolic arguments’, giving L^2 boundedness of pseudodifferential operators.

4.1. Schur’s criterion. This is the same Schur as the lemma about irreducibility, hence I just say ‘criterion’. This is quite a handy sufficient condition for L^2 boundedness in terms of the Schwartz kernel. It can be generalized to measure spaces (and so manifolds), but for the moment let’s think about \mathbb{R}^n. Then

Proposition 3.6. If $A: \mathbb{R}^n \rightarrow \mathbb{C}$ is a Lebesgue measurable function which satisfies

$$\sup_x \int |A(x,y)|dy, \sup_y \int |A(x,y)|dx < \infty$$

then the integral operator (say defined initially on $C_c(\mathbb{R}^n)$)

$$Au(x) = \int_{\mathbb{R}^n} A(x,y)u(y)dy$$

is a bounded operator on $L^2(\mathbb{R}^n)$.

Proof. You might like to look it up, it is basically just a clever use of Schwarz inequality. □

Problem 2.1

Show that if $A \in \Psi^m(\mathbb{R}^n)$ with $m < -n$ then the Schwartz kernel is continuous and satisfies

$$\sup_{x,y} (1 + |x-y|)^N|A(x,y)| < \infty \forall N.$$

Deduce that Schur’s criterion applies and hence conclude L^2 boundedness.

In fact you can push this argument so that it applies for $m < 0$ but not up to $m = 0$ (think of the identity).

Problem 2.2

For $A \in \Psi^0(\mathbb{R}^n)$ construct $Q \in \Psi^0(\mathbb{R}^n)$ such that

$$Q = Q^*, \quad Q^2 = C\text{Id} - A^*A + E, \quad C > 0 \text{ constant, } E \in \Psi^{-1}(\mathbb{R}^n)$$

‘Hint’: It is enough to choose $C > \sup |a|^2$ where $A = Q_L(a)$. Then show that $q = (C - |a|^2)^\frac{1}{2} \in C_\infty(\mathbb{R}^n; S^0(\mathbb{R}^n))$ and the set $Q = \frac{1}{2}(Q_L(a)) + Q_L(a)^*$.

Problem 2.3

Now we want to improve the ‘error’ in (3.71). Show that if $E \in \Psi^{-k}(\mathbb{R}^n)$, $k \geq 1$, and $E^* = E$ where $E = Q_L(e)$ then the choice

$$B = Q_L(e/q) + Q_L(e/q)^*$$

satisfies $(Q-B)^2 = C\text{Id} - A^*A - E', \quad E' \in \Psi^{-k-1}(\mathbb{R}^n)$, $(E')^* = E'.$

Problem 2.4

Using this show that we may ‘correct’ Q (by adding a lower order term) so that (3.71) holds with $E \in \Psi^{-N}(\mathbb{R}^n)$ for any preassigned N. (Using asymptotic summation this works for $N = -\infty$.

Problem 2.5

Finally deduce L^2 boundedness in the sense that $A \in \Psi^0(\mathbb{R}^n)$ extends by continuity from $A: \mathcal{S}(\mathbb{R}^n) \rightarrow \mathcal{S}(\mathbb{R}^n)$ to a bounded operator on $L^2(\mathbb{R}^n)$.

4. PROBLEMS 2

‘Hint’. This whole argument is due to Hörmander. It follows from (P2.4) that, for \(\phi \in \mathcal{S}(\mathbb{R}^n) \), in terms of the \(L^2 \) inner product

\[
0 \leq \langle Q\phi, Q\phi \rangle = \langle Q^2 \phi, \phi \rangle = C\|\phi\|_{L^2}^2 - \|A\phi\|_{L^2}^2 + \langle E\phi, \phi \rangle.
\]

So, if we know that boundedness of \(E \) (which we do) then

\[
\|A\phi\|_{L^2} \leq (C + C')^{\frac{1}{2}} \|u\|_{L^2}.
\]

where \(C' \) comes from \(E \).

Problem 2.6: Sobolev boundedness

The Sobolev space \(H^s(\mathbb{R}^n) \) is defined as consisting of those elements of \(\mathcal{S}'(\mathbb{R}^n) \) (because we are allowing \(s \leq 0 \) such that

\[
(1 + |\xi|^2)^{s/2} \hat{u} \in L^2(\mathbb{R}^n).
\]

Deduce that the operator \((1 + |D|^2)^{t/2} = Q_L((1 + |\xi|^2)^{t/2}) = Q_R((1 + |\xi|^2)^{t/2}) \in \Psi^t(\mathbb{R}^n) \), for any \(t \in \mathbb{R} \), is an isomorphism

\[
(1 + |D|^2)^{t/2} : H^s(\mathbb{R}^n) \longrightarrow H^{s-t}(\mathbb{R}^n).
\]

From this, \(L^2 \) boundedness and the properties of the calculus deduce that

\[
A \in \Psi^m(\mathbb{R}^n) \implies A : H^s(\mathbb{R}^n) \longrightarrow H^{s-m}(\mathbb{R}^n).
\]

‘Hint’: Consider for instance \((1 + |D|^2)^{-m+s/2}A(1 + |D|^2)^{-s/2} \).

Problem 2.7

For anyone who has read the section on the scattering (Shubin) calculus define the weighted Sobolev spaces

\[
H^{s,t}(\mathbb{R}^n) = \{ u \in \mathcal{S}'(\mathbb{R}^n) ; (1 + |x|^2)^{t/2}u \in H^s(\mathbb{R}^n) \}.
\]

1. Show that for any real orders

\[
A \in \Psi^{m,k}_{ac}(\mathbb{R}^n) \implies A : H^{s,t}(\mathbb{R}^n) \longrightarrow H^{s-m,t-l}(\mathbb{R}^n).
\]

2. Show that

\[
\mathcal{F} : H^{s,t}(\mathbb{R}^n) \longrightarrow H^{t,s}(\mathbb{R}^n), \; \forall \; s, t.
\]

3. Show that, in contrast to the usual Sobolev spaces, the inclusion \(H^{s',t'}(\mathbb{R}^n) \hookrightarrow H^{s,t}(\mathbb{R}^n) \) for \(s' > s, \; t' > t \) is compact.
Ellipticity and wavefront set

In the actual Lecture 6 I got a little carried away but let me record here what I tried to cover. So, I am reviewing what we have done, or in some cases partly done, and then expanding on it a little.

- Symbols: The spaces $S^m(\mathbb{R}^n), \subset \mathcal{C}^\infty(\mathbb{R}^n)$ are Fréchet spaces defined by the finiteness of the norms in (157.23). They form a filtered (abelian) ring with identity $1 \in S^0(\mathbb{R}^n)$ and have density (Proposition 157.10) and asymptotic completeness (Theorem 157.14) properties.

When is an element invertible? For $a \in S^m(\mathbb{R}^n)$ to have an inverse in $S^{-m}(\mathbb{R}^n)$ a necessary and sufficient condition is

$$|a(\xi)| \geq \delta(1 + |\xi|)^m \iff a^{-1} \in S^{-m}(\mathbb{R}^n).$$

The necessity of (157.23) follows from the bound $|a^{-1}(\xi)| \leq C(1 + |\xi|)^{-m}$.

Conversely this certainly implies that $b(\xi) = \frac{1}{a(\xi)} \in \mathcal{C}^\infty(\mathbb{R}^n)$ and the derivatives are then of the form

$$\partial^\alpha b = e_\alpha \frac{1}{a|\alpha|+1}$$

where e_α is a symbol or order $(m - 1)|\alpha|$. This is clear for $|\alpha| = 0$ and follows by induction since taking one more derivative shows that

$$\partial_{\xi_j} \partial^\alpha b = \frac{a \partial_{\xi_j} e_\alpha - (|\alpha| + 1) \partial_{\xi_j} a}{a|\alpha|+2}$$

giving the inductive step. The symbol estimates on b follow.

- We defined $I^m_{\delta} \subset (\mathbb{R}^n) = \mathcal{F}^{-1}(S^m(\mathbb{R}^n))$, and derived various properties of these conormal distributions at 0.

- For such a Fréchet space we can define $\mathcal{C}^\infty(\mathbb{R}^m; S^m(\mathbb{R}^n))$ as the subspace of $\mathcal{C}^\infty(\mathbb{R}^m \times \mathbb{R}^n)$ with all derivatives with respect to the first variables bounded in terms of the seminorms on $S^m(\mathbb{R}^n)$. Then our definition of $\Psi^m(\mathbb{R}^n)$ is in terms of their Schwartz kernels (which we identify with the operators)

$$A \in \Psi^m(\mathbb{R}^n) \implies A(x, x - z) \in \mathcal{C}^\infty(\mathbb{R}^n; I^m_{\delta} \subset (\mathbb{R}^n))$$

This corresponds to the ‘quantization map’ in terms of the partial Fourier transform

$$\mathcal{C}^\infty(\mathbb{R}^m; S^m(\mathbb{R}^n)) \ni a(x, \xi) \rightarrow Q_L(a) = \mathcal{F}^{-1}_\xi(a)(x, x - y) \in \Psi^m(\mathbb{R}^n).$$

- We showed (most of the fact that) that for each $t \in (0, 1]$ the ‘intermediate quantizations’

$$Q_t(a) = \mathcal{F}^{-1}_\xi(a)(tx + (1 - t)y, x - y) \in \Psi^m(\mathbb{R}^n)$$
give the same space of operators. For $t = 1$ this is ‘left’ quantization and for $t = 0$ it is ‘right’ quantization where the kernel is written as

$$A(x,y) = B(x + y, x - y), \quad B \in C^\infty_\sigma(R^n; I_s^{m + \frac{n}{2}}(R^n)).$$

157.239

- Note that the case $t = \frac{1}{2}$ is also of importance. It is called ‘Weyl quantization’ and means writing the kernel as

$$A(x,y) = B(x + y, x - y), \quad B \in C^\infty_\sigma(R^n; I_s^{m + \frac{n}{2}}(R^n)).$$

157.240

It has some useful properties.

- The inverses of these quantization maps are the ‘total symbols’

$$\sigma_L, \sigma_R, \sigma_W : \mathfrak{Ψ}^m(R^n) \rightarrow C^\infty(R^n; S^m(R^n)).$$

157.241

- The right and left symbols are related asymptotically by

$$\sigma_R(A) \sim \sum_\alpha \frac{1}{\alpha!} D^\alpha_x \partial^\alpha_\xi \sigma_L(A) = \exp(D_x \cdot \partial_\xi) \sigma_L(A)$$

157.244

where the exponential is to be formally expanded in Taylor series at 0.

Exercise 5. Derive a similar asymptotic relationships between σ_W and σ_L.

- (Not discussed in lecture) The ‘formal’ (just meaning non-Hilbert space) adjoint is defined for any continuous linear operator $A : S(R^n) \rightarrow S'(R^n)$ by duality

$$A^* : S(R^n) \rightarrow S'(R^n), \quad \int_{R^n} (Au)vdx = \int_{R^n} A^*vdx$$

(157.242)

(where the distribution pairing is written as an integral). Then

$$\ast : \mathfrak{Ψ}^m(R^n) \rightarrow \mathfrak{Ψ}^m(R^n), \quad \sigma_R(A^*) = \overline{\sigma_L(A)}.$$

157.243

- The composition theorem with

$$\sigma_L(A \circ B) \sim \sum_\alpha (\partial^\alpha_\xi \sigma_L(A))(D^\alpha_x \sigma_L(B)).$$

157.246

As suggested in Lecture, check this for differential operators. In fact it is enough to take $A = D_x^2$ and $B = b(x)$ and apply Leibniz’ formula to get (157.246).

- (Also not discussed at all). The elements of $\mathfrak{Ψ}^m(R^n)$ define by bounded linear maps for any M on the standard Sobolev spaces

$$A : H^M(R^n) \rightarrow H^{M-m}(R^n).$$

157.247

Proof later. Here $H^M(R^n) = \mathcal{F}^{-1}((1 + |\xi|)^{-M}L^2(R^n))$ is defined as usual as the inverse Fourier transform of the weighted L^2 spaces on the dual.

1. Ellipticity of symbols

In the notes above the notion of ellipticity for elements of $S^m(R^n)$ is discussed (although I did not cover this in lectures). We want an extension of this idea to $C^\infty(R^N; S^m(R^n))$ (I have dropped both the boundedness assumptions on the coefficients and the assumption that $N = n$ since they are both irrelevant here).

Most importantly a symbol is said to be **elliptic at** $(\bar{x}, \bar{\xi}) \in R^N \times (R^n \setminus \{0\})$ if ‘it is as big as it can be’ in a cone around this point.
1. Ellipticity of Symbols

Definition 4.1. The elliptic set

$$\text{Ell}(a) = \text{Ell}_m(a) \subset \mathbb{R}^N \times (\mathbb{R}^n \setminus \{0\})$$

consists of those points $\bar{x}, \bar{\xi}$ corresponding to which there exists $\delta > 0$ such that

$$|a(x, \xi)| > \delta|\xi|^m \text{ in } |x| < \delta, \quad |\frac{\xi}{|\xi|} - \frac{\bar{\xi}}{|\bar{\xi}|}| < \delta, |\xi| > 1/\delta.$$ \hspace{1cm} (4.16)

I have engaged in constant-saving here! Clearly the result remains true if δ is decreased but remains positive. The basic region we are looking at here is a ‘conic neighbourhood’ of $(\bar{\xi}, \xi)$ which is then truncated by demanding $|\xi|$ is large as well. So the appearances of δ can be decreased individually and the estimate remains true. Ellipticity is a ‘local invertibility’ condition on a in the filtered symbol algebra, as shown below. It is a conic set from the definition which only depends on $\bar{\xi}/|\bar{\xi}|$ not ξ itself. Thus

$$\text{Ell}(a) = \text{Ell}_m(a) \subset \mathbb{R}^N \times (\mathbb{R}^n \setminus \{0\})$$

It is also clear that Ell(a) is open for any $a \in \mathcal{C}^\infty(\mathbb{R}^N; S^m(\mathbb{R}^n))$ as a subset of $\mathbb{R}^N \times (\mathbb{R}^n \setminus \{0\})$, which is itself open in $\mathbb{R}^N \times \mathbb{R}^n$. Of course it could be empty, and it certainly is if $a \in \mathcal{C}^\infty(\mathbb{R}^N; S^{m'}(\mathbb{R}^n))$, $m' < m$. So one should really write

$$\text{Ell}(a) = \text{Ell}_m(a) \subset \mathbb{R}^N \times (\mathbb{R}^n \setminus \{0\})$$

but we treat the ‘m'’ as understood from context.

We also give a name to the complement of the elliptic set, it is called the **characteristic set** of the symbol

$$\text{Char}(a) = (\mathbb{R}^N \times (\mathbb{R}^n \setminus \{0\}) \setminus \text{Ell}(a)).$$ \hspace{1cm} (4.19)

It is then a (relatively) closed subset.

We define a third conic set corresponding to the region where the symbol is not locally rapidly decaying with all derivatives as follows

$$\text{conesupp}(a) = \{(\bar{x}, \bar{\xi}) \in \mathbb{R}^N \times (\mathbb{R}^n \setminus \{0\}) ; \exists \delta > 0 \text{ and } \phi \in \mathcal{C}^\infty(\mathbb{R}^N; \mathcal{S}(\mathbb{R}^n))$$

$$\text{with } a = \phi \text{ in } |x - \bar{x}| < \delta, |\xi| > \frac{1}{\delta}, |\frac{\xi}{|\xi|} - \frac{\bar{\xi}}{|\bar{\xi}|}| < \delta \}^\complement.$$

It follows that conesupp(a) is relatively closed and that

$$\text{Ell}(a) \subset \text{conesupp}(a)$$

where this relation is like that between the sets $\{u \neq 0\}$ and supp(u) for a smooth function.

In terms of multiplication of symbols it is easy to see that

$$\text{Ell}(ab) = \text{Ell}(a) \cap \text{Ell}(b),$$

$$\text{Char}(ab) = \text{Char}(a) \cup \text{Char}(b),$$

$$\text{conesupp}(ab) \subset \text{conesupp}(a) \cap \text{conesupp}(b)$$

Note that we can construct symbols which are elliptic at a point $(\bar{x}; \bar{\xi})$ but have cone support in any conic neighbourhood

$$C_\delta = \{(x, \xi) \in \mathbb{R}^N \times (\mathbb{R}^n \setminus \{0\}) ; |x - \bar{x}| < \delta, \quad |\frac{\xi}{|\xi|} - \frac{\bar{\xi}}{|\bar{\xi}|}| < \sigma, \quad \delta > 0.$$ \hspace{1cm} (4.23)
Indeed to arrange this we just need to choose a smooth function on the sphere, \(\psi_\delta \) which is equal to one in \(|\frac{x}{|x|} - \omega| < \delta/2 \), where \(\omega = \frac{\xi}{|\xi|} \) is positive on \(|\frac{x}{|x|} - \omega| < \delta/2 \) and has support in \(|\frac{x}{|x|} - \omega| \leq \delta \) in terms of the distance on the sphere. Similarly choose \(\psi \in C^\infty_c(\mathbb{R}^N) \) positive on \(|x| < 1 \), equal to 1 in \(|x| < \frac{1}{2} \) and supported in \(|x| \leq 1 \) and a similar cutoff \(\mu \in C^\infty_c(\mathbb{R}^n) \) and consider

\[
(4.24) \quad c_\delta(x, \xi) = (1 - \mu(\delta \xi))\psi(\frac{x - \bar{x}}{\delta}) \psi_\delta(\frac{\xi}{|\xi|}) \in C^\infty_c(\mathbb{R}^N; S^0(\mathbb{R}^n)).
\]

Lemma 4.1. In terms of (4.23) the ‘symbolic cutoff’ \(\chi_\delta \) in (4.24) has

\[
(4.25) \quad \text{Ell}(c_\delta) \supset C^\nu, \ \forall \delta' < \delta
\]

\[
(4.26) \quad \text{conesupp}(c_\delta) \subset C^\delta_c \ \forall \delta'' > \delta
\]

\[
(4.27) \quad \text{conesupp}(1 - c_\delta) \cap C^\delta_{1/2} = \emptyset \ \forall \delta' < \delta.
\]

Proof. Inspection. \(\square \)

Lemma 4.2. If \(a \in C^\infty(\mathbb{R}^N; S^m(\mathbb{R}^n)) \) and \((\bar{x}, \bar{\xi}) \in \text{Ell}(a) \) then there exists \(b \in C^\infty(\mathbb{R}^N; S^{-m}(\mathbb{R}^n)) \) such that

\[
(4.28) \quad (\bar{x}, \bar{\xi}) \notin \text{conesupp}(ab - 1).
\]

Proof. Take a symbolic cut-off as in (4.24) and consider

\[
(4.29) \quad b = \frac{\chi_\delta(x, \xi)}{\mu}.
\]

For \(\delta > 0 \) small enough this is well-defined since by the definition of ellipticity in (4.16), \(a \neq 0 \) on the support of \(\chi_\delta(x, \xi) \); as usual the quotient is extended as zero outside this support. Then (4.28) follows from (4.27), since \(ba = \chi_\delta(x, \xi) \). So it only remains to check that \(b \in C^\infty_c(\mathbb{R}^N; S^{-m}(\mathbb{R}^n)) \). Proceeding inductively

\[
(4.30) \quad \partial^\alpha_x \partial^\beta_\xi b = \frac{g_{\alpha, \beta}}{a^{m+1}}, \quad g_{\alpha, \beta} \in C^\infty_c(\mathbb{R}^N; S^{m+1}(\mathbb{R}^n)).
\]

This is certainly true for \(\alpha = \beta = 0 \) and the inductive step follows by differentiating again with respect to either variable. \(\square \)

It is important to note that

\[
(4.31) \quad \text{Ell}_m(a + e) = \text{Ell}_m(a) \text{ if } a \in C^\infty(\mathbb{R}^N; S^m(\mathbb{R}^n))
\]

\[
\text{and } e \in C^\infty(\mathbb{R}^N; S^{-m}(\mathbb{R}^n)), \quad e > 0.
\]

The same is true for \(\text{Char}(a) \) whereas

\[
(4.32) \quad \text{conesupp}(a + e) = \text{conesupp}(a) \text{ if } e \in C^\infty(\mathbb{R}^N; S^{-\infty}(\mathbb{R}^n)).
\]

2. Ellipticity of pseudodifferential operators

We now transfer the these notions from symbols to pseudodifferential operators.

Definition 4.2. If \(A = Q_L(a) \in \Psi^m(\mathbb{R}^n), a \in C^\infty_c(\mathbb{R}^N; S^m(\mathbb{R}^n)) \) we set

\[
(4.33) \quad \text{Ell}(A) = \text{Ell}_m(A) = \text{Ell}_m(a),
\]

\[
(4.34) \quad \text{Char}(A) = \text{Char}_m(A) = \text{Char}_m(a),
\]

\[
(4.35) \quad \text{WF}'(A) = \text{conesupp}(a).
\]
Here WF(A) is called the ‘operator wavefront set’ of A for reasons that should become clearer below – it is just a name.

Recall that we defined the principal symbol of A to be \(\sigma_m(A) = [a] \) to be the equivalence class in \(\mathcal{C}_\infty(\mathbb{R}^n, S^m(\mathbb{R}^n)) \) and then it is also equal to the equivalence class of the right-reduced symbol.

Lemma 4.3. The elliptic set only depends on \(\sigma_m(A) \) and WF(A) depends on a modulo symbols of order \(-\infty\) and is also equal to the cone-support of the right reduced symbol; for the product of operators

\[
\text{Ell}_{m+m'}(AB) = \text{Ell}(A) \cap \text{Ell}(B), \ W F'(AB) \subset W F'(A) \cap W F'(B).
\]

Proof. The first part follows directly from (4.31) and the fact that left- and right-reduced symbols differ by a term of order \(m-1 \). The last part is a little more subtle, and depends on the formula for the asymptotic expansion of the right-reduced symbol in terms of the left-reduced symbol \(a \).

\[
\sum_{\alpha} \frac{1}{\alpha!} D^\alpha_x \partial^\alpha_\xi a.
\]

If \(a \) is rapidly decreasing in a truncated cone, as \(\text{Ell}(A) \) then all the terms in (4.37) are rapidly decaying in the same cone, because of the locality of differential operators. It follows that any asymptotic sum is rapidly decreasing as well. The final part (4.36) follows similarly. \(\square \)

Perhaps the most important construction associated to these definitions is ‘microlocal invertibility’ at elliptic points.

Proposition 4.1. If \((\bar{x}, \bar{\xi}) \in \text{Ell}(A), A \in \Psi^m(\mathbb{R}^n) \), there exists \(B \in \Psi^{-m}(\mathbb{R}^n) \) such that

\[
(\bar{x}, \bar{\xi}) \notin W F'(\text{Id} - A) \cap W F'(\text{Id} - BA).
\]

Proof. As the notation suggests, we start with

\[
B_0 = Q_L(b), \ b \text{ as in Lemma 4.2.}
\]

The properties of \(b \) mean that

\[
W F'(B_0) \subset C_\delta = \{(x, \xi) \in \mathbb{R}^n \xi(\mathbb{R}^n \setminus \{0\}); |x - \bar{x}| \leq \delta, \| \frac{\xi}{|\xi|} - \bar{\xi} \| \leq \delta \}
\]

where we are free to choose \(\delta > 0 \). Then, from the product formula for symbols,

\[
B_0 A = Q_L(c_\delta) - E, \ E \in \Psi^{-1}(\mathbb{R}^n), \ W F'(E) \subset C_\delta.
\]

Now, we can almost invert \(\text{Id} - E \) using the Neumann series. That is we can choose

\[
F \in \Psi^{-1}(\mathbb{R}^n), \ F \sim \sum_{k \geq 1} E^k \implies
\]

\[
(\text{Id} + F)(\text{Id} - E) = \text{Id} + E'_L, \ (\text{Id} - E)(\text{Id} + F) = \text{Id} + E'_R, \ E'_L, E'_R \in \Psi^{-\infty}(\mathbb{R}^n).
\]

Define

\[
B = (\text{Id} + F)B_0 \implies
\]

\[
BA = (\text{Id} + F)(Q_L(c_\delta) - E) = \text{Id} + E'_L - (\text{Id} + F)(\text{Id} - (Q_L(c_\delta)) = \text{Id} + E'', \quad (\bar{x}, \bar{\xi}) \notin W F'(E'').
\]
Similarly we can proceed on the right,

\[AB_0 = Q_L(c_3) - E_R, \quad F_r \sim \sum_{k \geq 1} E^L_R \]

and see again that \(B_R = B_0(\text{Id} + F_R) \) satisfies

\[AB_R = \text{Id} + E''_R, \quad (\bar{x}, \bar{\xi}) \notin \text{WF}'(E''_R). \]

Now, it is a form of the argument which gives the ‘uniqueness of the inverse in a group’ to see that

\[B = BAB_R + S_1 = B_R + S_1 - S_2, \]

\[S_1 = B(\text{Id} - AB_R), \quad S_2 = (\text{Id} - BA) \] so \((\bar{x}, \bar{\xi}) \notin \text{WF}'(S_i), \ i = 1, 2.\)

It follows that \((\bar{x}, \bar{\xi}) \notin \text{WF}'(B_L - B_R)\) so \(B\) also satisfies (4.38).

Exercise 6. [Microlocal partition of unity] Suppose that \(K \subset \mathbb{R}^n \times \mathbb{S}^{n-1} \) and \(U_a \subset \mathbb{R}^n \times \mathbb{S}^{n-1}, \ a \in A, \) is an open cover of \(K \) then there exist operators \(A_i \in \Psi^0(\mathbb{R}^n), \ i = 1, \ldots, N \) such that, in terms of the cones in \(\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\}) \),

\[\text{WF}'(\text{Id} - \sum_i A_i) \cap \mathbb{R}^+ K = \emptyset, \quad \text{WF}'(A_i) \subset \mathbb{R}^+ U_{a_i} \text{ for some } a_i \in A. \]

3. Wavefront set of a distribution

Now we are in a position to define the wavefront set (or wavefrontset) of a distribution on \(\mathbb{R}^n \). First let’s work with compactly supported distributions and then pass to the general case.

Definition 4.3. If \(u \in C_c^{-\infty}(\mathbb{R}^n) \) then

\[\text{WF}(u) = \{(\bar{x}, \bar{\xi}) \in \mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\}) ; \]

\[\exists A \in \Psi^m(\mathbb{R}^n), \quad Au \in S(\mathbb{R}^n), \quad (\bar{x}, \bar{\xi}) \in \mathcal{E}(m)(A) \}^c. \]

We can characterize the wavefront set of a distribution in a more elementary way.

Proposition 4.2. For \(u \in C_c^{-\infty}(\mathbb{R}^n) \) and \((\bar{x}, \bar{\xi}) \in \mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\}) \)

\[(\bar{x}, \bar{\xi}) \notin \text{WF}(u) \iff \]

\[\exists \phi \in C_c^\infty(\mathbb{R}^n), \quad \phi(\bar{x}) \neq 0, \quad \psi \in C_c^\infty(\mathbb{S}^{n-1}), \quad \psi(\frac{\bar{\xi}}{|\bar{\xi}|}) \neq 0 \text{ s.t.} \]

\[\left| \psi(\frac{\bar{\xi}}{|\bar{\xi}|}) \mathcal{F}(\phi u) \right| \leq C_N(1 + |\bar{\xi}|)^{-N} \forall N. \]

Proof. One way is straightforward, the other way depends on the construction of microlocal inverses as above.

First, assume the right side of (4.47) holds – for some \(\phi \) and \(\psi \) as indicated. Then we can choose another cut-off \(\chi \in C_c^\infty(\mathbb{R}^n) \) around zero in \(\mathbb{R}^n \) and conclude that

\[(1 - \chi(\bar{\xi})) \psi(\frac{\bar{\xi}}{|\bar{\xi}|}) \mathcal{F}(\phi u) \]
is also rapidly decreasing. Now

\begin{equation}
(4.51) \quad a = (1 - \chi(\xi))\psi(\frac{\xi}{|\xi|})\phi(x) \in C_c^\infty(\mathbb{R}^n; S^0(\mathbb{R}^n))
\end{equation}

and if \(A = Q_H(a) \) then

\begin{equation}
(4.52) \quad \mathcal{F}Au = (1 - \chi(\xi))\psi(\frac{\xi}{|\xi|})\mathcal{F}(\phi u)
\end{equation}

by definition of right quantization. If follows that

\begin{equation}
(4.53) \quad Au \in \mathcal{S}(\mathbb{R}^n) \Rightarrow (\bar{x}, \bar{\xi}) \notin \text{WF}(u)
\end{equation}

since \(A \) is elliptic at \((\bar{x}, \bar{\xi})\).

** Remark. Edited by Paige Dote. **

For the opposite implication, we suppose that \(u \in C_c^{-\infty}(\mathbb{R}^n) \) and \(A \in \Psi^{-m}(\mathbb{R}^n) \) with \((\tau, \xi) \in \text{Ell}_m(A)\) are such that \(Au \in \mathcal{S}(\mathbb{R}^n) \). Choose \(B \in \Psi^{-n}(\mathbb{R}^n) \) as in Proposition 4.1, so \((\tau, \xi) \notin \text{WF}'(\text{Id} - BA)\). It follows from the second part of (4.36) that, with \(c_3 \) as in (4.24) (so \(\psi \) is supported near \(\tau \) and \(\psi \) near \(\xi \)) and \(C_\delta = Q_L(c_3) \) for \(\delta > 0 \) sufficiently small,

\(\text{WF}'(C_\delta) \cap \text{WF}'(\text{Id} - BA) = \emptyset. \)

Then,

\[(C_\delta BA)u = C_\delta u \mod \mathcal{S}(\mathbb{R}^n), \]

and hence, \(C_\delta u \in \mathcal{S}(\mathbb{R}^n) \) which implies the condition on the right in (4.37). \(\square \)

We can also see that ‘pseudodifferential operators are microlocal’ and combine it with ‘microlocal elliptic regularity’ which is a partial inverse

** Proposition 4.3.** For any \(u \in C_c^{-\infty}(\mathbb{R}^n) \) and \(A \in \Psi^m(\mathbb{R}^n) \)

\begin{equation}
(4.54) \quad \text{WF}(u) \subset \text{Char}(A) \cup \text{WF}(Au), \quad \text{WF}(Au) \subset \text{WF}'(A) \cap \text{WF}(u) \implies \text{WF}(u) \cap \text{Ell}(A) = \text{WF}(Au) \cap \text{Ell}(A)
\end{equation}

We have used the fact that \(A \in \Psi^m(\mathbb{R}^n) \) and \(\text{WF}'(A) = \emptyset \implies Au \in \mathcal{S}(\mathbb{R}^n) \) if \(u \in C_c^{-\infty}(\mathbb{R}^n) \). Note that it is not true that \(\text{WF}'(u) = \emptyset \) and \(u \in \mathcal{S}(\mathbb{R}^n) \implies AU \in \mathcal{S}(\mathbb{R}^n) \). This is one of the ‘defects’ of the algebra \(\Psi^*(\mathbb{R}^n) \).

Proof. The first statement is equivalent to saying that

\((\tau, \xi) \in \text{Ell}_m(A), \quad (\tau, \xi) \notin \text{WF}(Au) \implies (\tau, \xi) \notin \text{WF}(u). \)

Again, we use the construction in Proposition ?? to find \(B \in \Psi^{-m}(\mathbb{R}^n) \) with \((\tau, \xi) \notin \text{WF}'(\text{Id} - BA)\). We can choose the cone-support of the symbol of \(B \) such that \(B(Au) \in \mathcal{S}(\mathbb{R}^n) \mod \text{ab} \) then it follows that \((\tau, \xi) \notin \text{WF}(u)\). \(\square \)

So far I have limited the definition of \(\text{WF}(u) \) to elements of \(C_c^{-\infty}(\mathbb{R}^n) \). This is only because \(\Psi^m(\mathbb{R}^n) \) does not act on general distributions in \(C_c^{-\infty}(\mathbb{R}^n) \). To overcome this, we consider a smaller algebra consisting of the properly-supported pseudodifferential operators.

A closed set \(S \subset \mathbb{R}^{2n} \) can be considered as a relation between subsets of \(\mathbb{R}^n \)

\[S \circ U = \pi_L(S \cap \pi_R^{-1}(U)) \]
where \(\pi_L; \pi_R : \mathbb{R}^{2n} \to \mathbb{R}^n \) are the two projections
\[
\pi_R(x, y) = y \quad \text{and} \quad \pi_L(x, y) = x.
\]
I am thinking here of the support of the kernel of an operator. Thus,
\[
x \in S \circ U \iff \exists (x, y) \in S \quad \text{such that} \quad y \in U.
\]
The relation defined by \(S \) is said to be proper if \(S \circ K \in \mathbb{R}^n \forall K \in \mathbb{R}^n \)
i.e. it takes compact sets to compact sets.

Definition 4.4 (Properly Supported). A pseudodifferential operator (or indeed any operator) is said to be properly supported if the support of its kernel and the kernel of its adjoint define proper relations.

Lemma 4.4. The properly supported pseudodifferential operators, denoted \(\Psi_P^m(\mathbb{R}^n) \) form a *-closed filtered ring defining linear maps on \(\mathcal{C}_c^\infty(\mathbb{R}^n) \), \(\mathcal{C}^\infty(\mathbb{R}^n) \), \(\mathcal{C}^m\mathcal{C}(\mathbb{R}^n) \), and \(\mathcal{C}^{-\infty}(\mathbb{R}^n) \). We further have
\[
\Psi^m(\mathbb{R}^n) = \Psi_P^m(\mathbb{R}^n) + \Psi^{-\infty}(\mathbb{R}^n).
\]

Proof. Let \(\varphi \in \mathcal{C}_c^\infty(\mathbb{R}^n) \) be a cutoff near 0, say \(\varphi(z) = 1 \) in \(|z| \leq 1 \). Then,
\[
(1 - \varphi(x - y))K(x, y)
\]
is the kernel of an element of \(\Psi^{-\infty}(\mathbb{R}^n) \) as follows from (??). This proves the equation (1). The relationship of operators and kernels show that
\[
Au(x) = \int A(x, y)u(y)dy, \quad u \in \mathcal{C}_c^\infty(\mathbb{R}^n)
\]
vanes if \(A(x, y)u(y) \) vanishes (??). If \(A \) has proper support \(S = \text{supp}(A) \), then \(\psi \in \mathcal{C}_c^\infty(\mathbb{R}^n) \) with \(\text{supp}(\psi) \cap (S \cdot \text{supp}(u)) = \emptyset \) satisfies
\[
\psi(x)A(x, y)u(y) = 0 \implies \text{supp}(\psi) \cap \text{supp}(Au) = \emptyset.
\]
Thus, \(\text{supp}(Au) \) is compact if
\[
A : \mathcal{C}_c^\infty(\mathbb{R}^n) \to \mathcal{C}^\infty(\mathbb{R}^n).
\]
We have assumed the same for the adjoint (and hence the transpose) from which the remaining properties follow by duality. Then,
\[
\text{WF}(u) \notin (\pi, \xi) \text{ if } \exists A \in \Psi_P^m(\mathbb{R}^n), \ (\pi, \xi) \in \text{Ell}_m(A), \ Au \in \mathcal{C}^\infty(\mathbb{R}^n).
\]
It follows that this is consistent with the properties ** defined when \(u \in \mathcal{C}^{-\infty}(\mathbb{R}^n) \).

One of the important properties if the wavefront set is that it is a refinement of the singular support.

Lemma 4.5. If \(u \in \mathcal{C}^{-\infty}(\mathbb{R}^n) \) then
\[
\pi \notin \text{singsupp}(u) \iff (\pi, \xi) \notin \text{WF}(u) \forall \xi \in \mathbb{R}^n \setminus \{0\}.
\]

Proof. In the forward direction, this is immediate, since \(\pi \notin \text{singsupp} u \) implies \(\exists \varphi \in \mathcal{C}_c^\infty(\mathbb{R}^n) \) such that \(\varphi u \in \mathcal{C}_c^\infty(\mathbb{R}^n) \). As an element of \(\Psi_P^m(\mathbb{R}^n) \), this is elliptic at all points \((\pi, \xi) \) for any \(\xi \in \mathbb{R}^n \setminus \{0\} \).

For the opposite implication, we need a covering argument. Certainly, for each \(\xi \neq 0 \), by **, there exists \(\varphi_{\xi} \in \mathcal{C}_c^\infty(\mathbb{R}^n) \) such that \(\varphi_{\xi}u \) is rapidly decreasing in a
cone around ξ with $\varphi_\xi(\pi) \neq 0$. In fact, we know from Proposition that this remains true if we replace φ_ξ by φ_φ for a fixed $\varphi \in \mathcal{C}_c^\infty(\mathbb{R}^n)$ around ξ with $\varphi(\pi) \neq 0$. The cone of rapid decay does not decrease.

Now \mathbb{S}^{n-1} is compact and the cones of rapid decay of the $\hat{\varphi}_\xi u$ correspond to an open cone of \mathbb{S}^{2n-1}. This has a finite subcover and it follows that we may choose $\varphi \in \mathcal{C}_c^\infty(\mathbb{R}^n)$ with $\varphi(\pi) \neq 0$ and $\text{supp}(\varphi) \subset \{\varphi_\xi = 1\}$ for this finite cover. Then $\varphi \varphi_\xi = \varphi$ and $\hat{\varphi}u$ is rapidly decreasing in all directions of \mathbb{R}^n, so $\varphi u \in \mathcal{C}_c^\infty(\mathbb{R}^n)$ and hence $\pi \notin \text{singsupp }u$. \square

Remark 2. The scattering and isotropic algebras do have properly supported subalgebras, but the analogue of (157.494) is not valid in these cases. We will see why later.

Recall that we have insisted that $\text{WF}(u)$ is a closed cone in $\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$. The results above show that this condition in in \mathbb{R}^{2n} is

$$\overline{\text{WF}(u)} = (\text{singsupp}(u) \times \{0\}) \cup \text{WF}(u),$$

which gives a nice picture! L6-end
CHAPTER 5

Propagation of singularities

Microlocal ellipticity, as discussed above, shows us that if \(u \in \mathcal{S}'(\mathbb{R}^n) \) and \(A \in \Psi^m(\mathbb{R}^n) \) then

\[
\text{WF}(u) \subset \text{WF}(Au) \cup \text{Char}(A).
\]

In particular if \(Au \in \mathcal{C}^\infty(\mathbb{R}^n) \) then \(\text{WF}(u) \subset \text{Char}(A) \).

To see what else we might be able to say, consider a simple case, where \(A = D_1 \) is differentiation with respect to the first variable. Letting \(p = \xi_1 \) be the principal symbol we see that

\[
\text{Char}(D_1) = \{ (x, \xi) \in \mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\}); \xi_1 = 0 \}
\]

is a smooth hypersurface. Any solution

\[
D_1 u = 0 \implies u(x, x') = v(x')
\]

is independent of \(x_1 \), meaning that

\[
u(\phi) = v(\psi), \quad \psi(x') = \int \phi(x_1, x') dx_1.
\]

We already know that \(\text{WF}(u) \subset \{ \xi_1 = 0 \} \) but more is true. Namely

\[
\text{WF}(u) = \{ (x_1, x', 0, \xi'); (x', \xi') \in \text{WF}(v) \}.
\]

So the wavefront set of \(u \) is a union of lines where \(x_1 \) alone varies. These are of course the integral curves of \(\partial_{x_1} \) but as a vector field on \(\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\}) \) and only those inside \(\{ \xi_1 = 0 \} \).

1. Hamiltonian mechanics

As we shall see, something like (5.5) can be proved much more generally. To do so we use commutator methods. The idea here is that we try to get information about solutions of \(Pu = 0 \) where \(P \in \Psi^m(\mathbb{R}^n) \) by taking a commutator with a ‘test operator’ \(B \in \Psi^k(\mathbb{R}^n) \). I will explain this a bit more fully below, but for the moment just recall that

\[
P, B \in \Psi^m(\mathbb{R}^n), B \in \Psi^k(\mathbb{R}^n) \implies [P, B] \in \Psi^{m+k-1}(\mathbb{R}^n)
\]

and

\[
\sigma_{m+k-1}([P, B]) = -i \sum_{i=1}^n \left(\frac{\partial p}{\partial \xi_i} \frac{\partial b}{\partial x_i} - \frac{\partial p}{\partial x_i} \frac{\partial b}{\partial \xi_i} \right)
\]

Here \(p \) and \(b \) are really representatives of the principal symbols of \(P \) and \(B \) and then we are looking at a representative of the symbol of the commutator, all modulo a term of one order lower. In fact we will assume that

\[
P \in \Psi^m_{cl}(\mathbb{R}^n), B \in \Psi^k_{cl}(\mathbb{R}^n), \sigma_m(P) = p, \sigma_k(B) = b
\]
where these are now homogeneous functions of orders m and k and we just ignore the singularities at $\xi = 0$, meaning we work on $\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$. Then (5.6) gives the homogeneous principal symbol of $[P, B]$.

The important point is that we can ‘recognize’ the formula, it is the Poisson bracket of the symbols (ignoring the i). As you will know this comes from the symplectic form on $\mathbb{R}^n \times \mathbb{R}^n = T^*\mathbb{R}^n$

\[\omega = \sum d\xi_i \wedge dx_i \]

which is actually completely independent of coordinates (which we will return to later). Then (5.8) gives the homogeneous principal symbol of $[P, B]$.

\[\omega(\cdot, H_p) = dp \iff H_p = \sum_i \left(\frac{\partial p}{\partial \xi_i} \frac{\partial}{\partial x_i} - \frac{\partial p}{\partial x_i} \frac{\partial}{\partial \xi_i} \right) \]

and the Poisson bracket of two functions is

\[\{p, b\} = H_p b = -H_b p. \]

That is,

\[\sigma_{m+k-1}([P, B]) = -i\{p, b\} = -iH_p b. \]

One of the basic points about Hamiltonian mechanics is that

\[H_p p = 0 \]

which follows from the antisymmetry of ω. This means that

Lemma 5.1. Integral curves of H_p which have a point in $\{p = 0\}$ are contained in $\{p = 0\}$.

Here of course an integral curve is connected, it is a smooth curve defined on some interval, $I \rightarrow \mathbb{R}^n \times \mathbb{R}^n \setminus \{0\}$ which has tangent vector H_p at each point.

2. Hörmander’s Theorem

Theorem 5.1. If $P \in \Psi^m_{cl}(\mathbb{R}^n)$ has real principal symbol then for any $u \in \mathcal{S}'(\mathbb{R}^n)$

\[\text{WF}(u) \setminus \text{Char}(p) \]

is a union of maximally extended integral curves of H_p in $\text{Char}(P) \setminus \text{WF}(Pu)$.

Exercise 7. Try to see what this says for the flat wave operator

\[P = D_t^2 - \sum_{j=1}^b D_{x_j}^2 \text{ on } \mathbb{R}^{n+1}. \]

Check that the characteristic variety at each point is the cone $\tau^2 = |\xi|^2$ (with the obvious notation) and that the integral curves of H_p within $\text{Char}(P)$ project into \mathbb{R}^n to light rays.

Restated the claim of the Theorem is that a maximally extended integral curve of H_p in the open set $(\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})) \setminus \text{WF}(Pu)$ on which p vanishes either does not meet $\text{WF}(u)$ or lies completely within it.
Proof. We start can by making some elementary reductions before getting to the constructive part of the proof. First note that if \(p \) is homogeneous (always meaning in \(\xi \) of course) of degree \(m \) then \(H_p \) is homogeneous of degree \(m - 1 \). If we premultiply \(P \) by an elliptic operators, setting \(P' = AP \) where \(A = (1 + |d|^2)^{-m+1} \), then

\[
(5.15) \quad p' = \sigma(P') = (1 + |\xi|^2)^{-\frac{m+1}{2}} p, \quad H_{p'} = aH_p + pH_a.
\]

It follows that the integral curves of \(h_{p'} \) in \(\text{Char}(P') = \text{Char}(P) \) are simply reparameterizations of the integral curves of \(H_p \). Since \(A \) is globally elliptic, \(\text{WF}(P'u) = \text{WF}(Pu) \) and The statement for \(P \) is equivalent to that for \(P' \). Thus we can freely assume that \(P \) is of order 1.

A smooth vector field such as \(H_p \) has two types of maximally extended integral curves in an open set (of \(\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\}) \)). Namely constant curves valued at points where \(H_p = 0 \) and through every other point an embedded curve, without stationary points. This dichotomy corresponds to the vanishing of \(dp \). For a constant curve the statement is of course trivial. Thus in fact Hörmander's Theorem tells us nothing about points where

\[
(5.16) \quad p(\bar{x}, \bar{\xi}) = 0, \quad dp(\bar{x}, \bar{\xi}) = 0.
\]

There is in fact another trivial case beyond \((6.10)\). Namely a point is radial for \(p \) (and also \(P \)) if

\[
(5.17) \quad p(\bar{x}, \bar{\xi}) = 0, \quad dp(\bar{x}, \bar{\xi}) = \lambda \bar{\xi} \cdot dc, \quad \lambda \in \mathbb{R}.
\]

Of course \((5.16)\) is the case where \(\lambda = 0 \). From \((5.9)\) we see that at such a point

\[
(5.18) \quad H_p = -\lambda \bar{\xi} \cdot \partial \bar{\xi}
\]

is the radial vector field – hence the name. Since \(p \) is homogenous of degree 1 the identity \((5.18)\) must then hold along the ray \((\bar{x}, \mathbb{R}^+ \bar{\xi})\) – which is then the integral curve through \((\bar{x}, \bar{\xi})\). Again the statement is trivial for this integral curve, since \(\text{WF}(u) \) is itself radial.

3. The Hamilton vector field

Thus, we are reduced to considering a ray on which \(p \) vanishes, maximally extended in \((\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\}) \setminus \text{WF}(Pu) \) and through a non-radial point \((\bar{x}, \bar{\xi})\). By the local uniqueness of integral curves it must consist of non-radial points. Let the maximally extended integral curve, so defined on an open (possibly infinite) interval be

\[
(5.19) \quad \chi : I \rightarrow \{p = 0\} \setminus \text{WF}(Pu), \quad \chi(0) = (\bar{x}, \bar{\xi}).
\]

So we need to show is that

\[
(5.20) \quad \chi(I) \not\subset \text{WF}(u) \Rightarrow \chi(I) \cap \text{WF}(u) = \emptyset.
\]

Since \(\{t \in I; \chi(t) \in \text{WF}(u)\} \) is closed its complement is a countable union of open intervals. Considering one of these intervals, either it is equal to \(I \) of, if not, has at least one endpoint \(\bar{t} \in I \) with \(\chi(\bar{t}) \in \text{WF}(u) \). Reversing the sign of \(P \) does not change the result, so all we have to exclude is that there is some \(\bar{t} \in I \) with \(\chi(\bar{t}) \in \text{WF}(u) \) but \(\chi(t) \not\in \text{WF}(u) \) for \(t \in (\bar{t}, \bar{t} + \epsilon), \epsilon > 0 \). Clearly we can shift the parameterization so that \(\bar{t} = 0 \).

We are therefore reduced to a (micro-)local statement.
If \((\bar{x}, \bar{\xi}) \in (\mathbb{R}^n \setminus \{0\})\) is a non-radial point for \(p\), \((\bar{x}, \bar{\xi}) \notin \text{WF}(Pu)\) and the integral curve of \(H_p\) starting at \((\bar{x}, \bar{\xi})\) immediately leaves \(\text{WF}(u)\) then \((\bar{x}, \bar{\xi}) \notin \text{WF}(u)\).

To prove this we need to look closely at \(H_p\). First we can choose local coordinates near \(\bar{x}\) so that \(\bar{x} = 0 \ \xi = (0, \ldots, 0, 1)\). [Despite appearances we will not be using the coordinate-invariance of pseudodifferential operators here.] By the non-radial assumption \(H_p \neq \lambda \partial \xi_n\) since that is the radial direction. So at least one of the other coefficients is non-zero at this point, and hence nearby, it could be any one of the \(x_i\) or one of the \(\xi_j\), \(j < n\). Denote this special variable \(\zeta\), we can solve the initial value problem

\[
\begin{align*}
H_p y_j &= 0, \ j = 1, \ldots, 2(n-1), \\
H_p \Xi &= 0, \ \Xi|_{\zeta=0} = \xi_n, \\
H_p \tau &= \tau, \ \tau|_{\zeta=0} = 0,
\end{align*}
\]

where the initial conditions on \(\{\zeta = 0\}\) for the \(y_j\) are all the \(x_i\) and \(\xi_k/\xi_n\), \(k < n\) except the one that corresponds to \(\zeta\) (which of course vanishes).

All the solutions exist in an open conic (because \(H_p\) is homogeneous of degree 0) neighbourhood of the base point and are homogenous of degree 0, except \(\Xi\) which is positive and homogeneous of degree 1. Their differentials are independent so they give a coordinate system in terms of which

\[
H_p = \partial_\tau.
\]

[In fact you can do essentially this with a homogeneous symplectic (‘canonical’) transformation but we do not need it.]

4. Construction of symbols

This allows us to construct appropriate classical symbols. What we want is a cut-off near the base point with useful properties, in fact a family of them depending on a parameter \(0 < \delta < \delta_0\). The basic function we have in mind is

\[
a_\delta(\tau, y) = \mu(\tau/\delta) \mu((\epsilon/2 - \tau)/\delta) \phi(y/\delta).
\]

Here \(0 \leq \phi \in C^\infty_c(\mathbb{R}^{2n-2})\) is a typical cut-off, supported in \(|\tau| \leq 1\) and strictly positive in \(|\tau| < 1\) and \(0 \leq \mu \in C^\infty(\mathbb{R})\) vanishes in \((-\infty, -1)\), is positive on \((-1, \infty)\) and is equal to 1 on \([0, \infty)\). We require

\[
0 < \delta < \epsilon/2.
\]

Then

\[
\text{supp}(a_\delta) = \{(\tau, y); -\delta \leq \tau \leq \epsilon/2 + \delta, \ |y| \leq \delta\},
\]

\[
a_\delta > 0 \text{ on } \text{supp}(a_{\delta'}), \ \delta' > \delta.
\]

Then consider

\[
b_\delta(\tau, y) = \mu((\epsilon/2 - \tau)/\delta)^2 \int_{-\delta}^{\tau} (\mu(s/\delta) \phi(y/\delta))^2 ds \in C^\infty_c(\mathbb{R}^{2n-1})
\]

where the missing variable is \(\Xi\). Then

\[
\text{supp}(b_\delta) = [-\delta, \epsilon/2 + \delta] \times \{|y| \leq \delta\}
\]

and

\[
H_p b_\delta = \partial_\tau b = a_\delta^2 + e_\delta, \ \text{supp}(e_\delta) \subset [\epsilon/2, \epsilon] \times \{|y| \leq \delta\}.
\]
Here c comes from $\partial \nu ((\epsilon/2 - \tau)/\delta)^2$.

Thus b_δ is homogeneous of degree 0 on $\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$. We want to consider similar functions homogeneous of degree $2m$, for any m and also `regularized’. Since $\partial_\nu \Xi = 0$ we set

\begin{equation}
 b_{\delta,m,N}(\tau, y, \Xi) = (1 - \Phi(\Xi))^2 \Xi^{2m} \Phi^2(\Xi/N)b_\delta(\tau, y),
\end{equation}

where $0 \leq \Phi \in C_c^{\infty}(\mathbb{R})$, $\Phi(s) = 1$ in $|s| < \frac{1}{2}$, $\Phi(s) = 0$ in $|s| > 1 \implies H_p b_{\delta,m,N} = a_{\delta,m,N}^2 + e_{\delta,m,N}$,

$a_{\delta,M,n} = (1 - \Phi(\Xi))\Xi^m \Phi(\Xi/N)a_{\delta}, \quad e_{\delta,m,N} = (1 - \Phi(\Xi))^2 \Xi^{2m} \Phi^2(\Xi/N)e_{\delta}$.

In fact we need to go a step further. Namely rather than the vector field H_p what actually arises below is the operator with a zeroth order term

\begin{equation}
 H_p + f, \quad f \text{ smooth, real-valued and homogeneous of degree 0}.
\end{equation}

Then we replace b_δ by

\begin{equation}
 b_\delta(\tau, y, \Xi) = \psi(\tau)^2 e^{-q(\tau, y)} \int_{-\delta}^{\tau} e^{q(s, y)} a_{\delta}^2(s, y) ds
\end{equation}

\[q(\tau, y) = \int_{0}^{\tau} f(s, y) ds. \]

The support properties are unchanged and now

\begin{equation}
 (H_p + f)b_{\delta,m,N}(\tau, y, \Xi) = a_{\delta,m,N}^2 + e_{\delta,m,N}.
\end{equation}

5. Proof of regularity

After all this preparation, let me add a few words about L^2 boundedness – which is in Problem set 2 – and uniformity before passing to the actual proof of the statement above.

First uniformity. In the proof below, regularity for Au where $A \in \Psi^m(\mathbb{R}^n)$ is obtained by looking at an approximating sequence $A_N \in \Psi^{m+\epsilon}(\mathbb{R}^n)$ which is bounded in $\Psi^m(\mathbb{R}^n)$ and converges to A in $\Psi^{m+\epsilon}(\mathbb{R}^n)$ for any $\epsilon > 0$. This is constructed usual sort of cutoff. Since $WF'(A_N) = \emptyset$ for finite N we reserve the notation for the uniform operator wavefront set defined as previously in terms of the cone-support of the symbol. So in this sense

\begin{equation}
 (\vec{x}, \vec{\xi}) \notin WF'(A_\ast) \iff (\vec{x}, \vec{\xi}) \notin \text{conesupp}(a_\ast) \iff c_{\delta} a_N \text{ is bounded in } C^\infty_0(\mathbb{R}^n; S^{-\infty}(\mathbb{R}^n)) \text{ as } N \to \infty.
\end{equation}

Here c_δ is a conic cut-off as in (5.24). It follows for instance that for two such families

\begin{equation}
 WF'(A_\ast) \cap WF'(B_\ast) = \emptyset \implies A_\ast A_\ast' \psi \in \Psi^{-\infty}(\mathbb{R}^n) \text{ is bounded for } \omega \in C^\infty_c(\mathbb{R}^n).
\end{equation}

So for instance $A_\ast A_\ast' u$ is bounded in $S(\mathbb{R}^n)$ if $u \in C_c^{-\infty}(\mathbb{R}^n)$. Note that we do not necessarily conclude that the product is bounded in $\Psi^{-\infty}(\mathbb{R}^n)$ since we have not assumed any uniformity near infinity is space.

The basic result on L^2 boundedness is that

\begin{equation}
 A \in \Psi^m(\mathbb{R}^n) : H^M(\mathbb{R}^n) \to H^{M-m}(\mathbb{R}^n) \forall M.
\end{equation}
In the argument below we need a little more than this. Namely for sequences A_N as above bounded in $\Psi^{2m}(\mathbb{R}^n)$ if $\hat{A} \in \Psi^m(\mathbb{R}^n)$ is fixed and if

\[\text{WF}^2(A_u) \subset \text{Ell}_m(\hat{A})\] then
\[|\langle \psi A_u, u \rangle_{L^2}| \leq C\|\hat{A}u\|_{L^2} + C\|u\|_{H^{m_0}},\]
\[\psi \in C_0^\infty(\mathbb{R}^n), \ u \in C_0^{-\infty}(\mathbb{R}^n) \cap H^{m_0}(\mathbb{R}^n)\]

where the constants may depend on everything except N and u.

Lemma 5.2. If $u \in C_0^{-\infty}(\mathbb{R}^n)$ and $A_N u$ is bounded in $L^2(\mathbb{R}^n)$ then $Au \in L^2(\mathbb{R}^n)$ and $\|Au\|_{L^2} \leq \limsup \|A_N u\|_{L^2}$.

Proof. This follows from the fact that $L^2(\mathbb{R}^n)$ is a Hilbert space. Thus the norm boundedness of $A_N u$ implies that it has a weakly convergent subsequence $A_N u \rightharpoonup v$ in L^2. It follows that

\[\langle Au, \phi \rangle = \lim \langle A_N u, \phi \rangle = \langle v, \phi \rangle\]

for all $\phi \in \mathcal{S}(\mathbb{R}^n)$ and hence $Au = v$ as a distribution.

So, to the proof. We are in the setup discussed above, $(\bar{x}, \bar{\xi})$ is a non-radial characteristic point, $(\bar{x}, \bar{\xi}) \not\in \text{WF}(Pu)$ and $\exp(tH_p)(\bar{x}, \bar{\xi}) \not\in \text{WF}(u)\] for some $\epsilon > 0$. We can always shrink ϵ. In the local coordinates in $\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$ we choose $0 < \delta_0 < \epsilon/2$ such that

\[\{x, y: \|y\| \leq \delta_0\} \cap \text{WF}(Pu) = \emptyset, \ [\epsilon/2, \epsilon] \times \{y: \|y\| \leq \delta_0\} \cap \text{WF}(u) = \emptyset.\]

We proceed to conclude from this that

\[A_{\delta, m} u \in L^2(\mathbb{R}^n) \quad \forall \delta > 0, \ \forall m \Rightarrow A_0 u \in C^\infty(\mathbb{R}^n) \Rightarrow (\bar{x}, \bar{\xi}) \not\in \text{WF}(u)\]

since A_0 is elliptic at $(\bar{x}, \bar{\xi})$.

Set $B_{\delta, m, N} = Q_\delta(b_{\delta, m, N}(\tau, y, \Xi))$ which is uniformly bounded in $\Psi^{2m}(\mathbb{R}^n)$ and the formal adjoint is $B_{\delta, m, N}^* = B_{\delta, m, N} + S_{\delta, m, N}$ where $S_{\delta, m, N}$ is uniformly bounded in $\Psi^{2m-1}(\mathbb{R}^n)$. Consider the L^2 inner product

\[\langle Pu, B_{\delta, m, N} u \rangle_{L^2}.\]

This is well-defined since $B_{\delta, m, N}$ is a smoothing operator. As $N \to \infty$ the cone-support of $b_{\delta, m, N}$ is contained in the region in (5.38) where Pu has no wavefront set. Thus

\[B_{\delta, m, N} Pu \rightharpoonup B_{\delta, m} Pu \in C_0^\infty(\mathbb{R}^n).\]

We use similar notation for the other families below.

Then

\[2 \text{Re}(\langle Pu, B_{\delta, m, N} u \rangle_{L^2}) = i\langle Pu, B_{\delta, m, N} u \rangle_{L^2} - i\langle B_{\delta, m, N} u, Pu \rangle_{L^2} = \text{Re} \ i([B_{\delta, m, N}, P] + B_{\delta, m, N} F)_{L^2} + i\langle (S_{\delta, m, N}) P u, u \rangle_{L^2}, \ F = (P - P^*)\]

The last term here converges as $N \to \infty$ for the same reason as (5.41). So we conclude that for any m,

\[i([B_{\delta, m, N}, P] + B_{\delta, m, N} F)_{L^2} \text{ converges as } N \to \infty.\]
Taking \(f \) to be the principal symbol of \(F = i(P - P^*) \in \Psi_0^0(\mathbb{R}^n) \) the construction of the family \(B_{\delta,m,N} \) means that

\[
\mathbf{157.336} \quad i[B_{\delta,m,N}, P] + B_{\delta,m,N} F = A^2_{\delta,m,N} + E'_{\delta,m,N} + E_{\delta,m,N},
\]

\(E'_{\delta,m,N} \) bounded in \(\Psi^{2m-2}(\mathbb{R}^n) \),

\[WF'(E') \subset \text{conesupp}(b_\delta), \quad WF'(E) \subset \text{conesupp}(e) \]

with \(e \) the error in \(\mathbf{157.330} \). From the \(L^2 \) bounds in \(\mathbf{157.334} \) we deduce that

\[
\mathbf{157.337} \quad \|A_{\delta,m,N} u\|_{L^2} \leq C|\langle E'_{\delta,m,N} u, u \rangle_{L^2}| + C|\langle E_{\delta,m,N} u, u \rangle_{L^2}|.
\]

Such a bound holds uniformly in \(N \) and in \(0 < \delta < \delta_0 < \frac{1}{2} \epsilon \). By assumption the last term is uniformly bounded since \(WF'(E_{\delta,m,N}) \) is (uniformly) contained in a region disjoint from \(WF(u) \).

By \(L^2 \) boundedness we know that

\[
\mathbf{157.338} \quad |\langle E'_{\delta,m,N} u, u \rangle_{L^2}| \leq \|u\|_{H^{m-\frac{1}{2}}}
\]

Since \(u \) is a distribution and the supports here are compact, \(u \in H^{m_0-\frac{1}{2}}(\mathbb{R}^n) \) for some \(m_0 \). It follows that the limit

\[
\mathbf{157.339} \quad A_{\delta,m_0} u \in L^2(\mathbb{R}^n)
\]

using Lemma \(\mathbf{157.365} \).

Now, we can iterate this estimate, half a derivative at a time. The important point is that we know \(\mathbf{157.345} \) for all \(\delta < \delta_0 \). So at some stage of the iteration we know that \(\mathbf{157.417} \) holds for a given \(m - \frac{1}{2} \). However, the cone-supports of the terms \(A \) and the lower order error \(E' \) are such that

\[
\mathbf{157.340} \quad \text{for } \delta < \delta', \quad WF'(E'_{\delta,m,N}) \subset \text{Ell}(A_{\delta',m_0-\frac{1}{2}}).
\]

Again from \(L^2 \) boundedness and ellipticity (and the fact that the order of \(E'_{\delta,m,N} \) is the same as \(A^2_{\delta,m-\frac{1}{2}} \)) it follows iteratively that

\[
\mathbf{157.341} \quad \|A_{\delta,m,N} u\|_{L^2}^2 \leq |\langle E'_{\delta,m,N} u, u \rangle_{L^2}| + C
\]

\[
\leq C_{\delta,\delta'} \|A_{\delta',m_0-\frac{1}{2}} u\|_{L^2} + C_{\delta,\delta'} \|u\|_{H^{m_0}} + C
\]

giving the inductive step.

\[
\square \quad \mathbf{6. A \ question \ about \ the \ wave \ equation}
\]

One question in lecture was: How much simpler is it to prove this for the wave equation? Who asked this?

If we are talking about the flat wave equation then the discussion can be simplified by shifting the ‘smoothing’ from the operators to the distribution \(u \). For constant coefficient operators this is straightforward since we can use convolution. In any case smoothing \(u \) is an alternative approach but not much different. Apart from that it is a lot simpler. Note however that there are other approaches which can be used here (and more generally). Namely one has in the flat case a forward fundamental solution, and in the general case one can construct forward microlocal parametrices at non-radial points (this requires real work). Then one can shift the discussion to analysing what such operators due to singularities. This amounts to...
analysing the wavefront set of the (the Schwartz kernel of) the fundamental solution or parametrix. I will likely get around to including something on this as ‘the calculus of wavefront sets’.
I want to take a serious look at smoothing operators. In particular I want to introduce semiclassical (families of) operators in this context – this is another form of ‘quantization’ closely related to what we have done so far. There are several reasons behind this, the introduction of (topological, complex) K-theory being one.

I will try to keep the line of reasoning as straight as I can here since it is easy to get distracted by the myriad of possibilities that arise.

1. Hilbert space and operators

Let me recall here some of the basic facts, without proofs, about Hilbert space and bounded operators. Since we do not need the non-separable case, Hilbert space here means a separable, complex, infinite dimensional, Hilbert space, \mathcal{H}. The basic fact is that this is isometrically isomorphic to $l^2(\mathbb{Z})$.

- The most basic properties of Hilbert space are the Riesz representation theorem, identifying the dual with the conjugate $\mathcal{H}' = \mathcal{H}$.
- Compact sets in Hilbert space are precisely as those closed bounded subsets with the additional property that the Fourier-Bessel series with respect to any (one) orthonormal basis converges uniformly. This amounts to a characterization for $l^2(\mathbb{Z})$.
- A second characterization of compact sets is that they are approximable by finite-dimensional spaces – K has compact closure (is pre-compact) if it is bounded and for every $\epsilon > 0$ there exists a finite dimensional subspace F such that
 \[\sup_{p \in K} \inf_{q \in F} d(p, q) < \epsilon. \]
- The bounded operators form a complete normed, \ast-closed, ring, $\mathcal{B}(\mathcal{H})$, with
 \[\|A^\ast\| = \|A\|, \quad \|AB\| \leq \|A\| \|B\|. \]
- For any closed subspace $R \subset \mathcal{H}$
 \[\mathcal{H} = R \oplus R^\perp \]
 defines the unique self-adjoint projection with range R, $P_R : \mathcal{H} \to R$, $P_R^R = P_R = P_R^R$.
- The open mapping theorem: Any surjective bounded operator is open, meaning they map open sets to open sets.
- Closed graph theorem: A linear map $L : \mathcal{H} \to \mathcal{H}$ with closed graph in $\mathcal{H} \times \mathcal{H}$ is bounded.
- A bounded bijection has a bounded inverse.
- The resolvent of a bounded operator, B, is a holomorphic map
 \[\text{Res}(B) = \mathbb{C} \setminus \text{Spec}(B) \ni z \mapsto (B - z)^{-1} \in \mathcal{B}(\mathcal{H}) \]
defined on the complement of the compact set \(\text{Spec}(B) \subset \mathbb{C} \) where \(B - z \) is not a bijection.

- The resolvent identity
 \[
 (B - z)^{-1} - (B - \tau)^{-1} = (z - \tau)(B - z)^{-1}(B - z)^{-1}, \quad z, \tau \in \mathbb{C} \setminus \text{Spec}(B)
 \]
 holds.

- If \(\chi : \mathbb{S} \to \mathbb{C} \setminus \text{Spec}(B) \) is a smooth, simple, positively-oriented curve then
 \[
 P_{\chi} = \frac{1}{2\pi i} \oint_{\chi} (B - z)^{-1} dz
 \]
 is a projection commuting with \(B \) such that \(P_{\chi}B \) has spectrum in the interior of \(\chi \) and \((\text{Id} - P_{\chi})B \) has spectrum in the exterior.

- The group of invertibles \(\text{GL}(H) \subset \mathcal{B}(H) \) is open (but not dense) because of the convergence of the Neumann series
 \[
 (\text{Id} + B)^{-1} = \sum_{k} B^k, \quad \|B\| < 1.
 \]

- The functional calculus for self-adjoint operators, defining
 \[
 f(A) \text{ for } f : \text{Spec}(A) \to \mathcal{B}(H) \text{ s.t. } f(A)g(A) = (fg)(A).
 \]

- Polar decomposition of a bounded operator as a product
 \[
 B = AV \quad \text{where} \quad A = (B^*B)^{\frac{1}{2}} \quad \text{and} \quad V \quad \text{is a partial isometry}
 \]

- It follows that unitary subgroup \(\text{U}(H) \subset \text{GL}(H) \) defined by the identity \(B^*B = \text{Id} \) is a deformation retract of \(\text{GL}(H) \).

- Kuiper’s theorem is the statement that \(\text{U}(H) \) is (weakly) contractible in the norm topology (every continuous map from a compact space is homotopic to the map to the identity).

- The compact operators, \(\mathcal{K}(H) \subset \mathcal{B}(H) \), consist of the operators mapping bounded to pre-compact sets. They constitute the norm-closure of the finite rank operators (those with finite-dimensional range) and form the only non-trivial closed ideal.

- The Fredholm operators, \(\mathcal{F}(H) \subset \mathcal{B}(H) \), are defined by the requirements that they have finite-dimensional null space and closed range of finite codimension. The index
 \[
 \text{ind}(F) = \dim \, \text{null}(F) - \dim \, \text{Ran}(F) \quad \text{defined by the condition}
 \]
 \[
 \text{ind} : \mathcal{F}(H) \to \mathbb{Z}
 \]
 labels the components.

- A bounded operator \(B \) is Fredholm if and only if it has a parametrix modulo compact operators (an inverse in the Calkin algebra \(\mathcal{B}(H)/\mathcal{K}(H) \)) \(A \in \mathcal{B}(H) \) such that
 \[
 BA - \text{Id}, \quad AB - \text{Id} \in \mathcal{K}(H).
 \]

- The Hilbert-Schmidt ideal, \(\mathcal{H}S(H) \subset \mathcal{B}(H) \), is defined by the condition that for any one orthonormal basis
 \[
 \|B\|_{\mathcal{H}S}^2 = \sum_{i} |(Be_{i}, e_{i})|^2 < \infty.
 \]
 This is independent of choice and
 \[
 \|AB\|_{\mathcal{H}S} \leq \|A\|_{\mathcal{H}S} \|B\|.
 \]

- The trace ideal, \(\mathcal{T}(H) \subset \mathcal{B}(H) \), is \(\mathcal{H}S(H)^2 \) – the finite span of products of elements of \(\mathcal{H}S(H) \). Any element is the product of two Hilbert-Schmidt operators and
 \[
 |T|_{\mathcal{T}} = \|T^*T\frac{1}{2}\|_{\mathcal{H}S}, \quad \|AB\|_{\mathcal{T}} \leq \|A\|_{\mathcal{T}} \|B\|.
 \]

- The trace functional is
 \[
 \text{Tr} : \mathcal{T}(H) \ni T = \sum_{i} (Te_{i}, e_{i})_H \in \mathbb{C}
 \]
 \[
 \text{Tr} : \mathcal{T}(H) \ni T = \sum_{i} (Te_{i}, e_{i})_H \in \mathbb{C}
 \]
2. Schwartz smoothing algebra

The residual ideal in the standard pseudodifferential algebra $\Psi^{-\infty}(\mathbb{R}^n)$, is the part that cannot be reached by the symbol calculus. As I have muttered all along, it is not a very nice algebra because of the coefficient ring $C^\infty(\mathbb{R}^n)$.

Let us instead concentrate on the smaller Schwartz smoothing algebra – this is actually a two-sided ideal in $\Psi^{-\infty}(\mathbb{R}^n)$. It is also ‘very non-commutative’ in that it is simple with only the two trivial ideals. Thus

\[\mathcal{S}(\mathbb{R}^n) = \Psi^{-\infty}(\mathbb{R}^n) \subset \Psi^{-\infty}(\mathbb{R}^n) \]

where the first equality is as a space of kernels. In fact it the residual part of both the scattering (Shubin) and isotropic algebras in Proposition \ref{prop:3.3} and § \[\text{Isotropic}\].

The product in this algebra is

\[A \circ B(x,y) = \int_{\mathbb{R}^n} A(x,z)B(z,y)dz. \]

In essence, $\Psi^{-\infty}(\mathbb{R}^n)$ is an infinite-dimensional matrix algebra. To justify this directly we need a ‘basis’ for $\mathcal{S}(\mathbb{R}^n)$; the standard one is the Hermite basis. This consists of the eigenfunctions for the harmonic oscillator

\[H = \sum_{i=1}^{n} D_{x_i}^2 + |x|^2, \quad He_\kappa = (n + 2|\kappa|)e_\kappa, \quad \kappa \in \mathbb{N}_0^n. \]

Here the eigenfunctions are given as products of the L^2 normalized eigenfunctions in the case $n = 1$

\[e_\kappa(x) = \prod_{j=1}^{n} f_{\kappa_j}(x_j), \quad (D^2 + x^2)f_j = (1 + 2j)f_j, \quad f_j(x) = h_j(x) \exp\left(-\frac{1}{2}x^2\right) \]

where the h_j are the Hermite polynomials.
We need the isomorphism that these provide
\[\mathcal{S}(\mathbb{R}^n) \rightarrow \mathcal{s}(n) = \{ c : \mathbb{N}_0^n \rightarrow \mathbb{C}; \sum_k (1 + |k|^2)^N |c_k|^2 < \infty \ \forall \ N \}, \]
(6.23)
\[u \mapsto \left\{ \int_{\mathbb{R}^n} u(x)e_k(x)dx \right\}_k. \]

This leads to the identification
\[\Psi_{-\infty}^s(\mathbb{R}^n) \ni A \rightarrow a = (Ae_{\kappa'}, e_{\kappa}) \]
(6.24)
\[\in \Psi_{-\infty}^s = \{ a : \mathbb{N}_0^{2n} \rightarrow \mathbb{C}; \sum_{\kappa, \kappa'} (1 + |\kappa| + |\kappa'|)^N |a_{\kappa, \kappa'}| < \infty \ \forall \ N \} \]
with the composition becoming ‘matrix multiplication’. That is, the ring of ‘rapidly decreasing infinite matrices’.

Lemma 6.1. The algebras \(\Psi_{-\infty}^s(\mathbb{R}^n) \), for different \(n \), are isomorphic (although not naturally so).

Proof. Expansion in terms of the Hermite basis reduces \(\Psi_{-\infty}^s(\mathbb{R}^n) \) to ‘matrices’ meaning rapidly decreasing maps
\[a : \mathbb{N}_0^n \times \mathbb{N}_0^n \rightarrow \mathbb{C}, \sum_{\alpha, \beta} (1 + |\alpha| + |\beta|)^N |a(\alpha, \beta)|^2 < \infty. \]
(6.25)

The number of \(\alpha \) with \(|\alpha| \leq N \) is bounded by \(N^n \) so rapid decay in the sense of (6.25) is the same as rapid decay in \(j \) if \(j \rightarrow \alpha_j \) is any ordering in which \(|\alpha_j| \) is non-decreasing. This shows that all the algebras are isomorphic to the case \(n = 1 \). \(\square \)

Lemma 6.2. The elements of \(\Psi_{-\infty}^s(\mathbb{R}^n) \) act as elements of the trace ideal of compact operators on \(L^2(\mathbb{R}^n) \) (or any Sobolev space) and form a ‘corner’ (not an ideal) in the bounded operators in the sense that if \(B \in \mathcal{B}(L^2(\mathbb{R}^n)) \)
\(A_1, A_2 \in \Psi_{-\infty}(\mathbb{R}^n) \implies A_1 BA_2 \in \Psi_{-\infty}(\mathbb{R}^n) \).
(6.26)

Proof. Schur’s criterion (as discussed in Problem set 2) shows that these are bounded operators and the fact that any sequence in \(\mathcal{S}(\mathbb{R}^n) \) bounded with respect to the seminorms has a convergent subsequence in \(L^2(\mathbb{R}^n) \) shows that they are compact operators.

That these operators are in the trace ideal follows from the fact that the diagonal operator, with respect to the Hermite basis
\[T_k \ni u \mapsto \sum_\alpha (1 + |\alpha|)^{-k}(u, e_\alpha) e_\alpha \]
(6.27)
is in the trace ideal if \((T^*T)^{\frac{1}{2}} \) is in Hilbert-Schmidt, which follows if
\[\|(T^*T)^{\frac{1}{2}}\|^2_{HS} = \sum_\alpha (1 + |\alpha|)^{-k} < \infty. \]
(6.28)

This holds if \(k > n \). If \(A \in \Psi_{-\infty}(\mathbb{R}^n) \) it follows that \(AT_k^{-1} \in \Psi_{-\infty}(\mathbb{R}^n) \) is bounded so \(A \in T(L^2(\mathbb{R}^n)) \). \(\square \)
Why should we be interested in $\Psi_{-\infty}^{-\infty}(\mathbb{R}^n)$? One important reason is topological, arising from the associated group which plays a major rôle in the discussion of K-theory below,

$$G_3^{-\infty}(\mathbb{R}^n) = \{ A \in \Psi_3^{-\infty}(\mathbb{R}^n); \exists B \in \Psi_3^{-\infty}(\mathbb{R}^n) \text{ with } (\text{Id} + A) \circ (\text{Id} + B) = \text{Id} \}.$$

In fact the one-sided inverse condition implies that $\text{Id} + B$ is a 2-sided inverse

$$(\text{Id} + B) \circ (\text{Id} + A) = \text{Id}. \quad (6.30)$$

Lemma 6.3. The group $G_3^{-\infty} \subset \Psi_3^{-\infty}(\mathbb{R}^n)$ is open and dense in $\Psi_3^{-\infty}(\mathbb{R}^n)$ and the union of the subgroups $\text{GL}(N, \mathbb{C})$ of finite $N \times N$ matrices with respect to the Hermite basis is dense.

Remark 3. I habitually write $G^{-\infty}(\mathbb{R}^n) \subset \Psi^{-\infty}(\mathbb{R}^n)$ by removing the identity. This really corresponds to changing the product to $A \circ B = A + B + AB$ now giving a ring structure.

Proof. I did not go through this in lecture but maybe I should have done so. We know, from Schur’s criterion, that the norm as a bounded operator defines a continuous map

$$\Psi^{-\infty}(\mathbb{R}^n) \ni A \longrightarrow \|A\|_{L^2}. \quad (6.31)$$

So the elements of a neighbourhood of 0 in $\Psi^{-\infty}(\mathbb{R}^n)$ give invertible elements $\text{Id} + A \in \mathcal{B}(L^2(\mathbb{R}^n))$ by Neumann series. The inverse being

$$(\text{Id} + A)^{-1} = \text{Id} + B, \quad B = \sum_{k \geq 1} (-1)^k A^k. \quad (6.32)$$

All the elements in the series are in $\Psi^{-\infty}(\mathbb{R}^n)$ but convergence is in principle only as bounded operators – in fact the Neumann series converges in $\Psi^{-\infty}(\mathbb{R}^n)$, i.e. in $\mathcal{S}(\mathbb{R}^{2n})$. To see this, expand the definition of B to see that

$$B = -A + A^2 + A(\sum_{k \geq 1} (-1)^k A^k)A = -A + A^2 + ABA. \quad (6.33)$$

It follows from the corner property that $ABA \in \Psi^{-\infty}(\mathbb{R}^n)$ and that the series for B actually converges in this sense. Thus, $G^{-\infty}(\mathbb{R}^n)$ contains a neighbourhood N of 0 in $\Psi^{-\infty}(\mathbb{R}^n)$ and hence a neighbourhood around any point of $G^{-\infty}(\mathbb{R}^n)$. □

3. Odd K-theory

The group $G_3^{-\infty}(\mathbb{R}^n)$ provides an entry point to ‘complex K-theory’.

Definition 6.1. The odd K-theory, of a manifold M consists of the smooth homotopy classes of smooth maps

$$K^1(M) = \{ u : M \longrightarrow G_3^{-\infty}; u = \text{Id} \text{ on } M \setminus K \text{ for some } K \subset M \}/\text{smooth homotopy}. \quad (6.34)$$

A smooth homotopy between two elements u_0 and u_1 is a smooth map

$$v : M \times [0, 1] \longrightarrow G_3^{-\infty} \text{ with } \quad v = \text{Id} \text{ on } (M \setminus K') \times [0, 1] \text{ for some } K' \subset M, \quad \作品内容
Note that there is no problem in understanding ‘smoothness’ here since
\begin{equation}
C^\infty(M; S(\mathbb{R}^m)) = \{ u : M \times \mathbb{R}^m \to \mathbb{C}; \text{ smooth with all seminorms finite} \}.
\end{equation}
So, the maps in (6.34) actually form a group which can be written
\begin{equation}
C^\infty(M; G^{-\infty}(\mathbb{R}^n))
\end{equation}
where as always the identity is ‘removed’. Then smooth curves in this group become elements of
\begin{equation}
c_c^\infty([0, 1] \times M; G^{-\infty}(\mathbb{R}^n))
\end{equation}
and we can write the odd K-groups as the groups of components
\begin{equation}
K^1(M) = \pi_0(c_c^\infty(M; G^{-\infty}(\mathbb{R}^n))).
\end{equation}
What justifies such a bald definition and how can we start to understand it? It is actually saying that G^∞_S, in any of its variants, is a classifying group for odd K-theory. You might object that K-theory is supposed to be related to vector bundles. It is, as we shall see below, but I assert that (6.34) (and (6.42) below) are rather natural definitions corresponding to the assertion that K-theory is the topology associated to invertible matrices – since (6.34) is a definition which can be reduced to smooth maps into $\text{GL}(N, \mathbb{C})$ (stabilized in N).

I do not want to spend too much time on this, but let me outline some of the things which can be proved relatively easily and give the proofs later, perhaps some of them not in lectures.

Proposition 6.1. The odd K-theory of a manifold is an abelian group with
\begin{equation}
K^1(\mathbb{R}^k) = \begin{cases}
0 & k \text{ even} \\
\mathbb{Z} & k \text{ odd}
\end{cases}
\end{equation}
and for any manifold M there are natural isomorphisms
\begin{equation}
K^1(\mathbb{R}^{2k} \times M) \to K^1(M).
\end{equation}
The fundamental result (6.41) is actually a consequence of (6.40) if you know some homotopy theory. In any case (6.40) is ‘Bott periodicity’ and (6.41) is periodicity in K-theory. Of course (6.40) is a consequence of (6.41) and the special cases $k = 0$ and $k = 1$. There are lots of competing proofs, none of them really simple as far as I know. I will describe a proof using semiclassical quantization to construct the map (6.41).

The idea is that (6.41) is a prototype for the Atiyah-Singer index theorem for families. It is an odd version, whereas the standard version is in even K-theory, but these are closely related and the index theorems are in fact equivalent.

Definition 6.2. The even K-groups of a manifold M are the groups
\begin{equation}
K^0(M) = K^1(\mathbb{R} \times M).
\end{equation}

4. The unipotent Grassmannian

This is out-of-order as regards the lectures as delivered but I subsequently realized that I should not have sprung this on the audience without some more preparation.

As you are probably aware, ‘K-theory’ – usually meaning the even group $K^0(M)$ – for a manifold, is related to vector bundles over the manifold. I have not yet
reminded you of these and rather than proceed to do that I will simply assert for the moment that vector bundles, like the groups $\text{GL}(N, \mathbb{C})$ can be ‘stabilized’. So I will work from the top down and start with the stabilized version.

To be explicit consider the space $L^2(\mathbb{R}; \mathbb{C}^2) = L^2(\mathbb{R}) \oplus L^2(\mathbb{R})$. We need (at least) two copies because I want to have infinite ‘upside and downside’ options.

Now we replace the identity operator considered above for the group $G_{-\infty}^-(\mathbb{R}^n)$ by the unipotent matrix (meaning the square is the identity)

![Image](https://via.placeholder.com/150)

\begin{equation}
\beta_\infty = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\end{equation}

Things related to β_∞ are often given a ‘super’ quantifier.

Definition 6.3. The unipotent Grassmannian associated to β_∞ is the space of unipotent operators on $L^2(\mathbb{R}; \mathbb{C}^2)$ of the form

\begin{equation}
\Upsilon_{-\infty}^{-}(\mathbb{R}^n; \mathbb{C}^2) = \{ \beta = \beta_\infty + B, \ B \in \Psi_{-\infty}^{-}(\mathbb{R}; \mathbb{C}^2), \ \beta^2 = \text{Id} \}.
\end{equation}

So these are the smoothing perturbations of β_∞ which are unipotent.

How is this related to vector bundles? Well, a unipotent operator is really a projection (by which I mean what is sometimes called an idempotent) namely

\begin{equation}
P = \frac{1}{2}(\beta + \text{Id}) \iff P^2 = P, \ \beta = 2P - \text{Id}.
\end{equation}

So the space of unipotent perturbations of β_∞ is identified with the space of perturbations

\begin{equation}
P = P_1 + A, \ P_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ A \in \Psi_{-\infty}^{-}(\mathbb{R}; \mathbb{C}^2), \ P^2 = P.
\end{equation}

Such a projection is determined by its null space and range. These are the -1 and 1 eigenspaces, respectively, of the corresponding unipotent β.

Remark 4. Note that the ‘projection’ P need not be self-adjoint, so the range need not be orthogonal to the null space. One could, and indeed it is more conventional to do so, work with self-adjoint projections, for which this orthogonality does hold, but I have elected not to do so.

Consider some points in $\Upsilon_{-\infty}^{-}(\mathbb{R}^n; \mathbb{C}^2)$. To do so, let Q_k be the orthogonal projection on the span of the first $k \in \mathbb{N}$ Hermite functions in $L^2(\mathbb{R}^n)$ (with respect to an order in which $|\alpha|$ is increasing but it really does not matter) and let $Q_k^{(i)}$, for $i = 1, 2$, be the corresponding projections on $L^2(\mathbb{R}^n; \mathbb{C}^2)$ acting on the first and second factors. Thus the $Q_k^{(i)}$ commute with P_1 and $P_2 = \text{Id} - P_1$ with $Q_k^{(i)}$ a subprojection of P_1. Then

\begin{equation}
\beta_k = \begin{cases} 2(P_1 + Q_k^{(2)}) - \text{Id} & \text{for } k > 0 \\ \beta_\infty = 2P_1 - \text{Id} & \text{for } k = 0 \\ 2(P_1 - Q_k^{(1)}) - \text{Id} & \text{for } k < 0 \end{cases}
\end{equation}

are unipotents.

The group $G_{-\infty}^{-}(\mathbb{R}^n)$ is a Fréchet manifold even though I have not defined the meaning – simply because it is an open subset of the Fréchet space $\Psi_{-\infty}^{-}(\mathbb{R}^n)$. It is much less clear that the unipotents form a manifold since as a subset

\begin{equation}
\Upsilon_{-\infty}^{-}(\mathbb{R}^2; \mathbb{C}) \subset \Psi_{-\infty}^{-}(\mathbb{R}^n; \mathbb{C}^2) \text{ is closed.}
\end{equation}
If it is to be smooth then it should have a decent tangent space, as a subspace of \(\Psi^\infty_s(\mathbb{R}^n; \mathbb{C}^2) \), at each point. So consider a smooth curve

\[(-1, 1) \ni t \mapsto \beta + a(t) \in \Upsilon^\infty_s(\mathbb{R}^n; \mathbb{C}^2), \quad a(t) \in \Psi^\infty_s(\mathbb{R}^n; \mathbb{C}^2), \quad a(0) = 0. \]

Certainly we must have

\[(\beta + a(t))^2 = \text{Id} \implies \beta \frac{da}{dt}(0) + \frac{da}{dt}(0)\beta = 0. \]

We can decompose any \(a(0) \in \Psi^\infty_s(\mathbb{R}^n; \mathbb{C}^2) \) as a sum of four terms, determined by \(\beta \),

\[a(0) = Pa(0)P + (\text{Id} - P)a(0)P + Pa(0)(\text{Id} - P) + (\text{Id} - P)a(0)(\text{Id} - P). \]

The condition in (6.50) reduces to

\[(\text{Id} - P)a(0)P = 0 \iff a(0) = Pa(0)P + (\text{Id} - P)a(0)(\text{Id} - P). \]

Thus the tangent vector must be diagonal with respect to the decomposition defined by \(\beta \).

PROPOSITION 6.2. Given \(\epsilon > 0 \) if \(a \in \Psi^\infty_s(\mathbb{R}^n; \mathbb{C}^2) \) is sufficiently close to 0 and \(\beta \in \Upsilon^\infty_s(\mathbb{R}^n; \mathbb{C}^2) \) the resolvent \((\beta + a - z \text{Id})^{-1} \) exists in \(\{ |z - 1| > \epsilon/2 \} \cap \{ |z + 1| > \epsilon/2 \} \) and the contour integral

\[\beta_a = \frac{1}{2\pi i} \int_{|z-1|=\epsilon} (\beta + a - z \text{Id})^{-1}dz - \frac{1}{2\pi i} \int_{|z+1|=\epsilon} (\beta + a - z \text{Id})^{-1}dz \]

gives a smooth local retraction to \(\Upsilon^\infty_s(\mathbb{R}^n; \mathbb{C}^2) \) which is a bijection from the intersection with the tangent space in the sense of (6.52).

Proof.

THEOREM 6.1. The unipotent Grassmannian \(\Upsilon^\infty_s(\mathbb{R}^n; \mathbb{C}^2) \) has components labelled by

\[\text{R-ind} : \Upsilon^\infty_s(\mathbb{R}^n; \mathbb{C}^2) \ni \beta \mapsto \frac{1}{2} \text{Tr} (\beta - \beta_\infty) \]

and on each component \(G^\infty_s(\mathbb{R}^n; \mathbb{C}^2) \) acts transitively by conjugation.

The ‘relative index’ function R-ind clearly takes the value \(k \) on the elements \(\beta_k \) in

\[(6.47). \]

Proof.

If you are prepared to swallow a bit of homotopy theory you can see why the Grassmannian is relevant here. Consider the component containing \(\beta_\infty \):

\[\Upsilon^\infty_{0,\delta}(\mathbb{R}^n; \mathbb{C}^2) = \{ \beta \in \Upsilon^\infty_{0,\delta}(\mathbb{R}^n; \mathbb{C}^2); \text{Tr}(\beta - \beta_\infty) = 0 \}. \]

The isotropy group of \(\beta_\infty \) is

\[G^\infty_s(\mathbb{R}^n) \times G^\infty_s(\mathbb{R}^n) = \{ g \in G^\infty_s(\mathbb{R}^n; \mathbb{C}^2); h \beta_\infty = \beta_\infty g \} \]

where the two factors act in the two components of \(\mathbb{C}^2 \). Thus in fact we have shown that there is a natural isomorphism

\[\Upsilon^\infty_{0,\delta}(\mathbb{R}^n; \mathbb{C}^2) \cong G^\infty_s(\mathbb{R}^n; \mathbb{C}^2)/\left(G^\infty_s(\mathbb{R}^n) \times G^\infty_s(\mathbb{R}^n) \right). \]
These two subgroups commute with each other so we can also write the quotient as
\[
\mathcal{Y}_0,\mathcal{S}^\infty(\mathbb{R}^n;\mathbb{C}^2) \equiv \left(G_0^\infty(\mathbb{R}^n;\mathbb{C}^2)/\{1\} \times G_\mathcal{S}^\infty(\mathbb{R}^n) \right) / G_\mathcal{S}^\infty(\mathbb{R}^n) \times \{1\}.
\]
(6.59)

The first quotient here is weakly contractible – since \(G_\mathcal{S}^\infty(\mathbb{R}^n;\mathbb{C}^2)\) can be retracted onto \(\{1\} \times G_\mathcal{S}^\infty(\mathbb{R}^n)\). This means that this base component is the quotient by the free action of \(G_\mathcal{S}^\infty(\mathbb{R}^n)\) on a contractible space.

Proposition 6.3. The base component of the unipotent Grassmannian, \(\mathcal{Y}_0,\mathcal{S}^\infty(\mathbb{R}^n;\mathbb{C}^2)\), is a classifying space for \(G_\mathcal{S}^\infty(\mathbb{R}^n)\) and hence
\[
\pi_1(\mathcal{Y}_\epsilon(\mathbb{R}^n;\mathbb{C}^2)) = \begin{cases} \mathbb{Z} & j \text{ even} \\ \{0\} & j \text{ odd} \end{cases}
\]
(6.60)
and \(\mathcal{Y}_0,\mathcal{S}^\infty(\mathbb{R}^n;\mathbb{C}^2)\) is a classifying space for even \(K\)-theory.

Proof. Not given here but from the long-exact sequence of Serre the homotopy groups can be identified from the identification of the homotopy groups of \(G_\mathcal{S}^\infty\) in (6.40). These are proved below, using some of the properties of \(\mathcal{Y}_0,\mathcal{S}^\infty(\mathbb{R}^n;\mathbb{C}^2)\) – but not (6.60). \(\square\)

5. Semiclassical smoothing operators

If \(A \in \mathcal{S}(\mathbb{R}^{2n})\) is the kernel of an element of \(\Psi^-\mathcal{S}^\infty(\mathbb{R}^n)\) we can, as we did for pseudodifferential operators, introduce

\[
B(x, z) = A(x, x - z) \quad \text{and} \quad B(x, z) = (2\pi)^{-n} \int_{\mathbb{R}^n} b(x, \xi) e^{-iz\cdot\xi} d\xi.
\]
(6.61)

Definition 6.4. A **semiclassical Schwartz family**, \(A(\epsilon) \in \Psi^-\mathcal{S}(\mathbb{R}^n)\), is defined by a smooth family

\[
a \in C^\infty([0, 1]; \mathcal{S}(\mathbb{R}^{2n}))
\]
(6.62)
by setting, for \(\epsilon > 0\),

\[
A(\epsilon)u(x) = \int_{\mathbb{R}^n} A(\epsilon; x, y)u(y) dy, \quad u \in \mathcal{S}(\mathbb{R}^n)
\]
(6.63)

\[
A(\epsilon; x, y) = B(\epsilon; x, x - y), \quad B(\epsilon; x, z) = (2\pi)^{-n} \int_{\mathbb{R}^n} a(\epsilon; x, \xi) e^{-iz\cdot\xi} d\xi = (2\pi)^{-n} \int_{\mathbb{R}^n} a(\epsilon; x, \eta) e^{-i\epsilon^{-1}z\cdot\eta} d\eta.
\]

For \(\epsilon > 0\) this does not do very much but the family certainly becomes singular at \(\epsilon = 0\).

Said another way, an element of \(\Psi^{-\mathcal{S}}(\mathbb{R}^n)\) is a family of operators for \(\epsilon \in (0, 1]\) defined by

\[
A(\epsilon) = Q_L(a(\epsilon; x, \epsilon\xi)), \quad a \in C^\infty([0, 1]; \mathcal{S}(\mathbb{R}^{2n}))
\]
(6.64)

The basic result is that these families compose to give an algebra.

Proposition 6.4. The operator product on \(\Psi^-\mathcal{S}(\mathbb{R}^n)\), applied for \(\epsilon > 0\) to

\[
(A_1 \circ_\epsilon A_2)(\epsilon; x, y) = \int_{\mathbb{R}^n} A_1(\epsilon; x, y') A_2(\epsilon; y', y) dy'
\]
(6.65)
extends to a smooth product defining the algebra \(\Psi^{-\mathcal{S}}(\mathbb{R}^n)\).
Proof. Writing the composite family in terms of the kernels $\epsilon^{-n}B_i(\epsilon, x, \frac{x-y}{\epsilon})$ of the factors shows that

$$A_1 \circ A_2 \text{ has kernel } \epsilon^{-n}D(\epsilon, x, \frac{x-y}{\epsilon}) \text{ where}$$

$$D(\epsilon, x, t) = \epsilon^{-n} \int_{\mathbb{R}^n} B_1(\epsilon, x, t + \frac{y-z}{\epsilon})B_2(\epsilon, z, \frac{z-y}{\epsilon})dz$$

$$= \int_{\mathbb{R}^n} B_1(\epsilon, x, t - Z)B_2(\epsilon, x + \epsilon Z, Z)dZ, \quad Z = \frac{y-z}{\epsilon}.$$

The integrand here is smooth in ϵ with values in the Schwartz functions in the variables x, t, Z—as follows from the fact that

$$(1 + |x| + |t - Z| + |x + \epsilon Z| + |Z|) \text{ is comparable to } (1 + |x| + |t| + |Z|).$$

Thus the integral is also Schwartz. Expanding in Taylor series at $\epsilon = 0$ gives the Moyal formula below.

Alternatively this follows from our earlier results on $\Psi^0(\mathbb{R}^n)$. Observe that

$$(6.68) \quad \epsilon(1 + |\xi|) \leq (1 + |\epsilon \xi|), \quad \epsilon \in (0, 1)$$

from which it follows that

$$(6.69) \quad (0, 1) \ni \epsilon \mapsto a(\epsilon, x, \epsilon \xi) \in \mathcal{S}(\mathbb{R}^n; \mathcal{S}^0(\mathbb{R}^n))$$

is (uniformly) bounded. Indeed the derivatives satisfy

$$(6.70) \quad \partial_x^\alpha \partial_{\xi}^\beta a(\epsilon; x, \xi) = \epsilon^{[\beta]} \partial_x^\alpha \partial_{\eta}^\beta a(\epsilon; x, \eta)|_{\eta = \xi} \rightarrow$$

$$|\partial_x^\alpha \partial_{\xi}^\beta a(\epsilon; x, \xi)| \leq C_{\alpha, \beta} \epsilon^{[\beta]}(1 + |\epsilon \xi|)^{-|\beta|} \leq C_{\alpha, \beta}(1 + |\xi|)^{-|\beta|}.$$

So our earlier composition result shows that uniformly for $\epsilon > 0$

$$(6.71) \quad A_1(\epsilon) \circ A_2(\epsilon) \text{ is bounded in } \Psi^0(\mathbb{R}^n)$$

Moreover the left-reduced symbol of the composite is given by the asymptotic formula

$$(6.72) \quad A_1(\epsilon) \circ A_2(\epsilon) = Q_L(c(\epsilon)), \quad c(\epsilon) \sim \sum_{\alpha} \partial_x^\alpha a_1(\epsilon; x, \epsilon \xi)D_x^\alpha a_2(\epsilon; x, \epsilon \xi)$$

$$= \sum_{\alpha} \epsilon^{[\alpha]} \partial_x^\alpha a_1(\epsilon; x, \eta)D_x^\alpha a_2(\epsilon; x, \eta)|_{\eta = \epsilon \xi}.$$

Using Borel’s Lemma to sum the Taylor series gives $c \in \mathcal{C}^\infty([0, 1]; \mathcal{S}(\mathbb{R}^{2n}))$ such that

$$(6.73) \quad c(\epsilon; x, \eta) - \sum_{|\alpha| \leq N} \epsilon^{[\alpha]} \partial_x^\alpha a_1(\epsilon; x, \eta)D_x^\alpha a_2(\epsilon; x, \eta) \in \epsilon^{N+1} \mathcal{C}^\infty([0, 1]; \mathcal{S}(\mathbb{R}^{2n})) \forall \quad N.$$

The claim then is that

$$(6.74) \quad E(\epsilon) = Q_L(c(\epsilon; x, \epsilon \xi)) - A_1(\epsilon) \circ A_2(\epsilon) \in \mathcal{C}^\infty([0, 1]; \Psi^{-\infty}(\mathbb{R}^n))$$

with $\frac{d^k E(\epsilon)}{d\epsilon^k} \bigg|_{\epsilon=0} = 0 \forall \quad k$.

□
From either proof we see that again ‘Moyal’s formula’ appears (I think it is more historically legitimate here than before!)

$$A_i \in \Psi^{-\infty}_{{\text{sl,}\mathbb{S}}} (\mathbb{R}^n), \quad A_i = Q_L (a_i (\epsilon, x, \epsilon \xi)), \quad a_i \in C^\infty ([0, 1]; \mathcal{S}(\mathbb{R}^{2n})) \implies$$

$$A_1 \circ A_2 = Q_L (c), \quad c \in C^\infty ([0, 1]; \mathcal{S}(\mathbb{R}^{2n}), \quad c (\epsilon, x, \eta) \simeq \sum_\alpha \epsilon^{\alpha} \partial_\eta^\alpha a_1 (\epsilon, x, \eta) D^2_{x} a_2 (\epsilon, x, \eta)$$

Equality here is in the sense of formal power series (i.e. Taylor series) at $\epsilon = 0$. So this formula tells you nothing about what happens for $\epsilon > 0$ as is to be expected. However, the symbol of the product is determined by this formula up to terms vanishing to infinite order.

Lemma 6.4. If $a \in C^\infty ([0, 1]; \mathcal{S}(\mathbb{R}^{2n}))$ vanishes to infinite order at $\epsilon = 0$ then the semiclassical family

$$A (\epsilon) = Q_L (a (\epsilon, x, x \xi))$$

is simply a smooth map $[0, 1] \rightarrow \Psi^{-\infty} (\mathbb{R}^n)$ vanishing to infinite order at $\epsilon = 0$.

The analogue of the ‘principal symbol map’ for pseudodifferential operators is played by the ‘semiclassical symbol’

$$A (\epsilon) = Q_L (a (\epsilon, x, x \xi)), \quad \epsilon > 0 \implies$$

$$\sigma_{\text{sl}} : \Psi^{-\infty}_{{\text{sl,}\mathbb{S}}} (\mathbb{R}^n) \ni a (0, y, \eta) \in \mathcal{S}(\mathbb{R}^{2n}, \eta)$$

Proposition 6.5. The semiclassical symbol map (6.77) gives a short exact sequence of algebras

$$\epsilon \Psi^{-\infty}_{{\text{sl,}\mathbb{S}}} (\mathbb{R}^n) \rightarrow \Psi^{-\infty}_{{\text{sl,}\mathbb{S}}} (\mathbb{R}^n) \rightarrow \mathcal{S}(\mathbb{R}^{2n})$$

with the commutative product on $\mathcal{S}(\mathbb{R}^{2n})$.

Proof. This is just the first term in the Moyal product. \square

Make sure you understand what a semiclassical smoothing operator ‘looks like’. Its kernel is of the form

$$A_\epsilon (x, y) = \epsilon^{-n} B (\epsilon, x, \frac{x - y}{\epsilon}), \quad B \in C^\infty ([0, 1]; \mathcal{S}(\mathbb{R}^{2n}))$$

so as $\epsilon \downarrow 0$ the kernel is ‘squashed’ around the diagonal.

There are semiclassical operators of finite order as well, I hope I will have time to talk a little about them. A semiclassical differential operator on \mathbb{R}^n might be of the form

$$P_\epsilon = \epsilon^2 \sum_{i=1}^n D^2_{x_i} + V (x).$$

Notice that if you set $\epsilon = 0$ only the zeroth order term survives. This is not the semiclassical symbol which is instead the ‘rescaled’ symbol including the lower order term:

$$\sigma_{\text{sl}} (P_\epsilon) = |\xi|^2 + V (x).$$

Operators like (6.80) arose in quantum mechanics where $\epsilon \simeq \hbar$ is the ‘coupling constant’ relating the frequency of spectral lines to the jump in energy between electron shells which produces them. In practice $\hbar \simeq 1/127$ is small and the idea
is to think of it as ‘very small’ and perturb from $\epsilon = 0$ (I don’t like to use \hbar here since it is actually a constant!) Simply setting $\epsilon = 0$ is a bad idea since most of the problem disappears. What is happening here is that the problem is becoming commutative as $\epsilon \downarrow 0$ because of the commutation condition that

$$[\epsilon \partial_{x_i}, x_k] = \epsilon \delta_{ik}$$

so one is turning on the non-commutative product as ϵ becomes positive.

There is a lot one can do with semiclassical operators – see for instance the book of Zworski [157.427a].

6. The group G_{∞}^{sl}

As remarked above we want to consider the semiclassical group analogous to $G_{\infty}^{\text{sl}}(\mathbb{R}^n)$. In fact we need to generalize the discussion above by allowing ‘smoothing values’. If we consider the Schwartz smoothing operators on $\mathbb{R}^{n'+n}$ then we know that

$$S(\mathbb{R}^{2n'+2n}) = S(\mathbb{R}^{2n'}; S(\mathbb{R}^{2n})).$$

The smoothing operators on $\mathbb{R}^{n'+n}$ can then be considered as ‘smoothing operators with values in smoothing operators’, in either direction. We can do the same thing for the semiclassical smoothing operators and consider the space

$$S(\mathbb{R}^{2n'}; \Psi_{\text{sl}, \infty}(\mathbb{R}^n)).$$

Then we get a ‘stabilized’ algebra

$$\Psi_{\text{sl}, \infty}(\mathbb{R}^n; \Psi_{\text{sl}, \infty}(\mathbb{R}^n)).$$

For the kernel of an element in this algebra ([157.408] 6.78) is replaced by

$$A_\epsilon(x, y, z, t) = \epsilon^{-n} B(\epsilon, x, \frac{x - y}{\epsilon}, t, t'), \; B \in C^\infty([0, 1]; S(\mathbb{R}^{2n'+2n})).$$

Observe what the form that the semiclassical symbol takes in this more general case. It is just a symbol with values in the smoothing operators

$$\sigma_{\text{sl}} : \Psi_{\text{sl}, \infty}(\mathbb{R}^n; \Psi_{\text{sl}, \infty}(\mathbb{R}^n')) \to S(\mathbb{R}^{2n}; \Psi_{\text{sl}, \infty}(\mathbb{R}^n'))$$

giving a short exact sequence just like ([157.396] 6.78)

$$\epsilon \Psi_{\text{sl}, \infty}(\mathbb{R}^n; \Psi_{\text{sl}, \infty}(\mathbb{R}^n')) \to \Psi_{\text{sl}, \infty}(\mathbb{R}^n; \Psi_{\text{sl}, \infty}(\mathbb{R}^n')) \to S(\mathbb{R}^{2n}; \Psi_{\text{sl}, \infty}(\mathbb{R}^n')).$$

So the product formula for the symbol in this case is multiplicative in the variables (x, ξ) but with values in the non-commutative algebra $\Psi_{\text{sl}, \infty}(\mathbb{R}^n)$.

PROPOSITION 6.6. The semiclassical group

$$G_{\text{sl}}^{\infty}(\mathbb{R}^n; S(\mathbb{R}^n')) = \{ A \in \Psi_{\text{sl}, \infty}(\mathbb{R}^n; \Psi_{\text{sl}, \infty}(\mathbb{R}^n'));$$

$$\exists B \in \Psi_{\text{sl}, \infty}(\mathbb{R}^n; \Psi_{\text{sl}, \infty}(\mathbb{R}^n')) \text{ with } (\text{Id} + A)(\text{Id} + B) = \text{Id} = (\text{Id} + B)(\text{Id} + A) \}$$

is open in $\Psi_{\text{sl}, \infty}(\mathbb{R}^n; \Psi_{\text{sl}, \infty}(\mathbb{R}^n'))$.

157.427a

(6.82)

$$[\epsilon \partial_{x_i}, x_k] = \epsilon \delta_{ik}$$

157.400

(6.83)

$$S(\mathbb{R}^{2n'+2n}) = S(\mathbb{R}^{2n'}; S(\mathbb{R}^{2n})).$$

157.401

(6.84)

$$S(\mathbb{R}^{2n'}; \Psi_{\text{sl}, \infty}(\mathbb{R}^n)).$$

157.402

(6.85)

$$\Psi_{\text{sl}, \infty}(\mathbb{R}^n; \Psi_{\text{sl}, \infty}(\mathbb{R}^n)).$$

157.411

(6.86)

$$A_\epsilon(x, y, z, t) = \epsilon^{-n} B(\epsilon, x, \frac{x - y}{\epsilon}, t, t'), \; B \in C^\infty([0, 1]; S(\mathbb{R}^{2n'+2n})).$$

157.406

(6.87)

$$\sigma_{\text{sl}} : \Psi_{\text{sl}, \infty}(\mathbb{R}^n; \Psi_{\text{sl}, \infty}(\mathbb{R}^n')) \to S(\mathbb{R}^{2n}; \Psi_{\text{sl}, \infty}(\mathbb{R}^n'))$$

157.407

(6.88)

$$\epsilon \Psi_{\text{sl}, \infty}(\mathbb{R}^n; \Psi_{\text{sl}, \infty}(\mathbb{R}^n')) \to \Psi_{\text{sl}, \infty}(\mathbb{R}^n; \Psi_{\text{sl}, \infty}(\mathbb{R}^n')) \to S(\mathbb{R}^{2n}; \Psi_{\text{sl}, \infty}(\mathbb{R}^n')).$$
Proposition 6.8. The topology on $\Psi_{\alpha,s}(\mathbb{R}^n)$ comes from its identification with $C^\infty([0,1];S(\mathbb{R}^{2n+2n^2}))$ through either $\sigma_{\alpha,s}$ or $\sigma_{\alpha,s}^{-1}$. From the latter it follows that $A(\epsilon)$ defines a bounded family of operators on $L^2(\mathbb{R}^n)$ with a uniform norm bound being a continuous seminorm. So if A lies in a sufficiently small neighbourhood of 0 the family, in ϵ, of operators

$$(\text{Id} - A(\epsilon))^{-1} = \text{Id} + B(\epsilon)$$

(6.90)

with $B(\epsilon)$ uniformly bounded as $\epsilon \downarrow 0$. So we only need to show that

$$B(\epsilon) \in \Psi_{\alpha,s}^{-\infty}(\mathbb{R}^n; \Psi_{\alpha,s}^{-\infty}(\mathbb{R}^n)).$$

(6.91)

Proceeding ‘symbolically’ we can see that the model problem, the existence of the inverse

$$(\text{Id} + \sigma_{\alpha,s}(A))^{-1}(y,\eta) = \text{Id} + B_0(x,\eta) \in G_{\beta}^{-\infty}(\mathbb{R}^{2n}),$$

(6.92)

has a unique solution, for A in any possibly smaller neighbourhood of 0. This indeed follows from Lemma 6.3. Once we know that the principal symbol can be inverted, the existence of a formal power series inverse follows from the behaviour of the Moyal product. That is, we can find a sequence of elements $B_k \in \Psi_{\alpha,s}^{-\infty}(\mathbb{R}^n; \Psi_{\alpha,s}^{-\infty}(\mathbb{R}^n))$ such that for any p

$$(\text{Id} + A(\epsilon)(\text{Id} + B_0(\epsilon)) + \sum_{k=1}^{p} \epsilon^k B_k(\epsilon)) = \text{Id} + \epsilon^{p+1} \Psi_{\alpha,s}^{-\infty}(\mathbb{R}^n; \Psi_{\alpha,s}^{-\infty}(\mathbb{R}^n)).$$

(6.93)

Using Borel’s lemma again we can sum the series and so find a ‘parametrix’ $B' \in \Psi_{\alpha,s}^{-\infty}(\mathbb{R}^n; \Psi_{\alpha,s}^{-\infty}(\mathbb{R}^n))$ such that

$$(\text{Id} + A(\epsilon)(\text{Id} + B'(\epsilon)) - \text{Id}, (\text{Id} + B'(\epsilon))(\text{Id} + A(\epsilon)) - \text{Id}) \in \mathcal{C}(0,1]; \Psi_{\alpha,s}^{-\infty}$$

(6.94)

(which is the same as saying a semiclassical error vanishing to all orders at $\epsilon = 0$).

The corner identity as in (6.33) then shows that the difference of the inverse and the parametric $B - B'$ is uniformly bounded as a function of $\epsilon \in (0,1]$ with values in $\Psi_{\alpha,s}^{-\infty}(\mathbb{R}^{n+n'})$. A similar argument for the derivatives with respect to ϵ shows that this difference is now actually smooth and vanishes to infinite order at $\epsilon = 0$ so proving (6.31).

□

For the semiclassical group the symbol sequence (6.38) gives the map

$$\sigma_{\alpha,s} : G_{\alpha,s}^\infty(\mathbb{R}^n; \Psi_{\alpha,s}^{-\infty}(\mathbb{R}^n)) \longrightarrow \mathcal{S}(\mathbb{R}^{2n}; G^\infty(\mathbb{R}^n))$$

(6.95)

which it is important to note is surjective. In fact we want a stronger lifting property.

Proposition 6.7. The semiclassical group has the lifting property that for any smooth symbol map $u : M \longrightarrow \mathcal{S}(\mathbb{R}^{2n}; G^\infty(\mathbb{R}^n))$ of compact support (reducing to the identity outside a compact set) there is a smooth map, also of compact support $\tilde{u} : M \longrightarrow G_{\alpha,s}^\infty(\mathbb{R}^n; \Psi_{\alpha,s}^{-\infty}(\mathbb{R}^n))$ giving a commutative diagramme

$$G_{\alpha,s}^\infty(\mathbb{R}^n; \Psi_{\alpha,s}^{-\infty}(\mathbb{R}^n)) \xrightarrow{\sigma_{\alpha,s}} \mathcal{S}(\mathbb{R}^{2n}; G^\infty(\mathbb{R}^n))$$

(6.96)

Moreover any two such lifts are smoothly homotopic.

Proof. This is another symbolic argument, just a uniform version of the surjectivity of (6.95). □
This might appear a little arcane! However a consequence of the existence of a lift as in (157.419) is that this semiclassical group serves as a ‘bridge’ for odd K-theory. Namely a family \(u \in C_\infty^c(\mathbb{R}^{2n} \times M; G^{-\infty}) \) as in Proposition 157.417 defines an element of the group \(K^1(\mathbb{R}^{2n} \times M) \). On the other hand the lifted group, restricted to say \(\epsilon = 1 \) (or \(\epsilon = \frac{1}{2} \) etc) defines an element of \(K^1(M) \), since it is valued in \(G^{-\infty}(\mathbb{R}^{n+n'}) \).

Now we are getting closer to Bott periodicity.

PROPOSITION 6.8 (Bott periodicity). The lifting construction in (157.419) defines, for any manifold \(M \) and any \(n \), a homomorphism

\[
K^1(\mathbb{R}^{2n} \times M) \longrightarrow K^1(M)
\]

which is an isomorphism.

This is a 'protypical' index map, it is a non-geometric version of Atiyah-Singer which is used in the proof of the general version below.

Once the existence of the map (6.97) is established there are two parts to the proof that it is an isomorphism. First we show that it is surjective, by a computation based on the existence of a ‘Bott element’ \(\beta \in K^0(\mathbb{R}^2) \) which is a generator (so along the way we prove that \(K^0(\mathbb{R}^2) = \mathbb{Z} \)). This is where the hard work lies – and I may suppress some of it as far as the lectures are concerned (although it will all be in the notes). The second part is a clever idea of Atiyah. This is based on the fact that we can move some of the factors of \(\mathbb{R}^2 \) in (6.97) into \(M \). Indeed, once we have the map (6.97) for \(n = 1 \) we can get a similar map by iterating – applying the map

\[
q : K^1(\mathbb{R}^2 \times M) \longrightarrow K^1(M)
\]

to \(\mathbb{R}^{2n-2} \times M \) instead of \(M \). This leads one to think in terms of the iterated map

\[
K^1(\mathbb{R}^4 \times M) \xrightarrow{q} K^1(\mathbb{R}^2 \times M) \xrightarrow{q} K^1(M)
\]

The way we are getting (6.97) can be described as ‘turning on quantization’ by writing \(\mathbb{R}^{2n} = \mathbb{R}_x^n \times \mathbb{R}_\xi^n \). Looking again at (6) we can think of \(\mathbb{R}^4 = \mathbb{R}_x^2 \times \mathbb{R}_\xi^2 \times \mathbb{R}_y^2 \times \mathbb{R}_\eta^2 \) where we first turn on quantization in \((x, \xi) \) for the first map, then turn on quantization in \((y, \eta) \) for the second map. So we conclude easily enough that this is the same as doing both simultaneously in the sense that we get a commutative diagramme forming the upper right triangle

\[
\begin{array}{c}
K^1(\mathbb{R}^4 \times M) \longrightarrow K^1(\mathbb{R}^2 \times M) \\
\downarrow \quad \downarrow \\
K^1(\mathbb{R}^2 \times M) \longrightarrow K^1(M)
\end{array}
\]

where the diagonal map is (6.97) for \(n = 2 \). Atiyah’s idea has two parts. The first is that we get a further commutative triangle on the lower left where the roles of the two quantizations are interchanged – the second set of variables are quantized first, giving the same final result.

However, we can do a little more, namely we can rotate the variables, smoothly, by looking at \(x \cos \theta + y \sin \theta \) and dually on the other variables. This gives us a smooth family of double quantization maps starting at the first and finishing at the second, with the sign reversed. By homotopy invariance these must all give the same result.
The way we use this depends on a good understanding of the lifting map in \((b.96)\) as giving us a right inverse to \((b.98)\) which we can write somewhat mysteriously as

\[
K^1(M) \ni \kappa \mapsto \beta \otimes \kappa \in K^1(\mathbb{R}^2 \times M)
\]

where as above, \(\beta\) is the Bott element of \(K^0(\mathbb{R}^2)\).

So, suppose that \(\kappa \in K^1(\mathbb{R}^2 \times M)\) is mapped to zero in \(K^1(M)\) by \((b.95)\), so along the right side of \((b.99)\). By surjectivity \(\kappa\) comes from \(\beta_1 \otimes \kappa \in K^1(\mathbb{R}^4 \times M)\) along the top line of \((b.99)\), so lifting in the first variables. Reversing the quantization as discussed above we see that

\[
\kappa = \pm q_2(\beta_1 \otimes \kappa) = \pm \beta_1 \otimes q_2(\kappa) = 0
\]

so \(\kappa = 0\) and we have injectivity.

This argument depends on seeing that quantization in one set of variables commutes with the lifting map in a different set of variables which we will see in the lifting construction.

7. Constructing the Bott element

I am trying to take a minimalist approach here to avoid getting bogged down in K-theory. The aim is to construct the lifting map in \((b.96)\) and think of it as giving \((b.101)\). As already remarked, this is really an exterior product in K-theory

\[
K^0(\mathbb{R}^2) \times K^1(M) \to K^1(\mathbb{R}^2 \times M)
\]

coming from \(\beta \in K^0(\mathbb{R}^2)\) which is a generator.

The standard model for even K-theory over a manifold, X, is in terms of pairs of (compactly supported) complex vector bundles over a manifold. Such a vector bundle can always be realized as a family of projections in \(N \times N\) matrices for sufficiently large \(N\) so as a smooth map

\[
P : X \to M(N, \mathbb{C}), \quad P(x)^2 = P(x).
\]

For the Bott element in \(K^0(\mathbb{R}^2)\) this projection arises in \(2 \times 2\) matrices and it is convenient (but by no means necessary) to view the projection as coming from a family of unipotent matrices. In general if \(\beta\) is a unipotent matrix (or operator) meaning \(\beta^2 = \text{Id}\), then

\[
P = \frac{1}{2}(\beta + \text{Id})\]

is a projection and conversely \(\beta = P - (\text{Id} - P) = 2P - \text{Id}\).

The explicit \(2 \times 2\) family of matrices we will to consider satisfies

\[
\beta : \mathbb{R}^2 \to M(2, \mathbb{C}), \quad \beta^2 = \text{Id}, \quad \beta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = P_1 - P_2 \text{ near } \infty.
\]

The ‘triviality near infinity’ is analogous to the group \(G^\infty\).

Explicitly in this sense the Bott element (although how it defines an element of \(K^0(\mathbb{R}^2)\) is not yet explained) is

\[
\beta(x, \xi) = \begin{pmatrix} \cos(\chi(r)) & e^{i\theta} \sin(\chi(r)) \\ e^{-i\theta} \sin(\chi(r)) & -\cos(\chi(r)) \end{pmatrix}.
\]

Here \((x, \xi) = r(\cos \theta, \sin \theta)\) are polar coordinates, \(\chi \in C^\infty([0, \infty))\) is constant near 0 and \(\infty\) and decreases monotonically from \(\pi\) to 0. Thus \(\beta\) is constant near 0 and hence smooth and is equal to \(\beta_\infty\) near \(\infty\).
An easy computation shows

\[\beta^2 = \text{Id}, \quad \beta = 2\Pi(x, \xi) - \text{Id}, \]

\[\Pi(x, \xi) = \begin{pmatrix} \cos^2 \left(\frac{1}{2} \chi(r) \right) & e^{i\theta} \sin \left(\frac{1}{2} \chi(r) \right) \cos \left(\frac{1}{2} \chi(r) \right) \\ e^{-i\theta} \sin \left(\frac{1}{2} \chi(r) \right) \cos \left(\frac{1}{2} \chi(r) \right) & \sin^2 \left(\frac{1}{2} \chi(r) \right) \end{pmatrix}. \]

Thus the range of the projection \(\Pi(x, \xi) \) is the span of

\[\begin{pmatrix} \cos \left(\frac{1}{2} \chi(r) \right) \\ e^{-i\theta} \sin \left(\frac{1}{2} \chi(r) \right) \end{pmatrix}. \]

This is a complex line bundle which comes from a non-trivial line bundle on \(S^2 \) as the one-point compactification of \(\mathbb{R}^2 \).

8. Quantization of the Bott element

The way we will make use of the unipotent \(\Pi(x, \xi) \) is by quantizing it to a semiclassical family of unipotents.

Since \(b_0 = \beta - \beta_\infty \) is a compactly supported smooth function with values in \(2 \times 2 \) complex matrices we can apply semiclassical quantization to find

\[B_0 \in \Psi_{sl, \infty}^{-\infty}(\mathbb{R}; \mathbb{C}^2) \text{ with } \sigma_{sl}(B_0) = b_0 = \beta - \beta_\infty \]

So, \(B_0 \) is a \(2 \times 2 \) matrix of semiclassical smoothing operators on \(\mathbb{R} \). As with the identity we take the semiclassical quantization of the constant matrix \(\beta_\infty = \Pi_1 - \Pi_2 \) to be itself.

Proposition 6.9. There exists \(B \in \Psi_{sl, \infty}^{-\infty}(\mathbb{R}; \mathbb{C}^2) \) satisfying

\[\sigma_{sl}(B) = b_0, \quad (\beta_\infty + B)^2 = \text{Id}. \]

Proof. Make any choice \(B_0 \) as in (6.109). Then, from the semiclassical symbol calculus the principal semiclassical symbol of the square satisfies

\[\sigma_{sl}((\beta_\infty + B_0)^2 - \text{Id}) = \sigma_{sl}(\beta_\infty b_0 - b_0 \beta_\infty + b_0^2) = 0. \]

Thus in fact

\[(\beta_\infty + B_0)^2 = \text{Id} + \epsilon E_1, \quad E_1 \in \Psi_{sl, \infty}^{-\infty}(\mathbb{R}; \mathbb{C}^2). \]

Now, we proceed, by induction, to construct successive corrections \(B_k \) ‘as usual’ (cf. Problems 2) so that

\[(\beta_\infty + B_0 + \sum_{k=1}^{p} \epsilon^k B_k)^2 = \text{Id} + \epsilon^{k+1} E_{k+1}, \quad E_{k+1} \in \Psi_{sl, \infty}^{-\infty}(\mathbb{R}; \mathbb{C}^2). \]

Adding \(\epsilon^{p+1} B_{k+1} \), where \(B_{k+1} \) has semiclassical symbol \(b_{k+1} \) what we need to arrange in the inductive step is

\[(\beta_\infty + B) B_{k+1} + B_{k+1} (\beta_\infty + B) = E_{p+1} \text{ mod } \epsilon \Psi_{sl, \infty}^{-\infty}(\mathbb{R}; \mathbb{C}^2) \]

\[\iff \beta b_{k+1} + b_{k+1} \beta = e_{k+1} = \sigma_{sl}(E_{k+1}). \]

This cannot be solved for an arbitrary \(e_{k+1} \). However, it follows from the definition, (6.113) of the error at the previous stage of construction, that

\[(\beta_\infty + B) E_{k+1} - E_{k+1} (\beta_\infty + B) \in \epsilon \Psi_{sl, \infty}^{-\infty}(\mathbb{R}; \mathbb{C}^2) \iff \beta e_{k+1} = e_{k+1} \beta. \]

This means that

\[e_{k+1} = P e_{k+1} P + (\text{Id} - P) e_{k+1} (\text{Id} - P) \]
9. Simplifying the quantized Bott operator

is 'diagonal' with respect to the two projections. Thus

\[b_{k+1} = \frac{1}{2} \left(P e_{k+1} P - (\text{Id} - P) e_{k+1} (\text{Id} - P) \right) \]

solves the inductive condition in (6.114).

Asymptotically summing the resulting series in \(\epsilon^k \) we find a semiclassical operator \(B' \) with the correct principal symbol such that

\[(6.118) \quad (\beta_\infty + B')^2 - \text{Id} \in \epsilon^\infty \Psi_{sl,5}^{-\infty}(\mathbb{R}; \mathbb{C}^2) \]

is a smooth family of smoothing operators vanishing to infinite order at \(\epsilon = 0 \). It follows that as a family of bounded operators on \(L^2(\mathbb{R}; \mathbb{C}^2) \) the spectrum is, uniformly for \(0 < \epsilon < \epsilon_0 \) (for suitable small \(\epsilon_0 \)), concentrated very near to \(\pm 1 \). We can then use a contour integral (the functional calculus for bounded operators on a Hilbert space) to correct the quantization a little further, setting

\[(6.119) \quad \beta_\infty + B = \beta_\infty + B', \quad B_\pm = \pm \frac{1}{2\pi i} \oint_{C_\pm} (\beta_\infty + B' - z \text{Id})^{-1} dz. \]

Here \(C_\pm \) are circular contours around \(\pm 1 \). Now an argument with resolvents shows that the \(B_\pm \) are commuting projections and

\[(6.120) \quad (\beta_\infty + B_+ - B_-)^2 = \text{Id} \]

where \(B_\pm \) are defined only for \(0 < \epsilon < \epsilon_0 \) but \(B = B_+ - B_- \) is equal to a semiclassical family on \(0 < \epsilon < \frac{1}{2} \epsilon_0 \) (simply by rescaling the parameter \(\epsilon \) to stretch the interval \([\frac{1}{2} \epsilon_0, \frac{3}{4} \epsilon_0] \) to \([\frac{1}{2} \epsilon, 1] \)). The difference \(B - B' \) is a family of smoothing operators vanishing to infinite order at \(\epsilon = 0 \).

This completes the proof of Lemma 6.109. \(\square \)

9. Simplifying the quantized Bott operator

So this was hard work, but we need to do a little more to see what we have really produced and refine it further. Choose an \(L^2 \)-normalized element \(p \in S(\mathbb{R}) \subset L^2(\mathbb{R}) \) and let \(Q \) also denote the orthogonal projection onto \((0, e_0)\) where \(Q \) is the ground state of the harmonic oscillator (it is just a convenient rank one projection).

Proposition 6.10. There is a semiclassical family \(B \in \Psi_{sl,5}^{-\infty}(\mathbb{R}; \mathbb{C}^2) \), quantizing \(\beta \) as in (6.110), such that

\[(6.121) \quad \beta_0 + B_{|\epsilon=1} = (\Pi_1 + Q) - (P_2 - Q). \]

Thus the effect of quantization is to move a one-dimensional space from the negative to the positive eigenspace. This really is the fundamental 'index theorem' from this point of view.

Proof. We first show that any (single, not semiclassical family) unipotent of the form

\[(6.122) \quad \beta_0 + S, \quad S \in \Psi_s^{-\infty}(\mathbb{R}; \mathbb{C}^2), (\beta_0 + S)^2 = \text{Id} \]

can be deformed to a model. This argument does not depend on the particular \(\beta_\infty \) nor on the dimension involved.
LEMMA 6.5. Any unipotent as in (6.122) is conjugate to a unipotent of the form

\begin{equation}
(P_1 \oplus Q(2)_k) - P_2 (\text{Id} - Q(2)_k) \text{ or } P_1 (\text{Id} - Q(1)_k) - (P_2 \oplus Q(1)_k)
\end{equation}

where \(Q_k(1)\) and \(Q_k(2)\) are the the orthogonal projection onto the span of the first \(k\) Hermite functions in \(L^2(\mathbb{R}) \oplus \{0\}\) and \(\{0\} \oplus L^2(\mathbb{R})\).

Really the \(Q_k(i)\) is for \(i = 1, 2\) a just a choice of subprojection of \(P_1\) onto a \(k\)-dimensional space.

PROOF. Notice that the group \(G^\infty_1(\mathbb{R}; \mathbb{C}^2)\) does indeed act by conjugation on unipotents

\begin{equation}
g(\beta_\infty + B)g^{-1} = \beta_\infty + B_g, \quad B_g \in \Psi^\infty_1(\mathbb{R}; \mathbb{C}^2).
\end{equation}

Moreover the relative trace is constant under this action. This follows from the fact that \(G^\infty_1(\mathbb{R}; \mathbb{C}^2)\) is connected, so \(\beta_\infty + B\) and \(g(\beta_\infty + B)g^{-1}\) are connected by a smooth curve so the constancy along curves proved above shows that conjugate unipotents have the same relative index with \(\beta_\infty\).

For a given unipotent with positive projector \(P\) let \(H_P\) be the range of \(P\) acting on \(L^2(\mathbb{R}; \mathbb{C}^2)\), it is a closed subspace. Then the composite operator

\begin{equation}
PP_1 : L^2(\mathbb{R}) \oplus \{0\} \longrightarrow H_P
\end{equation}

is Fredholm. This follows from the fact that

\[P_1PP_1 = P_0 + P_1(P - P_1)P_1 = \text{Id} + Q \text{ on } L^2(\mathbb{R}) \oplus \{0\} \]

is a compact (in fact Schwartz-smoothing) perturbation of the identity on the range of \(P_1\). Similarly \(PP_1P\) is a compact perturbation of the identity acting on \(H_P\). Thus \(PP_1\) has finite dimensional null space and maps the orthocomplement isomorphically onto closed subspace of \(H_P\) with a finite-dimensional (ortho)-complement. However these two spaces may have different dimensions – that is what \(\text{Tr}(P - P_1)\) measures as we see below. If the null space is larger than the complement of the range then we may replace \(P_1\) by \(P_1(\text{Id} - Q_k)\) where \(k\) is the difference and \(Q_k\) is the finite-rank projector onto the first \(k\) Hermite functions. This may not be contained in the null space but now the operator \(PP_1(\text{Id} - Q_k)\) has null space and complement of the range of the same dimension. We can then add a finite rank smoothing operator \(S\) between these two spaces so that

\begin{equation}
PP_1(\text{Id} - Q_k) + S = P_1 + S', \quad S, \ S' \text{ smoothing}
\end{equation}

where now is an isomorphism from the range of \(P_1(\text{Id} - Q_k)\) to \(H_P\). But then it follows that

\begin{equation}
g = P_1 + P_2 + S' \in G^{-\infty}(\mathbb{R}; \mathbb{C}^2), \quad \tilde{P} = g(P_1(\text{Id} - Q_k)g^{-1} : L^2(\mathbb{R}; \mathbb{C}^2) \longrightarrow H_P
\end{equation}

is a projection with the same range as \(P\). The null space \(\text{Ran}(\text{Id} - \tilde{P})\) of \(\tilde{P}\) is a complement to the range and

\begin{equation}
(\text{Id} - \tilde{P}) : \text{Ran}(\text{Id} - \tilde{P}) \longrightarrow \text{Ran}(\text{Id} - P)
\end{equation}

is an isomorphism since it has no null space and is surjective. It follows that \(g\text{ Id} + (\tilde{P} - P) \in G^{-\infty}(\mathbb{R}^2; \mathbb{C}^2)\) conjugates \(\tilde{P}\) to \(P\).

If the dimension of the null space of \(PP_1\) is smaller than the range then a similar argument follows with \(P_1\) replaced by \(P_1 \oplus Q_k\) where \(Q_k\) is the same projection but now on the second factor.
This proves that the unipotent is conjugate to one of the options in (6.123) and then it follows that the relative trace is either k or $-K$ in the two cases. □

Where does the ‘one-dimensional’ come from. We have constructed P and hence a projection

\[P = \frac{1}{2}(\beta_{\infty} + B) + \text{Id} = \Pi_1 + S, \quad S \in \Psi_{\text{sl}, \infty}(\mathbb{R}; \mathbb{C}^2) \implies P^2 = P. \]

The range of $P(\epsilon)$ for each $\epsilon > 0$ is a closed subspace of $L^2(\mathbb{R}^2; \mathbb{C}^2)$

So the idea is that for $\epsilon > 0$ this is a projection which differs from Π_1 by a smoothing, hence trace classe, term. The relative index of these two projections is therefore well-defined

\[R(\epsilon) = \text{Tr}(P(\epsilon) - \Pi_1) \in C^\infty([0, 1]). \]

In fact, this is constant and necessarily an integer which we then proceed to compute.

The constancy follows from the properties of the trace functional and projections. Differentiating

\[\frac{dR}{d\epsilon} = \text{Tr}\left(\frac{dB}{d\epsilon}\right) = \text{Tr}\left(\frac{dB}{d\epsilon}\right) = 0 \text{ since} \]

\[\frac{dB}{d\epsilon} = P\frac{dB}{d\epsilon} + \frac{dB}{d\epsilon}P \implies \frac{dB}{d\epsilon} = P\frac{dB}{d\epsilon}(\text{Id} - P) + (\text{Id} - P)\frac{dB}{d\epsilon}P. \]

Note that this is the same identity as used in the construction of B.

Having shown that R is constant we compute it in terms of the semiclassical limit.

Lemma 6.6. For a semiclassical family of smoothing operators $B \in \Psi_{\text{sl}, \infty}(\mathbb{R}; \mathbb{C}^N)$, $\epsilon \text{Tr}(B_\epsilon) \in C^\infty([0, 1])$ and if the kernel is

\[B = Q_L(b(\epsilon, x, \epsilon\xi)) \]

then

\[\text{Tr}(B_\epsilon) = \epsilon^{-1}\int_{\mathbb{R}^2} \text{tr}(b(0)) + \int_{\mathbb{R}^2} \text{tr}\left(\frac{\partial b}{\partial \epsilon}(0)\right) + O(\epsilon). \]

Proof. □

10. Surjectivity of the periodicity map

Now we have a Bott element and its quantization. Note that I defined $K^0(\mathbb{R}^2)$ to be $K^1(\mathbb{R}^3)$ in Definition 6.2 so to get an element there we need to do just a little more. Take a smooth function on \mathbb{R} with ‘winding number one’ such as

\[\exp(i\psi(s)), \quad \psi \in C^\infty(\mathbb{R}; \mathbb{R}), \quad \psi = 0 \text{ in } s < -R, \quad \psi = 2\pi \text{ in } s > R. \]

Now consider the family of operators

\[\mathbb{R} \ni s \longrightarrow b(\exp(i\psi(s))b_+ + \exp(-i\psi(s))b_-). \]

Both factors here are semiclassical families, the second depending on s, (with values in 2×2 matrices) which is the identity for $|s| > R$ and...
11. Manifolds with boundary

We have defined the K-theory of any manifold, including a manifold with boundary, M. In this case there are three natural K-groups, well six including even/odd groups. Namely

\[
K^1(M) = \mathcal{C}_c^\infty(M; G^{-\infty}) / \text{homotopy}
\]

\[
K^1(M; \partial M) = \mathcal{C}_c^\infty(M \setminus \partial M; G^{-\infty}) / \text{homotopy}
\]

\[
K^1(\partial M) = \mathcal{C}_c^\infty(\partial M; G^{-\infty}) / \text{homotopy}
\]

According to our definition the even groups are defined as the odd groups for $R \times M$.

These are related by a 'six-term sequence'

\[
\begin{array}{c}
K^0(M; \partial M) \longrightarrow K^0(M) \longrightarrow K^0(\partial M) \\
\downarrow \quad \downarrow \\
K^1(\partial M) \leftarrow K^1(M) \leftarrow K^1(M; \partial M)
\end{array}
\]

The horizontal maps here are straightforward. Namely there is an inclusion map

\[
\mathcal{C}_c^\infty(M \setminus \partial M; G^{-\infty}) \hookrightarrow \mathcal{C}_c^\infty(M; G^{-\infty})
\]

since the former are maps which are equal to the identity outside a compact set and so can be extended (as the identity) up to the boundary. Similarly there is a restriction map

\[
\mathcal{C}_c^\infty(M; G^{-\infty}) \mid_{\partial M} \longrightarrow \mathcal{C}_c^\infty(\partial M; G^{-\infty})
\]

and both these maps 'descend' through homotopies.

The end maps, the connecting homomorphisms, are as usual a little less obvious. On the right we start from the group

\[
\mathcal{C}_c^\infty(R \times \partial M; G^{\infty}).
\]

By a very simple version of the collar neighbourhood theorem a neighbourhood of the boundary in M is diffeomorphic to a product

\[
[0,1) \times \partial M \rightarrow M.
\]

We can take the radial compactification of R to $[0,1]$ and thereby convert the map (157.503) into a map

\[
R \times \partial M \rightarrow M.
\]

The definition in terms of rapid decay then means that there is a pull-back map

\[
\mathcal{S}(R; c^\infty(\partial M; G^{-\infty})) \hookrightarrow \mathcal{C}_c^\infty(M; G^{-\infty})
\]

which descends to give the connection homomorphism on the right. This leaves the connecting homomorphism on the left. This is where Bott periodicity comes in. We are starting from (the components of) $\mathcal{C}_c^\infty(M; G^{-\infty})$ on the lower left. However, by Bott periodicity – Theorem ?? – we can instead start from $\mathcal{C}_c^\infty(\mathbb{R}^2 \times M; G^{-\infty})$. Now, separating the factors of \mathbb{R}^2 into $R \times R$ we can apply the argument of the preceding paragraph, giving the connecting homomorphism on the right, to $\mathbb{R} \times M$ instead of M, and this gives the map on the left. There is an orientation issue here but since it amounts to a sign the choice one makes does not affect the main result, which is:

Theorem 6.2. The six-term sequence (157.498) is exact for any manifold with boundary.
12. Problems 3

Each of these three (so far) little projects is pretty demanding. I am not really expecting anyone to do more than one of them and indeed am happy to give pretty much full credit for serious but partial efforts. I am happy to talk about these, and fix up errors which are surely present. I would actually value \LaTeX files so I can maybe incorporate answers into the notes.

12.1. Problems 3a: Chern character-building. I have laid rather heavy emphasis on the group(s) $G^{-\infty}_s(\mathbb{R}^n)$ in the definition of (complex, topological) K-theory. Indeed by fiat I have declared this to be a classifying group for odd K-theory. Here I want you to sort out the map to deRham cohomology leading to the Atiyah-Hirzebruch isomorphism.

In the first part I want you to explain, step by step, the meaning of the ‘odd Chern character’

\[
\text{Ch}(g) = \sum_{k=0}^{\infty} \frac{(-1)^k k!}{(2\pi i)^k (2k+1)!} \text{Tr}((g^{-1}dg)^{2k+1})
\]

This is a formal sum of forms in odd degree.

(1) Recall that $G^{-\infty}_s(\mathbb{R}^n)$ is an open subset of $\mathcal{S}(\mathbb{R}^{2n})$ and it is ‘an infinite matrix group’. Use this to give a clear meaning to the Maurier-Cartan form $g^{-1}dg$ here.

Hint: Perhaps avoid going into a full discussion of Fréchet manifolds! As an open subset of a Fréchet space the tangent space at each point g is $\Psi^{-\infty}(\mathbb{R}^n)$. Any element $a \in \Psi^{-\infty}(\mathbb{R}^n)$ here defines a curve in the group in the obvious way as $g + ta$ and the identification with the tangent space (with elements equivalence classes of curves) is written ‘dg’ – meaning I think that $d(g + ta)/dt$ is the tangent vector at g. Then g^{-1} acting on the left on the group maps g to the origin. This is a concrete group in the sense that this gives a linear map

\[
g^{-1} : \Psi^{-\infty}(\mathbb{R}^n) \rightarrow \Psi^{-\infty}(\mathbb{R}^n).
\]

The push-forward on the tangent spaces would be denoted g^{-1}_* but since the map is linear we can drop the $*$ and then

\[
g^{-1}dg : \Psi^{-\infty}(\mathbb{R}^n) \rightarrow \Psi^{-\infty}(\mathbb{R}^n)
\]

is the natural map from the tangent space at g to the tangent space at Id (which is the Lie algebra).

(2) Then the formal product $(g^{-1}dg)^j$ is supposed to be the j-fold exterior product, with composition thrown in, so it is a j-multilinear, totally antisymmetric map from j copies of the tangent space at g to the tangent space at Id.

(3) This explains (2.14) in the sense that the trace functional results in each term being a $(2k+1)$-multilinear function on the tangent space at each point, which is what a form should be.

(4) The trace property $\text{Tr}([a, b]) = 0$ shows that

\[
\text{Tr}((g^{-1}dg)^{2k}) = 0
\]

which explains why there are no even terms.
(5) The deRham differential is easy to define on 1-forms, even with values in an infinite dimensional space, show that
\[d(g^{-1}dg) = -g^{-1}dg \wedge g^{-1}dg \]
in an appropriate sense.

(6) Conclude that the terms in \(\text{Ch}(g) \) are all closed.

(7) Suppose \([0, 1] \ni t \mapsto G_{\infty}^* \mathbb{R}^n\) is a smooth curve, show that
\[\frac{d}{dt}\text{Ch}(g_t) = d\text{Et}(g) \]
where \(\text{Et} \) is the ‘Eta’ or Chern-Simons form
\[\text{Et}(g) = \sum_{k=0}^{\infty} \frac{(-1)^{k-1}k!}{(2\pi i)^k(2k)!} \text{Tr} \left(g^{-1} \frac{dg}{dt} (g^{-1}dg)^{2k} \right) \]

Hint: Make sense of the formula
\[\frac{d}{dt}g^{-1}dg = -g^{-1} \frac{dg}{dt}g^{-1}dg + g^{-1} \frac{dg}{dt}. \]

(8) Now, suppose \(M \) is a compact manifold and \(\kappa : M \to G_{\infty}^* \mathbb{R}^n \) is a smooth map. Show that the pull-backed form is closed and so defines a map
\[\mathcal{C}^\infty(M; G_{\infty}^* \mathbb{R}^n) \ni \kappa \mapsto \kappa^* \text{Ch} \in H^{\text{odd}}_{\text{dR}}(M). \]

(9) Conclude that this map descends to a map
\[\text{Ch} : K^1(M) \to H^{\text{odd}}_{\text{dR}}(M) \] the odd Chern character.

(10) Contemplate why this might induce the Atiyah-Hirzebruch isomorphism
\[K^1(M) \otimes \mathbb{C} \to H^{\text{odd}}_{\text{dR}}(M). \]

(11) Now, if you have the energy, do the even version! Start from P3.20 and show that on the group \(\mathcal{C}^\infty(\mathbb{R}; G_{\infty}^* \mathbb{R}^n) \), which is used above to define even K-theory,
\[\text{Ch}_{\text{ev}} = \sum_{k=0}^{\infty} \frac{(-1)^{k-1}k!}{(2\pi i)^k(2k)!} \text{Tr} \left(g^{-1} \frac{dg}{dt} (g^{-1}dg)^{2k} \right) \]
defines a closed form in each even degree. [I am not sure I have the normalizing constants correct, but here it does not matter.]

(12) Conclude, proceeding as above, that this defines a map
\[K^0(M) \otimes \mathbb{C} \to H^\text{ev}_{\text{dR}}(M). \]

P3b.0 Recall to isotropic pseudodifferential algebra, for simplicity of order 0, on \(\mathbb{R}^{2n} \) is defined by quantization of the classical symbols jointly in the variables \((x, \xi)\):
\[\Psi^0_{\text{iso}}(\mathbb{R}^n) = Q_L(\mathcal{C}^\infty(\mathbb{R}^{2n})). \]
The product defines a smooth bilinear map
\[\Psi^0_{\text{iso}}(\mathbb{R}^n) \times \Psi^0_{\text{iso}}(\mathbb{R}^n) \to \Psi^0_{\text{iso}}(\mathbb{R}^n). \]
We can then define $C^\infty(M; \Psi_{iso}^0(\mathbb{R}^n))$ for any manifold M and in particular
\[S(\mathbb{R}^{2n'}; \Psi_{iso}^0(\mathbb{R}^n)). \]

Now, show that this allows us to define the ‘stabilized algebra’
\[\Psi_{iso}^0(\mathbb{R}^n; \Psi_s^{-\infty}(\mathbb{R}^n')) \]
by using the product of Schwartz smoothing operators and then the product $\mathbb{R}^{2n'}$ to define
\[\Psi_{iso}^0(\mathbb{R}^n; \Psi_s^{-\infty}(\mathbb{R}^n')) \]
\[S(\mathbb{R}^{2n'}; \Psi_{iso}^0(\mathbb{R}^n) \times \Psi_{iso}^0(\mathbb{R}^n')) \rightarrow \Psi_{iso}^0(\mathbb{R}^n; \Psi_s^{-\infty}(\mathbb{R}^n')). \]
This is an associative algebra of bounded operators on $L^2(\mathbb{R}^{n+n'})$ which maps $S(\mathbb{R}^{n+n'})$ to itself.

(1) One reason that this algebra is interesting is that it has a principal symbol map
\[\sigma_0 : \Psi_{iso}^0(\mathbb{R}^n; \Psi_s^{-\infty}(\mathbb{R}^n')) \rightarrow C^\infty(S^{2n-1}; \Psi_s^{-\infty}(\mathbb{R}^n')) \]
which is multiplicative and gives a short exact sequence
\[\Psi_{iso}^0(\mathbb{R}^n; \Psi_s^{-\infty}(\mathbb{R}^n')) \rightarrow \Psi_{iso}^0(\mathbb{R}^n; \Psi_s^{-\infty}(\mathbb{R}^n')) \rightarrow C^\infty(S^{2n-1}; \Psi_s^{-\infty}(\mathbb{R}^n')). \]

(2) We need to massage this a little more by identifying
\[\mathbb{R}^{2n-1} \rightarrow S^{2n-1} \]
as the 1-point compactification – choose your favourite point (mine is the South Pole). Anyway, this allows us to map
\[S(\mathbb{R}^{2n-1}; \Psi_{iso}^{-\infty}(\mathbb{R}^n')) \rightarrow C^\infty(S^{2n-1}; \Psi_s^{-\infty}(\mathbb{R}^n')) \]
with image being the subspace of functions vanishing to infinite order at the point at infinity.

(3) Denote by $\Psi_{iso}^0(\mathbb{R}^n; \Psi_s^{-\infty}(\mathbb{R}^n'))$ which is the inverse image under σ_{iso} of $S(\mathbb{R}^{2n-1}; \Psi_s^{-\infty}(\mathbb{R}^n'))$

(4) This is an algebra without identity, so add Id to get a ring which we can denote
\[\text{Id} + \Psi_{iso}^0(\mathbb{R}^n; \Psi_s^{-\infty}(\mathbb{R}^n')). \]

Check that we now a multiplicative exact sequence
\[\text{Id} + \Psi_{iso}^{-1}(\mathbb{R}^n; \Psi_s^{-\infty}(\mathbb{R}^n')) \rightarrow \text{Id} + \Psi_{iso}^0(\mathbb{R}^n; \Psi_s^{-\infty}(\mathbb{R}^n')) \rightarrow \text{Id} + S(\mathbb{R}^{2n-1}; \Psi_s^{-\infty}(\mathbb{R}^n')). \]

(5) Finally we can finish the setup by defining
\[\hat{E}(\mathbb{R}^n; \Psi_s^{-\infty}(\mathbb{R}^{2n'})) = \left\{ A \in \text{Id} + \Psi_{iso}^0(\mathbb{R}^n; \Psi_s^{-\infty}(\mathbb{R}^n'); \sigma_{iso}(A) \in C^\infty(\mathbb{R}^{2n-1}; G_s^{-\infty}(\mathbb{R}^n')) \right\} \]
and now there is a multiplicative exact sequence
\[\text{Id} + \Psi_{iso}^{-1}(\mathbb{R}^n; \Psi_s^{-\infty}(\mathbb{R}^n')) \rightarrow \hat{E}_{iso}(\mathbb{R}^n; \Psi_s^{-\infty}(\mathbb{R}^n')) \rightarrow S(\mathbb{R}^{2n-1}; G_s^{-\infty}(\mathbb{R}^n')). \]
12.3. Problems 3c: Bott and Clifford. In lectures I wrote down an explicit family of unipotent matrices on \(\mathbb{R}^2 \) representing the ‘Bott’ element (in even K-theory) and showed that the semiclassical quantization of this family is a 1-dimensional shift from the constant family. Here I ask you to do this for \(\mathbb{R}^{2n} \). Initially I assumed you knew about the structure of the complex Clifford algebra, I have now added a brief derivation in case you do not.

(1) Deconstruct the matrix I simply wrote down in lectures

\[
\mu = \begin{pmatrix} \cos(\chi(r)) & e^{i\theta} \sin(\chi(r)) \\ e^{-i\theta} \sin(\chi(r)) & -\cos(\chi(r)) \end{pmatrix}.
\]

First write it out as

\[
\mu = \cos(\chi(r)) Z + \sin(\chi(r)) (\cos \theta E_1 + \sin \theta E_2).
\]

Show that these 2 \(\times \) 2 matrices satisfy

\[
E_2^2 = Z^2 = \text{Id}, \quad E_1 E_2 + E_2 E_1 = Z E_1 + E_1 Z = Z E_2 + E_2 Z = 0.
\]

(2) Recall the complexified Clifford algebra on a real Euclidean vector space, \(V \), of even dimension, \(2n \), defined as the quotient of the infinite tensor algebra \(T(V) = \mathbb{C} \oplus V \oplus (V \otimes V) \oplus \cdots = \sum_k V \otimes_k \mathbb{C}, \quad V = V \otimes \mathbb{C} \)

by the two-sided ideal (under tensor product) generated by the elements

\[
I(V) \ni \xi \otimes \eta + \eta \otimes \xi - 2 \langle \xi, \eta \rangle, \quad \xi, \eta \in V.
\]

Here \(\langle, \rangle \) is the Euclidean inner product. Thus,

\[
\text{Cl}(V) = T(V)/I(V).
\]

Remind yourself that this has dimension \(2^{2n} \), the same as the exterior algebra. You should also note that it is isomorphic to the \(2^n \times 2^n \) matrix algebra.

The Clifford algebra is closely related to the exterior algebra, but on \(\mathbb{C}^n \) rather than \(\mathbb{R}^{2n} \). So we are passing to the standard complex structure on \(\mathbb{R}^{2n} \) in which a basis, over the complex numbers, is

\[
f_i = e_i + ie_{i+n}, \quad i = 1, \ldots, n.
\]

Show that \(\text{Cl}(\mathbb{R}^{2n}) \), the complexified Clifford algebra (not the Clifford algebra on the complexification!) acts on \(\wedge^\alpha \mathbb{C}^n \) through the formula we saw for the Hodge-Dirac operator

\[
\text{cl}(e_k + ie_{k+n}) f^\alpha = i\sqrt{2} f_k \wedge f^\alpha, \quad \text{cl}(e_k - ie_{k+n}) f^\alpha = -i\sqrt{2} (f_k) f^\alpha, \quad k \leq n
\]

where the constants are for length normalization an here \(\alpha \) is a strictly increasing sequence in \(\{1, \ldots, n\} \). This specifies the action of all basis elements and we see that

\[
\text{cl}(e_k + ie_{k+n}) \text{cl}(e_k - ie_{k+n}) + \text{cl}(e_k - ie_{k+n}) \text{cl}(e_k + ie_{k+n}) = 2 \text{Id},
\]

\[
\text{cl}(e_k + ie_{k+n})^2 = 0 = \text{cl}(e_k - ie_{k+n})^2
\]

\[
\Rightarrow \text{cl}(e_k) \text{cl}(e_{k'}) + \text{cl}(e_{k'}) \text{cl}(e_k) = 2 \delta_{kk'} \text{Id}, \quad k, k' = 1, \ldots, 2n.
\]
(3) If e_i is an (oriented) orthonormal basis of V, let E_i be the corresponding elements in the Clifford algebra so

$$E_i E_j + E_j E_i = \delta_{ij} \text{Id}.$$

Then show that the Clifford algebra has a ‘maximal element’

$$Z = i^{n(2n-1)} E_1 E_2 \ldots E_{2n} \implies Z^2 = \text{Id}, \ Z E_i + E_i Z = 0.$$

(4) Okay, now observe that $(P3.28)$ is now

$$\mu(\zeta) = \cos(\chi(|\zeta|)) Z + \sin(\chi(r))(\hat{\zeta} \cdot E_*)$$

where $E_* = (E_1, \ldots, E_{2n})$ is thought of as a vector with values in matrices and \cdot is the inner product.

(5) Now observe that the definition $(P3.35)$ extends to $V = \mathbb{R}^{2n}$ to give a smooth family of unipotent matrices. Here, as before $\chi(r)$ is decreasing from π near 0 to 0 near ∞.

(6) Review the proof in the notes to check that there is a semiclassical family of idempotents quantizing μ (so now to smoothing operators on \mathbb{R}^n).

(7) For a bonus, show that the quantization is again has relative index 1 (assuming I got the signs right which would be a pleasant accident). You might like to do this by quantizing in two variables repeatedly, so working by induction over n.

(P3.35) 6.139
CHAPTER 7

Operators on manifolds

In this second half of the course I will, finally, get to the discussion of analysis on manifolds. First what I hope is a reminder of the invariant description of kernels of operators.

1. Functions and densities

The basic object defined on a smooth manifold M is the algebra of smooth functions $C^\infty(M)$. Since we will want to include non-compact manifolds we need to also consider the subspace of functions of compact support

\[C^\infty_c(M) \subset C^\infty(M). \]

In general there is no good analogue of Schwartz functions on a non-compact manifold but on a manifold with corners the spaces of functions vanishing to infinite order at the boundary

\[\dot{C}^\infty(M) \subset C^\infty(M) \]

\[\dot{C}^\infty_c(M) \subset \dot{C}^\infty_c(M) \]

do correspond to the Schwartz space at least in the sense that

\[\dot{C}^\infty(\mathbb{R}^n) = S(\mathbb{R}^n). \]

Recall the change-of-variable formula for the integral of functions on Euclidean space. If $F : \Omega' \rightarrow \Omega$ is a diffeomorphism between open subsets of \mathbb{R}^n and $f \in C^\infty_c(\Omega)$ then

\[\int_{\Omega'} F^* f | \det \frac{\partial F}{\partial x} | dx = \int_{\Omega} f(y) dy. \]

So there is no invariant integral of functions on a manifold.

To integrate we need something that transforms with the absolute value of the determinant of the Jacobian of the diffeomorphism that appears in (7.4). This is provided by densities. Recall that on an n-manifold the maximal degree, $n-$, forms at a point, $\Lambda^n M$ for $m \in M$, may be defined as the linear space of totally antisymmetric multilinear maps

\[\Lambda^m M \times n \text{ factors} \times T_m M \rightarrow \mathbb{C}. \]

Equivalently if we let $\lambda^n T_m M$ denote the totally antisymmetric part of the n-fold tensor product of $T_m M$ with itself (so $\Lambda^n M = \lambda^n T_m M$) then $\Lambda^n M$ is the space of linear maps

\[\mu : \lambda^n T_m M \rightarrow \mathbb{C}. \]
The closely related space of t-densities, for $t \in \mathbb{R}$, is

\begin{equation}
\Omega^t_m \mathbb{M} = \{ \nu : \lambda^n T_m \mathbb{M} \setminus \{ 0 \} \to \mathbb{C}; \nu(sv) = |s|^t \nu(v), \ \forall t \in \mathbb{R} \setminus \{ 0 \} \}.
\end{equation}

So these are t-absolutely homogeneous maps. That this is a vector space depends on the one-dimensionality of $\lambda^n T_m \mathbb{M}$. Just as for the form bundles these one-dimensional vector spaces form a smooth bundle over \mathbb{M}.

\begin{equation}
\Omega^t \mathbb{M} \to \mathbb{M}.
\end{equation}

The particularly important case $t = 1$ is just denoted $\Omega^1 \mathbb{M}$.

So if $\mu \in \mathcal{C}^\infty(\mathbb{M}; \Lambda^n \mathbb{M})$ is a smooth n-form on an n-manifold then

\begin{equation}
|\mu|^t \in \mathcal{C}^0(\mathbb{M}; \Omega^t) \text{ is a continuous density.}
\end{equation}

A non-vanishing n-form on \mathbb{M} exists if and only if \mathbb{M} is orientable and then the t-density ($t.9$) becomes smooth. Note that positivity of a density is well-defined because of the transformation law in ($t.7$).

Lemma 7.1. The density bundles are always trivial, i.e. there exists a smooth positive section of $\Omega^t \mathbb{M}$.

Proof. In local coordinates the ‘Lebesgue section’ $|dx|^t$ is smooth and positive so summing over a partition of unity gives a global smooth positive section. \hfill \qedsymbol

Proposition 7.1. There is a well-defined integral

\begin{equation}
\int : \mathcal{C}^\infty_c(\mathbb{M}; \Omega) \to \mathbb{C}
\end{equation}

for any manifold.

Of course this can be extended to locally integrable (but compactly supported) sections of $\Omega \mathbb{M}$.

Lemma 7.2. There are natural isomorphisms

\begin{equation}
\Omega^t \mathbb{M} \otimes \Omega^s \mathbb{M} = \Omega^{t+s} \mathbb{M}, \Omega^t(\mathbb{M} \times N) = \pi^*_M \Omega^t \mathbb{M} \otimes \pi^*_N \Omega^t \mathbb{N}.
\end{equation}

So one can define an integral on $\mathcal{C}^\infty_c(\mathbb{M})$ by choosing a density (probably positive) $\nu \in \mathcal{C}^\infty(\mathbb{M}; \Omega)$ and using

\begin{equation}
\int_{\mathbb{M}} f \nu \text{ for } f \in \mathcal{C}^\infty_c(\mathbb{M}).
\end{equation}

It is just that there is, in general, no natural choice of ν. On a Riemannian manifold there is an associated, smooth positive, Riemann density ν_g defined as $|\alpha_1 \wedge \ldots \wedge \alpha_n|$ for any orthonormal basis α_i of $T^*_m \mathbb{M}$.

2. Distributions

The existence of the integral on densities leads to consistent pairings

\begin{equation}
\mathcal{C}^\infty_c(\mathbb{M}) \times \mathcal{C}^\infty_c(\mathbb{M}; \Omega) \to \mathbb{C}
\end{equation}

\begin{equation}
\mathcal{C}^\infty(\mathbb{M}) \times \mathcal{C}^\infty_c(\mathbb{M}; \Omega) \ni (f, g) \mapsto \int f g \in \mathbb{C}
\end{equation}

\begin{equation}
\mathcal{C}^\infty(\mathbb{M}) \times \mathcal{C}^\infty_c(\mathbb{M}; \Omega)
\end{equation}
Each of the spaces of smooth sections of Ω has a topology coming from the isomorphism with the corresponding space of functions given by the choice of a smooth positive section of Ω (and the fact that multiplication by a positive smooth element $f \in C^\infty(M)$ is an isomorphism on both $C^\infty_c(M; \Omega)$ and $C^\infty(M)$). This means that we can define the spaces of distributions by

\begin{align*}
C^\infty_c(M) &= \{ u : C^\infty(M; \Omega) \to \mathbb{C} \text{ linear and continuous} \} \\
C^\infty(M) &= \{ u : C^\infty_c(M; \Omega) \to \mathbb{C} \text{ linear and continuous} \}.
\end{align*}

This is arranged so that these are ‘generalized functions’ with natural inclusions

\begin{align*}
C^\infty_c(M) &\hookrightarrow C^\infty_c(M; \Omega) \\
C^\infty(M) &\hookrightarrow C^\infty_c(M) \\
C^\infty_c(M; \Omega) &\hookrightarrow C^\infty(M).
\end{align*}

3. Vector bundles

In fact we want to generalize this in several respects. First for sections of a vector bundle. I am already assuming you know what a vector bundle is. Just for completeness sake let me remind you that a vector bundle (either real or complex) over a manifold M is another manifold V (often called the total space of the vector bundle) with a surjective smooth map

\begin{equation}
\pi : V \to M
\end{equation}

such that each fibre $V_m = \pi^{-1}(m) \subset V$ has a linear space structure which is ‘smooth and locally trivial’. This means that each point $m \in M$ has a neighbourhood O_m for which there is a diffeomorphism giving a commutative diagramme

\begin{equation}
\begin{array}{ccc}
\pi^{-1}(O_m) & \xrightarrow{F} & O_m \times \mathbb{K}^N \\
\pi \downarrow & & \downarrow \pi_1 \\
O_m & & \\
\end{array}
\end{equation}

with F linear on each fibre. Here \mathbb{K} stands for \mathbb{R} or \mathbb{C} in the real or complex case respectively. One can always assume that the O_m are coordinate patches on M and then the maps (7.17) give a special atlas on V – the transition conditions are automatic.

There are sections of any vector bundle just as for functions (and densities) $C^\infty_c(M; V) \hookrightarrow C^\infty_c(M; V)$ corresponding to smooth maps $u : M \to V$ with $\pi \circ u = \text{Id}_M$.

The dual bundle, V', of a vector bundle V is defined as a set as the union of the duals of the fibres

\begin{equation}
V' = \bigcup_{m \in M} V'_m.
\end{equation}

It has a smooth structure coming from the local trivializations (7.17) by replacing the map $F_m : V_m \to \mathbb{K}^N$ by $(F^t)^{-1} : V'_m \to \mathbb{K}^N$.

There is then a pointwise pairing

\begin{equation}
C^\infty(M; V) \times C^\infty(M; V') \to C^\infty(M)
\end{equation}
and this leads to pairings analogous to (7.13):

\[\int \langle f, g \rangle_{m}, \quad f \in C_c^{\infty}(M; V), \quad g \in C^{\infty}(M; V' \otimes \Omega), \text{ or} \]

\[f \in C^{\infty}(M; V), \quad g \in C_c^{\infty}(M; V' \otimes \Omega). \]

Then, noting that there are again appropriate topologies, the spaces of distributional sections are defined as the spaces of continuous linear maps

\[C^{-\infty}_c(M; V) = \{ u : C^{\infty}(M; V' \otimes \Omega) \rightarrow \mathbb{C}; \text{ linear and continuous} \} \]

\[C^{-\infty}(M; V) = \{ u : C_c^{\infty}(M; V' \otimes \Omega) \rightarrow \mathbb{C}; \text{ linear and continuous} \}. \]

4. Operators and kernels

The operators we will consider on a manifold are, at worst, continuous linear maps

\[A : C_c^{\infty}(M; V) \rightarrow C^{-\infty}(M; W) \]

taking smooth sections of one vector bundle to distributional sections of another. In fact we generally will not encounter anything quite this general. One of the important features of distributions is that these are again distributions.

Theorem 7.1 (Schwartz’ kernel). There is a 1-1 correspondence between continuous linear maps (7.21) and distributions

\[K_A \in C^{-\infty}(M^2; \pi_L^* W \otimes \pi_R^* (V' \otimes \Omega)). \]

So I am assuming you see how to define the tensor product of two bundles and the pull-back of a bundle under a smooth map. Here \(\pi_L \) and \(\pi_R \) are the projections from \(M^2 \) to \(M \) as the left and right factors.

Proof. None given, since I do not really use this result below. Still I should at least specify what I mean by the continuity which is in terms of the weak topology on the image. This is really the first part of the proof. Namely we can replace \(A \) by a bilinear map

\[C_c^{\infty}(M; W' \otimes \Omega) \times C_c^{\infty}(M; V) \ni (f, g) \mapsto A(g)(f) \]

from which \(A \) can be recovered. Continuity of \(A \) actually means separate continuity of this bilinear form. The theorem is that such a bilinear form extends uniquely to a distribution \(K_A \) under the (bilinear) inclusion

\[C_c^{\infty}(M; W' \otimes \Omega) \times C_c^{\infty}(M; V) \hookrightarrow C_c^{\infty}(M^2; \pi_L^* (W' \otimes \Omega) \otimes \pi_R^* V) \]

given by pulling back under the projections.

In this sense the Schwartz kernel theorem is an infinite-dimensional generalization of the identifications for finite-dimensional vector space

\[\{ L : V \rightarrow W; \text{ linear} \} \leftrightarrow \{ B_L : W' \times V \rightarrow \mathbb{C}; \text{ bilinear} \} \leftrightarrow W \otimes V'. \]

The proof is not actually so hard. □

So, the way we will use this is by specifying operators in terms of their kernels,

\[(Av)(w) = K_A(w \otimes v). \]

Note the reversal of order which is made so that pairing corresponds to proximity.
6. CORNORMAL DISTRIBUTIONS AT THE ZERO SECTION

Remark 5. I will generally identify operators and their kernels, using the same letter to denote both.

If M is not compact we also need to think again about the ‘calculus of supports’.

5. Smoothing operators

Suppose M is a compact manifold without boundary, so all the support annoyances are absent.

Definition 7.1. The space of smoothing operators between sections of two bundles, V, W over a compact manifold, M, is defined by the space of kernels

\[
\Psi^{-\infty}(M; V, W) = \mathcal{C}^{\infty}(M^2; \pi^*_M W \otimes \pi^*_M (V' \otimes \Omega)).
\]

When $W = V$ we abbreviate the notation to $\Psi^{-\infty}(M; V)$.

Remark 6. Smoothing operators are characterized (for M compact) by the two conditions that

\[
A : \mathcal{C}^{-\infty}(M; V) \rightarrow \mathcal{C}^{\infty}(M; W) \quad \text{and} \quad A^t : \mathcal{C}^{-\infty}(M; W' \otimes \Omega) \rightarrow \mathcal{C}^{\infty}(M; V' \otimes \Omega).
\]

For M compact it is again the case that the smoothing operators on a fixed bundle V – so with $W = V$ – form an algebra. The composition written in terms of kernels is

\[
A \circ B = \int_M A(\cdot, m)B(m, \cdot).
\]

Make sure you understand why the integral here makes sense and gives again a smoothing operator.

Proposition 7.2. The group of invertibles in the ring $\text{Id} + \Psi^{-\infty}(M; V)$ for a vector bundle over a compact manifold is isomorphic (but not naturally so) to $G_{-\infty}^{-s}(\mathbb{R}^n)$.

To prove this we need a decent basis for $L^2(M; V)$ – we will get this as the eigenbasis for any self-adjoint elliptic pseudodifferential operator acting on V.

Exercise 8. Give an appropriate definition for the space $\Upsilon^{-\infty}(M; V \otimes \mathbb{C}^2)$ for any complex vector bundle, V, over a compact manifold M and check that it is isomorphic to $\Upsilon_{-s}^{-\infty}(\mathbb{R}^n; \mathbb{C}^2)$.

6. Cornormal distributions at the zero section

Let W be a real vector bundle (any complex vector bundle has an underlying real bundle) over a manifold S. We proceed to introduce the space of conormal distributions on W, the total space of the vector bundle, relative to S appearing as the zero section of W. We will want this to be a module over $\mathcal{C}^{\infty}(W)$ and the elements should be singular only at the zero section. In the case that $W = S \times \mathbb{R}^N$ we know what we want, namely

\[
I^m_s(S \times \mathbb{R}^N; S \times \{0\}) = \mathcal{C}^{\infty}(S; I^m_{s-\frac{m}{2}}(\mathbb{R}^N)).
\]

Here $s = \dim S$ and the only shift in the order is questionable. We already considered such a space (with restricted coefficients) in case that $S = \mathbb{R}^n$ and
\[N = n \] in defining the kernels of pseudodifferential operators on \(\mathbb{R}^n \). Note that what this says about the symbol involved is that

\[I_s^{m}(S \times \mathbb{R}^N; S \times \{0\}) \Rightarrow u(s) = F^{-1}(a(s, \xi)), \ a \in S^{m-s+N/4}(\mathbb{R}^N) \]

so it is consistent with our earlier notation.

One thing we can see immediately is that we can restrict such distributions to a submanifold \(Y \subset S \), since this just restricts the smooth map

\[I_s^{m}(S \times \mathbb{R}^N; S \times \{0\}) \Rightarrow I_s^{m+\text{codim}Y}(S \times \mathbb{R}^N; S \times \{0\}), \ Y \rightarrow S. \]

Remark 7. Insofar as I can remember the normalization, this is one way to do it. First, restricting to a submanifold of \(S \) increases the (apparent) order by \(1/4 \) for each dimension, i.e., by \(\text{codim}(Y, S)/4 \) as indicated. Secondly when ‘base dimension’ \(s = \dim S \) and ‘fibre dimension’ are equal the order is equal to the order of the symbol.

Why is the order so normalized you might well ask? The ultimate reason is the appearance of ‘Lagrangian distribution’ which do not have a strict separation of base and fibre dimension. Together with the fact that we want a pseudodifferential operator to have the same order as its symbol (so that it is consistent with the order of differential operators) that determines the normalization. The normalization is further complicated (to those like me who are numerically challenged) by the fact that there are three dimensions as work here. As well as \(s \) and \(n \) there is the dimension of \(W \) as a manifold, \(n = s + N \). So, \(N \) is the codimension of the submanifold \(S \) (the zero section) in \(W \) which is of dimension \(n \). It follows that the relation ship between the order \(I^{M} \) and \(a \in S^{m} \) in (7.31) is

\[(7.33) \quad u \in I^{M}(W, S) \iff a \in S^{M'}, \ M' = M + \frac{n}{4} - \frac{N}{2}. \]

Let’s hope I am right. (See Problems 5?).

We also know what happens if we subject such a conormal distribution to a linear transformation on the fibres, even if it depends on the point in \(S \):

\[(7.34) \quad A \in C_{\infty}(S; \mathbb{R}^N), \ u \in I_{s}^{m}(S \times \mathbb{R}^N; S \times \{0\}) \Rightarrow u(s, A(s, \cdot)) \in I_{s}^{m}(S \times \mathbb{R}^N; S \times \{0\}) \]

\[u = F^{-1}(a(s, \xi)) \Rightarrow u(s, A(s, y)) = F^{-1}(a(s, ((A^{-1})'(\xi)) \det A(s))). \]

Definition 7.2. If \(W \) is a real vector bundle of rank \(N \) over \(S \), a manifold of dimension \(s \) then we define

\[(7.35) \quad I_{s}^{m}(W; 0w) \subset C_{\infty}^{-N}(W) \]

to consist of those distributions \(u \in C_{\infty}^{-N}(W) \) such that if \(\phi \in C_{c}^{\infty}(S) \) is supported in an open set \(O \) over which \(W \) is trivial, \(\tau : W|_O \equiv O \times \mathbb{R}^N \) then

\[(7.36) \quad \pi^*\phi u = \tau^*(v_{O}), \ v_{O} \in I_{s}^{m}(O \times \mathbb{R}^N; O \times \{0\}). \]

We can see from (7.34) that the symbol of such a distribution, defined locally, will transform as a density on the dual bundle. So let’s make sure that this is well-defined.

Lemma 7.3. Suppose \(U \) is a real vector bundle over a manifold \(S \) and \(E \) is a complex vector bundle over \(S \) then the space of symbols on \((\text{the fibres of}) \ U \) with values in \(E \) is well-defined by reference to local trivializations.

Proof.
6. CORNORMAL DISTRIBUTIONS AT THE ZERO SECTION

Proposition 7.3. Under fibre-wise inverse Fourier transform the space of Schwartz conormal distributions with respect to the zero section of a vector bundle is globally isomorphic to a space of symbolic densities

\[I^m_s(W; 0_W) \in \mathcal{F}^{-1}(C^\infty(S; S^{m + \frac{\dim W}{2} - \frac{\dim W}{2}}(W'; \Omega W'))). \]

Proof.

Proposition 7.4. If \(W \longrightarrow S \) is a real vector bundle, \(U \longrightarrow S \) is a complex vector bundle and \(F : D_2 \longrightarrow D_1 \)

is a diffeomorphism between open neighbourhoods of the zero section of \(W \) which maps the zero identically to itself, then

\[F^* : \{ u \in I^m(W, O_W, U); \text{supp}(u) \subset D_1 \} \longrightarrow \{ v \in I^m(W, O_W, U); \text{supp}(u) \subset D_2 \}. \]

Proof. Since conormal distributions are smooth away from the zero section we may shrink the domain \(D_1 \) with \(D_2 \) replaced by the image and the result remains unchanged.

We also know that the conormal space is a module over \(C^\infty(S) \) so we can use a partition of unity in \(S \) to localize to an open sets over each of which \(W \) is trivial.

To see how much remains to be proved, consider the following factorization of \(F \) – in a possibly smaller domain

\[F = L \circ \tilde{F}. \]

Here \(G \) is the fibre-preserving diffeomorphism constructed from the differential of \(F \) as follows. At each point \(s \in S \) the tangent space to \(W \) is the direct sum

\[T_sW = T_sS \oplus \mathbb{R}^N \]

where the second part is the tangent space of the fibre. Since \(S \) is fixed pointwise by \(F \) the differential maps is the identity on \(T_sS \) and so decomposes into the sum of two linear maps

\[F : \mathbb{R}^N \ni w \mapsto (L'w, Lw) \in T_sS \oplus \mathbb{R}^N. \]

where \(L \) is a well-defined family of linear maps on \(\mathbb{R}^N \). We already know the invariance under such maps so it suffices to consider he remainder term \(\tilde{F} \).

This defines the first, fibre-linear, factor in (7.40), and hence the second. By construction this has differential at \(s \in S \) which is the sum of the identity and the ‘off-diagonal’ term mapping \(T_sW \) to \(T_sS \). This means that the map itself is of the form, in any local trivialization

\[\tilde{F}(s,v) = (s,w) + v \cdot h(s) + E(s,v), \quad E(s,v) = O(|v|^2), \quad v \in \mathbb{R}^N. \]

Then we can deform \(\tilde{F} \) to the identity through the family of diffeomorphisms

\[\tilde{F}(s,v) = (s,w) + t(v \cdot h(s) + E(s,v)), \quad t \in [0, 1]. \]

Now we can use the ‘homotopy method’ again. Very close to \(S \) this 1-parameter family of diffeomorphisms is generated by a 1-parameter family of vector fields

\[\frac{d}{dt} F_t^* u = F_t^*(V_t u), \quad V_t \text{ vanishes at } S \text{ and } V_t u_j = O(|v|^2). \]
Now we replace \(u \) by a smooth family \(u_t \) were we want to arrange that
\[
(7.46) \quad u_1 = u, \frac{du_t}{dt} + V_t u_t \in \mathcal{C}^\infty.
\]

7. Conormal distributions at a submanifold

8. Pseudodifferential operators

We now have completed the definition of the basic space of sections of a complex vector bundle conormal with respect to a closed embedded submanifold. Moreover we have shown that there is a well-defined (principal) symbol map
\[
(7.47) \quad \sigma : I^m(M, S; V) \rightarrow S^{m'}(N^*S; V \otimes \Omega(N \ast *S)), \quad m' = m + \frac{1}{4} \dim M - \frac{1}{2} \codim S.
\]

Here \(\Omega(N^*S) \) is a trivial real line bundle over \(S \) with fibre the space of densities on the fibres of \(N^*S \). We know that this captures the leading part of the singularity of the elements so that
\[
(7.48) \quad I^{m-1}(M, S; V) \xrightarrow{\sim} I^m(M, S; V) \rightarrow S^{m'}(N^*S; V \otimes \Omega(N \ast *S))
\]
is a short exact sequence. In the process of examining the coordinate-invariance the error terms were all local at the symbolic level. This means the two sets
\[
(7.49) \quad \WF(u) \subset N^*S \setminus 0_S
\]
defined as the complement of the larges open cone where where the local full symbol is rapidly decaying is invariantly defined.

We use this space to define the space of pseudodifferential operators acting between any two complex bundle vector bundles over a manifold in terms of their kernels
\[
(7.50) \quad \Psi^m(M; V, W) = I^m(M^2; \text{Diag}; \pi_L^* W \otimes \pi_R^*(V' \otimes \Omega)).
\]

9. Elliptic operators

Now we turn to the construction of a parametrix for a globally elliptic operator \(A \in \Psi^m(M; V, W) \). Thus the principal symbol of \(A \) has a representative \(a \in S^m(T^*M; \pi^* \text{hom}(V, W)) \) which is elliptic. This means there is an inverse modulo a compactly supported error,
\[
(7.51) \quad b \in S^{-m}(T^*M; \pi^* \text{hom}(W, V)), \quad ba - \Id \in \mathcal{C}^\infty_c(T^*M; \text{hom}(V)), \quad ab - \Id \in \mathcal{C}^\infty_c(T^*M; \text{hom}(W)).
\]

Proposition 7.5. An elliptic element \(A \in \Psi^m(M; V, W) \) has a parametrix \(B \in \Psi^{-m}(M; W, V) \) modulo smoothing operators,
\[
(7.52) \quad BA - \Id = E \in \Psi^{-\infty}(M; V), \quad AB - \Id = E' \in \Psi^{-\infty}(M; W)
\]
and any two such parametrices differ by an element of \(\Psi^{-\infty}(M; W, V) \).
Recall that even acting on distributions allows us to choose an element $B_0 \in \Psi^{-m}(M; W, V)$ with $\sigma_{-m}(B_0) = b$ as in \((\ref{eq:5.31})\). It follows from the multiplicativity and exactness of the symbol sequence that

\begin{equation}
B_2 A - \text{Id} = E_1 \in \Psi^{-1}(M; V) \quad \text{and} \quad AB_0 - \text{Id} = E'_1 \in \Psi^{-1}(M; W).
\end{equation}

Now we proceed by induction to find a sequence $B_j \in \Psi^{-m-j}(M; W, V)$, such that

\begin{equation}
(\sum_{j=0}^{k} B_j)A - \text{Id} = E_{k+1} \in \Psi^{-k-1}(M; V)
\end{equation}

so in fact

$$AE_{k+1} = E'_{k+1}A.$$}

In the inductive step for $B_{k+1} \in \Psi^{-m-k-1}(M; W, V)$ to satisfy the first condition in \((\ref{eq:5.55})\) we must have

\begin{equation}
B_{k+1}A - E_{k+1} = E_{k+2} \in \Psi^{-k-2}(M; V) \implies
\sigma_{-m-k-1} = \sigma_{-k-1}(E_{k+1})b \mod S^{-m-k-2}(T^*; \pi^* \hom(W, V)).
\end{equation}

So not only is this possible but the choice is unique up to a addition of a term in $\Psi^{-m-k-2}(M; W, V)$. Applying A on the left in the first equation in \((\ref{eq:5.55})\) and on the right in the second it follows that

\begin{equation}
AE_{k+1} = E'_{k+1}A.
\end{equation}

So in fact

\begin{equation}
a \sigma_{-k-1}(E_{k+1}) = a \sigma_{-k-1}(E'_{k+1}) \implies \sigma_{-k-1}(E_{k+1})b = \sigma_{-k-1}(E'_{k+1})b
\end{equation}

modulo terms of order $-m - k - 2$. Thus in fact $AB_{k+1} - E'_{k+1} = E'_{k+2} \in \Psi^{-k-2}(M; W)$ so B_{k+1} satisfies both conditions required in the inductive step.

The asymptotic completeness of the pseudodifferential spaces means that we can choose

\begin{equation}
B \sim \sum_{j \geq 0} B_j \in \Psi^{-m}(M; W, V)
\end{equation}

which is then a parametrix in the sense of \((\ref{eq:5.32})\).

The uniqueness follows from the existence since if B' is any left parametrix then

\begin{equation}
B'A - \text{Id} \in \Psi^{-\infty}(M; V) \implies (B' - B)A \in \Psi^{-\infty}(M; V) \implies
B' - B = (B' - B)(AB - E') = ((B' - B)A)B - (B' - B)E' \in \Psi^{-\infty}(M; W, V).
\end{equation}

The boundedness properties on Sobolev spaces now show that an elliptic operator of order m is Fredholm as an operator

\begin{equation}
A : H^*(M; V) \longrightarrow H^{*-m}(M; W).
\end{equation}

Recall that even acting on distributions

\begin{equation}
A : C^{*-\infty}(M; V) \longrightarrow C^{*-\infty}(M; W)
\end{equation}
the null space of A is a finite dimensional subspace of $C^\infty(M; V)$ since its elements satisfy

$$Au = 0 \implies u = E u, \ E \in \Psi^{-\infty}(M; V).$$

If we choose hermitian inner products on V and W and a smooth density ν on M then the formal adjoint of A is the unique element

$$A^* \in \Psi^m(M; W, V)$$

satisfying

$$\int_M \langle Au, v \rangle_W \nu = \int_M \langle u, A^* v \rangle_V \nu.$$

The uniqueness of A^* follows from this condition.

To see existence, observe that the inner products give (antilinear) identifications of V with V' and W with W' and define an adjoint isomorphism of bundles

$$\pi^* L W \otimes \pi^* R V \longrightarrow \pi^* L W' \otimes \pi^* R V'.$$

Then the Schwartz kernel is the image of the kernel

$$A = D \pi^*_R \nu, \ D \in \Gamma^m(M^2, \text{Diag}; \pi^*_L W \otimes \pi^*_R V')$$

under this isomorphism and reversal of the variables so

$$A^*(x, y) = (B(y, x)^* \pi^*_R \nu.$$

It is straightforward to see that this operator satisfies (7.64).\[157.652\]

Lemma 7.4

The index of an elliptic element $A \in \Psi^m(M; V; W)$ as an operator

$$A : H^m(M; V) \longrightarrow L^2(M; W)$$

then the orthocomplement of the range is (A^*) where

$$A^* : L^2(M; W) \longrightarrow H^{-m}(M, V).$$

This gives (7.66) for the index. Changing the Sobolev order to $A : H^s(M; V) \longrightarrow H^{s-m}(M; W)$ does not change the null space and changes the range either by replacing it by its intersection with $H^{s-m}(M; W)$ if $s > m$ or by the closure if $s < m$. In either case (A^*) remains a complementary space (but not orthogonal) since the (extension of) the L^2 pairing still vanishes. \[157.663\]

Lemma 7.5

If $A \in \text{Ell}_m(M; V, W)$ then there exists $A' \in \Psi^{-\infty}(M; V, W)$ such that

- if $\text{ind}(A) > 0$, $A + A'$ is surjective
- if $\text{ind}(A) = 0$, $A + A'$ is bijective
- if $\text{ind}(A) < 0$, $A + A'$ is injective.
Proof. Suppose \(\text{ind}(A) \leq 0 \). By Lemma 7.5, \(\dim(A) \leq \dim(A^*) \). Thus we can choose a smoothing operator \(A' : (A) \rightarrow (A^*) \) which is injective. Then any element of the null space of \(A + A' \) satisfies \(Au = -A'u \). These lie in complementary spaces so both must vanish and hence \(u \in (A) \) and \(A'u = 0 \) so \(u = 0 \). If \(\text{ind}(A) = 0 \) it follows that \(\langle A^* \rangle \subset \text{Ran}(A + A') \) so \(A + A' \) is a bijection. If \(\text{ind}(A) \geq 0 \) thus argument applies to \(A' \).

Lemma 7.6. For any real order \(m \) and any bundle \(V \) there is an elliptic and invertible operator \(Q_m \in \Psi^m(M; V) \) with diagonal, positive principal symbol.

Proof. Take a Riemann metric on \(m \) and consider the symbol \(|\xi|^m \text{Id} \) valued in \(\text{hom}(V) \). Clearly this is elliptic. For the case \(m = 0 \) we can of course take the identity. Suppose \(m < 0 \) then choose an operator \(L_{m/2} \in \Psi^{m/2}(M; V) \) with symbol \(|\xi|^{m/2} \text{Id} \). It is a compact operator on \(L^2(M; V) \). Taking an hermitian inner product on \(V \) and a positive smooth density on \(M \) gives \(L^2(M; V) \) an explicit Hilbert inner product. Then the adjoint \(L_{m/2}^* \in \Psi^{m/2}(M; V) \) has the same principal symbol so \(Q_m = L_{m/2}^* L_{m/2} \in \Psi^m(M; V) \) is selfadjoint with principal symbol \(|\xi|^m \text{Id} \). It is elliptic of order 0 with \((Q'_m) \subset C^\infty(M; V) \) finite dimensional. Choosing a positive definite matrix on \((Q'_m) \) and adding it to \(Q'_m \) gives an invertible element of \(\Psi^m(M; V) \) with the same principal symbol. For \(m > Q_m \).

The existence of such an element shows that it really suffices to consider operators of order 0 in the discussion of the index since if \(A \in \Psi^m(M; V, W) \) is elliptic then so is \(A_0 = A Q_{-m} \in \Psi^0(M; V, W) \) and

\[
\sigma_0(A_0) = \sigma_m(A) |\xi|^{-m}.
\]

Corresponding to the stability of the index of Fredholm operators on a fixed Hilbert space it also follows that

\[
\text{ind}(A + E) = \text{ind}(A) \text{ if } A \in \Psi^m(M; V, W) \text{ is elliptic and } E \in \Psi^{m'}(M; V, W), \quad m' < m.
\]

Indeed, the index of \((A + E)Q_{-m} = AQ_{-m} + EQ_{-m} \) is the same as that of \(A + E \) and \(EQ_{-m} \) is compact from \(L^2(M; V) \) to \(L^2(M; W) \) so the index is the same as that of \(AQ_{-m} \) and hence \(A \).

Said a different way, we have proved that

Lemma 7.7. The index of an elliptic element \(A \in \Psi^m(M; V, W) \) is determined by any representative of

\[
\sigma_m(A) |\xi|^{-m} \in S^0(T^*M; \pi^* \text{hom}(V, W)).
\]

and so defines a map

\[
\text{ind} : \text{Ell}(V, W) = \{ a : S^0(T^*M; \pi^* \text{hom}(V, W)) ; \quad \text{with an inverse modulo lower order terms} \} \rightarrow \mathbb{Z}
\]

for any bundles \(V \) and \(W \).

Of course the bundles certainly have to have the same rank before such an elliptic symbol exists.

We can think of the pseudodifferential algebra (modules really) as define the index map (7.72) through ‘quantization of the symbol’.
Lemma 7.8. If \(A_1 \in \Psi^m(M; V, W) \) and \(A_2 \in \Psi^{m'}(M; W, U) \) are two elliptic operators between bundles then the composite is elliptic and
\[
\text{ind}(A_2 \circ A_1) = \text{ind}(A_2) + \text{ind}(A_1).
\]

Proof. Using Lemma 7.4 we can replace \(A_1 \) by \(AQ_m - m \) and \(A_2 \) by \(Q_{-m'}A_2 \) and reduce to the case that \(m = m' = 0 \). From Lemma 7.4 we see that \(\text{ind}(A^*) = -\text{ind}(A) \). So if \(A_1 \) and \(A_2 \) have opposite signs we can assume that \(\text{ind}(A_1) \geq 0 \) and \(\text{ind}(A_2) \leq 0 \) or else pass to the adjoint, which reverses the order. If \(A_1 \) and \(A_2 \) have the same sign then we can assume that both are non-negative. So it suffices to consider the case \(\text{ind}(A_1) \geq 0 \). Then, adding a finite rank surjective smoothing operator mapping the null space of \(A_1 \) onto a complement to its range we can assume that \(A_1 \) is surjective. Then the range of \(A_2 \circ A_1 \) is the range of \(A_2 \) and its null space is inverse image of the null space of \(A_2 \) under \(A_1 \), which has dimension \(\dim((A_1)) + \dim((A_2)) \). Thus (7.73) holds. \(\square \)

Corollary 4. The index map (7.72) is additive under the product
\[
\text{Ell}(W, U) \circ \text{Ell}(V, W) \rightarrow \text{Ell}(V, U)
\]
(when these spaces are non-empty).

10. Fibre bundles

The definition of homotopy of elliptic pseudodifferential operators involves a ‘family’ in the sense of a smooth map \([0, 1] \ni t \mapsto A(t) \in \Psi^m(M; V, W)\). However we really want to allow the bundles \(V \) and \(W \) to ‘vary’ as well. In making this precise we may as well pass to the notion of a family of pseudodifferential operators on the fibres of a fibre bundle.

Definition 7.3. A fibre bundle is a smooth surjective map between manifolds \(\phi : X \rightarrow Y \) which is locally a product in the sense that there is a manifold \(Z \) (the model fibre) such that each \(y \in Y \) has a neighbourhood \(U \subset Y \) with a commutative diagramme
\[
\begin{array}{ccc}
\phi^{-1}(U) & \xrightarrow{F} & Z \times U \\
\phi \downarrow & & \downarrow \pi_U \\
& & U.
\end{array}
\]

So this is just like a vector bundle except the fibres are manifolds, not vector spaces, and correspondingly the ‘local trivializations’ \(F \) are fibre-preserving diffeomorphisms. Of course the most obvious case is a product
\[
X = Z \times Y
\]
which is globally trivial as a fibre bundle. You are probably familiar with the Hopf fibration
\[
S^{2n+1} \rightarrow S^n
\]
given by thinking of \(S^{2n+1} \) as the unit sphere in \(\mathbb{C}^{n+1} \) and then taking the fibres to be given by the multiplicative action of the circle \(S \subset \mathbb{C} \).

The ‘fibre above \(y \in Y \)’, meaning \(\phi^{-1}(Y) \), is diffeomorphic to the model fibre \(Z \) and is often written \(Z_y \). There is in general no natural choice of the trivialization
map F in (7.75) so no natural diffeomorphism between Z and Z_y. A fibration is how we are to interpret the notion of a 'smooth family of manifolds'.

Proposition 7.6. If $\phi : X \longrightarrow Y$ is a surjective smooth map between compact manifolds then it defines a fibre bundle if and only if it is a submersion, i.e. $F_\ast : T_xX \longrightarrow T_{F_\ast(x)}Y$ is surjective for each $x \in X$.

The compactness, or at least some additional condition, is needed here. The surjectivity is less of an issue, since if ϕ is a submersion between compact manifolds its image if open and closed and hence is some union of components of Y – assuming we are not requiring manifolds to be connected!

Proof. This is a form of the Implicit Function Theorem. For a submersion, there is a local version of (7.75) near each point of X. Namely, the surjectivity of the differential ϕ_\ast is equivalent to the injectivity of $\phi_\ast : T_{F(p)}Y \longrightarrow T_pX$. So if y_i are local coordinates in $U \subset Y$ near $F(p)$ then the functions $\phi_\ast y_i$ defined on $\phi^{-1}(U)$ have independent differentials. So they can be completed to a coordinate system, $\phi^\ast y_i, z_k$ on X in some neighbourhood of p. Then the fibres locally are the surfaces $\phi^\ast y_i =$const. This needs to be globalized along $\phi^{-1}(\phi(p))$.

In each of the coordinate patches constructed along the 'base fibre' $Z(p) = \phi^{-1}(\phi(p))$, the fibre containing p, the choice of local coordinates gives vector fields, just the $V_i^{(k)} = \partial_{y_i}$ in the local coordinates label by k, which satisfy $\phi_\ast (V_i^{(k)}) = \partial_{y_i}$ are the coordinate vector fields in the base. The $V_i^{(k)}$ in different coordinate patches will be different but if we take a partition of unity r_k on X near $Z(p)$ and subordinate to the cover then the $V_i = \rho_k V_i^{(k)}$ satisfy $\phi_\ast(V_i) = \partial_{y_i}$. The compactness of $Z(p)$ means that this is only a finite sum and so the V_i are defined in an open set $\phi^{-1}(U)$ for some neighbourhood $p \in U$ in Y. The V_i need not commute but we can simply integrate successively with respect them starting at $Z(p)$. So for each $q \in Z(p)$ integrating V_i gives a smooth surface in Y containing $Z(p)$ and projecting under ϕ onto the y_i access in U. Then integrating from this surface gives a submanifold of one dimension higher projecting onto the y_1, y_2 coordinate plane in U, where this may need to be shrunk at each step. After dim Y steps we have a smooth map from a neighbourhood of the form $\phi^{-1}(U')$ of $Z(p)$ in Y to $Z(p)$ which together with the projection to U' gives a diffeomorphism F as required in (7.75). \[\square\]

Proposition 7.7. If $V \longrightarrow X$ is a vector bundle over the total space of a fibre bundle then there are local trivializations of the bundle as in (7.76) over which there are bundle isomorphisms

\[
\begin{align*}
\phi^{-1}(U) & \xrightarrow{\phi} U \\
V_{\phi^{-1}(U)} & \xrightarrow{\tau} V_Z \times U \\
\phi^{-1}(U) & \xrightarrow{\phi} Z \times U \\
\phi & \xrightarrow{z_U} U
\end{align*}
\]

where V_Z is a fixed bundle over the model fibre.
Notice that there is some constructive confusion between the total space of a vector bundle and the vector bundle itself (which includes the projection to the base).

Proof.

Now, the kernel of a pseudodifferential operator on Z acting from sections of one bundle to another is a distribution on Z^2. So we need to consider the product of each fibre with itself.

Proposition 7.8. If $\phi : X \rightarrow Y$ is a fibre bundle then $X^2 \ni (x, x') \rightarrow (\phi(x), \phi(x')) \in Y^2$ is a fibre bundle as is the fibre product, which is the closed embedded submanifold

$$X^2 = \{(x, x') \in X^2; \phi(x) = \phi(x')\}$$

and the diagonal is the closed embedded submanifold

$$\text{Diag} = \{(x, x) \in X^2; x \in X\}.$$

Clearly the diagonal is diffeomorphic to X.

Proof.

11. Families of pseudodifferential operators

To define the space $\Psi^m_\phi(X; V, W)$ of operators

$$A : C^\infty(X; V) \rightarrow C^\infty(X; W)$$

for two vector bundles over the total space of a fibre bundle we have two clear options. Use Proposition 7.78 locally in the base and then patch things together or start globally and see what happens. As you have seen I prefer to take the latter course, at least for the moment!

Definition 7.4. The space of fibrewise pseudodifferential operators for a fibre bundle $\phi : X \rightarrow Y$ between sections of bundles V and W over X is identified with the space of conormal distributions

$$\Psi^m_\phi(X; V, W) = I^{m-\frac{1}{2}\dim Y}(X^2, \text{Diag}; \pi_L^* W \otimes \pi_R^*(V' \otimes \Omega_{\text{fib}})).$$

Here $\pi_L, \pi_R : X^2 \rightarrow Y$ are the restrictions of the two projections from X^2 and Ω is the bundle over Y of densities on the fibres of ϕ.

A more standard notion for this space would be $\Psi^m(X/Y; V, W)$ where there is no space X/Y but it is supposed to suggest a family acting on the fibres of X. I will not use that notation because it does not really fit with various generalizations below.

So, we need to see that this definition does give a linear space of operators as in (7.81) and then that they form an algebra. Again we can do this by localization or we can think globally. What we want to do is make sense of the formula

$$Av(x) = \int_{\text{fib}} A(x, x') v(x'), \ v \in C^\infty(X; V).$$

We can certainly pull v back to X^2 under π_R to give the a section of $\pi_R^* V$ over X^2 which is independent of x – constant on the fibres of π_L. Then the product with the kernel makes sense and using the pairing of V' and V gives a section of $\pi_L^* W \otimes \pi_R^* \Omega_{\text{fib}}$. This is singular only at the diagonal and the projection π_L is...
transversal to the diagonal. So, we can see that the integral is well-defined and gives a smooth section of W over X.

The tangent bundle of X has a subbundle, $T_{	ext{sh}}X \hookrightarrow TX$ consisting of the vectors tangent to the fibre at each point. For each $y \in Y$ the restriction if this fibre tangent bundle is therefore just the tangent bundle of the fibre

\[(7.84) \quad T_{\phi}X|_{Z_y} = TZ_y.\]

The dual bundle to $T_{\phi}X$ which I will denote $T^*_{\phi}X$ is then the collection of the fibre cotangent bundles

\[(7.85) \quad T^*_{\phi}X|_{Z_y} = T^*Z_y.\]

The adjustment in the order in (7.82) is so that:

Proposition 7.9. There is a well-defined principal symbol map giving a short exact sequence

\[(7.86) \quad \Psi^m_{\phi} : \pi^* \text{hom}(V,W) \to S^m(T^*_{\phi}X|_{Z_y}) \to \sigma^m(A|_{T^*Z_y}).\]

Returning to the discussion of the index of an elliptic operator observe that

Proposition 7.10. The 'numerical' index of an elliptic family of pseudodifferential operators $\text{ind}(A(y))$ is constant.

For vector bundles over a manifold, let us denote by $\text{iso}(V,W) \subset \text{hom}(V,W)$ the invertible linear maps between fibres at each point. For two pairs of bundles $V_i, W_i i = 1, 2$ there is a direct sum operation

\[(7.88) \quad \text{iso}(V_1, W_1) \times \text{iso}(V_2, W_2) \to \text{iso}(V_1 \oplus V_2, W_1 \oplus W_2).\]

Proposition 7.11. Any elliptic operator is homotopic to a classical elliptic operator and hence for any compact manifold and vector bundle the index induces a map

\[(7.89) \quad \text{ind} : C^\infty(S^*M; \pi^* \text{iso}(V,W)) \to \mathbb{Z}\]

which is additive under direct sums as in (7.88) and under products giving commutative diagrammes

\[(7.90) \quad C^\infty(S^*M; \pi^* \text{iso}(V_1, W_1)) \times C^\infty(S^*M; \pi^* \text{iso}(V_2, W_2)) \xrightarrow{\text{ind} \times \text{ind}} \mathbb{Z} \times \mathbb{Z}\]

\[(7.91) \quad C^\infty(S^*M; W, U) \times C^\infty(S^*M; V, W) \xrightarrow{\text{ind} \times \text{ind}} \mathbb{Z} \times \mathbb{Z}\]
Now, we need to relate this to K-theory. Consider all of the triple \((V,W,a)\) where \(V\) and \(W\) are complex vector bundles over \(M\) and \(a\) is an isomorphism between them, which we can write as \(a \in C^\infty(S^*M; \pi^*\text{iso}(V,W))\). We impose three relations on this biggish set of data.

(7.92) Bundle isomorphism invariance: \((V_1, W_1, a) \simeq (V_2, W_2, b \circ a^{-1})\) if \(b \in C^\infty(M; W_1, W_2)\), \(e \in C^\infty(M; V_1, V_2)\)

(7.93) Homotopy invariance: \((V_1, W_1, a_1) \simeq (V_0, W_0, a_0)\) if \(h \in C^\infty(S^*M \times [0,1]; \text{iso}(V,W))\) where \(V, W\) are bundles over \(M \times [0,1]\)

with \(V|_{M \times \{0\}} = V_0, V|_{M \times \{1\}} = V_1, W|_{M \times \{0\}} = W_0, W|_{M \times \{1\}} = W_1\)

(7.94) Stability: \((V \oplus U, W \oplus U, a \oplus \text{Id}_U) \simeq (V, W, a)\) for any bundle \(U \to M\).

Each of these is an equivalence relation – for the first and last this is straightforward, for homotopy equivalence one needs to do a little work in concatenating two homotopies to get a smooth one. The trick is to replace an initial homotopy by its pull back under a smooth bijective map \([0,1] \to [0,1]\) which is constant to infinite order at both ends. Then following one of these with another gives smooth objects over \([0,2]\) which can be reparameterized to a homotopy.

Theorem 7.2. * The collection of the \(C^\infty(S^*M; \pi^*\text{iso}(V,W))\) subject to the equivalence relation combining \((7.92), (7.93)\) and \((7.94)\) is an abelian group under the additive operation \((7.88)\) which is naturally isomorphic to \(K^0(T^*M)\) and to which the (numerical) index map descends giving the push-forward map

\[K^0(T^*M) \xrightarrow{\pi_!} K^0([pt]) = \mathbb{Z}. \]

Most of proof later. The identification of \(K^0(T^*M)\) with the equivalence classes of the data in \(C^\infty(S^*M; \pi^*\text{iso}(V,W))\) uses the results in Chapter 7 and is discussed below, as is the definition of the ‘wrong-way map’ \(\pi_!\). The existence of this map, uses the notion of the K-orientation of \(T^*M\). However, the fact that the index map does descend through the equivalence relations \((7.92), (7.93)\) and \((7.94)\) follows directly from the preceding discussion.

So my basic claim is that it is ‘better’ to prove the more general families index theorem. In the more general families case the plan is to pass through semiclassical quantization since this has better functorial properties (whilst being equivalent to the pseudodifferential quantization we have been employing).

12. Families index theorem

The ‘numerical index’ that we have been discussing exactly characterizes the invertibility properties of elliptic operators, up to smoothing perturbation as seen in Lemma 7.3. For an elliptic family we can ask the stronger question:- When is there a perturbation, \(A' \in \Psi_{c} \infty(X; V, W)\) for an elliptic family \(A \in \Psi_{c} (X; V, W)\) such that \(A + A'\) is invertible? Clearly the vanishing of the numerical index is necessary, and this implies the existence of such a perturbation locally near each point in the base, but it is not sufficient to imply the existence of a global perturbation working
at every point. The obstruction is precisely the families index which, in line with the discussion above, we will find as a map

\[
\text{ind}_\phi : C^\infty(S^*_\phi X; \pi^* \text{iso}(V,W)) \to K^0(Y).
\]

To construct such a map we look for a ‘good’ perturbation and parametrix.

Proposition 7.12. If \(A \in \Psi_m^0(X;V,W) \) is an elliptic family then there exists \(A' \in \Psi_{-\infty}^m(X;V,W) \) and a parametrix \(B \in \Psi_{-m}^0(X;W,V) \) such that

\[
B(A + A') = \text{Id} - p_1, \quad (A + A')B = \text{Id} - p_2
\]

where \(p_1 \in \Psi_{-\infty}^0(X;V) \) and \(p_2 \in \Psi_{-\infty}^0(X;W) \) are finite rank projections (idempotents).

We show below that the formal difference \(p_1 \ominus p_2 \) defines an element of \(K^0(Y) \) which is defined independent of choices and this gives the map (157.695). In fact this defines a map

\[
\text{ind}_\phi = (\phi \pi)_! : K^0(T^*_\phi X) \to K^0(Y)
\]

the identification if which is the Atiyah-Singer theorem in K-theory.

Proof.

13. Spin and Dirac

Most of the geometric examples of elliptic operators, and families of them, are first order differential operators. Perhaps the most basic is the ‘Hodge-Dirac’ operator.

If \(M \) is a compact manifold (it need not be oriented) the form bundles \(\Lambda^k M \) are well-defined real vector bundles over \(M \) but we will allow complex coefficients as well. Then the deRham operator is a well-defined first order differential operator

\[
d : C^\infty(M; \Lambda^k) \to C^\infty(M; \Lambda^{k+1}) \quad d^2 = 0.
\]

By convention, for \(k < 0 \) or \(k > \dim M \), the form bundles are trivial, just the zero vector space at each point. The deRham differential is not an elliptic operator, indeed it symbol is

\[
\sigma_1(d)(x,\xi) = i\xi \wedge \in S^1/S^0(T^*M; \text{hom}(\Lambda^k, \Lambda^{k+1}), \quad (x,\xi) \in T^*M.
\]

If we choose a Riemann metric on \(M \) we get, by definition, a fibrewise Euclidean inner product on \(TM \) and hence the dual inner product on \(T^*M \) and by standard constructions inner products on all the \(\Lambda^k M \). Moreover we also get a well-defined Riemannian density (not a volume form unless \(M \) is oriented) which I will write as \(dg \). This data determines a formal adjoint of \(d \),

\[
\delta = d^* : C^\infty(M; \Lambda^{k+1}) \to C^\infty(M; \Lambda^k) \quad \forall \ k, \quad \delta^2 = 0.
\]

Then the Hodge-Dirac operator is

\[
\mathfrak{d} = d + \delta \in \text{Ell}_1(M; \Lambda^*) \quad \sigma_1(\mathfrak{d})(x,\xi) = i(\xi \wedge -\iota(\xi))
\]

where \(\iota(\xi) \) is contraction with the metrically dual tangent vector to the cotangent vector \(\xi \).

Theorem 7.3 (Hodge). If \(M \) is compact, the null space of \(\mathfrak{d} \) is naturally isomorphic to the deRham cohomology of \(M \).
Proof. The operator $\overline{\partial}$ is elliptic since
\begin{equation}
\sigma_1(\overline{\partial})^2 = \xi \wedge \iota(\xi) + \iota(\xi) \xi \wedge = |\xi|^2 \text{Id}.
\end{equation}
Thus $\overline{\partial}^2 = \Delta$ (the Laplacian, or Laplace-Beltrami operator) has scalar principal symbol which is invertible where $\xi \neq 0$. As an elliptic, formally self-adjoint operator we know that the range gives an orthogonal decomposition which restricts to smooth sections to
\begin{equation}
C^\infty(M; \Lambda^*) = (\overline{\partial}) \oplus \overline{\partial} C^\infty(M; \Lambda^*).
\end{equation}
This is the Hodge decomposition.

Note that if $h \in (\overline{\partial})$ then
\begin{equation}
\int_M \langle dh, dh \rangle = \int_M \langle dh, -\delta h \rangle = \int_M \langle d^2 h, h \rangle = 0.
\end{equation}
so $dh = \delta h = 0$. Applying (7.104) to a closed form $u \in C^\infty(M; \Lambda^*)$ gives
\begin{equation}
\{ u \in C^\infty(M; \Lambda^*); du = 0 \} \ni u \mapsto h \in (\overline{\partial}).
\end{equation}
This defines a surjective map
\begin{equation}
H^*_d(M; \mathbb{R}(\overline{\partial})^*).
\end{equation}

Corollary 5. The restriction of the Hodge-Dirac operator to
\begin{equation}
\overline{\partial}^+ : C^\infty(MA^{ev}) \to C^\infty(M; \Lambda^{odd})
\end{equation}
has index the Euler characteristic of M
\begin{equation}
\text{ind}(\overline{\partial}^+) = \sum_{k=0}^n (-1)^k \dim H^k_{dR}(M).
\end{equation}

On a Riemann manifold a Clifford module is a complex vector bundle $W \to M$ together with a bundle map
\begin{equation}
\text{cl} : T^*M \to \text{hom}(W)
\end{equation}
satisfying the condition
\begin{equation}
\text{cl}(\xi) \text{ cl}(\eta) + \text{ cl}(\eta) \text{ cl}(\xi) = \langle \xi, \eta \rangle \text{ Id in } \text{hom}(W).
\end{equation}

Lemma 7.9. A Clifford module has a connection ∇ satisfying
\begin{equation}
\nabla_v \text{ cl}(\xi) w = \text{ cl}(\nabla_v i) w + \text{ cl}(\xi) \nabla_v w,
\end{equation}
\begin{equation}
\forall v \in C^\infty(M; TM), \xi \in C^\infty(M; T^*M), w \in C^\infty(M; W)
\end{equation}
where $\nabla_v \xi$ is the action of the Levi-Civita connection on the cotangent bundle.
Interpreting the connection as a differential operator $\nabla : C^\infty(M; W) \to C^\infty(M; T^* \otimes W)$ and the Clifford action as a contraction map $\text{cl} : T^* W \otimes W \to W$ the associated Dirac operator is a well-defined differential operator

$$\partial = \text{cl} \circ \nabla : C^\infty(M; W) \to C^\infty(M; W).$$

So, how do such Clifford modules arise and what is the index of the associated Dirac operator? Let me restrict to the case that the dimension of M is even, $2k$ – the odd-dimensional case is slightly different. Give a Riemann metric on M the complexified Clifford algebra at each point, defined as the quotient of the full complexified tensor algebra of $T^*_m M$ by the ideal generated by the elements as in (7.112), i.e.

$$\xi \otimes \eta + \eta \otimes \xi - \langle \xi, \eta \rangle \text{Id}$$
forms the fibre of a bundle

$$\text{Cl}(M) \to M.$$

This is an Azumaya algebra – not only is it a complex vector bundle by the fibres are algebras and these algebras are isomorphic to the $2^k \times 2^k$ matrix algebra. A local orthonormal basis gives a trivialization of the bundle consistent with these identifications.

A Clifford module is then a vector bundle with a multiplicative bundle map

$$\text{Cl}(M) \to \text{hom}(W).$$

Such modules arise from a Spin structure or a Spin-C structure on M. Both of these only make sense on an oriented manifold. They have to do with the groups

$$\text{Spin} - C(2k) \to \text{Spin}(2k) \to \text{SO}(2k).$$

Here (for $k > 1$) the spin group is the universal cover of $\text{SO}(2k)$. Since $\pi_1(\text{SO}(2k)) = \mathbb{Z}_2$ this is a double cover. One way to construct concretely is using the Clifford algebra on \mathbb{R}^{2k}. An element of $\text{SO}(2k)$ acts on the Clifford algebra through its action on $T_0^* \mathbb{R}^{2k} = \mathbb{R}^{2k}$ which preserves the ideal generated by (7.115). Such an algebra-preserving isomorphism of a matrix group is necessarily generated by conjugation so for $O \in \text{SO}(2k)$ there is an element $L_O \in \text{Cl}(\mathbb{R}^{2k})$ such that the action of O is

$$\text{cl}(O\xi) = L_O \text{cl}(\xi)L_O^{-1}.$$

Such an element can be constructed by factorizing O into products of reflections. Then L_O is the product of the Clifford actions of the unit normal vectors to the fixed set of the reflection and is determined by up to sign. These L_O form the Spin group. It has a reflection action, given by the kernel of $\text{Spin}(2k) \to \text{SO}(2k)$ and the Spin-C group is

$$\text{Spin} - C(2k) = \text{Spin}(2k) \times \mathbb{Z}_2 \mathbb{S}.$$

14. Gerbes?

I do not expect to have time to discuss this in lectures. The idea is that this give a rather systematic approach to Spin and Spin-C structures on manifolds. Since it is relevant, at least as background, let me briefly recall the classification of real and complex line bundles over a manifold – which is generalized by gerbes.
A real line bundle over a manifold M can be given a smooth family of fibre metrics and so reduced to a principal \mathbb{Z}_2 bundle the ‘sphere’ in the line at each point

$$
\begin{array}{c}
\mathbb{Z}_2 \\
\downarrow \\
\hat{M} \\
\downarrow \\
M.
\end{array}
$$

(7.121)

Thus, \hat{M} is a double cover of M with the action of \mathbb{Z}_2 being to interchage the points in each fibre.

Such a principal bundle is classified by $H^1(M;\mathbb{Z}_2)$. This is most easily seen in terms of Čech cohomology. To be brief about this, any open cover of a manifold has a refinement to a ‘good’ open cover – one in which all the open sets and all non-trivial finite intersections of them are contractible. A covering by small (with radius below the injectivity radius) Riemannian balls satisfies this.

So, one can find such a good open cover over each element of which, U_i, the \mathbb{Z}_2 bundle has a section. Then over each intersection $U_{ij} = U_i \cap U_j$ the relation between these sections gives a map

$$
\chi_{ij} : U_{ij} \rightarrow \mathbb{Z}_2.
$$

(7.122)

This is a Čech cocycle, since over triple intersections

$$
\chi_{ij}\chi_{jk}\chi_{ki} = 1.
$$

(7.123)

It follows (this is Čech theory) that this determines a cohomology classe

$$
\chi \in \check{H}(M;\mathbb{Z}_2).
$$

(7.124)

The vanishing of this cohomology class is equivalent to the exactness of cocycle (because the cover is good), meaning the existence of smooth (i.e. continuous) maps

$$
\eta_i : U_i \rightarrow \mathbb{Z}_2 \text{ s.t. } \chi_{ij} = \partial_i\eta_j^{-1} \text{ on } U_{ij}.
$$

(7.125)

Such a collection of map allows the original sections to be ‘corrected’ to a global section – implying the \mathbb{Z}_2 cover, and hence line bundle, is trivial. Conversely given a cocycle χ_{ij} one can construct a \mathbb{Z}_2-principal bundle from it which recover χ.

Similarly for complex line bundles over M are classified by $\check{H}^2(M;\mathbb{Z})$. Again one can choose a metric on the line bundle and so reduce it to a principal-\mathbb{S} bundle

$$
\begin{array}{c}
\mathbb{S} \\
\downarrow \\
\hat{M} \\
\downarrow \\
M.
\end{array}
$$

(7.126)

This cocycle yields a cohomology class, the Chern class, $c \in \check{H}^1(M;\mathbb{S})$ which is the same as $\check{H}^2(M;\mathbb{Z})$. The triviality of c implies the existence of a section of (7.126) and conversely. Moreover a principal circle bundle can be constructed from a class $c \in \check{H}^2(M;\mathbb{Z})$ with this as Chern class.

The relationship between real line bundles, and their complexification (obtained by tensoring with \mathbb{C}) is the Bockstein homomorphism

$$
H^1(M;\mathbb{Z}_2) \rightarrow H^2(M;\mathbb{Z}).
$$

(7.128)

Gerbes, in particular bundle gerbes, are the next step up from line bundles. I include a brief discussion of ‘lifting bundle gerbes’, specifically for spin and spinC structures.
CHAPTER 8

Semiclassical quantization

1. Blow up

11.4.2022.1

DEFINITION 8.1. If $S \subset M$ is a closed embedded submanifold a blow-up of M along S, also called the blow-up (actually the radial blow-up) of S, is a manifold with boundary $[M; S]$ and smooth surjective map $\beta : [M; S] \longrightarrow M$ (the blow-down map) with the properties

1. $\beta : [M; S] \setminus \partial [M; S] \longrightarrow M \setminus S$ is a diffeomorphism
2. $\beta : \partial [M; S] \longrightarrow S$ is a sphere bundle
3. If $0 \leq q \in C^\infty(M)$ vanishes precisely at S and exactly to second order then $\beta^*q = x^2$ is the square of a boundary defining function $x \in C^\infty([M; S])$
4. The Lie algebra of smooth vector fields on M which are tangent to S lift to span, over $C^\infty([M; S])$, the Lie algebra of vector fields tangent to the boundary.

The ‘precise second order vanishing’ is the statement that the Hessian of q at each point $s \in S$ is positive definite as a quadratic form $v_i v_j q$ on $N_s S$, the normal bundle to S.

If you recall the notion of compactification from early in the course you will see some similarity. However blow-up is much more functorial.

Why blow up submanifolds? There are several reasons (but it isn’t always a good idea!).

11.4.2022.2

THEOREM 8.1. Any closed embedded submanifold has a blow-up and any two are naturally diffeomorphic.

Recall that the normal bundle to S, $NS = T_S M / TS$ parameterizes the vector fields at S ‘pointing into N’. As we shall see the boundary of the blow-up is the corresponding sphere bundle $SNS = (NS \setminus 0_S)/\mathbb{R}^+$. So the definition of $[M; S]$ involves gluing this onto $M \setminus S$ to get a manifold with boundary.

PROOF. The existence will use the collar neighbourhood theorem, discussed in §6.

We start with a simple case, namely $M = W$ is a real vector space and $S = \{0\}$ is the origin. We can get a quadratic function $q = |w|^2$ as the square of the length for some Euclidean norm on W. Then we ‘introduce polar coordinates’. These are ‘singular coordinates’ (whatever that means) but correspond to a smooth map

\[
\beta : [0, \infty) \times (W \setminus 0)/\mathbb{R}^+ \longrightarrow [0, \infty) \times \{w \in W; |w| = 1\} \ni (r, \hat{w}) \mapsto r \hat{w} \in W.
\]

Here the first map is a diffeomorphism where the metric is used to identify the quotient with the unit sphere. The inverse of β, restricted to $W \setminus 0$, is

\[
w \longmapsto ([|w|], [w]) \in [0, \infty) \times (W \setminus 0)/\mathbb{R}^+.
\]
So we conclude that under change of norm from $|w|$ to $|w'|$ the identity map on $W \setminus 0$ lifts to the smooth diffeomorphism

$$\beta : [0, \infty) \times (W \setminus 0 / \mathbb{R}^+) \ni (x, [w]) \mapsto (\frac{|w|}{|w'|} x, [w])$$

which is the identity on the boundary. So the construction does give the set

$$W \setminus 0 / \mathbb{R}^+ \sqcup (W \setminus 0)$$

a unique topology and C^∞ structure.

Now, we should check that this has the desired properties. The first two conditions are clear since β is clearly a diffeomorphism of $(0, \infty) \times (W \setminus 0) / \mathbb{R}^+$ onto $W \setminus \{0\}$ and the boundary is a sphere. The quadratic function corresponding to the metric used to define (8.3) is $|w|^2$ so the third condition holds for this metric and any other quadratic function is the sum of some other Euclidean metric (its Hessian) and a function vanishing to third order at the boundary. The first part is the product of $|w|^2$ with a smooth function on the sphere so it is the square of a defining function for the boundary and the higher order term is smooth (since β is smooth and vanishes to third order at the boundary. So, it remains to check the fourth property. The vector fields tangent to 0 are those which vanish there and so the are of the form, in any linear coordinates,

$$\sum_{ij} a_{ij} w_i \partial w_j, \ a_{ij} \in C^\infty(W).$$

The coefficient pull back to be smooth, so to show that these lift, i.e. extend smoothly from $x > 0$ down to $x = 0$, it suffices to show this for the $w_i \partial w_j$. These are homogeneous of degree 0 on W and under β radial scaling becomes $(x, [w]) \mapsto (tx, [w]), \ t > 0$. Thus written in terms of the product decomposition

$$w_i \partial w_j = a([w]) x \partial_x + V$$

where V is a smooth vector field and a is a smooth function on the sphere. Both extend smoothly down to $x = 0$. The radial vector field $w_i \partial w_j$ lifts to $x \partial_x$ and the $w_i \partial w_j$ span all vector fields on W away from 0 so the V in (8.6) span all the vector fields on the sphere.

This completes the proof for the blow-up of $0 \in W$. It is clear that the linear map reversing one coordinate lifts to be smooth as the reflection in the sphere. Then the smoothness of the lifts of the linear vector fields $w_i \partial w_j$, which form the Lie algebra of $\text{GL}(W)$ shows that the action of this group on $W \setminus \{0\}$ extends to $[W, \{0\}]$. It follows that the action

$$\text{GL}(W) \times [W, \{0\}] \longrightarrow [W, \{0\}]$$

is smooth.

Now we pass to the case of the zero section of a real vector bundle, $U \longrightarrow M$. We define this as the union over the base of the blow-up of the fibres just defined, with blow-down maps

$$[U, 0_U] = \bigsqcup_{m \in M} [U_m, \{0\}] \xrightarrow{\beta} U.$$
to make \((8.8)\) into a smooth fibre bundle with smooth map. Similarly the first and third conditions follow directly. The vector fields tangent to \(0_U\) are given in a spanned in a local trivialization by the

\[
\partial z_i, \ w_i \partial w_j
\]

where the \(z_i\) are coordinates on \(M\). All these vector fields have smooth lifts in the product decomposition of \([U; 0_U]\) and so globally and clearly span the vector fields tangent to the boundary.

Finally then we pass to the general case but this follows from the collar neighbourhood theorem (or working locally if you prefer) which gives a diffeomorphism \(\chi\) from a neighbourhood \(Q'\) of an embedded submanifold \(S \subset M\) to a neighbourhood \(Q\) of the zero section of its normal bundle. This gives a \(C^\infty\) structure to

\[
[M; S] = (M \setminus S) \cup SNS
\]
as a manifold with boundary and by the lifting property it is independent of the choice of \(\chi\).

The discussion above is for a closed embedded submanifold of a manifold without boundary, of course it applies unchanged if \(M\) has a boundary, including corners, but \(S\) does not meet the boundary. If \(S\) does meet the boundary we need to specify the meaning of ‘embedded’. What is needed for the existence of a collar neighbourhood theorem is the following condition.

Definition 8.2. A subset \(S \subset M\) of a manifold with corners is a p-submanifold (the ‘p-’ being for ‘product’) if at each point of \(S\) of codimension \(k\) there are ‘adapted’ local coordinates

\[
x_1, \ldots, x_k, \ y_1, \ldots, y_{n-k} \text{ in } O \subset M
\]

where the \(x_i \geq 0\) are local boundary defining functions and

\[
S \cap O = \{x_{i+1} = 0, \ i = 1, \ldots, k-l, \ y_{j+p} = 0, \ p = 1, \ldots, n-k-j\}.
\]

Here \(S\) has codimension \(n-l-j\).

Theorem 8.2. Any closed p-submanifold of a manifold with corners has a blow-up which is unique up to natural diffeomorphism.

Proof. Maybe it is best to prove the collar neighbourhood theorem in this context first!

2. Semiclassical smoothing operators

As usual we have two ways of approaching the definition of semiclassical smoothing operators on a manifold, and more generally on the fibres of a fibration. We can either use the original definition on \(\mathbb{R}^n\) and localize or proceed globally. As you can already see, I favour the latter approach.

First recall the case of Euclidean space. We defined the semiclassical smoothing operators in terms of Schwartz functions \(A \in C^\infty([0,1]; S(\mathbb{R}^{2n}))\), depending on a parameter, with the kernel being

\[
A(\epsilon, x, \frac{x-y}{\epsilon})\epsilon^{-n}dy
\]

where I have included the measure since we know now that we should!

One reason for introducing blow-up above is that we can understand the kernels directly as smooth sections of a bundle.
The space of semiclassical smoothing operators on \mathbb{R}^n have kernels which are smooth sections of a rescaled density bundle over $\mathbb{R}^n \times \mathbb{R}^n \times [0, 1] \cdot \text{Diag} \times \{0\}$.

Proof.

3. Pull-back and push-forward

This should really have come earlier in the course, but there is some virtue in leaving things until you need them, even if ‘just in time’ has its drawbacks!

Essentially the definition of smoothness of a map $F: M \to N$ between manifolds means that the pull-back map is defined, linear and continuous on functions $F^*: C^\infty(N) \to C^\infty(M)$.

We can add in a vector bundle on the image space to get $F^*: C^\infty(N; W) \to C^\infty(M; F^*W)$.

Indeed, the pulled-back bundle, having fibres $(F^*W)_m = W_{F(m)}$

is defined so that this is true. A trivialization of W over an open set $O \subset N$ induces a trivialization of F^*W over $F^{-1}(O)$ and then (8.15) applies to the coefficients to give (8.16).

The map (8.16) has a ‘formal transpose’

$F_*: C_c^{-\infty}(M; W' \otimes \Omega) \to C_c^{-\infty}(N; W \otimes \Omega)$

since these are the dual spaces – so

$(F_*w)(\phi) = w(F^*\phi), \phi \in C^\infty(N; W), \ w \in C_c^{-\infty}(M; W' \otimes \Omega)$.

We need compactness of the support of w (really a bit less) to make sure that the pairing on the right is defined.

In general the push-forward map does not preserve smoothness. If you consider the constant map $F: M \to \{p\} \in N$ then it follows from (8.19) that F_*w has support contained in $\{p\}$. Indeed, if $p \notin \text{supp}(\phi)$ then $\text{supp}(F^*\phi) = 0$. In fact in general it follows that $\phi^*\phi$ is constant on M for this map (with F^*W trivial) so the pairing on the right in (8.19) is just an integral. Clearly this is not always zero, and then F_*w is necessarily singular.

So one cannot expect too much regularity for F_*w even if one assumes that $w \in C_c^\infty(M; W' \otimes \Omega)$. However, one of the properties of a fibration (the map corresponding to a fibre bundle) is that a version of Fubini’s Theorem holds.

Proposition 8.2. If $F: M \to N$ is a fibre bundle then for any vector bundle $W \to N$,

$F_*: C_c^\infty(M; W' \otimes \Omega) \to C_c^\infty(N; W \otimes \Omega)$

is surjective.

Proof. As I say, Fubini. The regularity of F_*w is a local question on N since we can see from (8.19) that if $\phi \in C^\infty(N)$ then

$\psi F_* (w) = F_*(F^* \psi w)$.

So it is enough to assume that \(w \) has support in \(F^{-1}(O) \) where the fibre bundle is trivial over \(O \subset N \) and then use a partition of unity; we can arrange that \(W \) is trivial over \(O \) as well. Then the diffeomorphism invariance of integration (of densities) means that we really are reduced to the case that \(F^{-1}(O) = Z \times \) and we are integrating over \(Z \).

Once we know this we can reverse the definition of push-forward and see that for a fibration pull-back extends by continuity to

\[
F^* : \mathcal{C}^{-\infty}(N; W) \longrightarrow \mathcal{C}^{-\infty}(M; F^*W) \quad \text{and is injective.}
\]

Really the pull-back is ‘constant along the fibres of \(F \).’

We are interested in more refined version of this. In particular notice that if \(S \subset N \) is a closed embedded submanifold then for a fibration

\[
F^{-1}(S) \subset N \text{ is closed and embedded.}
\]

\[\tag{8.23}\]

Proposition 8.3. Pull back under a fibration, as in \(\tag{8.22} \) defines a continuous linear map

\[
F^* : \text{Im}(N,S; W) \longrightarrow \text{Im}^{-d/4}(M; F^{-1}(S); F^*W)
\]

for any closed embedded submanifold of \(N \) of codimension \(d \) and any vector bundle \(W \) over \(N \).

Proof.

We can, and should, ask a similar question about the push-forward map \(\tag{8.20} \).

So consider a closed, embedded submanifold \(D \subset M \). There are already lots of submanifolds of \(M \) as the total space of a fibration, namely the fibres. Recall

Definition 8.3. Two embedded submanifolds \(D \) and \(Z \) in a manifold \(M \) meet *transversally* if at each point intersection

\[
p \in D \cap Z \implies T_pD + T_pZ = T_pM \iff N^*_pD \cap N^*_pZ = \{0\}.
\]

Lemma 8.1. The transversal intersection of two embedded submanifolds is an embedded submanifold with codimension the sum of the codimensions.

In particular two manifolds which do not intersect ‘intersect transversally’. For two embedded submanifolds the notation for their intersection \(D \cap Z \) means that they intersect transversally.

Proof. By definition near any point of \(D \) there are local defining functions \(w_i \) which vanish on \(DW \) with independent differentials. Similarly there are local defining functions \(u_j \) for \(Z \). At a point of intersection the transversality condition means that the \(w_i \) and \(u_j \) have independent differentials. Since they vanish precisely on the intersection locally, it is an embedded submanifold.

Definition 8.4. We say that a smooth map \(F : M \longrightarrow N \) is transversal to an embedded submanifold \(D \subset M \) (or that the submanifold is transversal to the map) if the differential \(F_* : T_pD \longrightarrow T_{F(p)}N \) is surjective for each \(p \in D \).

Proposition 8.4. A submanifold \(D \subset M \) of the total space of a fibration is transversal to the fibration if and only if it is transversal to each fibre; if \(D \) is closed then

\[
F_* : \text{Im}^c(M, D; F^*W \otimes \Omega) \longrightarrow \mathcal{C}^c(M; W \otimes \Omega).
\]
So integrating along the fibres of a fibration which is transversal to a submanifold ‘wipes out’ the singularities of conormal distributions.

Proof. □

4. **Abstract product theorem**

Now, what I have been building up to here is a result which we can use to prove composition result for operators. The case to bear in mind is one we have already covered. Namely take the triple product M^3 and denote a general point (m_1, m_2, m_3). Then consider the three diagonals,

$$D_1 = \{m_1 = m_2\},\ D_2 = \{m_2 = m_3\},\ S_3 = \{m_1 = m_3\}.$$

Each pair of these intersect transversally in the same ‘triple diagonal’

$$T = \{m_1 = m_2 = m_3\}.$$

Now consider the smooth map

$$\phi : M^3 \ni (m_1, m_2, m_3) \mapsto (m_1, m_3) \in M^2.$$

So

$$D_3 = \phi^{-1}(S),\ S = \text{Diag} = \{(m, m) \in M^2\}.$$

The product formula for pseudodifferential operators involves the multiplication of conormal distributions with respect to D_1 and D_2 and push forward under ϕ.

The first step involves a result which really goes way back to the beginning of the course.

Lemma 8.2. If $D_i \subset M, i = 1, 2$ are closed embedded submanifolds which intersect transversally then the product of conormal distributions is well defined

$$\times : I^*(M, D_1; W_1) \times I^*(M, D_2; W_2) \to C^\infty(M; W_1 \otimes W_2).$$

There is no statement of conormality of the product, because it is not true in general (and with our definitions so far does not make sense which is reassuring)!

Theorem 8.3. If D_1, D_2 are closed embedded transversal submanifolds of the total space of a fibration $F : M \to N$ to each of which the fibration restricts to be a diffeomorphism and such that there exists a closed embedded submanifold $S \subset N$ with

$$\phi^{-1}(S) \cap D_1 = \phi^{-1}(S) \cap D_2 = D_1 \cap D_2$$

and a bundle map

$$h : W_1 \otimes W_2 \to \phi^*(W) \otimes \Omega_M$$

then the composite map

$$\phi_* : I^m_c(M, D_1; W_1) \times I^m_c(M, D_2; W_2) \to I^m(N, S; W \otimes W).$$

Proof. Consider the three submanifolds D_1, D_2 and $D_3 = \phi^{-1}(S)$. By assumption, (8.32), they intersect transversally in pairs. Since ϕ is assumed to be a diffeomorphism when restricted to D_1 it follows that the restriction of the fibration

$$\phi : D_1 \cap D_2 \to S$$
is a diffeomorphism. Now it follows from (8.34) that all three manifolds must have the same codimension – since the intersection has codimension which is equal to the sum of each pair.

To prove (8.34), first note that away from \(D_1 \cap D_2 \) the image of the product map in (8.34) lies in the sum of \(I^*(M; D_1, W_1 \otimes W_2) \) and \(I^*(M, D_2; W_1 \otimes W_2) \) so, after composing with the bundle map \(h \), so Proposition 8.4 applies and shows that the push-forward is smooth. Thus, it suffices to consider a small neighbourhood of a point \(n \in S \subset N \) and its preimage. We may also assume that the elements of \(I^m_\xi(M, D_1; W_1) \) and \(I^m_\nu(M, D_2; W_2) \) are supported near unique preimage \(n' \) of \(n \) in \(D_1 \cap D_2 \) (by using a partition of unity and discarding smooth terms).

Now, it is convenient to observe that \(D_1 \) and \(D_2 \) and the fibration can be brought to simultaneous normal form near such a point \(n' \in D_1 \cap D_2 \). Let \(z = (z', z'') \) be local coordinates in the base, \(N \), near \(n \) in which \(S = \{z'' = 0\} \). Since \(\phi \) is assumed to be a diffeomorphism when restricted to \(D_1 \) it follows that it is a graph over \(N \) locally. So we can introduce additional variables \(y \) near \(n' \) so that \((y, z', z'') \) form a coordinate system and

\[
D_1 = \{(y, z', z'') : y = 0\} \quad \text{near } n'.
\]

Since \(D_2 \) is also a graph over \(N \) near \(n' \) it takes the form

\[
y_i = Y_i(z', z'') \quad \text{near } n'.
\]

The codimension of \(D_1 \), the number of \(y_i \), is equal to the codimension of \(S \subset N \), i.e. the number of \(z'' \) variables.

The assumption that \(D_1 \cap D_2 \subset \phi^{-1}(S) \) means that \(Y(z', 0) = 0 \) and the transversality of \(D_1 \) and \(D_2 \) implies that

\[
d_{z''}Y_i(z', z'') \quad \text{are linearly independent at } (0, 0, 0)
\]

(since the \(d_{z''}Y_i = 0 \). These form a square matrix, so the \(Y_i \) can be introduced as new variables in the base, in place of the \(z'' \) and defining \(S \). This then is the coordinate normal form

\[
D_1 = \{y = 0\}, \quad D_2 = \{z'' - y = 0\}, \quad D_3 = \{z'' = 0\}.
\]

Ignoring the bundles, it follows that the conormal distributions locally take the form

\[
u_1 = (2\pi)^{-d} \int_{\mathbb{R}^d} a(z', z'', \eta) e^{iy \cdot \eta} d\eta, \quad u_2 = (2\pi)^{-d} \int_{\mathbb{R}^d} b(z', z'', \eta') e^{i(z'' - y) \cdot \eta'} d\eta'
\]

where we can assume that the symbols \(a \) and \(b \) are supported near \((z', z'') = 0\). The push-forward of the product is then

\[
u_1(z, y)u_2(z, y)
\]

\[
= (2\pi)^{-2d} \int_{\mathbb{R}^{3d}} a(z', z'', \xi + \eta') b(z', z'', \eta'') e^{iz'' \cdot \eta'} e^{iy \cdot \xi} d\eta d\xi dy,
\]

Formally at least the \(\xi, y \) double integral can be interpreted as a Fourier/inverse Fourier transform which evaluates the integrand at \(\xi = 0 \) giving

\[
\phi_*(u_1 u_2) = (2\pi)^{-2} \int_{\mathbb{R}^d} a(z', z'', \eta') b(z', z'', \eta') e^{z'' \cdot \eta'} d\eta' \in I^*(N, S).
\]

To justify these last step we use continuity in the symbol topology as usual. □
5. Semiclassical pseudodifferential operators

The semiclassical pseudodifferential algebra quantizes the semiclassical Lie algebroid. First we need to understand what this means.

Definition 8.5. A Lie algebroid on a manifold \(N \) is determined by a real vector bundle, \(W \), over \(N \) and a bundle map (the anchor map)

\[
a : W \rightarrow TN
\]

with the following additional properties

1. The space of smooth sections \(C^\infty(N;W) \) is a Lie algebra
2. The Lie bracket satisfies

\[
a([V_1, V_2]) = [a(V_1), a(V_2)] \quad \forall \quad V_i \in C^\infty(N;W), \quad i = 1, 2.
\]

The space of sections \(C^\infty(N;W) \) is normally called the Lie algebroid. So of course \(\mathcal{V}(N) = C^\infty(N;TN) \) is a Lie algebroid. In the compact case its ‘quantization’ is taken to be the space \(\Psi^\phi(N) \) of pseudodifferential operators.

I will leave open for the moment the precise definition of quantization, I may suggest a definition below but it depends rather on how much one wishes to demand. We have met a second example above, namely if \(\phi : X \rightarrow Y \) is a fibration of compact manifolds then

\[
\mathcal{V}_\phi(X) = \{ V \in \mathcal{V}(X); V \phi^* f = 0 \quad \forall \quad f \in C^\infty(Y) \}
\]

is a Lie algebroid. The quantization is the algebra \(\Psi_\phi^\phi(X) \) of fibre-wise pseudodifferential operators, which is directly involved in the definition of the Atiyah-Singer index above. What is the bundle? If we take local coordinates \(y_i \) in the base and extend these to coordinates near a point of \(X \) by adding some \(z_j \) then the elements of \(\mathcal{V}_\phi(X) \) are locally of the form

\[
\sum_j a_j(y, z) \partial z_j.
\]

So the bundle involved here is precisely the fibre tangent bundle \(\phi^*TX \subset TX \) with the anchor map being the natural inclusion (so of constant rank).

The case of immediate interest is the semiclassical Lie algebroid which is closely related to \(\mathcal{V}_\phi \). Namely, take a manifold \(M \) and consider

\[
M[1, sl] = M \times [0, 1] \rightarrow [0, 1].
\]

On this space we consider fibre vector fields which in addition vanish at the boundary \(\epsilon = 0 \). Clearly in local coordinates, \(z_i \), on \(M \) this means the smooth vector fields of the form

\[
\sum_i a_i(\epsilon, z) \epsilon \partial z_i.
\]

These clearly form a Lie algebra, but what is the bundle \(V \)? We have to construct it. The form of (8.48) makes it rather clear that we have a local basis with elements

\[
\epsilon \partial z_i.
\]

So these give a basis for the bundle \(\mathfrak{sl}TM \) (which is a bundle over \(M[1, sl] \) not \(M \) despite my notation). You might struggle a bit to think of \(\epsilon \partial z_i \) as an ‘entity’ rather than the product of \(\epsilon \) and \(\partial z_i \), but that is precisely what is involved here.
6. Semiclassical index map

7. The Atiyah-Singer index theorem

The setting here is a smooth, compact fibre bundle

\[Z \longrightarrow X \]
\[\downarrow \phi \]
\[Y. \]

The compactness of the base is not very critical – we just need to assume that everything is trivial outside a compact set; non-compactness of the fibres is not much worse but see the discussion of Atiyah-Patodi-Singer below.

The basic question then, is given a smooth family of differential operators acting between sections of vector bundles on the fibres of \(\phi \) as a map

\[A : C^\infty(M;V) \longrightarrow C^\infty(M;W) \]

when is it invertible?

This is hard.

Here is a step-by-step outline of the proof of the Atiyah-Singer index theorem (for families, in K-theory) showing what remains to be done – since I do not expect to have enough time to do every thing in detail.

1. Definition of the index map – this is still a little incomplete. We can think of ‘quantization data’ as a triple \((V,W,a)\) where \(V\) and \(W\) are vector bundles over \(X\) and

\[a \in C^\infty(S^*_X;\pi^*\text{hom}(V,W)) \]

is an invertible isomorphism between the lifts of \(V\) and \(W\) from \(X\) to the fibrewise cotangent sphere bundle over \(X\). We talked about more general elliptic symbols earlier.

2. We have not quite finished the proof that the K-group \(K^0(T^*_X)\) is identified with the equivalence classes of the data \((1.52)\) under the three relations of bundle isomorphism (over \(X\) of \(V\) and \(W\)), homotopy and stability.

3. Then we can quantize \(a\) to a family of pseudodifferential operators \(A \in \Psi_0(T^*_X;V,W)\) – this is the surjectivity of the symbol map. Any two such quantizations are homotopic and there are quantizations where the null spaces form a vector bundle over \(Y\).

4. The K-group \(K^0(Y)\) can be identified with equivalence classes of pairs of vector bundles over \(Y\) with the relations, bundle isomorphism, homotopy and stability (by adding an one bundle to both).

5. The quantizations have appropriate properties under these maps so that

\[\text{ind} : K^0(T^*_X) \longrightarrow K^0(Y) \]

is well-defined with the index being the difference of the null bundle and a complement to the range for a quantization \(A\) (any one for which the null spaces form a bundle).

6. Now we want to deform the index map \((5.3)\) into the semiclassical calculus. To do this we generalize the data in 1. Namely we consider triples \((\beta_1,\beta_1,b)\) where the \(\beta_i\) are unipotent families \(T^*_X \longrightarrow \text{GL}(N,\mathbb{C})\) and
$b \in C^\infty(T^*_\text{fib}X; \text{hom}(C^N))$ is such that $b : \text{Ran}(P_1) \rightarrow \text{Ran}(P_2)$ is an isomorphism over $S^*_\text{fib}X$ (the boundary of $T^*_\text{fib}X$) with $P_i = \frac{1}{2}(\beta_i + \text{Id})$ the positive projections of the unipotents. This is the semiclassical data considered above the equivalence classes under homotopy and stability again form the group $K^0(T^*_\text{fib}X)$. Semiclassical quantization results in the same index map (8.53) when the data reduces to that in 6.

(7) The data where β_2 is constant and $b = \text{Id}$ exhausts $K^8(T^*_\text{fib}X)$ so we can get the index map (8.53) from semiclassical smoothing operators — were β_1 is constant near infinity.

(8) Now the main part of the proof of the index theorem is the embedding of ϕ in a trivial fibration $\mathbb{R}^k \times Y$ for some (largish) k:

\[Z \xleftarrow{\iota \times \phi} X \xrightarrow{\pi_2} \mathbb{R}^k \times Y \]

This follows by choosing an embedding $\iota : X \rightarrow \mathbb{R}^k$ and then into $\mathbb{R}^k \times Y$ by adding the map ϕ.

(9) Now we think of X as a submanifold of $\mathbb{R}^k \times Y$ and contemplate its normal bundle — so an open neighbourhood of the image. Each fibre Z_y of X is embedded in \mathbb{R}^k so the full normal bundle is the bundle over X which over Z_y is $NZ_y \subset \mathbb{R}^k \times \{y\}$. So we actually have a ‘tower’ of fibrations

\[\mathbb{R}^d \xrightarrow{\psi} NX \]

\[Z \xrightarrow{\phi} X \]

\[\mathbb{R}^k \times Y \]

(10) The main idea in this proof by Atiyah-Singer (they had another one too, using cobordism) is that we can ‘extend’ the data and quantization from $T^*_\text{fib}X$ to $T^*_{\psi \psi}NX = NX \oplus N^*X \rightarrow X$.

The fibres of ψ in (8.55) are non-compact but of course they are real vector spaces. So the fibewise cotangent bundle in (8.56) has fibres the sum of a vector space and its dual.

(11) So, we can find a family of unipotents on $T^*_{\psi \psi}NX$ which are constant outside a compact set and quantize (semiclassically) to have index a trivial one-dimensional bundle over X.

(12) Then we take what is essentially the tensor product of this ‘Bott element’ (well, better to say a ‘Thom’ element) with the original family over X to be a family for $\phi \circ \psi : NX \rightarrow Y$ which quantizes to have the same image as a given element e. We do this by quantizing in two steps.

(13) Now, we can arrange the support of the Thom element to be very close to the zero section and thereby move it, using a collar map, to $\mathbb{R}^k \times Y$.
as a family. This is ‘excision’ and gives the same index for the extended family.

(14) The index map from $\mathbb{R}^k \times Y$ to Y is an isomorphism – again this is explicit Bott periodicity.

(15) Finally then we have an extended construction of the index map giving a commutative diagram

$$
\begin{array}{ccc}
K^0(T^\ast_0 X) & \xrightarrow{\otimes \tau} & K^0(T^\ast_0 \phi(\pi X)) \\
\downarrow \text{ind} & & \downarrow \text{ind} \\
& & K^0(Y)
\end{array}
$$

(16) The final step then is to see that this diagram is the definition of the push-forward in K-theory, the ‘Gysin’ map in this context.

8. Index formula

Of course this is not the end of the story, quite apart from the fact that there are a few gaps in the argument – which I try to fill in below. The index in K-theory as above precisely captures the obstruction to an elliptic family (or semiclassical family) have a smoothing perturbation which makes it invertible. In the case that Y is a point $K^0(Y) = \mathbb{Z}$ and we can look for a formula for the actual ‘numerical index’. In the case of a family we can look for a simpler obstruction to perturbative invertibility, corresponding to the image of the the index in (let’s say deRham) cohomology under the Chern character

$$
\text{Ch} : K^0(Y) \longrightarrow H^{ev}(X; \mathbb{R}).
$$

Either of these is the index formula.

Theorem 8.4. The index of the image in cohomology is

$$
\text{Ch} \circ \text{ind} = \phi_{\ast} \left(\text{Ch}(\{[V,W,a] \wedge \text{Td}\}) = \int \text{Ch}(\{[V,W,a] \wedge \text{Td}\}
$$

where the push-forward in cohomology if realized as integration of a (compactly supported) form over the fibres of $T^\ast \text{fib} X$.

The extra factor is the Todd class, which we can see from the proof above should be

$$
\text{Td} = \text{Ch}(\pi)
$$

appropriately interpreted.

9. The Dirac case
In these last three lectures I want to go through another example of quantization, leading to an algebra of pseudodifferential operators. In fact this is better thought of as ‘microlocalization’ of a Lie algebroid. In this case we consider a compact manifold with boundary M. We have already come across the Lie algebroid of smooth vector fields on M which are tangent to the boundary. You might like to check what happens on a manifold with corners but for the moment I will stick with codimension one.

Set

$$V_b(M) = \{ V \in C^\infty(M;TM); \text{ V is tangent to the boundary} \}.$$

There is always a boundary defining function $x \in C^\infty(M)$ and the tangency condition just requires

$$V \in V_b(M) \iff Vx \in xC^\infty(M).$$

So these are the vector fields which map the ideal of functions vanishing at the boundary (which is a primitive ideal generated by x) into itself. There is a strong ‘naturality’ case for the consideration of $V_b(M)$ since it is the Lie algebra of the group of diffeomorphism of M.

If we take local coordinates near a boundary point with y_i coordinates on the boundary then locally

$$V \in V_b(M) \iff V = a(x,y)x\partial_x + \sum b_i(x,y)\partial_{y_i}$$

for arbitrary smooth coefficients. This means that there is a vector bundle bTM over M with sections precisely these vector fields

$$V_b(M) = C^\infty(M; bTM).$$

Let’s think a little about the structure of the vector bundle bTM, since I am asserting it is, in context, the appropriate replacement for the ‘ordinary’ tangent bundle TM (to which is it isomorphic – just not naturally so). Over the interior of M there is not much to say since these two bundles are naturally isomorphic. Since the elements of $V_b(M)$ are smooth vector fields there is a completely natural smooth vector bundle map (the anchor map of the Lie algebroid $V_b(M)$)

$$bTM \to TM.$$

Over the boundary this has corank 1 – there is a 1-dimensional null space since the vector field (in local coordinates) $x\partial_x$ vanishes in the ordinary sense at the boundary. So there is a 1-dimensional subbundle

$$bN\partial M \subset bT_{\partial M}M.$$
In fact this is a canonically trivial subbundle. The element $x \partial_x$ is actually (at a boundary point) defined independently of coordinates. Indeed it satisfies

$$\tag{9.7} (x \partial_x) \rho = \rho + O(\rho^2)$$

for any defining function ρ. This just reflects the fact that any other defining function $\rho = a(y)x + O(x^2)$.

In this behaviour $^bT_{\partial M}M$ is ‘reversed’ from $T_{\partial M}M$. The latter has $T\partial M$ as a subbundle, with the quotient being $N\partial M$, the normal bundle. The former has a (trivial) subbundle with quotient naturally $T\partial M$.

Let’s go a little further with this analysis of tangency. The primitive ideal of functions vanishing at the boundary, I_∂, generated by x, leads to a Lie ideal

$$\tag{9.8} I_\partial \cdot \mathcal{V}_b(M) \subset \mathcal{V}_b(M), \quad [I_\partial \cdot \mathcal{V}_b(M), \mathcal{V}_b(M)] \subset I_\partial \cdot \mathcal{V}_b(M).$$

This means that the space of sections of $^bT_{\partial M}M$ as a bundle over ∂M is itself a Lie algebra. This is clear enough in local coordinates. So there is actually a Lie algebra map

$$\tag{9.9} \mathcal{V}_b(M) \rightarrow C^\infty(\partial M; ^bT M).$$

I have perhaps not emphasized enough that the Lie algebra structure of $\mathcal{V}(M)$ in the boundaryless case, or $\mathcal{V}_b(M)$ here, is what leads to the properties of the differential operators, in particular that the leading part defines the (polynomial) symbol map. This is fair warning that we should expect something similar at the boundary for our, yet to be defined, b-pseudodifferential operators. It will be the ‘indicial operator’ and arises precisely because (9.9) is a map of Lie algebras. We can even guess it should take values in the pseudodifferential operators on the boundary but with ‘an extra parameter’.

So what we want to find is an algebra of operators, say on $C^\infty(M)$, which include the vector fields $\mathcal{V}_b(M)$ and multiplication by $C^\infty(M)$ and which away from the boundary should reduce to ordinary pseudodifferential operators. One can approach this as for the semiclassical calculus. Writing, informally, a pseudodifferential operator in terms of symbols we can try to replace a symbol

$$\tag{9.10} a(x, y, \xi, \eta) \text{ by } a(x, y, x\xi, \eta)$$

where (ξ, η) are the dual variables to (x, y). This does work but there are significant issues involved.

Proceeding formally we can plug such a symbol into the inverse Fourier transform and then change variables as for the semiclassical calculus (ignoring issues of domains and convergence)

$$\tag{9.11} \int a(x, y, x\xi, \eta)e^{i(x-x')\xi+i(y-y')\eta}d\xi d\eta = \int a(x, y, x\xi, \eta)e^{ix(x-x')/x+i(y-y')d\eta}d\eta, \quad \tau = x\xi.$$

So, from this point of view what we need to do is to find a space on which $(x-x')/x$ is smooth, at least where it is finite. This we can do by an appropriate blow-up.
1. The b-generalized products

The approach I have taken, from the beginning, to pseudodifferential operators is to try to define them directly as spaces of conormal kernels. I have mentioned in passing the problem that immediately arises on a manifold with boundary, that the diagonal in \(M^2 \) – which is where we expect the singularities to be – does not meet the boundaries transversally. Namely there is an obvious dependence relation between the two defining functions \(x \) on the left and \(x' \) on the right and one of the defining functions for the diagonal, \(x - x' \), at the intersection \(x = x' = 0 \), i.e. the corner. There is no problem with the tangential variables.

The geometric solution to this conundrum is to do as we did for the semiclassical calculus and blow up the offending submanifold, in this case the corner. Thus we define

\[
\beta : M[2, b] = [M^2; (\partial M)^2] \rightarrow M^2.
\]

by blowing up the corner \(x = x' = 0 \).

There is quite a lot to get used to in this new space! The result of the blow up of the corner is that the new manifold has a new boundary hypersurfaces separating two corners to the single corner before blow up (assuming the boundary is connected, which I am doing implicitly here; nothing really bad happens if there are several components). We know that the blow-up can be defined in terms of polar coordinates, in this case since only the variables \(x \) and \(x' \) are involved,

\[
(x, x') = r(\cos \theta, \sin \theta), \ r \geq 0, \ \theta \in [0, \frac{\pi}{2}].
\]

The new boundary hypersurface, here \(r = 0 \), is the ‘front face’ denoted

\[
\text{ff}(M[2, b]) = I \times \partial M \times \partial M, \ I_\theta = [0, \frac{\pi}{2}].
\]

We have also seen that we can cover a neighbourhood of the front face of a blow-up by projective coordinates. In fact here this can be done with just one coordinate system as far as \(x \) and \(x' \) are concerned – of course we also need coordinates in the two copies of \(\partial M \) – because the one variable \(x + x' \) dominates both \(x \) and \(x' \) over the manifold. So the two functions

\[
x + x' \text{ and } \mu = \frac{x - x'}{x + x'} \in [-1, 1]
\]

together with tangential coordinates cover the front face. The two functions \(1 + \mu \) and \(1 - \mu \) are defining functions for the lifts of the ‘old’ boundaries \(x = 0 \) and \(x' = 0 \) (the lift here means the closure of the inverse image of the complement of the centre, \((\partial M)^2 \), of blow up). Then the lifted diagonal is locally

\[
\text{Diag}_0 = \{\mu = 0\} \times \text{Diag}_{\partial M} \text{ near ff}.
\]

It follows that now it is transversal to the boundary which it only meets in ff.

In fact the coordinates (9.15) are sometimes a bit awkward and it is simpler to use the more obvious projective coordinates

\[
x' \text{ and } s = \frac{x}{x'}, \text{ or } x \text{ and } t = \frac{x'}{x} = 1/s
\]

valid respectively away from the lifts of \(\{x' = 0\} \) and \(\{x = 0\} \). In particular either of these simpler systems is valid near the diagonal.
The idea of this blow-up is to introduce a space of kernels which is much easier to describe there than directly on M^2. Note that one version of the Schwartz kernel theorem states that, on a manifold with corners, continuous linear operators

$$A: \dot{C}^\infty(M) \rightarrow C^{-\infty}(M) = (\dot{C}^\infty(M; \Omega))^\prime$$

are identified with distributions

$$A \in C^{-\infty}(M^2; \pi^*\Omega).$$

The image space in (9.18) is the space of extendible distributions as is the space of kernels on M^2 (apart from the density factor). These distributions are defined on any compact manifold with corners X as the dual of $\dot{C}^\infty(X; \Omega)$ (they are the analogue of tempered distributions on \mathbb{R}^n with which they are identified for the radial compactification).

Lemma 9.1. The blow-down map gives an isomorphism

$$\beta^*: \dot{C}^\infty(M^2) \rightarrow \dot{C}^\infty(M[2, b])$$

and in consequence the Schwartz kernel theorem also identifies the space of continuous linear operators (9.18) with

$$A \in C^{-\infty}(M[2, b]; \pi^*\Omega)$$

The point is that we are not actually changing the space of extendible distributions by passing from M^2 to $M[2, b]$, what is changing is the space of smooth functions (which is getting bigger) and the space of conormal distributions with respect to the diagonal (which is a pain to define on M^2).

Now, before going on let’s check that the passage to $M[2, b]$ does ‘resolve’ the Lie algebroid $\mathcal{V}_b(M)$ in an appropriate sense. The vector fields in $\mathcal{V}_b(M)$ acting on the left (or the right) factor of M in M^2 are tangent to the corner $x = 0 = x'$ since they annihilate x' and satisfy (9.2). Thus they lift to be smooth on $M[2, b]$. In terms of (9.3) and the local coordinates (9.17), the ∂_{b_i} lift unchanged whereas

$$x\partial_x = s\partial_s.$$

This may not seem like much of an improvement! However, the lifted diagonal is at $s = 1$ so this vector field does not vanish there and we see:

Lemma 9.2. The elements of $\mathcal{V}_b(M)$ lifted to $M[2, b]$ from the left (or right) factor of M in M^2 are transversal to the lifted diagonal $\operatorname{Diag}_b \subset M[2, b]$ and so the normal bundle to this submanifold is identified with ^{b}TM.

This is a minimal requirement for ‘resolution’ of $\mathcal{V}_b(M)$.

As well as the ‘stretched double space’ there are similar replacements for the higher products M^k. I will invoke the stretched triple space below. Let me continue to assume that the boundary of M is connected – if it has more than one component you should proceed component by component, not thinking of interaction between the components which are ‘far apart’.

We can see that the boundary faces of M^k consist of products where in each factor we have either ∂M or M. Now arrange these in order of increasing dimension – starting at $(\partial M)^k$ – and then blow them up, one after another

$$M[k, b] = [M^k; (\partial M)^k; M_{k-1}(M^k), \ldots, M_2(M^k)],$$

(9.23)
where $\mathcal{M}_p(M^k)$ is the collection of boundary faces of codimension p. We stop at $p = 2$ since boundary faces of codimension 1 are hypersurfaces and blowing them up does nothing. Now, what (9.23) really means is that we blow up the successive lifts of the boundary faces. To see that (9.23) is well-defined we need to note first that

Lemma 9.3. Under blow up of a boundary face the lift of the other boundary faces are boundary faces.

Lemma 9.4. The sequence of blow ups in (9.23) is well-defined since after the blow up of $\mathcal{M}_p(M^k)$ the lifts of the elements of \mathcal{M}_{p-1} are disjoint.

This means that the order at each step in (9.23) is immaterial.

Proposition 9.1. All the projections $M^k \to M^j$, for $j < k$, lift to be smooth maps and simple/z b-fibrations.

Here a b-fibration is a natural extension of the notion of a fibration to the category of manifolds with corners (it is the analogue of a Lefschetz map in algebraic geometry if that helps!) Rather than discuss these in detail here let me just say they are smooth surjective maps which near a point of the domain, of codimension l take the form in appropriately chosen coordinates in domain and range

$$F(x_1, \ldots, x_1, y_1, \ldots, y_m) = (x_1^{\alpha_1}, \ldots, x_1^{\alpha_k}, y_1, \ldots, y_q),$$

where the $x_1^{\alpha_i}$ are monomials in the x_j

with no common

Thus each x_j can appear as a positive power in at most one of the $x_1^{\alpha_i}$. In Lemma (9.1) the each x_j at most once and as a single power which is the meaning of 'simple'. For such maps the α_i can be identified with disjoint subsets of $\{1, \ldots, l\}$.

The importance of b-fibrations is that they have some of the properties of fibration – to which they reduce in the absence of boundaries.

Proposition 9.2. Under a simple b-fibration $F : M \to N$ between compact manifolds with corners

$$F_* : \{u \in C^\infty(M; \Omega_0) ; u \equiv 0 \text{ at } M_2(M)\} \to C^\infty(M; \Omega_b)$$

In fact much more is true than (9.25) for a simple b-fibration. Namely even if we don’t assume the vanishing of the Taylor series at the corners as in (9.25), $C^\infty(M; \Omega_b)$ pushes forward into

$$\sum_{\text{finite}} (\log x)^2 C^\infty(M; \Omega_b).$$

So the push-forward is smooth except for powers of logs of the defining functions. These powers come from the behaviour at the
corners of M, as follows from (157.874), and can be described much more precisely.

In particular, Proposition 157.873 must apply to the projection maps

$$\pi_{L,R} : M[2, b] \to M.$$ \(157.876\) (9.27)

Here it is easy to check Proposition 157.871 by hand. Away from \(ff \) the map is just locally one of the projection from M^2 to M for which (157.872) certainly holds. Near the front face we have one of the two coordinate systems

$$s = \frac{x}{x'}, \ x', \ y, \ y' \text{ or } t = \frac{x'}{x}, \ x, \ y, \ y'.$$ \(157.877\) (9.28)

The left projection, to (x, y) therefore becomes either

$$(s, x', y, y') \mapsto (x = sx', y) \text{ or } (x, y)$$ \(157.878\) (9.29)

depending on the point in \(ff \) both of which satisfy (157.872).

It follows directly from (157.872) that a simple b-fibration is locally a fibration in the interior and also at boundary points of codimension one. This allows us to deduce

Lemma 9.5. For a compact manifold with corners

$$\left(\pi_L\right)_* : \Psi^m_b(M) \to C^\infty(M).$$ \(157.880\) (9.30)

This gives a direct proof of the mapping property (8.31).

2. Conormality at the boundary
3. The b-calculus

The most basic operator in (157.816) is the identity operator. We know that in local coordinates the kernel of this is the Dirac ‘function’ at the diagonal

\[\delta(x - x') \delta(y - y'). \]

This is, as it must be, a distributional section of the right density bundle

\[\text{Id} \in I^0(M; \pi^*_b \Omega). \]

To see that this makes invariant sense observe that it must be possible to pair the delta ‘function’ with an element of \(C^\infty(M; \pi^*_b \Omega) \) since \(\Omega(M) = \pi^*_b \Omega \). Say using a partition of unity to localize, we need to be able to make sense of the distributional pairing, written formally as an integral

\[\int_{M^2} \delta(x - x') \delta(y - y') \psi(x, y, x', y') \, dx \, dy = \int_M \psi(x, y, x, y) \, dx \, dy \]

which is indeed invariantly defined – so this is what (157.824) actually means.

Now, what happens when we look at the lift of this kernel to \(M[2, b] \) as an extendible distribution – these form a subspace of the distributions on the interior. It is certainly still supported at the diagonal, so it is only a question of what it looks like in the new coordinates say (157.817). The homogeneity of delta means it becomes

\[\delta(x - x') \delta(y - y') = (x')^{-1} \delta(s - 1) \delta(y - y'). \]

We can absorb the extra singular factor of \(x' \) into the measure to see that

\[\text{Id} \in I^0(M[2, b]; \text{Diag}_b; \pi^*_b \Omega_b) \]

where \(\Omega_b \) is the density bundle coming from \(bTM \) so in fact in a natural way it has a basis near the boundary

\[\frac{dx}{x} \, dy \Rightarrow \Omega_b = x^{-1} \Omega. \]

This leads us to the definition of b-pseudodifferential operators through their kernels.

Definition 9.1 (Small’ b-calculus). The space of b-pseudodifferential operators on a compact manifold with boundary, acting between sections of vector bundles \(V \) and \(W \) is

\[\Psi^m_b(M; V, W) = \{ A \in I^m(M[2, b]; \text{Diag}_b; \pi^*_b W \otimes \pi^*_b (V' \otimes \Omega_b)); A \equiv 0 \text{ at both lifted boundaries} \}. \]

I have not actually defined the conormal space here but it is exactly the restriction of the usual conormal space if one extends across the boundary. These distributions are smooth away from the diagonal so (157.817) makes sense since these ‘old’ boundaries do not meet the diagonal. Locally such a kernel, with the b-density removed, just looks like

\[A(x, y, s, y - y') \text{ smooth in } (x, y) \text{ and conormal at } s = 1, y - y' = 0. \]
The symbol map for conormal distributions gives us
\[\sigma_m : \Psi^m_b(M; V, W) \longrightarrow (S^m / S^{m-1})(N^* \text{Diag}_b; \pi^* (\text{hom}(V, W) \otimes \Omega_b) \otimes \Omega(N^*)). \]
Recall that here \(N^* \text{Diag} \) is the dual of the normal bundle, so we see from Lemma 9.2 (9.38) that this is identified with \(\mathbb{T}^\ast M \) (replacing \(T^* M \) in the boundaryless case). The last book-keeping bundle in (9.38) is therefore \(\Omega(\mathbb{T}^* M) \) which is the dual of \(\Omega_b \) so these two factor cancel and the symbol map is as simple as we could hope giving a short exact sequence
\[\Psi^m_b(M; V, W) \longrightarrow (S^m / S^{m-1})(b^* \mathbb{T}^* M; \pi^* \text{hom}(V, W)). \]

Theorem 9.1. The \(b \)-pseudodifferential operators, \(\Psi^m_b(M; V, W) \), define continuous linear maps
\[A : C^\infty(M; V) \longrightarrow C^\infty(M; W) \]
and form modules over the filtered *-closed algebra \(\Psi^m_b(M; V) \) for which the symbol sequence (9.39) is multiplicative.

Proof. First let us check that the \(b \)-pseudodifferential operators defined by (9.37) do indeed define operators (9.40). This is not quite obvious, but notice that the space of kernels in (9.37) is a module over \(C^\infty(M; \mathbb{R}) \) so we can localize as we wish using a partition of unity. In particular we can work in (relatively) open subsets of \(M \) over which the bundles are trivial and so we are free to ignore them and assume that \(V = W = \mathbb{C} \); this simplifies the notation. If we look at a pair of neighbourhoods which do not meet the boundary then we are in the interior case where we know (9.40). Similarly if one of the open sets does not meet the boundary then the operator is again locally an interior pseudodifferential operator plus a smoothing operator vanishing rapidly at the boundary from which (9.40) follows.

So we can localize to a product of neighbourhoods of points in the boundary – although the two open sets need not meet the diagonal. One thing that is easy to see is then is that
\[A : \dot{C}^\infty(M; V) \longrightarrow \dot{C}^\infty(M; W). \]
Indeed (localized) the action on \(u \in \dot{C}^\infty(U) \) where \(U \subset M \) is a coordinate neighbourhood of a boundary point is by pushing forward the product
\[(\pi_L)_*(A \cdot \pi_R u) \]
By assumption, \(u \) vanishes to infinite order at \(x' = 0 \) (the boundary of the right factor) so \(\pi_R u \) vanishes to infinite order at the preimage, which includes \(\mathbb{F} \). It follows that the product also vanishes to infinite order at \(\mathbb{F} \) and then we are dealing again with an ordinary pseudodifferential operator on \(M^2 \).

Now, it actually follows from this that
\[A : C^{-\infty}(M; V) \longrightarrow C^{-\infty}(M; W) \]
so we know that \(Au \) is defined if \(u \in C^\infty(M; V) \) and we just need to show that it is smooth up to the boundary. The argument giving (9.41) is included to show that in this case \(Au \) ‘at the boundary’ should only depend on \(u \) ‘at the boundary’.

To make this precise we can again localize as above and only the terms where \(x \) and \(x' \) are near \(0 \) are not clearly \(C^\infty \). Using the density properties of conormal
distributions and of smooth functions we can assume more about A and then use
continuity. Namely we can suppose that the kernel A is continuous (we could
assume smoothness) and has support actually disjoint from the two 'old boundaries'.
Then the coordinates $t = x'/x$, y and y' are admissible over the support after
localization
\begin{equation}
A = A(x, y, t, y - y') \frac{dx'}{x'} dy'.
\end{equation}

The action of U on u is then the integral
\begin{equation}
Au = \int_{0}^{\infty} A(x, y, t, y - y') u(x/t, y') \frac{dt}{t} dy'.
\end{equation}

where u has compact support down to $x' = 0$. This integral certainly exists for
$x > 0$ since then the integrand has compact support. We can change the variable of
integration from x' to t and see that
\begin{equation}
Au = \int_{[0, \infty)} A(x, y, t, y - y') u(x/t, y') \frac{dt}{t} dy'.
\end{equation}

Now the integral exists (by fiat the support in t is in $[C, 1/C]$ for some finite C)
and the integrand is smooth in x and y, so the result is C^∞ and we have
under these assumptions on A. In fact we can pass to unrestricted A as in (7.37)
since these kernels vanish rapidly at $t = 0$ and $t = \infty$ and the only singularity is
conormal at $t = 1 -$ across which we are integrating. Thus (7.40) follows in general
and as a bonus we see that, as anticipated above
\begin{equation}
\text{Corollary 6. Restriction to the boundary in (7.40) gives}
\end{equation}
\begin{equation}
Au \big|_{\partial M} = (A_\partial)u \big|_{\partial M}, \quad A_\partial \in \Psi^m(\partial M; V, W),
\end{equation}

so the kernel of A_∂ is the integral over the fibres of $\beta : \mathbb{R} \rightarrow (\partial M)^2$ of the kernel
of A.

We still need to prove that the product of two b-pseudodifferential operators is
b-pseudodifferential. □

Thus everything is very much as in the boundaryless case except that we have
much more structure at the boundary. You might like to reflect on the similarity
to the behaviour of the semiclassical calculus here.

For a moment return to the Lie algebra $\mathfrak{b}(M)$ – these of course define elements
of $\Psi^1_b(M)$. Certainly they satisfy (7.40) but also
\begin{equation}
(Vu) \big|_{\partial M} = (V \big|_{\partial M}) u \big|_{\partial M}, \quad u \in C^\infty(M).
\end{equation}

They are 'localized at the boundary.' However we know that the analogous statement
for the semiclassical calculus holds but misses important structure at the
boundary. Much the same happens here.

The Collar Neighbourhood Theorem reminds us that a neighbourhood of a
submanifold looks like a neighbourhood of the zero section of its normal bundle.
For the boundary this translates to mean that a model for M near the boundary
is the inward-point half of the normal bundle
\begin{equation}
N^+ \partial M = \{ v \in T_{\partial M}; vx \geq 0 \}/T\partial M.
\end{equation}
The choice of a boundary defining function gives a positive section and hence trivialization

\[N^+ \partial M \leftrightarrow [0, \infty) dx \times \partial M \]

where \(dx \) defines a linear functional on the fibres of \(T_\partial M \) which vanishes on the subbundle \(T_\partial M \).

Let's pass to the radial compactification of \(N^+ \partial M = I \times \partial M \) where \(I \) is a closed interval, thought of as the radial compactification of \([0, \infty)\) – there is no natural trivialization but any choice of boundary defining function provides one through (9.50). The fibre \(\mathbb{R}^+ \) action extends smoothly to the compactification (fixing the two boundaries \(\{0\} \times \partial M \) and \(\{\infty\} \times \partial M \)).

Proposition 9.3. There is a natural multiplicative map, the ‘indicial map’ to \(\mathbb{R}^+ \)-invariant operators on the normal bundle, giving a short exact sequence

\[x \Psi^m_b(M; V, W) \xrightarrow{I} \Psi^m_b(N^+ \partial M; V_\partial M, W_\partial M). \]

Proof. Let's choose a boundary defining function, rather than try to do things invariantly – in the end nothing will depend on this choice. Then the model at the boundary is

\[N^+ \partial M = I \times \partial M, I = [0, \infty]. \]

The space on which the kernels for the \(b \)-pseudodifferential operators are defined is therefore

\[I[2, b] = [I^2, \{0\} \times \{0\}, \{\infty\} \times \{\infty\}]. \]

If you consider the \(\mathbb{R}^+ \) action on both factors starting at a point in the interior of \(I[2, b] \) you will see that it is an open interval but the closure is smooth up to both the front faces. An \(\mathbb{R}^+ \)-invariant operator, as on the right of (9.51) corresponds to a kernel which is constant under this action. So in fact it is determined by its restriction to either of the front faces. Nothing much happens at the other boundaries since everything is required to vanish to infinite order there.

So, the invariant operators are determined uniquely by their restrictions to the front face \(\text{ff} \) over \(x = 0 \). However this face for the model space is precisely the same as the face \(\text{ff}(M[2, b]) \) – canonically diffeomorphic to it (independent of the choice of defining function). So the indicial map in (9.51) is restriction of the kernel to the front face, and then its nullspace consists of kernels that vanish there. You might object that \(x + x' \), not \(x = (x + x')/(1 + s) \) is the defining function for the front face, but the kernel vanish to infinite order where \(s \to \infty \) so we can just as well divide by \(x \).

This does not explain the multiplicativity of the sequence but it follows that the null space in (9.51) is pretty clearly an ideal, so the quotient is an algebra – it is a question of what the product is!

To approach this reconsider Corollary 6. We have already noted that the space of kernels in (9.51) is a module over \(C^\infty(M[2, b]) \) but more is true because of the assumption of rapid vanishing at the boundary hypersurfaces other than \(\text{ff} \). The quotient of defining functions from the left and right, \(x/x' \), is smooth except at one these two hypersurfaces and the rapid vanishing of the kernels there quashes the singularity from \(x' = 0 \). In fact the same is true for any power of this quotient,
which is to say that
\[(x/x')iz\] is a multiplier on \(\Psi^m_M(V,W)\) for all \(z \in \mathbb{C}\).

Lemma 9.6. Conjugation generates an entire holomorphic family
\[(x/z)iz : \mathbb{C} \ni z \mapsto x^{iz}Ax^{-iz}\]

of automorphisms of \(\Psi^m_M(V,W)\).

It follows (even without knowing the multiplicative property for the operators) that
\[(AB)_{\theta} = A_{\theta}B_{\theta}\]
and we see from (9.51) that
\[(x^{iz}Ax^{-iz})_{\theta} = \int_{\mathbb{R}^+} A(0,t,y,y'-y)t^{-iz}dt|dy'|\]
is an entire family of pseudodifferential operators on \(\partial M\).

The integral in (9.57) is the Mellin transform of the kernel of \(A\) restricted to \(\text{ff}(M[2,bi])\). This is the (inverse) Fourier transform with respect to the variable \(-\log t \in \mathbb{R}\). In terms of \(-\log t\) the kernel is conormal at \(0 \times \{y = y'\}\) and decreases faster than any exponential at \(\pm \infty\). It follows that this \textit{indicial family} determines and is determined by the image in (9.41). In fact the multiplicativity of the map \(I\) then follows from (9.47) and (9.57), with the latter being a convolution representation of the \(\mathbb{R}^+\)-invariant operators on \(N^+\partial M\). \(\Box\)

We also want to analyse ‘\(L^2\) boundedness’ of \(b\)-pseudodifferential operators.

To conform to the general ‘\(b\)-yoga’ we should replace ‘ordinary \(L^2\) – meaning computed with respect to a non-vanishing smooth density on a compact manifold with boundary – with \(L^2_b(M)\) computed with respect to a non-vanishing \(b\)-density. Since the latter is just \(x^{-1}\) times the former, we see that
\[L^2(M) = x^{-\frac{1}{2}}L^2_b(M)\]
These spaces are well-defined for sections of vector bundles.

Proposition 9.4. Elements of \(\Psi^0_b(M;V,W)\) are bounded operators

\[x^sL^2_b(M;V) \rightarrow x^sL^2_b(M;W) \forall s \in \mathbb{R}\]

Proof. The case of general \(s\) in (9.59) follows from the case \(s = 0\) in view of Lemma 9.6.

For \(s = 0\) we note that if we divide \(A \in \Psi^0_b(M;V,W)\), using a cut-off, into a part supported very near \(\text{ff}(M[2,bi])\) and a part supported away from this boundary hypersurface then the boundedness of regular pseudodifferential operators shows the boundedness of the second part. We can further localize and reduce to the case that \(V = W = \mathbb{C}\).

The argument for boundedness in Problems 2, using the symbol sequence can be applied almost verbatim here to show that boundedness follows if we can show the boundedness of the ‘residual term’ \(\Psi^\infty(M)\).

Now, consider the \(\mathbb{R}^+\)-invariant calculus on \([0,\infty[\times \partial M\). We can characterize the space \(L^2_b([0,\infty[\times \partial M)\) in terms of the Mellin transform applied globally in the
first variable x—since this reduces to the Fourier transform on $\log x \in \mathbb{R}$. Thus in fact

$$v(x, y) \rightarrow v_M(z, y) = \int_{\mathbb{R}} v(x, y) x^{i z} \frac{dx}{x}$$

extends from $C^\infty([0, \infty] \times \partial M)$ to an isomorphism

$$L^2_b([0, \infty] \times \partial M) \rightarrow L^2(R_z \times \partial M), \ z \in \mathbb{R}.$$

The fact that the transformed operator in (9.57) is a family of pseudodifferential operators in $\Psi^0(\partial M)$ which is bounded as a function of $z \in \mathbb{R}$ shows that it is bounded on the image of (9.61) so in fact the \mathbb{R}^+-invariant operators are bounded on the space on the left in (9.61). For the invariant operators we can again localize near and away from the boundary and deduce that the part localized near the boundary is bounded on $L^2_b([0, \infty] \times \partial M)$.

In view of the exact sequence (9.51) it suffices to consider elements of $x^s H^m_b(M)$ (using the preceding argument). The extra vanishing at ∞ shows that this follows directly from Schur’s criterion.

□

Of course we really want boundedness on Sobolev spaces, but the ones we want here are the $x^s H^m_b(M)$ which we need to define. If we work in a fixed product decomposition near the boundary we can use the Mellin isomorphism (9.60) as we would for Euclidean space and define

$$H^m_b([0, \infty] \times \partial M) = \{v \in C^\infty([0, \infty) \times \partial M); v_M \in L^1_{\text{loc}}(\mathbb{R}_z; H^m(\partial M), \ (1 + |z|)^m v_M(z) \in L^2(\mathbb{R} \times \partial M)\}, \ m \geq 0$$

For $m < 0$ we can use duality

4. Metrics and boundaries

There are several interesting classes of metrics on a compact manifold with boundary.

The most ‘obvious’ one I do not have time to talk about. This is the case of a metric smooth, and non-degenerate up to the boundary. It is rather a standard result, not too hard to see, that the distance from the boundary is, at least near the boundary, a smooth defining function and so can be extended to be smooth and positive in the interior. Then the metric takes a particular form in terms of the product decomposition near the boundary given by flow along the normal geodesic

$$g = dx^2 + h + xh', \ h \text{ a metric on } \partial M.$$

Here h' is actually an x-dependent family of symmetric tensor on ∂M but in any case can be taken to be a smooth symmetric 2-tensor on M near the boundary.

Near the boundary there is then a corresponding decomposition of the form bundle on M

$$\Lambda^*M = \Lambda^*\partial M \oplus (dx \wedge \Lambda^*\partial M)$$

Here h' is actually an x-dependent family of symmetric tensor on ∂M but in any case can be taken to be a smooth symmetric 2-tensor on M near the boundary.
in which it is reduced to two copies of the forms on ∂M. The Hodge-Dirac operator becomes a 2×2 matrix of operators

$$\bar{\partial} = d + \delta = \begin{pmatrix} \partial_{\partial M} & -\partial_x \\ \partial_x & -\partial_{\partial M} \end{pmatrix}$$

(9.65)

where ∂_x is acting on the coefficients in (9.64).

Certainly

$$\bar{\partial} : C^\infty(M; \Lambda^*) \rightarrow C^\infty(M; \Lambda^*)$$

(9.66)

but is not symmetric on this domain (with respect to the inner products on forms and density induced by g.) There are two standard boundary conditions which lead to symmetry, namely the vanishing of one or other of the two summands in (9.64).

More formally

$$\text{Dom}_{\text{Abs}} = \{ u \in C^\infty(M; \Lambda^*); i^*_{\partial M}(\iota_{\nu} u) = 0 \}$$

$$\text{Dom}_{\text{Rel}} = \{ u \in C^\infty(M; \Lambda^*); i^*_{\partial M} u = 0 \}$$

(9.67)

where $\nu = \partial_x$ is the Riemannian normal vector field at the boundary.

Then

$$\bar{\partial} : \text{Dom}_{\text{Abs}/\text{Rel}} \rightarrow C^\infty(M; \Lambda^*)$$

(9.68)

are Fredholm and lead to Hodge decompositions as in the boundaryless case. From this one deduces the two Hodge theorems

$$\text{null}(\bar{\partial}) \cap \text{Dom}_{\text{Abs}} \equiv H^*_{dR}(M),$$

$$\text{null}(\bar{\partial}) \cap \text{Dom}_{\text{Rel}} \equiv H^*_{dR}(M, \partial M).$$

(9.69)

These two deRham theories can be identified as the cohomologies of the ‘absolute’ and ‘relative’ sequences

$$d : C^\infty(M) \rightarrow C^\infty(M; \Lambda^1) \rightarrow \cdots \rightarrow C^\infty(M; \Lambda^{\dim M})$$

$$\hat{d} : \hat{C}^\infty(M) \rightarrow \hat{C}^\infty(M; \Lambda^1) \rightarrow \cdots \rightarrow \hat{C}^\infty(M; \Lambda^{\dim M}).$$

(9.70)

The main work here is to prove (9.68) and discuss the corresponding Hodge decompositions – which ultimately are very much as in the boundaryless case. This can be done using the ‘edge’ calculus, or Boutet de Monvel’s ‘transmission’ calculus. I probably will not have the time/energy to include these.

There is a long exact sequence relating the two cohomology theories and the cohomology of the boundary that we will encounter below

$$\cdots \rightarrow H^{k-1}(\partial M) \rightarrow H^k(M, \partial M) \rightarrow H^k(M) \rightarrow \cdots$$

(9.71)

5. Hodge theorems

Rather than the ‘regular metrics’ as in (9.63) I want to consider two classes of metrics which are known in the geometric literature as ‘cylindrical end’ and ‘asymptotically locally Euclidean’ metrics. In fact the precise definition of these terms is a bit vague, so instead I will use the following notation.
Definition 9.2. A b-metric on a compact manifold with boundary is a fibre metric on \(bTM \) which near the boundary is of the form

\[
g_b = \frac{dx^2}{x^2} + h + xh'
\]

on some product decomposition, where \(h \) is a Riemann metric in \(\partial M \) and \(h' \) is a smooth quadratic form on \(bTM \).

A scattering metric is then of the form

\[
g_{sc} = x^{-2}g_b = \frac{dx^2}{x^4} + \frac{h}{x^2} + x^{-1}h'
\]

near the boundary.

Since a product decomposition near the boundary always exists, every compact manifold with boundary has a metric of either type.

Note in particular that an example of (9.73) is a Euclidean metric on a real vector space, written in terms of the radial compactification.

Now, the idea is that we are supposed to think of these metrics ‘categorically’. To analyse the Hodge-Dirac operator, we decompose the form bundle on \(M \), near the boundary, in terms of the product decomposition. So in the case of (9.72)

\[
\Lambda^*_b M = \Lambda^* \partial M \oplus \frac{dx}{x} \wedge \Lambda^* \partial M \text{ near } \partial M.
\]

Then

\[
\partial_b = d + \delta_b = \left(\frac{\partial}{\partial x}, -x \frac{\partial}{\partial x} \right) + xD
\]

sign change comes from having to move past the \(dx/x \) factor. The ‘error’ term here is a b-differential operator. Thus

\[
\partial_b \in \Psi^1_b(M; \Lambda^*_b M), \quad I(\partial_b) = \left(\frac{\partial}{\partial x}, -x \frac{\partial}{\partial x} \right).
\]

If you do not put the \(dx/x \) in (9.74), but use (9.64) instead you will not get a b-differential operator.

There is an analogue of the Hodge isomorphism here.

Theorem 9.2. For a b-metric (9.72) on a compact manifold with boundary there is a natural isomorphism

\[
\{ u \in L^2_b(M; \Lambda^*_b M); \partial_b u = 0 \} \longrightarrow \text{Im} \left(H^k_{dR}(M, \partial M) \longrightarrow H^k_{dR}(M) \right).
\]

For a scattering metric we can proceed in a similar fashion. We ‘rescale’ the form bundle according to the forms in (9.73) which are the ones that pair smoothly with the vector fields in \(xV_b(M) \) – and see that

\[
\Lambda^*_b M = x^{-k} \Lambda^*_b M \oplus \frac{dx}{x^2} \wedge x^{-k+1} \Lambda^{k-1}_b \partial M \text{ near } \partial M.
\]

A short calculation shows that in terms of this decomposition

\[
\partial_{sc} = d + \delta_{sc} = \left(x \frac{\partial}{\partial x} - x^2 \frac{\partial}{\partial x} - x(k + d), -x \frac{\partial}{\partial x} \right) + x^2 D \text{ on } \Lambda^*_b M, \quad d = \dim \partial M
\]

where \(D \) is again a b-differential operator.
Now you may see why I have not needed to develop the theory of ‘scattering pseudodifferential operators’ to handle this case since in fact

$$\partial_{sc} = xR, \ R \in \Psi^1_b(M; \Lambda^* M), \ I(R) = \left(\begin{array}{ccc} \partial_\partial - x\partial_x - (k - d - 1) \\ x\partial_x - k \end{array} \right).$$

This means that it is b-pseudodifferential operators which are relevant for the null space of ∂_{sc}. It is a different matter if you wish to discuss the spectral theory of this operator (which I feel you should want to do)– which is indeed really scattering theory.

Theorem 9.3. For a scattering metric g_{sc} on a compact manifold with boundary of dimension n there is a natural isomorphism

$$\{ u \in x^{\frac{1}{2}} L^2_b(M; \Lambda^k_b M); \partial_{sc} u = 0 \} \rightarrow \begin{cases} H^k(M, \partial M) & k < \frac{1}{2}n \\ \text{Im} \left(H^k_{\text{dR}}(M, \partial M) \rightarrow H^k_b(M) \right) & k = \frac{1}{2}n \\ H^k(M) & k > \frac{1}{2}n. \end{cases}$$

The L^2 space in (9.81) is the metric L^2 space for g_{sc}. Of course the ‘middle dimensional case’ can only occur if n is even.

Try it out for the Euclidean metric on $M = \mathbb{R}^n$. It follows that there is no L^2 null space at all! This corresponds to the fact that here are no L^2 harmonic forms on \mathbb{R}^n – their coefficients would be harmonic functions which would mean they decay at infinity.

Let’s think about a strategy for proving Theorem 9.2. First we need to get some way to approach the deRham cohomology in this setting.

Proposition 9.5. For $\epsilon > 0$ the cohomology of the deRham complex

$$x^\epsilon H^\infty_b(M) \xrightarrow{d} x^\epsilon H^\infty_b(M; \Lambda^1) \xrightarrow{d} \ldots \xrightarrow{d} x^\epsilon H^{-\infty}(M; \Lambda^n_b)$$

is naturally isomorphic to $H^*_{\text{dR}}(M, \partial M)$ and the cohomology of

$$x^{-\epsilon} H^\infty_b(M) \xrightarrow{d} x^{-\epsilon} H^\infty_b(M; \Lambda^1) \xrightarrow{d} \ldots \xrightarrow{d} x^{-\epsilon} H^{-\infty}(M; \Lambda^n_b)$$

is naturally isomorphic to $H^*_{\text{dR}}(M)$.

The main step is the parametrix construction giving some ‘elliptic regularity’ and a Hodge decomposition.

Proposition 9.6. On a compact manifold with boundary and for $\epsilon > 0$ small enough the Hodge-Dirac operator for a b-metric has null$(0)_{L^2_b} \subset x^\epsilon H^\infty_b(M; \Lambda^n_b)$ and is Fredholm as an operator on $x^{-\epsilon} H^\infty_b(M; \Lambda^n_b)$ satisfying

$$x^{-\epsilon} H^\infty_b(M; \Lambda^n_b) = \text{null}(0)_{L^2_b} \oplus d \left(x^{-\epsilon} H^\infty_b(M; \Lambda^n_b) \right) \oplus \delta \left(x^{-\epsilon} H^\infty_b(M; \Lambda^n_b) \right).$$

6. Ellipticity and parametrices

How do we prove say Proposition 9.6? We try to construct a parametrix as a b-pseudodifferential operator; as we shall see this does not quite work; we shall soon see why. An extension of the bounded result above is that...
Lemma 9.7: An element of $\Psi^0_b(M; V)$ is compact as an operator on $L^2_b(M; V)$ if and only if both its principal symbol and its normal operator vanish.

It follows immediately that the same condition is necessary and sufficient for compactness on any of the weighted spaces $x^s L^2_b(M; V)$.

Proof. The important point is the sufficiency, well the necessity is important but only to know! □

To prove that ∂_b is Fredholm as a map $x^{-\epsilon}H^1(M; \Lambda^*_b) \rightarrow x^{-\epsilon}H^1(M; \Lambda^*_b)$ we will want to construct a right parametrix modulo compact operators on $L^2_b(M; \Lambda^*_b)$.

If there were to be an element $B \in \Psi^{-1}_b(M; \Lambda^*_b)$ satisfying

\[(9.85) \quad \partial_b B = \text{Id} - E, \quad E \in x\Psi^{-1}_b(M; \Lambda^*_b)\]

with compact remainder E then we would need to have

\[(9.86) \quad \sigma_1(\partial_b) \sigma_{-1}(B) = \text{Id}, \quad I(\partial_b) I(B) = \text{Id}.\]

The first, symbolic, statement or ‘division problem’ is just ellipticity and is straightforward. The second is an issue, and is almost never possible to satisfy within the class of operators $\Psi^{-1}_b(M; \Lambda^*_b)$.

What is the problem? Well we know that the indicial operator is equivalent, in terms of information, to the indicial family and in this case we can see from (9.76) what it is:

\[(9.87) \quad \hat{I}(\partial_b)(z) = \begin{pmatrix} \partial_b & -iz \\ iz & -\partial_b \end{pmatrix}.\]

We are asking that the inverse of this entire family of pseudodifferential operators on ∂M exist for all $z \in \mathbb{C}$. This is totally unreasonable!

What we can see is that there are values of z for which this operator has null space. In fact we can see exactly what they are. Suppose we have an eigenvector for ∂_b (which we do!)

\[(9.88) \quad \partial_b u = \lambda u \implies \hat{I}(i\lambda) \begin{pmatrix} u \\ -u \end{pmatrix} = 0, \quad \hat{I}(-i\lambda) \begin{pmatrix} u \\ u \end{pmatrix} = 0\]

Then there are points of non-invertibility at

\[(9.89) \quad i \text{Spec}(\partial_b) \subset \mathbb{C}.\]

Lemma 9.8: The indicial family $\hat{I}(\partial_b)$ is invertible for $z \in \mathbb{C} \setminus i \text{Spec}(\partial_b)$ and defines a meromorphic family

\[(9.90) \quad \hat{I}(\partial_b)^{-1} : \mathbb{C} \setminus i \text{Spec}(\partial_b) \rightarrow \Psi^{-1}(\partial M; \Lambda^*_b|_{\partial M})\]

with poles of order 1 at (9.89) with finite residues the orthogonal projections onto the null spaces of \hat{I}.

Proposition 9.7: For any $w \in \mathbb{R}$ the operator $I(\partial_b)$ has an $\mathbb{R}^+\text{-invariant}$ inverse with kernel

\[(9.91) \quad K(s, y, y') \in \text{ff}(M[\partial]; \Lambda^*_b \otimes \pi^*_b \Omega_b)\]

which lies in $s^{-w-\epsilon}H^\infty$ near $s = 0$ and $t^{-w+\epsilon}H^\infty$ near $t = 0 = 1/s$ for $\epsilon > 0$ sufficiently small.
We are mainly interested in the case $w = 0$.

In fact we can be much more specific about the behaviour of this kernel which has expansions as discussed in §Cmb. There is a significant difference between the cases that $w \in \text{Spec}(\partial\vec{b})$ or not. We are actually interested in the case that w is an eigenvalue, in particular 0, of the Hodge-Dirac operator on the boundary.

By elliptic regularity we know that any solution of

\[I(\partial\vec{b})K = \delta(s-1)\delta(y-y') \]

must be smooth away from $\text{Diag}_{\vec{b}}$ where the delta function is supported. The solution given by the Proposition is unique. It has an expansion in the sense of §Cmb.con at the boundaries of $\text{ff}([M[2,\vec{b}])$ determined by the spectrum of $\partial\vec{b}$

\[K \sim \sum_{\lambda_i \geq w} s^{\lambda_i} a_i(y,y') \text{ as } s \downarrow 0 \]

\[K \sim \sum_{\lambda_i > -w} t^{-\lambda_i} a'_i(y,y') \text{ as } s \downarrow 0. \]

Proof. We are really working with the spectral theory of $\partial\vec{b}$ here. First notice that any solution of (157.920) has a conormal singularity at the ‘diagonal’ appearing on the right. Moreover, using the symbol map, we can construct a parameterix satisfying

\[I(\partial\vec{b})K_0 = \delta(s-1)\delta(y-y') - E(s,y,y'), \quad E \in C^\infty_c(\text{ff}([M[2,\vec{b}]). \]

So it remains to ‘solve away’ the error term E which has support in the interior of ff.

We ‘know’ (I hope) that the expansion of a smooth function such as E (valued here in 2×2 matrices acting on $\Lambda^*\partial M$) in the y variable in terms of the eigenbasis of $\partial_{\partial M}$ converges rapidly. So on each eigenspace, with eigenvalue $\lambda_i \in \text{Spec}(\partial_{\partial M})$ we wish to solve

\[\left(\begin{array}{cc} \lambda_i & -s\partial_s \\ -s\partial_s & -\lambda_i \end{array} \right) K'_i(s,y') = E_i(s,y'). \]

This ordinary differential, and \mathbb{R}^+-invariant, equation has a unique solution which vanishes near $s = 0$ and any two solutions differ by an element of the 2-dimensional null space which is spanned by

\[x^{\lambda_i} \begin{pmatrix} u \\ -u \end{pmatrix} \text{ and } x^{-\lambda_i} \begin{pmatrix} u \\ u \end{pmatrix} \]

where u is the eigenvector.

As $s = 1/t \to \infty$ the chosen solution is in the null space. Thus we can arrange (157.922) for this one term by adding the appropriate element of the null space. Summing over the eigenexpansion gives rapid convergence and hence we do in fact find a unique solution to (157.922) with the desired behaviour (157.921) with respect to a given $w \in \mathbb{R}$. There can only be equality there if the right w is equal to one of the eigenvalues but since these form a discrete set the kernel satisfies

\[K \in x^{w-}H^\infty_b \text{ near } \{s = 0\} \text{ and } K \in x^{-w+}H^\infty_b \text{ near } \{t = 0\}. \]
The idea of course is that this kernel is to be the restriction to \(\mathcal{B}(M [2, b]) \) of the parametrix for \(\partial_b \). Now it should be clear why we cannot get a parametrix in the space \(\Psi_1^{-1}(M; \Lambda^*_+ \{2\}) \) – because the solution we have found to (9.111) does not decay rapidly at the boundaries of the front face as required by Definition 9.1.

Definition 9.3. Given a pair of index sets \(\mathcal{E} = (\mathcal{E}_L, \mathcal{E}_R) \) we define

\[
\Psi_b^\infty,\mathcal{E}(M; V, W) = \mathcal{A} \comp \mathcal{A}^L,\mathcal{E}_R(M [2, b]; \pi^*_L W \otimes \pi^*_R (V' \otimes \Omega_b)) + \mathcal{A} \comp \mathcal{A}^L,\mathcal{E}_R(M^2; \pi^*_L W \otimes \pi^*_R (V' \otimes \Omega_b)).
\]

Here the first space consists of \(C^\infty \) sections away from the left and right boundaries of \(M [2, b] \) which are conormal in the sense of \(\mathcal{E} \) with index sets \(\mathcal{E}_L \) and \(\mathcal{E}_R \) at the left and right boundaries.

The second term will not appear below but needs to be there if we want to capture the structure of the generalized inverse.

In fact these operators form a module over the operators in Definition 9.1 and we write

\[
\Psi_b^{m,\mathcal{E}}(M; V, W) = \Psi_b^m(M; V, W) + \Psi_b^{-\infty,\mathcal{E}}(M; V, W).
\]

Lemma 9.9. The elements of \(\Psi_b^{m,\mathcal{E}}(M; V, W) \) define bounded operators from \(x^{w_1} H^\infty_b(M; V) \) to \(x^{w_2} H^{s-m}_{\mathcal{E}}(M; W) \) for any \(s \in \mathbb{R} \) and \(w_1 \geq w_2 \) provided \(w_2 < \inf \Re \mathcal{E}_L \) and \(w_1 > -\inf \Re \mathcal{E}_R \).

7. Hodge theorem for \(b \)-metrics

Using the parametrix constructed above we proceed to prove Theorem 9.2. First we need to finish the proof of Proposition 9.6 and so (9.84). The parametrix constructed in Proposition 9.6 for \(w = 0 \) shows that

\[
\partial_b : x^{-\epsilon} H^\infty_b(M; \Lambda^*) \longrightarrow x^{-\epsilon} H^\infty_b(M; \Lambda^*)
\]

is Fredholm. A complement to the range, namely the annihilator with respect to the metric pairing, is the null space of

\[
\partial_b : x^\epsilon H^\infty_b(M; \Lambda^*) \longrightarrow x^\epsilon H^{-\infty}_b(M; \Lambda^*).
\]

In fact we already know that the null space lies in \(x^\epsilon H^\infty_b(M; \Lambda^*_+) \). In fact this is elliptic regularity at the level of the ‘small calculus’ as in (9.85) or better we know that the error can be arranged to be in \(\Psi_b^{-\infty}(M; \Lambda^*) \). This is not compact but does map

\[
\Psi_b^{-\infty}(M; \Lambda^*) : x^\epsilon H^{-\infty}_b(M; \Lambda^*) \longrightarrow x^\epsilon H^\infty_b(M; \Lambda^*).
\]

We are really interested in the Hodge cohomology, the null space of \(\partial_b \) on the metric space \(L^2_b(M; \Lambda^*) = L^2_b(M; \Lambda^*_+) \). The same elliptic regularity shows that this the same as the null space of \(\partial_b \) on \(H^\infty_b(M; \Lambda^*_+) \) and so contained in the null space of (9.91) – so finite dimensional. Now, the form of the parametrix shows the second ‘boundary’ part of elliptic regularity, namely that the null space of (9.99) consists of elements with expansions, i.e. is contained in \(\mathcal{A}^\mathcal{E}(M; \Lambda^+) \) where the index set is as in (9.89). So we conclude that

\[
\{ u \in x^{-\epsilon} H^{-\infty}_b(M; \Lambda^*); \partial_b u = 0 \} \Rightarrow u - u_0 \in x^\epsilon H^\infty_b(M; \Lambda^*)
\]
where u_0 is smooth up to the boundary, corresponding to $0 \in \text{Spec}(\partial_\theta)$. However, $u_0 \notin L^2_b(M : \Lambda^*)$ – the integral is logarithmically divergent – so

\begin{equation}
\{ u \in L^2(M : \Lambda^*) ; \partial_\theta u = 0 \} \subset x^\epsilon H_b^\infty(M; \Lambda^*) \text{ is the null space of (B.100)}.
\end{equation}

So now we have our Hodge decomposition, initially in the form we have derived from (B.99)

\begin{equation}
(9.104) \quad x^{-\epsilon}H_b^\infty(M; \Lambda^*) = (d + \delta)x^{-\epsilon}H_b^\infty(M; \Lambda^*) \oplus \{ u \in L^2(M : \Lambda^*); \partial_\theta u = 0 \}.
\end{equation}

The Hodge summand here consists of the closed and coclosed elements of $x^\epsilon H_b^\infty(M; \Lambda^*)$ since the positive order of decay is enough to justify the integration by parts argument

\begin{equation}
(9.105) \quad 0 = \langle (d + \delta)u, du \rangle = \|du\|^2_{L^2}.
\end{equation}

So, assuming we accept Proposition 9.3, we already see that the Hodge cohomology, given by (B.103), is mapped into $H^*_\text{dr}(M; \partial M)$. The usual proof of injectivity works.

In fact the extra decay means that

\begin{equation}
(9.106) \quad v \in x^{-\epsilon}H_b^\infty(M; \Lambda^*), dv = 0 \implies \langle v, u \implies L^2 = 0.
\end{equation}

This map is therefore injective to

\begin{equation}
(9.107) \quad \{ u \in x^\epsilon H_b^\infty(M; \Lambda^*) / (x^\epsilon H_b^\infty(M; \Lambda^*) \cap dx^{-\epsilon}H_b^\infty(M; \Lambda^*)) \}
= \text{Im}(H^*_\text{dr}(M, \partial M) \longrightarrow H^b_\text{dr}(M))
\end{equation}

so we have the existence and injectivity of the map (B.114). The Hodge decomposition (B.104), applied to a closed form in $x\epsilon H^\infty_b(M : \Lambda^*)$ gives a two-sided inverse.

Thus Theorem 9.2 is proved.

8. Hodge theorem for scattering metrics

To prove Theorem 9.3 we proceed very much as for a b-metric, obviously with some changes.

First, the L^2 space with respect to a scattering metric is

\begin{equation}
(9.108) \quad x^{n/2}L^2_b(M; \Lambda^*)
\end{equation}

since the Riemannian density is a positive multiple of $x^{-n}\nu_b$. Of course the L^2 space uses the inner product from g_{sc} on the form bundles, which gives a positive-definite inner product on the rescaled bundle Λ^* in (7.78). The Fredholm properties of ∂_{sc} are determined by those of $I(R)$ in (7.80).

So we apply Proposition 9.1 for $w = n/2$ to the elliptic b-differential operator $x^{-1}\partial_{sc}$ and conclude that

\begin{equation}
(9.109) \quad \partial_{sc} : x^{n/2-1-\epsilon}H^\infty_b(M; \Lambda^*_{sc}) \longrightarrow x^{n/2-\epsilon}H^\infty_b(M; \Lambda^*_{sc})
\end{equation}

is Fredholm. Just as in the b-case, the Hodge cohomology

\begin{equation}
(9.110) \quad H^*_\text{sc}(M) = \{ u \in L^2_g(M; \Lambda^*; \partial_{sc} u = 0 \} \subset x^{n/2+\epsilon}H^\infty_b(M; \Lambda^*_{sc})
\end{equation}

is a complement, to the range in (9.109).

We need to analyse the indicial roots of $R = x^{-1}\partial_{sc}$, which is to say the singular values of

\begin{equation}
(9.111) \quad I(R) = \begin{pmatrix} \partial_\theta & -x\partial_x - (N + n) \\ x\partial_x + N & -\partial_\theta \end{pmatrix}
\end{equation}
where N is the number operator on boundary forms. Again these are generated by the spectrum of ∂_0 but the relationship is more complicated than in the b-case above.

Each harmonic k-form, γ, on the boundary, in the null space of ∂_0, generates a two-dimensional space on which $I(R)$ acts, spanned by

$$x^{-k}\gamma, \quad \frac{dx}{x^2} \wedge x^{-k}\gamma.$$

These each correspond to an solution of $I(R)v = 0$, namely

$$x^k\frac{\gamma}{x}, \quad \frac{dx}{x^2} \wedge x^{n/2-k}\frac{\gamma}{x}.$$

The first can be the leading term of a square-integrable form only if $k > n/2$ and the second only if $k < n/2$.

To clarify square-integrability we need to analyze the other indicial roots. An eigenform for ∂_0 with non-zero eigenvector corresponds to a pair of forms, a coclosed $(k-1)$-form h_{k-1} and a closed k-form u_k with $du_k = \lambda u_k$ and $\delta u_k = \lambda e_{k-1}$. These generate a 4-dimensional bundle invariant under $I(R)$ spanned by

$$u_{k-1}\frac{dx}{x^{k-1}}, \quad \frac{dx}{x^2} \wedge \frac{u_k}{x^k}, \quad \frac{u_k}{x^k} \quad \text{and} \quad \frac{dx}{x^2} \wedge \frac{x^{n/2-k}}{x^k}.$$

Since the 2-dimensional space spanned by the first two elements maps into that spanned by the second two and conversely, the null space of $I(R)$ is contained in these two subspaces.

In the two cases the indicial roots correspond to a null vector of

$$\begin{pmatrix} \lambda & -iz + (n-k) \\ iz - k + 1 & -\lambda \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} \lambda & -iz + (n-k+1) \\ iz - k & -\lambda \end{pmatrix}$$

which occur when

$$(iz-k+1)(iz-n+k) = \lambda^2, \quad (iz-k)(iz+n-k+1) = \lambda^2 \implies (iz)^2-(n+1)iz+(n-k)(k-1)-\lambda^2 = 0 \implies iz = \frac{n+1}{2} \pm \frac{1}{2} \sqrt{(n+1)(2k-1)^2-4(n-k)(k-1)+4\lambda^2}, \quad iz = \frac{n+1}{2} \pm \frac{1}{2} \sqrt{(n+1)^2+4\lambda^2}$$

Lemma 9.10. The indicial family $\hat{I}(R)(z)$ acting on $\Lambda^k\partial M \oplus \Lambda^{k-1} \pm M$ is invertible except for

$$z = \frac{d+1}{2} \pm \sqrt{\lambda^2_{j,k} + (\frac{d+1}{2} - k)^2}.$$

where the $\lambda^2_{j,k}$ are the eigenvalues of the Laplacian on ∂M acting on closed k-forms.

9. Atiyah-Patodi-Singer index theorem

Proposition 9.8. Any element $A \in \Psi_b^m(M; V,W)$ which is elliptic, i.e. $\sigma(A)$ is invertible, is Fredholm as a map

$$x^w H_b^s(M;V) \longrightarrow x^w H_b^{s-m}(M;W)$$

for $w \in \mathbb{R} \setminus S$ where $S \subset \mathbb{R}$ is discrete.
Proof. The main point here is that ellipticity alone does imply that the indicial operator \(I(A) \) is invertible as an \(\mathbb{R}^+ \)-convolution operator such a set of weights. The main part of this is that the indicial family

\[
\hat{I}(A) : \mathbb{C} \rightarrow \Psi^m(\partial M; V, W)
\]

which is entire, has a meromorphic inverse – so with a discrete set of poles

\[
b - \text{Spec}(A) \subset \mathbb{C} \text{ s.t. } z_j \in b - \text{Spec}(A), |z_j| \rightarrow \infty \implies |\text{Re } z_j| \rightarrow \infty.
\]

So this means there are only finitely many poles in any strip \(\text{Re } z < R \).

This in turn is a form of ‘analytic Fredholm theory’. For a holomorphic family of elliptic operators, such as we have here, defined on a connected open set, the inverse is meromorphic there is one point at which the operator is invertible. In this case the existence of such a point, and the bound on the set of poles in \((9.120)\) is a consequence of

Lemma 9.11. The indicial family \(I(A)(t + i\tau) \) for \(t \in \mathbb{R} \) is a semiclassical family down to \(\epsilon = \pm 1/\tau \) as \(\tau \rightarrow \pm \infty \) in \(\mathbb{R} \).

Proof.

Then the parametrix construction above generalizes to yield the Fredholm property \((9.118)\) for

\[
w \notin \text{ Re } b - \text{Spec}(A).
\]

So the Fredholm condition for \((9.118)\) for \(w \) in an open set with discrete complement. The index is necessarily constant on the open sets but changes as \(w \) crosses an end-point. In fact there is a multiplicity function corresponding to the algebraic multiplicity of the residues at the poles of \(\hat{I}(A) \),

\[
\text{rank} : b - \text{Spec}(A) \rightarrow \mathbb{Z}
\]

and the change of the index in passing from one interval to the next is the sum of the multiplicity of the points in \(b - \text{Spec}(A) \) with real part corresponding to the end-point. It is elementary to see that the index is a decreasing function of \(w \).

For Dirac operators Atiyah, Patodi and Singer \((\text{APS}\)\) gave a formula for the index which applies in this case. This is extensively discussed, from the present point of view, in \((?\)\). You might ask, is there a formula for the index in this general b-pseudodifferential case? The answer of course is yes!

If you have survived this far, you would certainly be tempted to ask: Is there a families index theorem? There is, at least there is a families index formula for the Dirac case in the literature and this can be extended to the case of families of Fredholm b-pseudodifferential operators. However, unlike the case of one operator discussed above, for an elliptic family of b-pseudodifferential operators on the fibres of a fibre bundle (so of course the fibres are compact manifolds with boundary) there is an obstruction to this forming a Fredholm family.

Proposition 9.9. The family of indicial operators of an elliptic family of b-pseudodifferential operators on the fibres of a compact fibre bundle define an index class in \(K^1 \) the vanishing of which is a necessary and sufficient condition for the existence of a Fredholm family with the same symbol.
10. Spectral and scattering theory

11. What else?

