
Lectures on Microlocal Analysis

18.157, Spring 2022





Contents

Versions 6
Outline and Practicalities 7

Chapter 1. Pseudodifferential operators, manifolds and compactification 9
1. Manifolds with corners 13
2. Compactification 17
3. Collar neighbourhood 21

Chapter 2. Symbols and conormal distributions at a point 25
1. Schwartz kernels 25
2. Homogeneous distributions 29
3. Topology and asymptotic summation 32
4. Integration 34
5. Wavefrontset 34
6. Restriction 35
7. Multiplicativity 36
8. Asymptotic completeness 37
9. ImS (Rn; {0}) as a module 39
10. Action of Ψ∗ on I∗ 40
11. Radial compactification and symbols 41

Chapter 3. The ring Ψ∗(Rn) 45
1. Coordinate invariance of Imc (Rn; {0}) 45
2. Left/right invariance 47
3. Isotropic algebra 53
4. L2 boundedness 55

Chapter 4. Ellipticity and wavefront set 59
1. Ellipticity of symbols 60
2. Ellipticity of pseudodifferential operators 62
3. Wavefront set of a distribution 64

Chapter 5. Propagation of singularities 69
1. Hamiltonian mechanics 69
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Outline and Practicalities

[Revised: 24 January, 2022.]
In this course I hope to cover four (types of) theorems which involve microlocal

analysis and in particular the theory of pseudodifferential operators. Namely

(1) Hörmander’s theorem on the propagation of singularities
(2) Weyl’s law for the distribution of eigenvalues
(3) The Atiyah-Singer index theorem and K-theory
(4) Hodge theory and boundaries

As a first step I will proceed to discuss the algebras of pseudodifferential op-
erators on Euclidean space and on a compact manifold and then similar algebras
(and related modules) on manifolds with boundary and for fibrations and more

157.74157.74 (0.1) Ψ∗(Rn), Ψ∗(M), Ψ∗∗(M)

where the upper star is an order and the lower star is some sort of structural
information.

To me the four results listed above are fundamental, and I like them! The
first two are relatively closely related and both give realization of the ‘semiclassical
limit’, the interplay between the non-commutative theory of (pseudo-)differential
operators and the more familiar behaviour of analysis of functions. The latter two
are more global but both involve the essential invertibility of (pseudo-)differential
operators.

Let me briefly indicate what these theorems are about.
Hörmander’s theorem on the propagation of singularities is a precise version,

and massive generalization, of ‘Huyghen’s Principle’. The latter describes the
spreading of the singular edge of solutions of the wave equation. The precise version
is one of the consequences of ‘microlocalization’, transferring analysis from ‘space’
to ‘phase space’ interpreted concretely as a manifold and its cotangent bundle re-
spectively.

Weyl’s asymptotic formula describes, at ‘high energy’, the number of eigen-
values of a self-adjoint elliptic operator, on a compact manifold, in terms of the
volume inside the energy surface in the cotangent bundle. The original theorem
was actually about the eigenvalues of the Dirichlet problem on a domain in R2.

Elliptic (pseudo-)differential operators on a compact manifold are Fredholm –
they are invertible modulo finite dimensional null space and complement of the
range. The index, the difference of these two dimensions, is a very stable number
in the sense that it only depends on the ‘topology’ defined by the leading part of
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the operator and the theorem gives a formula for it. One classical version of this
is the Riemann-Roch theorem for the ∂ operator on (line bundles over) a compact
Riemann surface. This already requires some effort to understand! There is a
one-dimensional real version of the theorem, due to Toeplitz, which states that the
index of an elliptic Toeplitz operator on the circle (the projection onto the Hardy
space, consisting of the functions smooth on and holomorphic on the interior of the
disk, of multiplication by a non-vanishing smooth function) is equal to (minus) the
winding number of the function.

You probably do know the Hodge theorem for a compact manifold without
boundary as the identification of the deRham cohomology with the space of har-
monic forms. For non-compact manifolds there is no simple generalization, rather
there are many corresponding to structures ‘at infinity’ (meaning near the bound-
ary).

Clearly, each of these theorems could easily expand to take the whole semes-
ter. Still I hope to show how they can be approached using pseudodifferential
operators and ‘quantization’. In fact an alternative title for this course might be
‘Smooth quantization’. So most of the time will be devoted to preparing the back-
ground material, specifically pseudodifferential operators on Rn, pseudodifferential
operators on a manifold, families of pseudodifferential operators and then rings of
pseudodifferential operators quantizing a Lie algebroid.

I plan to give 26 one-hour lectures in the 9:30-10:30 slot on Tuesdays and Thurs-
days and leave 20 minutes for questions and discussions (even short presentations
by students); if there is sufficient interest I will organize another ‘discussion’ time,
perhaps on Wednesdays in the afternoon. There will be notes for each topic (the
precise correspondence to the individual lectures will depend on various things),
which will include topics I will not have time to cover and will certainly include
further references – to books, lecture notes and papers. With any luck at least some
of the lectures should appear on my webpage before the beginning of the semester.

Problem sets: There will be approximately 5, every two weeks. Grading may
be by discussion with me.

Grades: Graduate students are expected to participate actively. That is what
‘A’ means to me. By this I mean that I expect people to attend lectures and to ask
questions. For undergraduates this course might be heavy lifting, it is for me, so
please talk to me by early in the semester at the latest. We can discuss what you
should expect. There are no exams.

Prerequisites: I will assume familiarity with manifolds and distributions, essen-
tially as in 18.155 but plan to review pretty much everything.

Why don’t I just follow a book or my earlier lecture notes? This probably
reflects some personal failing and general dissatisfaction with how things are done!
I find it difficult to think through things without seeing some other way of ap-
proaching them. If it is not to your taste, I am sorry but that is the way it is. I
may not get to all the results listed above, but I expect to at least get to the point
where they are all within reach and that is really what I want to do – try to put
these results in a general context that maybe encourages them to be exploited (i.e.
applied) and extended.

In the interim, feel free to contact me with questions or comments.
Richard Melrose, 17 November, 2021.



CHAPTER 1

Pseudodifferential operators, manifolds and
compactification

L1

The main aim of this course is to describe various algebras of pseudodiffer-
ential operators. Let me start with a traditional ‘crypto-historical’ description of
the ‘standard’ algebra of pseudodifferential operators on Rn. I recall notation for
functions below. Let’s assume you know about the spaces of smooth functions
on Euclidean space and the successively larger subspaces of compactly supported
functions, Schwartz functions and of functions with all derivatives bounded

157.1157.1 (1.1) C∞c (Rn) ⊂ S (Rn) ⊂ C∞∞ (Rn) ⊂ C∞(Rn)

maybe including their topologies and duals.
For any multiindex α ∈ Nn0 , N0 = {0, 1, 2, . . . } being the non-negative integers,

the corresponding iterated partial derivative acts on each of these spaces

157.2157.2 (1.2) u 7−→ Dαu, Dαu(x) = i−|α|
∂α1

∂x1
. . .

∂αn

∂xn
. . . u(x), |α| = α1 + . . . αn

where the normalizing power of i is inserted to help with notation for the Fourier
transform.

These generate the commutative ring of differential operators with constant
coefficients with general element

157.42157.42 (1.3) p(D) =
∑
|α|≤m

cαD
α, cα ∈ C.

This is a filtered ring which is isomorphic to the ring of polynomials in n variables.
Similarly, each of the spaces in (

157.1
1.1) is a ring, so multiplication of functions is

defined. Combining these we consider linear partial differential operators which are
given by sums

157.3157.3 (1.4) P (x,D)u =
∑
|α|≤m

pα(x)Dαu.

In each case, when the coefficients are in one of the spaces (
157.1
1.1), we get an operator

– a continuous linear map – on the corresponding space.
Whilst this is probably very familiar, and the operator product is given explicitly

by Leinbiz’ formula, it is very significant that these form a ring (and algebra) with
product

157.43157.43 (1.5)

P (x,D)Q(x,D) =
∑
γ≤α,β

pα(x)(Dγ
xqβ(x))Dα+β−γ , Q(x,D) =

∑
|β|≤m′

qβ(x)Dβ .

It is worth thinking a little more about what is going on here. First note that (
157.3
1.4)

is not as ‘natural’ as (
157.42
1.3) in so far as we have chosen to write the ‘coefficients’,

9
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the function pα(x), on the left. This is true in (
157.42
1.3) as well but there the constants

commute with the differentiation operators. Of course this is reflected in the fact
that the product (

157.43
1.5) is not commutative.

Now, let’s concentrate Schwartz space. For this we have the Fourier transform

157.4157.4 (1.6) F : S (Rn) −→ S (Rn), F u(ξ) = û(ξ) =

∫
Rn
e−ix·ξu(x)dx.

It is a linear isomorphism. We know that

157.5157.5 (1.7) u ∈ S (Rn) =⇒ F (Dαu)(ξ) = ξαû(ξ).

The Fourier transform conjugates differentiation to multiplication. Whilst a mono-
mial such as ξα is not in the Schartz space, but it does define an operator on it by
multiplication.

So the inverse Fourier transform, u(x) = (2π)−n
∫
eix·ξû(ξ), allows us to write

157.6157.6 (1.8) Dαu(x) = (2π)−n
∫
Rn
eix·ξξαû(ξ)dξ.

A linear partial differential operator, (
157.3
1.4), is given by a finite sum so we can

combine (
157.6
1.8) with (

157.3
1.4) and write

157.7157.7 (1.9) Pu(x) = (2π)−n
∫
Rn
p(x, ξ)û(ξ)dξ, p(x, ξ) =

∑
|α|≤m

pα(x)ξαdξ.

Since û ∈ S (Rn), the integral converges absolutely. If we just assume that the
coefficients are in C∞(Rn) then the integral converges uniformly on compact subsets
in x ∈ Rn, with all its formal derivatives in x because of the obvious estimates

157.8157.8 (1.10) |Dγ
xp(x, ξ)| ≤ CK,γ(1 + |ξ|)m, x ∈ K b Rn, ξ ∈ Rn.

We can actually define the ‘standard’ space of pseudodifferential operators of
order m ∈ R by considering those functions a ∈ C∞(Rnx × Rnξ ) which satisfy the
symbol estimates

157.9157.9 (1.11) |Dγ
xD

β
ξ a(x, ξ)| ≤ Cβ,γ(1 + |ξ|)m−|β|, ∀ γ, β ∈ Nn0 .

Notice that p in (
157.7
1.9) satisfies these estimates for an integer m if the coefficients

are in the space

157.10157.10 (1.12) C∞∞ (Rn) = {f ∈ C∞(Rn); sup |Dγ
xf(x)| <∞ ∀ γ},

consisting of the smooth functions with all derivatives bounded.
The space of functions satifying estimates (

157.9
1.11) is often written Sm1,0 as part

of a more general class of spaces Smρ,δ where the exponent m − |β| is replaced by

m − ρ|β| + δ|α|. Since we will not need the general ρ, δ spaces – in fact there are
many variants of such estimates (see for instance

Hormander-WeylCalculus
[5]) – and we will already have

enough things to think about I will use the shorter notation, for the moment just
Sm = Sl1,0 for the functions satisfying (

157.9
1.11).

It follows directly from (
157.9
1.11) that if a ∈ Sm then the direct generalization of

(
157.7
1.9),

157.11157.11 (1.13)

A(x,Dx)u = Au(x) = (2π)−n
∫
Rn
a(x, ξ)û(ξ)dξ =⇒ a : S (Rn) −→ C∞∞ (Rn).

In fact much more is true:
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157.12 Theorem∗ 1.1. 1 The space of operators, Ψm(Rn) = Ψm(Rn) defined by sym-
bols, a, satisfying (

157.9
1.11) act on S (Rn) and form a filtered ∗-closed (∗ for adjoint

here) ring

157.13157.13 (1.14) Ψm(Rn) ◦Ψm′(Rn) ⊂ Ψm+m′(Rn), ∀ m,m′ ∈ R.
This is the main content of the first chapter of

iml
[6], see also Grigis-Sjöstrand

MR1269107
[3].

Probably the first place this result appeared in this form is
Hormander-pseudo
[4].

It is not that it is so hard to prove such a result, it is rather that I prefer to
approach it from a position of strength, so somewhat indirectly, in the sense that I
want to give a good deal of background before proving it.

Still2 it is important to see what is straightforward to prove and
what may require some more thought. First let’s make sure we
do have (

157.11
1.13).

Proof of (
157.11
1.13). If u ∈ S (Rn) then the product

a(x, ξ)û(ξ) ∈ S−∞ =
⋂
M∈R

SM 157.44157.44 (1.15)

meaning that the estimates in (
157.9
1.11) hold for all m. Indeed this

is just the product rule for differentiation. Written out fully in
terms of Leibniz’ formula

Dγ
xD

β
ξ (a(x, ξ)û(ξ)) =

∑
γ≤β

(
β

γ

)
Dα
xD

γ
ξ a(x, ξ) ·Dβ−γ

ξ û(ξ).157.45157.45 (1.16)

Then one can apply the more obvious fact the product is rapidly
decaying in ξ :

Sm · S (Rnξ ) ⊂ Sm−k ∀ k ∈ R. 157.46157.46 (1.17)

The integral (
157.11
1.13) is therefore convergent. Again, if you

like to be precise, you can see that

Sm ⊂ C 0
∞(Rn;L1(Rnξ )), m < −n 157.47157.47 (1.18)

since (1 + |ξ|)−n−ε ∈ L1(Rn) if ε > 0. Now we can use standard
properties of Lebesgue (or improper Riemann) integrals to see
that Au ∈ C 0

∞(Rn) is a bounded continuous function and the
same holds for all derivatives giving (

157.11
1.13). �

We should check a couple of other statements, towards The-
orem

157.12
1.1. First the stronger mapping property that

A : S (Rn) −→ S (Rn). 157.48157.48 (1.19)

This is a matter of getting ‘decay’. Namely we need to show
that for any monomial and any derivative

xγDα
xAu ∈ C 0

∞(Rn). 157.49157.49 (1.20)

We can approach this one step at a time, asking just about xjAu.
Note that we can certainly multiply by xj but the operator xjA
is not in general in Ψm(Rn) (for any m) since xja(x, ξ) is not

1The ∗ in the header of the theorem is to indicate that I will not prove it immediately but a

full proof, and more, will follow later.
2Narrowed parts of a lecture are things I don’t expect to have time to cover.
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bounded as |xj | → ∞ even for fixed ξ. However the integral in
(
157.11
1.13) still converges rapidly in ξ for x in a compact set if we

replace a by xja so

xjA : S (Rn) −→ C∞(Rn) 157.50157.50 (1.21)

for instance.

157.51 Lemma 1.1. In the sense of operators (
157.50
1.21)

[xj , A] = xjA−Axj ∈ Ψm−1(Rn). 157.52157.52 (1.22)

Proof. We use ‘integration by parts’. Consider the opera-
tor Axj . The Fourier transform of xju, u ∈ S (Rn) is i∂ξj û so

Axju = (2π)−n
∫
a(x, ξ)eix·ξi∂ξj û(ξ)dξ = xjA(x,D)u+ bj(x,D)u,

bj(x, ξ) = −i∂ξja(x, ξ) ∈ Sm−1.

The rapid decay of a(x, ξ)û(ξ) in ξ means that∫
∂ξj
(
a(x, ξ)eix·ξû(ξ)

)
dξ = 0. 157.55157.55 (1.23)

Proceeding by induction we conclude that

xγA(x,D) =
∑
δ≤γ

Bδ(x,D)xδ, Bδ(x,D) ∈ Ψm−|γ|+|φ|(Rn).157.56157.56 (1.24)

�

We will be most interested in a smaller space which I will denote Ψm
cl (Rn) often

called the ring (with the composition property (
157.13
1.14)) of ‘classical’ pseudodifferen-

tial operators where the symbols a have the additional property:

157.453 Definition 1.1. A symbol in the sense of (
157.9
1.11) is classical (also ‘polyhomo-

geneous’) if there exists a sequence ai ∈ C∞(Rnx × (Rnξ \ {0})) of homogeneous

functions of degree m− i (in the ξ variables)

157.14157.14 (1.25) ai(x, tξ) = tm−ia(x, ξ), t > 0, (x, ξ) ∈ Rn × (Rn \ {0})
such that for (any) cutoff χ ∈ C∞c (Rnξ ) with χ = 1 near 0

157.15157.15 (1.26) a(x, ξ)−
N∑
i=0

(1− χ(ξ))ai(x, ξ) ∈ Sm−N−1.

These ‘classical’ symbols form a filtered subring Smcl ⊂ Sm = Sm. The relation-
ship (

157.15
1.26) (see Problem set 1) is often written

157.33157.33 (1.27) a '
∑
i

ai

and a is then said to have a complete asymptotic expansion. Such ‘asymptotic
summation’ (the existence of a given the ai) is discussed below, it is closely related
to E. Borel’s ‘Lemma’ on Taylor series. There is no statement of convergence of the
series in (

157.15
1.26) (although there is one lurking in the background) but you should be

able to see that the ai, assuming they exist are determined by the relations (
157.15
1.26).

When we insert such classical symbols in (
157.11
1.13) (or if you prefer, restrict to

classical symbols) the resulting space of constitutes a filtered subring Ψm
cl (Rn) ⊂
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Ψm(Rn) which for positive integral m includes the differential operators of order m
discussed above.

These two rings have many important properties but one of the most important
is that one can recover the terms ai in (

157.15
1.26) from the operator A and the leading

term defines the principal symbol, σm, as a map
157.16157.16 (1.28)

Ψm
cl (Rn)

σm // {a0 ∈ C∞(Rn × (Rn \ {0}) homogeneous of degree m in ξ}.

and this map is surjective, multiplicative and defines a short exact sequence

157.17157.17 (1.29)

σm+m′(A ◦B) = σm(A)σm′(B), A ∈ Ψm
cl (Rn), B ∈ Ψm′

cl (Rn)

Ψm−1
cl (Rn) ↪→Ψm

cl (Rn) −→
{a0 ∈ C∞(Rn × (Rn \ {0})) homogeneous of degree m in ξ}

Here I have stuck with a cumbersome notation for the homogeneous space which
will be refined below. There are similar exact sequences for the larger algebra
Ψ∗(Rn) but the principal symbol lies in a quotient space.

So, we want to prove all these things and a lot more! However, I do not want to
go there directly but rather map out the territory a bit first, in particular discussing
the ‘symbol spaces’ concretely. L1-end

1. Manifolds with corners

This might appear to be a serious non-sequitor but I hope you will get used
to the idea of these sections on background material and see a bit later why I am
proceeding this way.

Both for ‘local’ analysis and the formulation of global results it is very conve-
nient to focus on manifolds with corners as our basic ‘category of spaces’ (which it
is as will be made precise later). There are several reasons to introduce these. An
immediate one is to understand the symbol spaces and their generalizations. This
I will get to next time. This allows me to introduce the spaces of conormal distri-
butions which arise as the Schwartz kernels of the pseudodifferential operators we
are interested in. Thinking about the kernels abstractly will allow us to generalize
readily later. This involves manifolds with boundary, but then products will get
you to manifolds with corners.

So, this is one of the basic settings for the course – analysis on manifolds with
corners – but only taken as far as we need for the moment. Let me start with an
explicit definition and then explain all the terms used in it. I’m assuming familiarity
with the standard definition of a manifold without boundary.

157.34 Definition 1.2. A manifold, M, is a metrizable, separable (so second count-
able) topological space with an open covering giving a (maximal) atlas of C∞-related
coordinate patches modeled on [0,∞)n and with embedded boundary hypersurfaces.

I will not assume connectedness without explicitly saying so, but the definition
then requires all the components to have the same dimension.

So we are given a separable metric space, M, but the ‘metrizable’ means we
do not take the actual metric seriously, just the open sets it defines as the unions
of open balls. A coordinate patch in such a topological space is a triple (F,U, V )
consisting of a homeomorphism F : U −→ V of an open subset U ⊂ M onto a
(relatively) open subset V ⊂ [0,∞)n. So this means there exists an open subset
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V ′ ⊂ Rn such that the range V = V ′ ∩ [0,∞)n. The coordinates on the coordinate
patch are the pull-backs of the coordinate functions xi on Rn.

To make clear what ‘C∞-related’ for two such coordinate patches means, we
need to define C∞(V ) (I will not bother with lower regularity than C∞):

157.35157.35 (1.30) C∞(V ) = {u : V −→ R( or C);

∃ V ′ ⊂ Rn open V = V ′ ∩ [0,∞)n, u′ ∈ C∞(V ′) and u = u′
∣∣
V
}.

So I am assuming you know about C∞(V ′) for open subsets of Rn.
Now the C∞-compatibility of two coordinate patches (Fi, Ui, Vi), i = 1, 2, as

introduced above, means that either U1 ∩ U2 = ∅ or else the transition maps

157.36157.36 (1.31)
F12 = F1 ◦ F−1

2 : F2(U1 ∩ U2) −→ F1(U1 ∩ U2) and

F21 = F2 ◦ F−1
1 : F1(U1 ∩ U2) −→ F2(U1 ∩ U2)

are C∞ in the sense that F ∗12 : C∞(F1(U1 ∩ U2)) −→ C∞(F2(U1 ∩ U2)) and F ∗21 :
C∞(F2(U1∩U2)) −→ C∞(F1(U1∩U2)); this is equivalent to saying either pull-back
map is an isomorphism. This is also equivalent to saying that the pull-backs of the
coordinate functions, under either of the maps Fi, restrict to U1 ∩ U2 to be C∞

functions of the other coordinates.
So now an atlas is a covering by such (pairwise) C∞-compatible coordinate

patches. If some coordinate patches are compatible with all the elements of an
atlas then the combined collection is still an atlas – they are necessarily compatible
amongst themselves as well. Hence any atlas is contained in a unique maximal atlas
– all this is as in the boundaryless case.

If we just stop at this point then M is what I call a tied manifold although
there is no general agreement on this. The missing point is the additional condition
that ‘boundary hypersurfaces are embedded’. A point in a coordinate patch is a
boundary point of codimension k if exactly k of the coordinate functions vanish on
it (note that coordinate patches map into [0,∞)n so by fiat all coordinates are non-
negative – I will actually drop this requirement later but it makes things easier to
state initially). By considering the differential of the transition map it follows that
the codimension is well-defined at each point, it is independent of the coordinate
patch used. This means that M has a stratification, a decomposition into disjoint
pieces, based on the codimension

157.37157.37 (1.32) M = M0 ∪M1 ∪ · · · ∪Mn

where the Mj can be empty (from some k > 0 onward). The points of boundary
codimension zero are the interior points of the manifold (there is a slight incon-
sistency between openness of subsets of [0,∞)n and this, so the interior there is
(0,∞)n, of course otherwise there would be no point in talking about the interior
of a relatively open subset).

Each Mj itself is a manifold without boundary and the closures of the compo-
nents of the Mj are called the boundary faces of codimension j; the set of these
boundary faces I will write as M j(M). In particular the boundary faces of codimen-
sion one, the Hi ∈ M1(M) are called the boundary hypersurfaces. The ‘boundary
hypersurfaces are embedded’ part of the definition is just the statement that the re-
strictions of the coordinate patches to each Hi given them C∞-compatible atlases.
One consequence of this is functorial, that the boundary hypersurfaces (and in
consequence all boundary faces) are themselves manifolds with corners. There are
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several useful ways to restate this condition but note how it fails for a ‘tear-shaped
region’ in the plane.

The C∞ functions on M are those that are C∞ in each coordinate patch, mean-
ing

157.38157.38 (1.33) f ∈ C∞(M)⇐⇒ (F−1)∗(f
∣∣
U

) ∈ C∞(V ) for each coordinate patch.

This is equivalent to the same condition for any one compatible atlas.
The direct consequence of the ‘embedded’ requirement is that the boundary

hypersurfaces have defining functions:

157.39157.39 (1.34) Hi ∈M1(M) =⇒ ∃ ρi ∈ C∞(M), ρi ≥ 0, Hi = {ρi = 0},
d((F−1)∗ρi)(F (p)) 6= 0 ∀ p ∈ Hi for all coordinate patches containing p.

This last condition means that for each p ∈ Hi there is a coordinate patch containing
p in which ρi is a coordinate function.

If M̃ is a manifold without boundary, i.e. M̃1 = ∅, then M ⊂ M̃ is a(n embed-

ded) submanifold if M has a covering by coordinate patches of M̃ which restrict to
give it the structure of a manifold with corners.

157.40 Theorem 1.2. For any manifold with corners there exists a manifold without
boundary M̃ of the same dimension in which M is embedded as a submanifold; if
M is compact then M̃ can be taken to be compact.

Although there is no quite canonical way of constructing such an extension, M̃,
all the standard constructions of the tangent, cotangent, form bundles and other
bundles associated to the frame bundle, pass over to the case of a manifold with
corners in such a way that the restrictions for an extension of this type are canonical

157.41157.41 (1.35) TM = TM̃
∣∣
M
, T ∗M = T ∗M̃

∣∣
M

etc.

However, there are important additional structures which arise from the boundary
faces as I will discuss later.

Why work in this degree of generality? Manifolds with corners are the smooth
(i.e. C∞) analogue of smooth algebraic varieties with divisors and they occur for
similar reasons. One place manifolds with corners arise is through ‘compactifica-
tion’.

Remark 1. From now on the default meaning for ‘manifold’ is a manifold with
corners.

As you are no doubt aware, it is bad form to specify a class of objects, in this
case manifolds without specifying the ‘morphisms’ between them. For manifolds
without boundary the morphisms, forming a category, are just the smooth maps.
This also works when there are corners but it is not a good idea. The problem is
that a smooth map F : M −→ N in general does not ‘respect’ the boundary. For
instance a smooth curve, so M = (0, 1) might have a single point of tangency to a
boundary hypersurface.

What we want are b-maps, where as always the b- just stands boundary. Each
boundary hypersurface is specified by the ideal of functions which vanish on it;
this is a principal ideal because we are assuming boundary hypersurfaces to be
embedded. So if ρH is a defining function for H ∈M1(M) then

157.965157.965 (1.36) I (H) = ρHC∞(M).
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We do want our maps to be smooth of course, and then

157.966157.966 (1.37) F ∗I (H) ⊂ C∞(M).

157.967 Definition 1.3. A smooth map F : M −→ N between manifolds (with cor-
ners) is a b-map if for each H ∈M1(N) one of the following is true

(1)

157.968157.968 (1.38) F ∗I (H) = {0}

(2) There is a map F#(H) : M1(N) −→ N0, not identically zero, such that

157.969157.969 (1.39) F ∗I (H) =
∏

K∈M1(M)

I (K)F#(H,K), F#(H,K) = F#(H)(K).

(3)

157.970157.970 (1.40) F ∗I (H) contains a non-vanishing element.

The third case corresponds to F#(H) as in the second, with all entries 0. This is
more evident if one chooses a defining functiona ρ′H for H and ρK for the boundary
hypersufaces of M and then the three cases correspond to F ∗ρ′H = 0,

157.971157.971 (1.41) F ∗ρ′H = a
∏

K∈M1(M)

ρ
F#(H,K)
K ,

and F ∗ρ′H > 0.

157.972 Proposition 1.1. Manifolds with corners are the objects of a category with
b-maps as morphisms.

Just as for manifolds without boundary, the tangent bundle is a manifold well-
defined manifold with a smooth bundle projection

157.973157.973 (1.42) π : TM −→M.

157.974 Exercise 1. Check that π is a b-map!

Smooth vector fields, sections of TM, are important for several reasons, for one
they are natural operators

157.977157.977 (1.43) V : C∞(M) −→ C∞(M), V (uv) = uV v + vV u.

Perhaps the most fundamental is that real vector fields can be integrated. The usual
local existence theorem fails on manifolds with corners as soon as the boundary is
non-trival – since the integral curves will often tend to ‘leave the manifold’. This
is one reason to consider the space

157.975157.975 (1.44) Vb(M) = {V ∈ C∞(M ;TM);V is tangent to the boundary}.

Tangency to the boundary can be interpreted in terms of the action (
157.977
1.43) and the

ideals I (H) for H ∈M1(M), as the statement

157.976157.976 (1.45) V : I (H) −→ I (H) ∀ H ∈M1(M).

Tangency to the corners is then automatic.
We will consider Vb(M) more closely below but for Vb(M) the standard local

existence theorem holds.
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157.978 Lemma 1.2. For a real-valued element V ∈ Vb(M) and each p ∈M there exists
a maximal integral curve

157.979157.979 (1.46) χp : Ip −→M, 0 ∈ Ip ⊂ R open and connected, χp(0) = p,

◦A(χp)∗(
d/dt

)
= V (χ(t)) with Ip maximal.

As usual, if M is compact then I = R always. In any case these integral curves
always define a smooth map on the open set

157.980157.980 (1.47) F : O =
⋃
p∈M

(Ip × {p}) 3 (t, p) 7−→ χp(t) ∈M.

If M is compact this is a 1-parameter family of diffeomorphisms of M.
With a little work you can see that

157.982 Proposition 1.2. On a compact manifold the Lie algebra of the groupd of
diffeomorphisms is Vb(M).

Note that this infinite-dimensional group is missing some properties of a Lie group,
for one the diffeomorphism obtained by integrating the Lie algebra do not contain
a neighbourhood of the identity. This can be obviated by considering parameter-
dependent vector fields.

If W is a t-depedent smooth vector field on M, so a vector field in Vb(U) for an
open subset U ⊂ Rt ×M such that V t = 0 then Lemma

157.978
1.2 yields a 1-parameter

family of diffeomorphisms, Gt defined on an appropriate open subset, and satisfying

157.981157.981 (1.48)
d

dt
(Gt)

∗f = (Gt)
∗(Wf +

df

dt
), f ∈ C∞(R×M).

This invariant formulation of the chain rule, and its generalizations, are used below
in various constructions.

2. Compactification
T1.Compactification

Although we will deal with non-compact manifolds, the ones that arise below
have some ‘structure at infinity’. One way to describe what this means is through
the notion of compactification.

157.18 Definition 1.4. A compactification of a manifold M is a compact manifold
M and a smooth injection ι : M −→M which is a diffeomorphism to a (relatively
of course) open dense submanifold.

Here, both M and M may have corners. As always when introducing a new
notion, we should specifiy when two compactifications are to be regarded as ‘the
same’.
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157.19 Definition 1.5. Two compactifications ιi : M −→ M i are equivalent if there
exists a diffeomorphism e : M1 −→M2 giving a commutative diagramme

157.20157.20 (1.49) M1

e

��

M

ι1

==

ι2

!!
M1.

Notice that the equivalence map e is unique if it exists since it is fixed on an
open dense subset by (

157.20
1.49). We also say that one compactification is finer than

another if there is a smooth map e giving a commutative digaramme; again it if it
exists it is determined. This defines a partial order on compactifications – as we
shall see below there can be non-comparable compactifications.

If M is compact it is a compactification of itself and it is unique in this sense
of equivalence.

We might well want more structure for the compactification – for instance if
M is a complex manifold then we might want M to be complex and all maps
to be holomorphic. There are important examples from algebraic geometry here.
Most relevant at the moment is the projective compactification of a complex vector
space W ↪→ PW which I mention below but there are much more sophisticated
examples to check out. There is the Deligne-Mumford compactification of the
Riemann moduli spaces Mg,n (okay I hear a complaint from someone that the
Mg,n are not quite manifolds, they are orbifolds in general, but take the number
of punctures n large compared to the genus g ≥ 0). Also there is the deConcini-
Procesi ‘wonderful’ compactification of complex adjoint Lie groups

deConcini-Procesi
[2] (there is a

real version of this compactification in
CoSLG
[1]). Also, compactificaiton of ‘Gravitational

Instantons’ (aren’t the Physicists good at inventing names!)
The examples I will consider immediately are more prosaic, namely of a real

finite-dimensional vector space V. This is both to illustrate the notion and for later
reference. I will discuss

(1) The one-point compactification(s) given by a sphere V
o
.

(2) The parabolic compactification gives a closed ball V
p
.

(3) The radial compactification also given by a closed ball V = V
R
.
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x

y

0

t

ι(t)

From the notation you can see that I have a preference for the radial compacti-
fication – I hope the discussion below shows why. Only the radial compactification
is really used subsequently.

These can all be constructed using variants of stereographic projection. So, let’s
start with V = Rn, i.e. choose a basis. We embed Rn into Rn+1 as the hyperplane

157.21157.21 (1.50) Rn 3 x 7−→ (x, 1) ∈ P ⊂ Rn+1.

In the first, case consider the the sphere So of radius 1
2 centred at (0, 1

2 ) and in the
second and third cases take the sphere SR of radius 1 centred at the origin. In both
these latter cases a point of Rn determines a unique line Lo(x) or LR(x) through
the image of x in P and the centre of the corresponding sphere then

157.22157.22 (1.51)
Io : Rn −→ So, Iox is the other point in So ∩ Lo(x)

IR : Rn −→S+
R,

IRx is the other point in SR ∩ L1(x) ⊂ S+
R = SR ∩ {xn+1 ≥ 0}

Ip : Rn −→Bp ⊂ Rn,
Ipx is the projection of LRx onto the closed unit ball in Rn × {0}.

In all three cases the full orthogonal group O(n), acting on the first factor of Rn×Rn
satisfies I•Ax = AL•x for all A ∈ O(n), effectifely reducing the discussion to the
case n = 1. Explicit formulæ for the maps are easily derived:

157.23157.23 (1.52)

Iox =

(
x

1 + |x|2
,

1

1 + |x|2

)
∈ So ⊂ Rn+1

+

IR =

(
x

(1 + |x|2)
1
2

,
1

(1 + |x|2)
1
2

)
∈ S+

R ⊂ Rn+1
+

Ipx =
x

(1 + |x|2)
1
2

∈ Rn.
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Thus, for the radial compactification (1 + |x|2)−
1
2 is a boundary defining function

and hence |x|−1, which is a smooth function of it away from x = 0, is a defining
function near the boundary. It follows that

157.27157.27 (1.53) {|x| > ε > 0} 3 x 7−→
(

1

|x|
,
x

|x|

)
∈ [0, 1)× Sn−1

extends to a smooth product decomposition of RnR near the boundary. For the
parabolic compactification it follows similarly that

157.28157.28 (1.54) {|x| > ε > 0} 3 x 7−→
(

1

|x|2
,
x

|x|

)
∈ [0, 1)× Sn−1

is a product decomposition near the boundary.
It can be seen directly that

157.24157.24 (1.55) Io

(
x

|x|2

)
= SIo where S : So \ {(0, 1), (0, 0)} −→ So \ {(0, 1), (0, 0)},

with S(y, yn) = (y,−yn + 1)

is equatorial reflection on So.
In all cases it is clear either geometrically, or from the forumlæ (

157.23
1.52), that the

action of O(n) extends smoothly from Rn to the compactification. Similarly the
scaling action by R+, with generator on Rn

157.25157.25 (1.56)
∑
i

xi
∂

∂xi

extends smoothly. For the one-point compactification this follows from (
157.24
1.55) and

in the other two cases

157.26157.26 (1.57) lim
|x|→∞

tx

(1 + t|x|2)
1
2

=
x

(|x|2)
1
2

and lim
|x|→∞

1

(1 + t|x|2)
1
2

= 0.

Thus in all cases the action of the conformal group O(n)×R+ extends smoothly
to the compactification.

157.29 Proposition 1.3. The action of the general linear group extends smoothly
from Rn to the radial and parabolic compactifications, but not to the one-point
compactification; the translation action of Rn extends smoothly to the radial and
the one-point compactifications, but not to the parabolic compactification and there
are smooth surjective maps, which are not diffeomorphisms, giving a commutative
diagramme

157.30157.30 (1.58)

GL(n,R) nRn

Sn+
R

yy %%
O(n) n (R+ × Rn) Sn0 RnIooo

IR

OO

Ip // Bnp GL(n,R).
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Outline of proof. That the group actions extend as indicated follows by
noting that the Lie algebra of GL(n,R) consists of vector fields homogeneous of
degree 0 and similarly the translations are homogeneous of degree −1. Similar
arguments show that the groups shown are the maximal subgroups of GL(n,R)nRn
which extend to act smoothly on the one-point and parabolic compactifications. �

157.31 Corollary 1. The one-point compactification is defined for a vector space
with conformal-Euclidean structure, the radial comactification is well-defined for
an affine space and the parabolic compactification is well-defined for a vector space.

Both the radial and the parabolic compactifications have boundaryless vari-
ants, in which the bounding sphere is replaced by an embedded projective space
Sn−1/± by doubling across the boundary. The apparent advantage of this smaller
compactification does not seem to be realized in practice.

157.32 Conjecture 1. The five compactifications are minimal in their respective cat-
egories (i.e. as manifolds with/without boundary) among compactifications with the
invariance properties in (

157.30
1.58).

Although, as noted above, it is the radial compactification which mostly appears
below, other variants are relevant. In particular none of these compactifications are
natural for products – the radial compactification of V1 × V2 is not ‘comparable’
to the products of the radial compactifications. Still, the relationship between the
radial compactification of the product of vector spaces and the product of the radial
compactifications is significant and will be examined later.

3. Collar neighbourhood
Sect.collar

157.447 Remark. Edited by Paige Dote

This theorem provides a rather precise description of a neighbourhood of a
closed embedded submanifold, Y ⊂ M where M is an n-dimensional manifold.
The usual proof exploits the geodesic flow for a metric on M, but here we give a
related approach using the notation of a radial vector field for Y. This is very closely
related to the linearization theorem of Sternberg (

Sternberg
[?]). We also carry it out in the

context of manifolds with corners.
A closed p-submanifold (p- if for ‘product’ it really is the natural notion of a

submanifold in the case of a manifold with corners) is a closed subset Y ⊂M such
that for each point y ∈ Y , there exists adapted coordinates based at y in M in
terms of which Y is linear. Precisely, in a neighbourhood Uy ⊂M of y, there exists
coordinate functions xi ≥ 0, yj ∈ C∞(Uy) for i = 1, . . . , k and j = 1, . . . , n−k with
independent differentials and

157.448157.448 (1.59) Y ∩ Uy = {x1 = · · · = xd′ = 0, y1 = · · · = yn′−d′ ==}.

It follows that Y is itself a submanifold, with these as adapted coordinates for Y.
Note that if d′ > 0 here then Y is actually contained in a boundary face (assum-

ing it is connected, in any case one component is). Boundary faces themselves are
clearly p-submanifolds but quite a few natural submanifolds are not. For instance
the diagonal in M2, where ∂M 6= ∅, is not a p-submanifold. This turns out to be
rather significant.

We note the following
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Definition 1.6. A smooth vector field, V ∈ Vb(M) is tangent to Y if V f
∣∣
Y

= 0

for any f ∈ C∞(M) with f
∣∣
Y

= 0. A smooth vector field vanishes on Y if V f
∣∣
Y

= 0

for all f ∈ C∞(M).

In adapted coordinates for Y , V is tangent to Y if it takes the form

V =

d∑
i,j=1

xiai,j∂xj +

n−d∑
k=1

bk∂yk

where ai,j , bk are smooth coefficients.
Similarly, V vanishes on Y if

157.449157.449 (1.60) V =

d∑
i,j=1

xiai,j∂xj +

d∑
i=1

n−d∑
k=1

xibi,k∂yj =

d∑
i=1

xiWi

Where the Wi are smooth as are the ai,j , bi,k.

Definition 1.7. The differentials of functions which vanish on Y define the
conormal bundle N∗Y ⊂ T ∗YM .

Hence, in adapted coordinates N∗Y has the basis

dx1, . . . ,dxd.

For each y ∈ Y, N∗yY is the annihilator, in T ∗yM, of TyY ⊂ TyM. By duality,
the normal bundle NY = TYM/TY is spanned by

∂x1
, . . . , ∂xd .

Theorem 1.3 (Collar, or normal, neighbourhood). For a closed embedded sub-
manifold Y ⊂ M there is a neighbourhood, T , of the zero section ON ⊂ NY ,
a neighbourhood Ω ⊂ M of Y , and a diffeomorphism F : T → Ω satisfying the
additional conditions

I1 (1) F (0N ) = Y is the natural identification and
I2 (2) F∗ : N(0N )→ NY is the identity.

Here, the bundle projection from NY to Y restricts to a diffeomorphism π :
ON → Y giving meaning to (

I1
1). Then, the tangent space to 0N is mapped to TY

as the identity. It follows that the normal bundle to 0N in NY is mapped to the
normal bundle NY by F. Additionally, for any vector bundle, the normal bundle to
the zero section is naturally identified with the bundle itself, so F∗ lifts to a bundle
map for NY to NY which is required to be the identity in (

I2
2).

Adapted coordinates give such a collar neighbourhood locally, so the challenge
is to make this global.

A vector field on M which vanishes on Y induces a linear map at each point of
Y :

L(V, y) : N∗yY → N∗yY

through

N(V, y)ξ = d(V f)(y)

where, for ξ ∈ NY, f ∈ C∞(M) has f
∣∣
Y

= 0 and df(y) = ξ. In terms of (
157.449
1.60),

N(V, y)dxj =

d∑
i=1

ai,j(y)dxi.
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Definition 1.8. A smooth (real) vector field, R, on M is radial on Y if it
vanishes at Y and

L(V, y) = Id

for all y ∈ Y .

Lemma 1.3. There is a radial vector field for any closed embedded submanifold,
and the difference between two such radial vector fields is locally a sum

∑
xiWi

where the Wi are tangent to Y .

The existence of a radial vector field follows from a ‘patching’ argument. Lo-
cally, in adapted coordinates, we have an obvious radial vector field in the Euler
field

R0 =

d∑
i=1

xi∂xi .

which is the generator of the scaling action

157.961157.961 (1.61) (x, y) 7−→ (tx, y), t > 0.

There is no constraint on a radial vector field away from Y at all. So one can
take functions ϕa ∈ C∞c (M) with locally finite supports such that each suppϕa is
contained in an adapted coordinate patch for Y and

∑
ϕa = 1 in a neighbourhood

of Y. Then,

R =
∑
a

ϕaR0,a

is radial with the R0,a being the coordinate Euler vector fields.
As a smooth real vector field, there is a unique integral curve of R through

each point of M. For R0 these are curves with xi = etxi and yi = yi so that xi ↓ 0
as t → −∞. For a general radial vector field the same is true near Y in the sense
that

Lemma 1.4. If R is a radial vector field for Y then Y has an open neighbourhood
such that the integral curves of R, as t → −∞, approach R smoothly in et with a
non-vanishing limiting tangent vector at Y.

As remarked at the beginning, this is a linearization theorem in the spirit of Stern-
berg.

Proposition 1.4. Near any point of Y there are adapted coordinates in terms
of which in which a given radial vector is the Euler vector field.

Proof. This can be seen using the homotopy method of Möser. In any adapted
coordinates, the radial vector field has the form

R = R0 +
∑
i,j,p

xixjai,j,p∂xp +
∑
i,k

xibi,k∂yk

for smooth coefficients ai,j,p and bi,k. Pushing R formward under the inverse of the
scaling diffeomorphism (

157.961
1.61), we obtain the one parameter family of vector fields

157.450157.450 (1.62) Rt = R0 +
∑
i,j,p

txixjai,j,p(tx)∂xp +
∑
i,j

txibi,k(tx, y)∂yk .
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This family is smooth down to t = 0, and Rt
∣∣
t=0

= R0. Since this is ’exponential
scaling’ in terms of R0, we see that

157.452157.452 (1.63) t
d

dt
Rt = [R0, Rt],

which can easily be checked directly. The t-dependent vector field

157.451157.451 (1.64) Wt =
1

t
(Rt −R0)

is smooth and vanishes at Y . It follows that integration of Wt defines a 1-parameter
family of local diffeomorphisms, Gt, defined in a neighbourhood U of the point in
Y for all t ∈ [0, 1] fixing each point of Y. Thus G0 = Id and

d

dt
G∗t f = G∗t (Wtf),

for all f ∈ C∞(U).
The standard variation formula (really the chain rule) shows that

d

dt
(Gt)∗(Rt) = (Gt)∗

(
dRt
dt

+ [Wt, Rt]

)
.

From (
157.451
1.64), it follows that [Wt, Rt] = − 1

t [R0, Rt]. So by (
157.452
1.63),

dRt
dt

+ [Wt, Rt] = 0.

Thus, (Gt)∗Rt is constant in t as a vector field near Y , but by assumption (G0)∗R0 =
R0 so

(G1)∗R = R0.

This gives a diffeomorphism locally fixing Y which reduces R to the Euler vector
field. �

The preceding lemma is an immediate consequence since the inegral curves of
R0 are of the form x 7→ tx and y = y.

This shows the existence of a diffeomorphism as required for the Collar Neigh-
bourhood theorem, with the inverse mapping p ∈ U to the tangent vector at the
end point.



CHAPTER 2

Symbols and conormal distributions at a point

L2

1. Schwartz kernels

Before tackling the properties of the ring Ψ∗(Rn) of pseudodifferential operators
on Rn, I want to look into the properties of the Schwartz kernels of these operators,
so we can get a picture of them. We can ‘guess’ (it is easy to justify) that the
Schwartz kernel of an operator A ∈ Ψm(Rn), defined by a symbol a satisfying
(
157.9
1.11), is

157.94157.94 (2.1) A(x, y) = (2π)−n
∫
Rn
a(x, ξ)ei(x−y)·ξdξ.

Here I use the same letter for the operator and its Schwartz kernel – since the
Schwartz kernel theorem (which I will talk a little about later) shows that they
determine each other.

We can think of (
157.94
2.1) in a couple of different ways – in general it is not a

convergent integral. We can make a (formal at this stage) linear change of variables
on R2n from (x, y) to (x, z), z = x− y and then

157.95157.95 (2.2) A(x, y) = α(x, x− y) where α(x, z) = (2π)−n
∫
Rn
a(x, ξ)eiz·ξdξ.

Now the integral is a partial inverse Fourier transform. In fact, since a is smooth
in x we can interpret the definition of α in (

157.95
2.2) as the inverse Fourier tranform

from ξ to z for each fixed x. This in fact is what I will do today. Alternatively one
can just check that the partial Fourier transform with respect to a decomposition
of Euclidean space into a product behaves ‘correctly’.

So, for the moment, we have dispensed with the ‘coefficients’ and just look
at the (commutative) algebra of constant-coefficient pseudodifferential operators
where the composition operation is convolution.

Recall the convolution of distributions on Rn. On cannot define the convolution
of arbitrary distributions, even arbitrary tempered distributions – this however is
an issue of ‘growth’ rather than singularities. In particular the convolution

157.57157.57 (2.3) u ∗ v is defined if either u or v has compact support

but can be defined in other cases too. I will denote the space of distributions of
compact support as

157.61157.61 (2.4) C−∞c (Rn) = (C∞(Rn))
′
.

So the space of distributions of compact support is actually a commutative
ring, since u ∗ v = v ∗ u and the support of a convolution as in (

157.57
2.3) satisfies

157.58157.58 (2.5) supp(u ∗ v) ⊂ supp(u) + supp(v).

25
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It is also the case that S (Rn) is closed under convolution and we know that the
Fourier transform satisfies

157.59157.59 (2.6) F (u ∗ v) = F (u)F (v), u, v ∈ S (Rn).

The ring we are interested in is contained in

157.60157.60 (2.7) C−∞c (Rn) + S (Rn)

for which the identity (
157.59
2.6) still holds. Note that

157.62157.62 (2.8) F (C−∞c (Rn) + S (Rn)) ⊂ C∞(Rn) ∩ S ′(Rn).

So, we are looking for are some interesting spaces of smooth functions on the
dual Rn which are closed under multiplication. You might ask, in view of the
identification of the convolution kernels here with the inverse Fourier transforms of
symbols, why is there any problem at all? There isn’t a problem for convolution as
such because of (

157.59
2.6) but recall that the Fourier transform does not ‘behave well’ on

say the space L∞(Rn). Of course the Fourier tranform maps this to a well-defined
linear subspace of the tempered distributions – which includes for instance the delta
functions at any point – but it is quite hard, in a certain sense I think impossible,
to give a ‘direct’ characterization of the Fourier image of L∞ and the same is true
for our symbols which are modeled on L∞ in the sense that they are defined by
bounds. We will in fact ‘sandwich’ the image between spaces characterized directly
(meaning without the Fourier tranform), but this still loses information which is
rather vital to us!

In the notes related to the first lecture, I discussed the radial compactification
of a real, finite-dimensional, vector space V, to a ball V . Ignoring all the niceties,
for Euclidean space, Rn with the standard Euclidean norm, we can identify the
complement of the origin with the product

157.63157.63 (2.9) Rn \ {0} 3 x 7−→
(
|x|, x
|x|

)
= (r, ω) ∈ (0,∞)× Sn−1.

The inversion map r −→ 1/r is a diffeomorphism of (0,∞) to itself ‘switching the
ends’. This allows us to add the sphere at infinity of Rn setting

157.64157.64 (2.10) Rn =
(
Rn t [0,∞)× Sn−1

)
/I

where

157.65157.65 (2.11) I : Rn \ {0} 3 x 7−→
(

1

|x|
,
x

|x|

)
∈ (0,∞)× Sn−1

identifies the complement of the origin with the interior of the second part.
Thus Rn is a compact manifold with boundary ‘obtained by introducing in-

verted polar coordinates near infinity’. The interior is Rn and the boundary is ‘the
sphere at infinity’.

This immediately gives us a ring of functions on Rn, namely

157.66157.66 (2.12) C∞(Rn) ↪→ C∞(Rn).

I can write inclusion here for what is really the restriction from Rn to its interior
since this map is injective.

This is the space of ‘classical symbols on Rn of order zero’ which I will write as

157.67157.67 (2.13) S0
cl(Rn) = C∞(Rn).

I will approach the issue of characterizing this space precisely on Rn below.
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As a consequence of the discussion of radial compactification in §
T1.Compactification
2, or directly,

we can see that the coordinate vector fields on Rn extend to be smooth on Rn. In
fact

157.78 Proposition 2.1. The coordinate vector fields on Rn extend to smooth vector
files on Rn and span, over C∞(Rn), all the smooth vector fields which are of the
form

157.79157.79 (2.14) ρW, W smooth and tangent to the boundary of Rn.

Here ρ ∈ C∞(Rn) vanishes at the boundary.

See Project
P-Comp
1

157.80 Corollary 2. The space S0
cl(Rn) consists of smooth functions which satisfy

the estimates

157.81157.81 (2.15) sup
ξ∈Rn

|(1 + |ξ|)|α|∂αξ a(ξ)| <∞ ∀ α.

Note that I do not say that this characterizes S0
cl(Rn) = C∞(Rn), because it

does not.

157.83 Definition 2.1. We denote the subspace of C∞(Rn) of functions satisfying all
the estimates (

157.81
2.15) by

157.84157.84 (2.16) S0(Rn) ⊃ S0
cl(Rn).

These are the ‘symbols with bounds’ containing the classical symbols.

More generally, consider the function

157.68157.68 (2.17) (1 + |x|2)z/2 on Rn, z ∈ C.

This is certainly smooth on Rn. It is rather clear that

157.69157.69 (2.18) (1 + |x|2)z/2 ∈ C∞(Rn) iff z ∈ −N0.

Indeed, in x 6= 0 it can be written

157.70157.70 (2.19) t−z(1 + t2)z/2, t = 1/|x|.

This is smooth down to t = 0, the boundary of Rn, if and only if−z is a non-negative
integer.

We define the space of classical symbols of (complex) order z to be the products

157.71157.71 (2.20) Szcl(Rn) = (1 + |x|2)z/2C∞(Rn) = (1 + |x|2)z/2S0
cl(Rn).

The space of symbols (with bounds) or real order m is similarly defined to be

157.85157.85 (2.21) Sm(Rn) = (1 + |x|2)m/2S0(Rn).

Why no complex order in the second case?

157.86 Exercise 2. Show that in terms of Definition
157.83
2.1

157.87157.87 (2.22) (1 + |x|2)is/2 ∈ S0(Rn) ∀ s ∈ R.

This in turn implies that

157.88157.88 (2.23) Szcl(Rn) ⊂ SRe z(Rn) ∀ z ∈ C.
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157.72 Definition 2.2. The space of (Schwartz-) conormal distributions on Rn, with
respect to the origin is

157.73157.73 (2.24) I
m+n/4
S (Rn) = F −1 (Sm(Rn)) .

The corresponding spaces of classical (Schwartz-) conormal distributions at the
origin where now z is allowed to be complex, are

157.89157.89 (2.25) I
z+n/4
cl,S (Rn) = F −1 (Szcl(Rn)) .

So

157.90157.90 (2.26) Izcl,S (Rn) ⊂ IRe z
S (Rn).

Why the weird normalization of the order with the n/4? This is part of a bigger
scheme that I hope will be explained later. It is the standard notion with the n
interpreted as the codimension of the submanifold, here the origin, with respect to
which we are defining conormality.

So, apart from the issue with the order these are just the inverse Fourier tran-
forms of our ‘classical symbols’.

157.75 Theorem 2.1. If u ∈ ImS (Rn) ⊂ S ′(Rn) then

157.77157.77 (2.27)
singsupp(u) ⊂ {0}

(1− φ)u ∈ S (Rn) if φ ∈ C∞c (Rn), 0 /∈ supp(1− φ).

The conditions in (
157.77
2.27) do not characterize the conormal distributions.

Proof. By definition, a smooth function on Rn is a ‘symbol with bounds’ of
order m if it satisfies all the estimates (

157.81
2.15). We can reëxpress these in the form

157.96157.96 (2.28) ξβ∂αξ a = (1 + |ξ|)mb, b ∈ L∞(Rn) ∀ β with |β| ≤ |α|.

It follows that if |α| > m+ n+N + 1 then

R.9R.9 (2.29) ∂αξ a = (1 + |ξ|)−n−N−1bN , bN ∈ L∞(Rn).

Since then F −1
(
(1 + |ξ|)−n−N−1bN

)
is bounded with its first N derivatives it fol-

lows that the same is true for

R.10R.10 (2.30) |x|2ku, 2k > m+ n+N + 1.

From this (
157.77
2.27) follows. �

I have made a rather mixed definition of classical and non-classical symbols
here. The classical ones defined in terms of the radial compactification and the
non-classical ones in terms of estimates on Rn more directly, let me try to unravel
this.

157.91 Lemma 2.1. The ‘residual symbol spaces’ are

157.92157.92 (2.31) S−∞(Rn) =
⋂
m∈R

Sm(Rn) = S (Rn) = Ċ∞(Rn) ⊂ Szcl(Rn) ∀ z ∈ C.

Here I am using the notation for any manifold with corners

157.93157.93 (2.32) Ċ∞(M) = {u ∈ C∞(M);u vanishes to infinite order at ∂M}.

So these are the ‘trivial’ symbols in the case of Rn.L2-end

L3
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Last time I talked about the symbol spaces Sm(Rn) and the space of distribu-
tions conormal at 0 defined as

157.97157.97 (2.33) I
m+n

4
S (Rn; {0}) = F −1(Sm(Rn)).

Since we know that the symbol spaces form a filtered ring under multiplication we
deduce a corresponding result for convolution of the conormal spaces

157.98157.98 (2.34) IMS (Rn; {0}) ∗ IM
′

S (Rn; {0}) = I
M+M ′−n4
S (Rn; {0}).

2. Homogeneous distributions

The quesiton naturally arises as to precisely what classical
conormal distributions ‘look like’. The answer is given, almost,
in terms of homogoneous distributions. Then the first question
is, What is a homogeneous distribution?

We know what a homogeneous function on Rn \ {0} is – it
is a function satisfying

u(tx) = tzu(x) ∀ t > 0, x ∈ Rn \ {0}. 157.983157.983 (2.35)

We do not want to include the origin here since the degree z
could be negative, so the function need not be defined at 0. In
fact we are interested in smooth functions away from 0 which
are homogeneous. So this is straihgtforward

157.984 Lemma 2.2. The smooth functions on Rn \ {0} which are
homogeneous of degree z ∈ C and smooth outside the origin may
be identified with C∞(Sn−1) via

u(x) = v(
x

|x|
)|x|z, v ∈ C∞(Sn−1). 157.985157.985 (2.36)

When Re z > −n it follows that such a function is locally
integrable across the origin, and so defines a tempered distri-
bution. In this case we can express the condition ‘weakly’ by
noting∫

u(tx)φ(x)dx = t−n
∫
u(x)φ(x/t)dx =⇒

〈u, φ(x/t)〉 = tn+z〈u, φ〉, ∀ t > 0, φ ∈ S (Rn).157.986157.986 (2.37)

157.987 Definition 2.3. A (tempered) distribution u ∈ S ′(Rn) is
homogeneous of degree z if it satisfies the second part of (

157.986
2.37).

The argument leading to (
157.986
2.37) can be reversed, at least in

part.

157.988 Lemma 2.3. A distribution which is homogeneous of degree
z with Re z > −n and which is smooth outside the origin is of
the form (

157.985
2.36).

Proof. The identity (
157.986
2.37) can be differentiated with re-

spect to t and at t = 1 this shows that Euler’s identity holds for
homogeneous distributions

(x · ∂x − z)u = 0. 157.989157.989 (2.38)
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Since it is assumed that u is smooth away from the origin it fol-
lows that u must be of the form (

157.985
2.36) in Rn\{0}. The difference

of u and the locally integrable function so defined is therefore a
distribution supported at the origin, and hence a sum of deriva-
tives of the delta function. These all have homogeneity −n − k
for some k ∈ N0 so cannot be homogeneous of degree z with
Re z > −n. �

To pass to the case of general z we may use the Fourier
transform.

157.991 Lemma 2.4. The Fourier transform of a distribution which
is homogeneous of degree z ∈ C is homogeneous of degree −n−z.

Proof. For φ ∈ S (Rn) change of variable shows that

φ̂(·/t)(ξ) = tnφ̂(tξ) 157.992157.992 (2.39)

so the identity for u ∈ S ′(Rn) and ψ ∈ S (Rn)

〈û, ψ〉 = 〈u, ψ̂〉 157.993157.993 (2.40)

implies the result. �

It follows that for Re z < 0 a distribution, v, homogeneous
of degree z is the inverse Fourier transform of one homogeneous
of degree −z−n. If v is assumed to be smooth outside the origin
then it is the sum of a symbol of degree z and a distibution of
compact support. Thus its Fourier transform is singular only at
the origin and in this case we conclude that

v(x) = F −1

(
|ξ|−n−zu(

ξ

|ξ|
)

)
, u ∈ C∞(Sn−1). 157.994157.994 (2.41)

Conversely the functions in (
157.985
2.36) are the sums of symbols and

compactly supported distribution so v defined by (
157.994
2.41) is indeed

smooth outside the origin.
Thus the space of distribution homogeneous of any given

degree z ∈ C is always isomorphic to C∞(Sn−1). However for
z = −n− k, k ∈ N0 this isomorphism takes a different form.

157.995 Proposition 2.2. For any degree z /∈ C \ (−n − N0) the
space of distributions homogeneous of degree z and smooth out-
side the origin is identified with C∞(Sn−1) by restriction to Rn \
{0} and (

157.985
2.36). For z = −n − k, k ∈ N0 the space of distri-

butions homogeneous of degree z and smooth outside the origin
maps surjectively, by restriction to Rn \ {0} to

{u ∈ C∞(Sn−1);

∫
Sn−1

u(ω)ωαdω = 0 ∀ |α| = k 157.996157.996 (2.42)

with null space

sp{Dα
x δ(x); |α| = k}. 157.997157.997 (2.43)
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In fact the proof above can be modified to identify all ho-
mogenous distributions with C−∞(Sn−1) in essentially the same
way.

However, this is not quite what we really want. The aim is
to understand the structure of classical conormal distributions at
the origin. These are readily described, as we do below, in terms
of homogeneous distributions and the inverse Fourier transforms
of functions of the form

a(ξ) = (−χ(ξ))|ξ|zu
(
ξ

|ξ|

)
,

u ∈ C∞(Sn−1), χ ∈ C∞c (Rn), χ(ξ) = 1 in |ξ| < 1.157.998157.998 (2.44)

Except for the case z ∈ −n−N0 such a function is, using Propo-
sition

157.995
2.2, the sum of a homogeneous distribution and a distri-

bution of compact support. Conversely this is not the case for
z = −n − k, k ∈ N0, unless u is in the space (

157.996
2.42). The extra

distributions we need are quasi-homogeneous in the sense that
they satisfy

(x · ∂x − z)u ∈ S (Rn) 157.1103157.1103 (2.45)

The new case that arises is for z ∈ N0

R.1 Lemma 2.5. The inverse Fourier transform of

bα(x) = χ(x))xα log |x|, α ∈ Nno , χ ∈ C∞c (Rn), χ(ξ) = 1 in |x| < 1R.2R.2 (2.46)

is quasi-homogeneous of degree −n− |α| and of the form

cn,α
ξα

|ξ|n+2|α| + e′α, e
′
α ∈ S (Rn) in |ξ| > 1. R.7R.7 (2.47)

with cn,α 6= 0.

Proof. Consider the case α = 0. Then b0 is a function of
|x| and by the O(n)-invariance of the Fourier transform the same

is true of b̂0. Since

x · ∂xb0 = χ(x) + (x · ∂xχ) log |x| ∈ C∞c (Rn) R.4R.4 (2.48)

it follows that

(ξ · ∂ξ + n)b̂0 = e ∈ S (Rn). R.5R.5 (2.49)

Using polar coordinates we can integrate the Schwartz term ‘in-
wards from infinity’ and conclude that

b̂0 = cn(1− χ(ξ))|ξ|−n + e′, e′ ∈ S (Rn) R.6R.6 (2.50)

where cn 6= 0 involves the measure of the sphere. It cannot
vanish, since otherwise b0 would be smooth.

Since bα = xαb0 has compact support its inverse Fourier

transform, b̂α(−ξ) ∈ S ′(Rn) is smooth and from (
R.6
2.50)

b̂α = Dα
ξ b0 = cn,α

ξα

|ξ|n+2|α| + e′α, e
′
α ∈ S (Rn) R.3R.3 (2.51)

where again cn,α 6= 0 since bα is not smooth. These constants
are readily computed. �
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Finally then we see the structure of classical conormal dis-
tributions.

157.999 Proposition 2.3. A classical conormal distribution at the
origin in Rn of order z + n

4 ,

u = F −1(a), a ∈ |ξ|zC∞(Rn) 157.1102157.1102 (2.52)

has an expansion near the origin, modulo smooth terms,

u(x) ∼
∑
k

uk(x) R.8R.8 (2.53)

where all terms are smooth outside the origin and

uk

{
is homogeneous of degree − z = −n+ k if − z − n+ k /∈ N0

is quasi-homogeneous of degree − z = −n+ k if − z − n+ k ∈ N0.

157.1000157.1000 (2.54)

From (
157.1000
2.54) the uk become increasingly smooth as k → ∞ and

the meaning of (
R.8
2.53) is that, for given N the difference of u and

the sum for k < K for K sufficiently large is in CN (Rn). The ap-
pearance of the quasi-homogoneous terms in (

157.1000
2.54) corresponds

to the fact that the polynomials of degree k do not contribute
to the singularity at the origin (nor of course to the asymptotic
expansion of the symbol).

There are other ways to construct the homogeneous, and
quasi-homogeneous distributions, for instance by analytic con-
tinuation in z.

3. Topology and asymptotic summation

The topology on the symbols space Sm(Rn) is the Fréchet topology given by
the norms defining the space

157.99157.99 (2.55) ‖a‖m,N = sup
Rn,|β|<N

(1 + |ξ|)−m+|β||∂βξ a(ξ)|, N ∈ N0.

Certainly, a ∈ Sm(Rn) if and only if a ∈ C∞(Rn) and all these norms are finite.
Recall that a metric on a countably normed space, such as this, is defined by

157.100157.100 (2.56) d(u, v) =
∑
N

2−N
‖u− v‖m,N

1 + ‖u− v‖m,N
.

So the topology is metric, generated by the open balls with respect to (
157.100
2.56). I say

‘a metric’ because replacing the sequence 2−N by an positive, summable, sequence
gives the same topology.

157.114 Proposition 2.4. The spaces Sm(Rn) are Fréchet spaces, so complete with
respect to the translation-invariant distance (

157.100
2.56).

If it matters to you, they are Montel spaces. They are not projective limits of
Hilbert spaces.

Proof. Convergence with respect to this distance is the same as convergence
with respect to each of the norms ‖ · ‖m,N (without any uniformity in N). Thus a
Cauchy sequence with respect to the metric (

157.100
2.56) is Cauchy with respect to each
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of these norms and conversely. So all the derivatives converge locally uniformly and
with respect to the distance with the limit in the space. �

There is a topology on S∞(Rn) =
⋃
m S

m(Rn) but I will leave you to figure it
out:

157.454 Exercise 3. Try to sort out (or look up) the inductive limit topology on
S∞(Rn) defined by taking a set to be open if its intersection with each of the
Sm(Rn) is open and show that the inclusions Sm(Rn) −→ S∞(Rn) are then con-
tinuous.

So the Fréchet topology on the symbol spaces induces a Fréchet topology
on IMS (Rn, {0}), since the Fourier transform identifies this with SM−

n
4 (Rn). This

means we know what a continuous map into the conormal space (and also what a
smooth map into it) means.

Now to density. The intersection of the symbol spaces is the space of Schwartz
functions

157.101157.101 (2.57) S (Rn) = S−∞(Rn) =
⋂
m

Sm(Rn) = S (Rn).

157.102 Proposition 2.5. The ‘residual space’ S (Rn) is dense in Sm(Rn) in the topol-
ogy of Sm+ε(Rn) for any ε > 0. More precisely, there exist a sequence of ‘regularizing
operators’ which are linear maps

157.103157.103 (2.58) Φk : S∞(Rn) −→ S (Rn)

such that

157.104157.104 (2.59) a ∈ Sm(Rn) =⇒ Φka is bounded in Sm(Rn)

and Φka→ a in the topology of Sm+ε(Rn) ∀ ε > 0.

Proof. The Φk can be defined by cut-off. Take φ ∈ C∞c (Rn) with φ(ξ) = 1 in
{|ξ| < 1} and set

157.105157.105 (2.60) Φka(ξ) = φ(ξ/k)a(ξ) ∈ S (Rn).

The difference

157.106157.106 (2.61) (Id−Φk)a = (1− φ(ξ/k))a(ξ)7 ∈ Sm(Rn)

since 1− φ(ξ/k) ∈ S0(Rn).
Certainly 1− φ(ξ/k) is uniformly bounded and the derivatives are

157.107157.107 (2.62) ∂βξ (1− φ(ξ/k)) = −k−|β|(∂βφ)(ξ/k), |β| > 0.

Since this function is supported in |ξ| < Ck, for some constant C, the product
satisfies

157.108157.108 (2.63) sup
ξ
|∂βξ (1− φ(ξ/k))| ≤ Cβ(1 + Ck)|β|k−|β| <∞

This shows that 1 − φ(ξ/k) is bounded with respect to all the seminorms for
S0(Rn). It follows that Φka is bounded in Sm(Rn).

The seminorms on Sε(Rn) on the difference 1−Φk, which has support in |ξ| > k,
have an extra factor of (1 + |ξ)−ε

157.136157.136 (2.64) (1 + |ξ|)−ε+|β|∂βξ (1− φ(ξ/k)) = k−|β|(1 + |ξ|)−ε+|β|(∂β(1− φ))(ξ/k)

=⇒ ‖1− Φk‖ε,N ≤ CNk−ε
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where CN depends on φ and N. Thus 1−φ(ξ/k)→ 0 with respect to each seminorm
on Sε(Rn) for ε > 0. It follows that

157.137157.137 (2.65) Φka→ a in Sε(Rn) ∀ ε > 0.

This in turn implies (
157.104
2.59). �

We record the norm estimate which underlies (
157.137
2.65) for use below

157.138 Lemma 2.6. For a ∈ Sm(Rn) and any m′ > m

157.139157.139 (2.66) ‖(Id−Φk)a‖m′,N ≤ CN,m,m′‖a‖m,Nkm−m
′

where the constant is independent of a and k.

4. Integration

157.109 Lemma 2.7. Integration in one of the variables, say the last, gives a continuous
linear map

157.110157.110 (2.67)

∫
R
dxn : ImS (Rn) −→ I

m− 1
4

S (Rn−1), F
(∫

R
u(x)dxn

)
= F (u)

∣∣
ξn=0

.

Of course we can iterate this, integrating over k variables to get a conormal distri-
bution with order decreased by k/4.

Proof. The integral is defined since integration of both Schwartz functions
and distributions of compact support is well-defined. Using density we can suppose
that a ∈ S (Rn) and then

157.111157.111 (2.68)

∫
R
dxn(F −1a)(x′, xn)dxn = (2π)−n

∫
R
dxn

∫
Rn
eix
′·ξa(ξ)dξ

= (2π)−n+1

∫
Rn−1

eix
′·ξ′a(ξ′, 0)dξ′, x = (x′, xn), ξ = (ξ′, ξn).

by the Fourier inversion formula in one dimension. Thus

157.112157.112 (2.69)

∫
R
dxnF −1(a) = F −1(a

∣∣
ξn=0

), a ∈ S (Rn).

Clearly, with Φk as defined above

157.113157.113 (2.70) Φk(a
∣∣
ξn=0

) = (Φka)
∣∣
ξn=0

so the general case follows. �

5. Wavefrontset

The support of a function or distribution on Rn is defined by

supp(u) =
(⋃
{U ⊂ Rn;U is open and u = 0 on U}

){
. 157.115157.115 (2.71)

This is really a notion defined for sheaves (the theory of which I will outline
below in case you have not seen it). We define a related notion for symbols

which is to do with the directions of growth at infinity.
If V ⊂ Sn−1 is open then the set

R+V = {ξ ∈ Rn \ {0};
ξ

|ξ|
∈ V } 157.116157.116 (2.72)
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is what we mean by an open cone – an open subset of Rn \ {0} which is

invariant under the radial R+ action. If ψ ∈ C∞c (V ) and φ ∈ C∞c (R) is

identically equal to 1 near 0 then

χ(ξ) = (1− φ)(|ξ|)ψ(
ξ

|ξ|
) ∈ S0(Rn) ⊂ C∞(Rn) 157.117157.117 (2.73)

where we define it to be identically zero in |ξ| < ε where φ(|ξ|) = 1 on

|ξ| < ε. Thus, φ is only there to cut out the singularity the homogeneous

function ψ( ξ
|ξ| ) is almost certain to have at the origin.

157.118 Lemma 2.8. An element of C∞(Rn) which is homogeneous of complex de-

gree z vanishes identically unless z ∈ N0, in which case it is necessarily a
polynomial.

Proof. The homogeneity statement is that

u(tξ) = tzu(ξ) ∀ t > 0, ξ ∈ Rn. 157.455157.455 (2.74)

Consider the derivatives of u at the origin. From (
157.455
2.74) it follows that

∂αξ u(0) = t|α|∂αξ u(0) = tz∂αξ u(0). 157.456157.456 (2.75)

Thus either z = |α| or ∂αξ u(0) = 0. So, if z is not a non-negative integer

then u must vanish to infinite order at 0. But then

t−zu(tu)→ 0 as t ↓ 0 =⇒ u ≡ 0. 157.457157.457 (2.76)

If z = k then u is the sum of a polynomial and a function which vanishes to
infinite order at 0 and the same argument shows that such a homogeneous

function vaniahes identically. �

The product of a ∈ Sm(Rn) and a function χ as in (
157.117
2.73) is always in

Sm(Rn). However, it might be much smaller.

157.119 Definition 2.4. The cone-support of a symbol a ∈ Sm(Rn) is the (rela-

tively) closed subset of Rn

conesupp(a) =
(⋃
{R+V ;χa ∈ S (Rn) ∀ ψ ∈ C∞c (V )}

){
. 157.120157.120 (2.77)

In fact the union of all sets V for which ψa ∈ S (Sn−1) when ψ ∈ C∞c (V )
is still a V for which this holds – i.e. there is a maximal such V. Clearly

the cone-support is a cone, so the information it contains is the same as the

corresponding closed subset of the sphere. It is traditional to think of it
as a cone, partly because of the definition, but also because it has a little

content as we will see later.

157.121 Exercise 4. Show that conesupp(a) = ∅ iff a ∈ S (Rn) = S−∞(Rn).

157.122 Definition 2.5. For u ∈ IMS (Rn; {0}) = F −1(SM−
n
4 (Rn)) we set

WF(u) = conesupp(a), u = F −1(a) ⊂ T ∗0 Rm \ {0} = Rn \ {0}.157.123157.123 (2.78)

It matters here that this is the inverse Fourier transform not the Fourier

transform, otherwise there is a reflection. The identification of Rn \ {0}
as the cotangent fibre at 0 on Rn might appear somewhat arbitrary but is
justified by results below on coordinate-invariance. In any case, by definition

the wavefront set (that is what WF stands for) of a conormal distribution
at the origin in Rn is a closed cone in T ∗0 Rn \ {0}.

6. Restriction

What is this notion of wavefrontset good for? Notice in (
157.110
2.67) that inte-

gration and restriction are dual under Fourier transform, at least in this

special case. In general we cannot expect to restrict a conormal distribution

to xn = 0 – for instance this is not reasonable for the delta function at the
origin. Dually, we cannot expect to integrate a symbol, it may just be too

large at infinity.
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157.124 Lemma 2.9. If a ∈ Sm(Rn) then

±en /∈ conesupp(a) =⇒
∫
R
dξna(ξ, ξn) ∈ Sm+1(Rn−1). 157.125157.125 (2.79)

Here en = (0, . . . , 0, 1) is the unit vector and this is not in conesupp(a)
if and only if the half-line R+en does not meet conesupp(a). So you can

interpret the condition in (
157.125
2.79) as saying

R · en ∩ conesupp(a) = ∅. 157.126157.126 (2.80)

Proof. The condition on conesupp(a) means that we can find a cut-off
function ψ ∈ C∞(Sn−1) on the sphere which is non-vanishing at ±en and

such that

(1− φ|ξ|)ψ
(
ξ

|ξ|

)
a ∈ S (Rn). 157.129157.129 (2.81)

So this means that in a conic region

Γε = {ξ ∈ Fn; |ξ′| ≤ ε|ξn|}, ε > 0 157.130157.130 (2.82)

the symbol a is rapidly decreasing with all its derivatives. In fact we can

can assume that ψ = 1 near ±en and then write

a = a′ + φ(|ξ|) + (1− φ(|ξ|))ψ
(
ξ

|ξ|

)
∈ Sm(Rn),

a = 0 in Γε, a− a′ ∈ S (Rn).

157.131157.131 (2.83)

Since integration certainly maps S (Rn) into S (Rn−1) it suffices to consider

a′ in place of a and look at

b(ξ) =

∫
R
dξna(ξ′, ξn). 157.132157.132 (2.84)

This integral certainly exists since for each ξ′ the integrand is supported in
|ξn| ≤ ε−1|ξ′|. Thus from the leading symbol estimate for a we see that in

|ξ′| > 1

|b(ξ′)| ≤ C
∫
|ξn|≤ε−1|ξ′|

(|ξ′|+ |ξn|)mdξn. 157.133157.133 (2.85)

Now, changing the variable of integration to τ = ξn/|ξ′| it follows that

|b(ξ′)| ≤ C
∫
|τ |≤ε−1

|ξ′|m+1(1 + |τ |)mdτ ≤ C′|ξ′|m+1. 157.134157.134 (2.86)

The same argument applies to all the ξ′ derivatives, so

b ∈ Sm+1(Rn−1). 157.135157.135 (2.87)

�

157.127 Corollary 3. Restriction to the coordinate hyperplane is well-defined as
a linear map∣∣

xn=0
: {u ∈ IMS (Rn; {0});{dxn,−dxn} ∩WF(u) = ∅}

−→ IM+ 3
4 (Rn−1; {0}).

157.128157.128 (2.88)

7. Multiplicativity

One of the applications of the notion of wavefront – for general distributions
not just in the conormal case – is to provide conditions under which operations
extend to distributions.

R.11 Exercise 5. Show that if Γi ⊂ Rn \ {0}, i = 1, 2, are (relatively of course)
closed cones with the property

R.12R.12 (2.89) ξi ∈ Γi, 1, 2 =⇒ ξ1 + ξ2 6= 0
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then the product of functions can be extended to
R.13R.13 (2.90)

{u1 ∈ Im1
S (Rn; {0}); WF(u1)∪Γ1}×{u2 ∈ Im2

S (Rn; {0}); WF(u2)∪Γ2} −→ S ′(Rn).

Hint: One way to define the product is to use the fact that these conormal
spaces are modules over S (Rn). So it is enough to define the pairing of the prod-
uct with 1 provided there is some continuity. If u2 ∈ S (Rn) with the integrals
interpreted as pairings

R.14R.14 (2.91)

∫
Rn
u1(x)u2(x)dx =

1

(2π)n

∫
û1(ξ)û1(−ξ)dξ.

Now you can see where the condition (
R.12
2.89) comes from. Using a partition of unity

to divide Rn into two conic regions (and a compact part) the ‘integral’ on the right
can be divided into parts in each of which one of the terms is Schwartz. To really
justify (

R.13
2.90) one needs to do something about continuity – find a topology on the

spaces in (
R.13
2.90) with S (Rn) dense and such that convergence is consistent with the

decomposition.
You might also ask whether the product so defined is conormal. In general it

is not.

8. Asymptotic completeness

The main interest in symbols on Rn is their behaviour ‘at infinity’ (which is the
boundary of the radial compactification). This allows for a notion of ‘convergence’
which corresponds to the ‘asymptotic completeness’ in the following sense.

157.140 Theorem 2.2. If aj ∈ Smj (Rn) is a sequence (we think of it as a series)
of symbols with mj → −∞ as j → ∞ then there exists a symbol a ∈ SM (Rn),
M = supmj such that for every k

157.141157.141 (2.92) a−
∑
j≤k

aj ∈ SM(k), M(k) = sup
j>k

mj

and a is determined up to an error in S−∞(Rn) by these conditions.

The relationship (
157.141
2.92) between a and the aj is interpreted as ‘a complete asymp-

totic expansion’ and written

157.142157.142 (2.93) a ∼
∑
j

aj .

Note that we are certainly not saying that the series on the right converges in
any sense (well people say it converges asymptotically, just meaning the order
mj → −∞).

I have been a little vague here about the range of j, usually one takes j ∈ N0,
so starting off at 0, but this is just a convention.

Proof. The ‘uniqueness’ (modulo S−∞(Rn)) is immediate from (
157.141
2.92) – given

two such ‘asymptotic sums’ a and a′ the difference satisfies

157.153157.153 (2.94) a′ − a = (a′ −
∑
j≤k

aj)− (a−
∑
j≤k

aj) ∈ SM(k)(Rn) ∀ k =⇒

a′ − a ∈ S−∞(Rn) = S (Rn).
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For existence, I will assume, as discussed below, without loss of generality that
the mj are strictly decreasing, just to simplify notation.

I will use the ‘approximation’ operators (Id−Φl) discussed above, where Φl is
multiplication by φ(ξ/l) for φ ∈ C∞c (Rn) equal to 1 near 0. So these are cutoffs near
infinity. Here l will vary with j so we are looking for a sequence of integers

157.144157.144 (2.95) l(j)→∞ in N.

What we want these integers to satisfy – they depend of course on the given sequence
aj – is

157.145157.145 (2.96)
∑
j>k

‖(Id−Φl(j))aj‖mk,N <∞ ∀ k,N.

So this is a countable set of conditions we need to satisfy.
Let’s just examine one of the conditions (

157.145
2.96). It makes sense, since the terms

are in Smj ⊂ Smk and mk −mj > 0 for j > k by assumption. This is often called
‘absolute summability’ of the sequence with respect to the norm. It implies that
the series is Cauchy with respect to this norm, and that is what we are after. That
is we will ensure that the series

157.146157.146 (2.97)
∑
j>k

(Id−Φl(j))aj is Cauchy with respect to ‖ · ‖mk,N .

For the moment of course just for one N and k.
We have, from Lemma

157.138
2.6, an estimate on each of these norms in (

157.145
2.96)

157.147157.147 (2.98) ‖(Id−Φl(j))aj‖m(k),N ≤ CN,k(l(j))mk−mj‖aj‖mk,N

(ultimately because the mj < mk). Here the constant does not depend on l(j) –
the dependence is the power. To make the series converge absolutely it suffices to
arrange that

157.148157.148 (2.99) ‖(Id−Φl(j))aj‖m(k),N ≤ j−2

for instance. In fact convergence is a property of the ‘tail’ of the sequence – the
behaviour of any finite number of terms is irrelevant – so it is enough to arrange
(
157.148
2.99) from some j onwards. From (

157.147
2.98) we see that we can ensure this by choosing

l(j) so that

157.149157.149 (2.100) l(j) > L(N, k, j)

where for this N and k, L(N, k, j) is some explicit sequence which depends on the
norms of the aj .

Now, this shows we can choose the l(j) so that any one of the series (labelled
by k) converges absolutely with respect to any one of the norms ‖ · ‖mk,N . In fact
by a ‘diagonalization’ procedure we can ensure that all the series are Cauchy with
respect to all the norms (and hence converge in the corresponding symbol space).
To do this, just arrange all the (N, k) as a sequence, parameterized by p, and
demand that (

157.149
2.100) hold for j > p.

So we can choose the integers l(j) such that each of the series

157.150157.150 (2.101)
∑
j>k

(Id−Φl(j))aj converges in Smk(Rn)
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in the strong sense that it converse absolutely with respect to each of the seminorms.
Now set

157.151157.151 (2.102) a = a0 +
∑
j≥1

(Id−Φl(j))aj ∈ Sm0(Rn).

This is our asymptotic sum. To check this observe that the difference with a finite
sum can be written

157.152157.152 (2.103) a−
∑
j≤k+1

aj = −
∑
j≤k+1

Φl(j)aj +
∑
j>k+1

(Id−Φl(j))aj .

The last sum here is in Smk+1 and the finite sum is actually of compact support, so
in S−∞(Rn). The last term on the left is in the same space, Smk+1(Rn) so (

157.141
2.92)

follows.
If we do not have a strictly decreasing sequence of orders, we can rearrange the

sequence so that the order is weakly decreasing and then sum up an finite sequences
of fixed order. This reduces the problem to the strictly decreasing case and, since
we have arranged absolute convergence, we recover (

157.141
2.92) in general. �

Except that the topology is a little dubious, we have shown that a series with
elements in Smj (Rn)/S−∞(Rn) ‘always converges’ if the mj → −∞. What this
really means is that there exist representatives of the elements in Smj (Rn) such that
the series does converge and gives a well-defined limit in Ssupmj (Rn)/S−∞(Rn). L3-end

L4

9. ImS (Rn; {0}) as a module

First let’s fix some notation.

R.15 Definition 2.6. The full symbol map for conormal distributions at the origin
is

157.158157.158 (2.104) σ : ImS (Rn; {0}) 3 u −→ [F (u)] ∈ Sm−n4 (Rn)/S−∞(Rn).

So the full symbol in this sense is the Fourier transfrom – which would be called
the amplitude – F (u) ∈ Sm−n4 (Rn) modulo the Schwartz space.

This means there is a short exact sequence for each m

R.16R.16 (2.105) S (Rn)
� � // ImS (Rn; {0}) σ // Sm−

n
4 (Rn)/S−∞(Rn).

The smooth functions of ‘slow growth’ form a (not very pleasant) linear space
which I will denote by O (Rn) which is a space of multipliers on S (Rn). A smooth
function is an element ψ ∈ O (Rn) if for each multiindex α ∈ Nn0 there exists mα

such that

157.154157.154 (2.106) sup
ξ

(1 + |ξ|)−mα |Dα
ξ ψ(ξ)| <∞.

Thus multiplication gives a bilinear map

157.155157.155 (2.107) O (Rn)× S ′(Rn) −→ S ′(Rn) which restricts to O (Rn)× S (Rn) −→ S (Rn).

157.156 Proposition 2.6. For any m, multiplication defines a map
157.157157.157 (2.108)

O (Rn)× ImS (Rn; {0}) −→ ImS (Rn; {0}) with σ(ψu) ∼
∑
α∈Nn0

1

α!
∂αxψ(0)Dα

ξ σ(u).
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The sum of the right does determine a unique element of Sm−
n
4 /S−∞(Rn) =

Sm−
n
4 (Rn)/S−∞(Rn) as we showed last time using asymptotic summation. If we

take a representative a ∈ Sm−n4 (Rn) – such as the actual Fourier transform of u –
then the terms in the infinite sum are of orders m− n

4 − |α| so the sum ‘converges
asymptotically’.

Proof. Since we know that u ∈ ImS (Rn; {0}) can be written as the sum of a
compactly supported term and one in S (Rn) on which ψ ∈ O (Rn) acts it suffices to
suppose that both u and ψ are compactly supported. The Taylor series expansion

157.458157.458 (2.109) ψ =
∑
|α|≤N

1

α!
∂αx x

αψ(0) +
∑

|α|=N+1

xαµα(x), µα ∈ C∞(Rn)

can then be multiplied by a cut-off of compact support equal to 1 on supp(u) ∪
supp(ψ) showing that

157.459157.459 (2.110) ψu =
∑
|α|≤N

1

α!
∂αxψ(0)xαu(x) +

∑
|α|=N+1

µ′α(x)(xαu)µ′α(x), µ′α ∈ C∞c (Rn)

The terms in the first sum are are in I
m−|α|
S (Rn; {0}) as the inverse Fourier trans-

forms of the

157.460157.460 (2.111)
i|α|

α!
∂αxψ(0)∂

|α|
ξ û(ξ).

Similarly the terms in the second sum consists of products in

C∞c (Rn) · Im−N−1
S (Rn; {0}).

Let v ∈ ImS (Rn; {0}) be an asymptotic sum of this series (
157.460
2.111) which can be

taken to have compact support. Then from (
157.459
2.110)

157.461157.461 (2.112) ψu− v = vN +
∑

|α|=N+1

µ′α(x)(xαu)µ′α(x), vN ∈ Im−N−1
S (Rn; {0}).

For for N > m+ k + n

157.463157.463 (2.113) Im−N−1
S (Rn; {0}) ⊂ C k(Rn) =⇒ ψu− v ∈

⋂
C k(Rn) = C∞(Rn).

So in fact ψu− v ∈ S (Rn).
The asymptotic formula (

157.157
2.108) is a restatement of the conclusion that ψu is

an asymptotic sum of the terms (
157.460
2.111). �

10. Action of Ψ∗ on I∗

157.464 Proposition 2.7. Pseudodifferential operators act on conormal distributions
giving a bilinear map

157.465157.465 (2.114)

Ψm(Rn)× Im
′

S (Rn; {0}) −→ Im+m′

S (Rn; {0}) with

σm+m′(Au) ∼
∑
α

1

α!
Dα
x∂

α
ξ (aσ(u)), A = QL(a)

To take care of the ‘error terms’ below we need first consider a coarser mapping
property; here there is no need for precision as regards orders and regularity.
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R.17 Lemma 2.10. If k ∈ N0 and

R.18R.18 (2.115) m+m′ < −n− k
then

R.20R.20 (2.116) P ∈ Ψm(Rn), u ∈ Im
′

S (Rn; {0}) =⇒ Pu ∈ C k∞(Rn),

meaning the derivatives up to order k are bounded.

Proof. We can use density of S (Rn) in symbol spaces, with a little loss of
order. The inequality (

R.18
2.115) implies that the products

R.21R.21 (2.117) |Dβ
xa(x, ξ)û(ξ)| ≤ Cβ(1 + |ξ|)−n−k.

So, in particular are actually L1 functions of ξ and so the integral

R.22R.22 (2.118) Pu(x) = (2π)−n
∫
Rn
a(x, ξ)û(ξ)eix·ξdξ

converges uniformly in x. Differentiation by x to any order β with |β| ≤ k still leads
to absolutely convergent integrals because of (

R.21
2.117) so (

R.20
2.116) follows. �

Proof of Proposition (
157.464
2.7). We already know a special case of (

157.465
2.114) be-

cause we have an inclusion map

R.23R.23 (2.119) I
m+n

4
S (Rn; {0}) −→ Ψm(Rn), u(x) 7−→ A(x, y) = u(x− y)

in which conormal distributions act as convolution operators – this after all is one
reason I are talking about conormal distributions (although not the only one). We
will exploit this ruthlessly! �

L4-end

11. Radial compactification and symbols

Project 1 P-Comp

V2: Two corrections from Benjy.
I detected some resistance to the idea of radial compactification of Rn in class

so the main part of the first problem set is to work out some of the details. Quite
a bit of this is already in the notes.

0 First recall, for background if nothing else, the basis of projective geom-
etry (which seems to have disappeared as a subject taught to undergrad-
uates not long before I started studying Mathematics). Define complex
projective space as a quotient

P1.1P1.1 (2.120)
Pn = (Cn+1\{0})/C∗ = S2n+1/T, C∗ = C\{0}, S2n+1 = (R2n+2\{0})/R+ = (Cn+1\{0})/C+.

Check that this is a complex manifold and that Cn is identified with an
open dense subset by the inclusion

P1.2P1.2 (2.121) Cn 3 z 7−→ (z, 1) ∈ Cn+1 \ {0} ↪→ Pn

and that the complement of the image may be identified with Pn−1.
(1) Now sort out the real (or more correctly a) real analogue of this. Take

the embedding

P1.3P1.3 (2.122) Rn 3 x 7−→ (x, 1) ∈ Rn × [0,∞) ⊂ Rn+1

and consider the quotient map

P1.4P1.4 (2.123) ι : Rn −→ (Rn × [0,∞) \ {0}) /R+ = Sn+ = Rn
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mapping into the upper half-sphere (see picture below); the last equation
defines Rn. I take this as the definition of the radial compactification;
show that the embedding is given explicitly by

P1.5P1.5 (2.124) ι(x) =

(
x√

1 + |x|2
,

1√
1 + |x|2

)

and deduce that t = (1+|x|2)−
1
2 ∈ C∞(Sn+) is a boundary defining function

(vanishes only on the boundary and has differential non-zero there).
(2) Derive the Taylor series of a ∈ S0

cl(Rn) = C∞(Sn+) (this is the definition
of the space of classical symbols of order 0 from lectures) in the form

P1.6P1.6 (2.125)

∞∑
k=0

|x|−kak(
x

|x|
), ak ∈ C∞(Sn−1), |x| > 2(⇐⇒ t <

√
2).

Deduce that Taylor series with remainder gives

P1.7P1.7 (2.126) |a−
N∑
k=0

|x|−ka(
x

|x|
)| ≤ CN |x|−N−1.

[We want similar estimates for derivatives too].
(3) Introduce projective coordinates on Rn given by 2n+1 coordinate patches

on Sn+. The first one is x ∈ Rn defining the compactification. Then for
each k = 1, . . . , n set

P1.8P1.8 (2.127) D±k = {x ∈ Rn;±xk > 0}, C±k = {p = (p1, . . . , pn+1) ∈ Sn+;±pk > 0}

(note that this includes part of the boundary of Sn+) and show that the
diffeomorphisms

P1.9P1.9 (2.128) C±k 3 x 7−→ (
1

±xk
,±xj

xk
) ∈ (0,∞)× Rn−1

extend to diffeomorphism D±k −→ [0,∞)× Rn−1.
(4) Show that these projective coordinate systems give a coordinate cover of

Rn.
(5) Write out formulæ for the images of the vector fields

P1.10P1.10 (2.129) ∂xj , xl∂xj

in these projective coordinate systems (note these span the Lie algebras
of the translation group and GL(n,R) respectively).

(6) Show that the xl∂xj extend to be smooth on Rn (meaning smooth up to
the boundary) and that they are elements of the Lie algebra

P1.11P1.11 (2.130) Vb(Rn) = {V a C∞ vector field tangent to the boundary}.

Note that tangency to the boundary means V t = 0 at t = 0.
(7) Show that the images of the xl∂xj span Vb(Rn) over C∞(Rn).

(8) Show that the ∂xj are also smooth up to the boundary of Rn and span,

over C∞(Rn) the space

P1.14P1.14 (2.131) tVb(Rn) = {W = tV, V ∈ Vb(Rn)}.
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(9) Show that the space S0(Rn) of ‘symbols with bounds’ is identified with
the space

P1.12P1.12 (2.132) {u ∈ L∞(Rn);V1 . . . VNu ∈ L∞(Rn) ∀ Vi ∈ Vb(Rn) ∀ N}.
[Don’t get hung up on worrying about distributions on a manifold with
boundary, we will come back to this later.]

(10) Putting some of these things together show that

P1.13P1.13 (2.133) S0
cl(Rn) ⊂ S0(Rn).

(11) Deduce that an element a ∈ S0(Rn) is in S0
cl(Rn) if and only if

P1.15P1.15 (2.134) a ∼
∑
k

(1− φ)(ξ)|ξ|−kak(
ξ

|ξ|
)

where φ ∈ C∞c (Rn) is equal to one near 0 (to make everything smooth)
and the ak ∈ C∞(Sn−1).





CHAPTER 3

The ring Ψ∗(Rn)

C.PsiRn L5
I will start today with the coordinate-invariance of conormal distributions at a

point and proceed to discuss the fact that the formal adjoint of a pseudodifferen-
tial operator is also a pseudodifferential operator. These might seem to be rather
unrelated results, but as we shall see the proofs are closely related.

1. Coordinate invariance of Imc (Rn; {0})

Since we do not want to worry about the global behaviour of diffeomorphisms
we will work locally near 0 ∈ Rn. If Ω ⊂ Rn is an open neighbourhood of 0 set

157.159157.159 (3.1) Imc (Ω; {0}) = {u ∈ ImS (Rn; {0}); supp(u) b Ω}.

Here of course we are thinking of Ω as an open subset of Rn but we can also think
of it as a manifold. For the conormal functions to make sense on a manifold we
need:

157.160 Proposition 3.1. If F : Ω −→ Ω′ is a diffeomorphism of open neighbourhoods
of 0 ∈ Rn with F (0) = 0 then

157.161157.161 (3.2) F ∗ : Im(Ω′; {0}) −→ Im(Ω; {0}).

You should recall that the pull-back of distributions is well-defined under a dif-
feomorphism (not under a general smooth map). I will remind you of the ‘issues’
arising in the proof of this by duality – namely the need to think about densities
– below. Using the density of C∞c (Ω) in C−∞c (Ω) for any open set Ω and the fact
that F ∗ extends by continuity I claim that (

157.161
3.2) already has meaning.

Proof. First recall that the ‘full symbol map’ is still surjective if we restrict
supports as in (

157.159
3.1) since any u′ ∈ Im(Rn; {0}) differs from an element of Imc (Ω; {0})

by an element of S (Rn). We will use this in the proof.
First we start with a simple case, when F ∈ GL(n,R) is actually an invertible

linear map. Then there is no problem with supports.

157.162 Lemma 3.1. Under pull-back by L ∈ GL(n,R)

157.163157.163 (3.3) L∗ : ImS (Rn; {0}) −→ ImS (Rn; {0}).

Proof. This corresponds to the fact the Fourier transform behaves ‘well’ under
linear change of coordinates. For u ∈ S (Rn) it follows directly that

157.164157.164 (3.4) F (L∗u)(ξ) =

∫
Rn
e−ix·ξu(Lx)dx =

∫
Rn
e−i(L

−1y)·ξu(y)|detL|−1dy

=

∫
Rn
e−iy·(L

−1)tξu(y)|detL|−1dy = |detL|−1û((L−1)tξ).

45
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So the only issue is the constant factor, but this does not affect the fact that
F (L∗u) ∈ Sm−n4 (Rn) if û ∈ Sm−n4 (Rn). �

Now, this allows us to simplify the general case in Proposition
157.160
3.1. Namely we

can write F = LG where L is the Jacobian matrix of F at 0 and G : Ω −→ L−1Ω′

still has G(0) = 0 and now has Jacobian equal to the identity at 0. Replacing G by
F again we can therefore assume that

157.165157.165 (3.5) F (x) = x+
∑
ij

xixjGij(x) in |x| < ε, Gij ∈ C∞.

There is no problem in shrinking supports to a smaller neighbourhood of 0 since
the conormal distributions are all smooth away from 0.

We can exploit the triviality of the Jacobian at 0 by observing that

157.166157.166 (3.6) Ft(x) = x+ t
∑
ij

xixjGij(x), t ∈ [0, 1]

is a smooth family of diffeomorphisms of a fixed neighbourhood of 0 with image
containing some fixed neighbourhood of 0 and with

157.167157.167 (3.7) F0(x) = x, F1(x) = F (x).

This allows us to replace the problem by a deformation problem, meaning we can
get from beginning to end along a path (you might think this is actually harder).
However we can now use the variation formula (really just the chain rule) that

157.168157.168 (3.8)
d

dt
(F ∗t u) = F ∗t (Vtu), Vt =

∑
k,j,i

xixjaij,k(t, x)∂xk .

Here Vt is the t-dependent vector field which defines Ft by integration – Ft is
the unique 1-parameter family of local diffeomorphisms which satisfies (

157.168
3.8) (and

F0 = Id). It is important here that Vt vanishes to second order at 0 (meaning its
coefficients vanish quadratically at 0 of course).

So how does this help us? We need another idea, which I learnt from Jürgen
Moser in a rather different context. Namely we can suppose that u = ut actually
depends smoothly on t as a parameter (with values in the conormal distributions).
Then the variation formula (

157.168
3.8) becomes

157.169157.169 (3.9)
d

dt
(F ∗t ut) = F ∗t (Vtut +

d

dt
ut).

Now, the idea is that we try to choose ut with u1 = u so that Vtut + d
dtut = 0. We

cannot manage this directly but what we can do is to choose ut ∈ C∞([0, 1]; Imc (Ω′′))
so that

157.170157.170 (3.10) Vtut +
d

dt
ut ∈ C∞([0, 1];C∞c (Ω′′));

here Ω′′ is some suitably small open neighbourhood of 0.
The idea is to solve (

157.170
3.10) by successive steps and the crucial point here is that

157.171157.171 (3.11) Vt : Imc (Ω′′; {0}) −→ Im−1
c (Ω′′; {0}) ∀ m ∈ R.

This follows from Proposition
157.156
2.6 and the fact that

157.172157.172 (3.12)
×xi : Imc (Ω′′; {0}) −→ Im−1

c (Ω′′; {0}), ∂xk : Imc (Ω′′; {0}) −→ Im+1
c (Ω′′; {0}).
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So, we look for ut as a formal, for the moment, sum

157.173157.173 (3.13) ut ∼
∑
j

vj , vj ∈ C∞([0, 1]; Im−j(Ω′′, {0})).

Take RBM:Clarify

157.174157.174 (3.14) v0 = u, vj =

∫ 1

t

Vtvj−1, j ≥ 1.

Then, slightly generalizing the asymptotic summation result (see Problems 2) to
include the ‘parameter’ t ∈ [0, 1], we can find ut satisfying (

157.173
3.13) and hence (

157.170
3.10).

However, we do know that C∞c is coordinate-invariant so we have proved the Propo-
sition. �

The question arises as to what the full symbol of F ∗u might be. The answer is
that it is not so simple to write out because of the iteration. We will deduce a few
things about this complicated formula below, but for the moment notice that the
‘prinicpal symbol’ is given by a relatively simple formula in terms of the Jacobian.

157.175157.175 (3.15)
σm(F ∗u)(ξ) = |detL|−1σm(u)((L−1)tξ) ∈ Sm−n4 /Sm−1−n4 (Rn), L = D0F.

157.176 Lemma 3.2. The transformation (
157.175
3.15) is that of a density on T ∗0 Rn.

2. Left/right invariance

For differential operators it is conventional to write the coefficients ‘on the left’

157.178157.178 (3.16) P =
∑
|α|≤m

pα(x)Dα
x , pL(x, ξ) =

∑
|α|≤m

pα(x)ξα.

However one can just as well write them on the right

157.179157.179 (3.17) P =
∑
|α|≤m

Dα
x qα(x), pR(x, ξ) =

∑
|α|≤m

qα(x)ξα.

157.180 Lemma 3.3.

157.181157.181 (3.18)

pL(x, ξ) =
∑
β∈Nn0

1

β!
∂βxD

β
ξ pR(x, ξ),

pR(x, ξ) =
∑
β∈Nn0

(−1)|β|

β!
∂βxD

β
ξ pL(x, ξ).

Here of course only a finite number of terms are non-zero. The formal power series
here are those of an exponential so we can write

157.182157.182 (3.19) pL = exp(Dx · ∂x)pR, pR = exp(−Dx · ∂x)pL

to see that one is the inverse of the other.

Proof. Leibniz’ formula. �

For pseudodifferential operators we can do ‘the same thing’ but it is then not
so clear that we get the same space of operators. For a differential operator with
coefficients written on the right we see, again using the Fourier inversion formula
on S that the operator is given by the formula

157.183157.183 (3.20) F (Pu)(ξ) =

∫
Rn
e−iy·ξpR(y, ξ)u(y)dy, u ∈ S (Rn).
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157.184 Proposition 3.2. If pR ∈ C∞∞ (Rny ;Sm(Rnξ )) the operator defined by (
157.183
3.20) is

an element of Ψm(Rn) with left-reduced symbol, pL, given asymptotically by (
157.181
3.18).

Proof. We proceed very much as in the proof above. Namely, the Schwartz
kernel of the operator P in (

157.183
3.20) is

157.185157.185 (3.21) P (x, y) = B(y, x− y), B(y, z) = (2π)−n
∫
Rn
pR(y, ξ)ei(x−y)·ξdξ

where we may assume that pR is of very low order to ensure absolute convergence
of the integral (and sort the general case out by continuity). Thus the kernel is
given by introducing the coordinates y and z = x− y in R2n and taking the partial
inverse Fourier transform in z.

So this is very similar to the original ‘left-reduced’ formula except we have
switched x and y as the variable independent of z = x− y on R2n. Using the same
idea as above we can consider a 1-parameter family of ‘quantization maps’ including
left and right as extreme casesRBM:Check QL is earlier

157.186157.186 (3.22) Qt(at) = (2π)−n
∫
Rn
at(tx+ (1− t)y, ξ)ei(x−y)·ξdξ, t ∈ [0, 1]

and again allow a to vary smoothly with t. The full estimates we are considering
on a are therefore

157.187157.187 (3.23) sup(1 + |ξ|)−m+|β||∂kt ∂αx ∂ξa(t, x, ξ)| <∞ on [0, 1]t × Rnx × Rnξ .

So again, the claim is that the space of kernels, distributions that is, on R2n defined
by (

157.186
3.22) is actually independent of t.
To see this we compute, as before, the derivative in t and note that it can be

written

157.188157.188 (3.24)
d

dt
Qt(at) = Qt(i

∑
j

∂ξj∂xjat +
d

dt
at)

where the first term comes from the chain rule and integration by parts since
d
dt (tx+ (1− t)y) = x− y and x− y = −i∂ξi(x− y) · ξ. So, now we want to choose
at so that

157.189157.189 (3.25) i
∑
j

∂ξj∂xjat +
d

dt
at is of order −∞.

In this case we can solve (
157.189
3.25) explicitly by taking

157.192157.192 (3.26) at(x, ξ) ∼
∑
j

tk

k!
(Dx · ∂ξ)ka(x, ξ) = exp(tDx · ∂ξ)a

in the sense of formal power series at t = 0.
If we choose at to be an asymptotic sum (uniform in the other variables) as in

(
157.192
3.26) then the ‘error term’ is

157.193157.193 (3.27)
d

dt
Qt(at) = Qt(et(x, ξ)), sup(1 + |ξ|)−N |∂kt ∂αx ∂

β
ξ et| <∞ ∀ k, α, β.

So we can unload the last step in the proof on the following lemma. �
L5-end

Remark. Undelivered Lecture 6

I did not finish the proof of left/right equivalence last time. Let me not start
at precisely the place I left off, but instead consider the ‘residual’ operators.
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157.194 Lemma 3.4. For each t ∈ [0, 1] the quantization Qt, in (
157.186
3.22) applied to the

residual symbols, which satisfy

157.195157.195 (3.28) sup(1 + |ξ|)N |∂αx ∂
β
ξ a(x, ξ)| <∞ ∀ N,α, β

gives the space of kernel of elements of Ψ−∞(Rn) are precisely those smooth func-
tions which satisfy

157.196157.196 (3.29) sup(1 + |x− y|)N |∂αx ∂βyA(x, y)| <∞ ∀ N,α, β.

Proof. The functions satisfying (
157.195
3.28) are exactly the elements of the space

C∞∞ (Rnx ;S(Rnξ )). Consider the case t = 1, which is the ‘left quantization’ we started

with. Since the Fourier transform is an isomorphism of S (Rn), the space of kernels
of elements of Ψ−∞(Rn) consists of the functions

157.198157.198 (3.30) A(x, y) = B(x, x− y),

where B(x, z) is the (partial) inverse Fourier transform ξ −→ z

157.199157.199 (3.31) B(x, z) = (2π)−n
∫
eiz·ξa(x, ξ)dξ =⇒ B ∈ C∞∞ (Rnx ; S (Rnz )).

Thus, after this change of variable, the space of B’s satisfy the same estimates as
the symbols they are defined by

157.201157.201 (3.32) sup
x,z

(1 + |z|)N |∂αx ∂βzB| <∞.

The general quantization for t ∈ [0, 1] replaces these kernels by the

157.200157.200 (3.33) At(x, y) = B(tx+ (1− t)y, z)

for the same space of B’s. In terms of the B’s themselves this corresponds to the
change of coordinates (x, z) −→ (X = x − (1 − t)z, z). This is invertible and the
coordinate vector fields tranform to

157.202157.202 (3.34) ∂z = ∂z − (1− t)∂x, ∂x = ∂X

from which it is clear that the estimates (
157.201
3.32) are invariant under such transfor-

mations. Thus

157.203157.203 (3.35) Qt (C∞∞ (Rn; S (Rn))) = Ψ−∞(Rn) ∀ t ∈ [0, 1].

�

This takes care of the residual terms.
So, going back to the proof of Proposition

157.184
3.2 we are proceeding to construct

a family at ∈ C∞∞ ([0, 1]× Rn;Sm(Rn)) so that

157.204157.204 (3.36)
dat
dt

+ i∂ξ ·∂xat ∈ C∞∞ ([0, 1]t×Rn;S−∞(Rnξ )), a1 ∈ C∞∞ (Rn;Sm(Rn)) given.

To do this we choose successive families vj ∈ C∞∞ ([0, 1]× Rn;Sm−j(Rn)) by

157.205157.205 (3.37) v0 = a, vj =
(1− t)j

j!
(i∂ξ · ∂x)ja.

Here I have done the integrals explicitly, so these satisfy

157.206157.206 (3.38)
dv0

dt
= 0,

dvj
dt

+ i∂ξ · ∂xvj−1 = 0 j ≥ 1, v0 = a, vj
∣∣
t=1

= 0, j ≥ 1.
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Now we choose at as an asymptotic sum of the vj ’s. This goes beyond the earlier
summation because of the presence of the parmeters t ∈ [0, 1] and x ∈ Rn. What
we want to do is to ensure that the cutoff series

157.207157.207 (3.39)
∑
j>k

Φnkvj

should converge absolutely with respect to the seminorms of C∞∞ ([0, 1]×Rn;Smj (Rn)).
All the terms have lower order than this. The point is that there are still only a
countable number of norms, even though they now involve the supremum over
[0, 1]×Rn as well. So absolute convergence can be ensured for each series (

157.207
3.39) by

choosing the nk large enough. Again this only involves a finite number of conditions
on each nk.

Once we choose at to be such an asymptotic sum then we get (
157.193
3.27) and.

following the discussion of the residual terms above, the complete the proof of
Proposition

157.184
3.2.

2.1. Composition. So, finally we are in a position to prove the multiplica-
tivity of (standard) pseudodifferential operators as in Theorem

157.12
1.1:

157.197157.197 (3.40)

A ∈ Ψm(Rn), B ∈ Ψm′(Rn) =⇒ A ◦B ∈ Ψm+m′(Rn) and

σ(AB) ∼
∑
α∈Nn0

1

α!
∂αξ σ(A)Dα

xσ(B)

where σ is the left-reduced full symbol.

157.614 Remark 2. The asymptotic formula in (
157.197
3.40) is one version of ‘Moyal’s for-

mula’.

Proof. First I suggest the standard proof, which I will not quite follow through.
The idea is to write A in left-reduced form and B is right-reduced form – now that
we know they are equivalent. Thus

157.208157.208 (3.41) Au(x) = (2π)−n
∫
aL(x, ξ)eix·ξû(ξ)dξ,

F (Bv)(ξ) =

∫
bR(y, ξ)e−iy·ξv(y)dy, u, v ∈ S (Rn).

We can assume that the symbols themselves are of order −∞ and use density. The
composite is then

157.209157.209 (3.42) (AB)v(x) = (2π)−n
∫
ei(x−y)·ξaL(x, ξ)bR(y, ξ)v(y)dydξ

This is almost what we want, except the ‘amplitude’ in the integral depends ex-
plicitly on both x and y, as well as ξ. So we need to show that the kernel of the
composite

157.210157.210 (3.43) K(x, y) = (2π)−n
∫
ei(x−y)·ξaL(x, ξ)bR(y, ξ)dξ ∈ Ψm+m(Rn).

This can be proved by an argument very similar to the left/right reduction. I leave
the details to you!



2. LEFT/RIGHT INVARIANCE 51

Let’s return for a moment to the spaces of conormal distributions at the origin,
ImS (Rn; {0}). We can easily define conormal distributions at another point simply
by translation. Thus, if p ∈ Rn,

157.211157.211 (3.44) ImS (Rn; {p}) = {u ∈ S ′(Rn);u(x+ p) = T ∗−pu ∈ ImS (Rn)}.

This is made more convincing by the proof of coordinate invariance. Here Tq is
translation by q ∈ Rn, Tqx = x+ q.

157.212 Exercise 6. Define, and the formulate (and prove) the coordinate-invariance
of, the spaces Imc (Ω, {p}) for p ∈ Ω ⊂ Rn open.

157.213 Lemma 3.5. The Schwartz kernels of elements of Ψm(Rn) may be identified
with the space

157.214157.214 (3.45) C∞∞ (Rny ; I
m+n

4
S (Rn; {0})) by A(x, y) 7−→ A(x− y, y).

Proof. �

Using earlier results we have another method. What we have shown above, in
left/right reduction is that the kernel of an element of Ψm(Rn) �

If there is a little time left today I want to introduce another algebra of pseu-
dodifferential operators. This is a sign of things to come. I have been rather hard
on the ‘coefficient ring’ C∞∞ (Rn) which is involved in the ring Ψm(Rn). What is a
‘nicer’ possibility? The one I have in mind is the symbol space itself. We can easily
introduce the space of ‘symbol-valued symbols’ (in either direction)

157.215157.215 (3.46) Sm,k(Rn;Rn)

= {a ∈ C∞(R2n
x,ξ); sup(1 + |x|)−k+|α|(1 + |ξ|)−m+|β||∂αx ∂

β
ξ a(x, ξ)| <∞, ∀ α, β}.

What I mean by symbol-valued symbols is that as a smooth map from the first set
of variables,

a : Rnx −→ Sm(Rn).

Moreover, if ‖ · ‖m,N are the seminorms on Sm(Rnξ ) then the estimates (
157.215
3.46) are

equivalent to

157.616157.616 (3.47) sup
x

(1 + |x|)−m+|α|‖∂αx a(x, ·)‖k,N <∞ ∀ α.

These defining conditions give seminorms. Here there are two orders and differ-
entiation with respect to x lowers the second (but not the first) and differentiation
with respect to ξ lowers the first but not the second.

Directly from (
157.215
3.46) we see that

157.216157.216 (3.48) k ≤ 0 =⇒ Sm,k(Rn;Rn) ⊂ C∞∞ (Rn;Sm(Rn)).

It is also the case that

157.217157.217 (3.49)
(1 + |x|2)k/2 ∈ S0,k(Rn;Rn) and

Sm,k(Rn;Rn) · Sm
′,k′(Rn;Rn) = Sm+m′,k+k′(Rn;Rn).

Combining these two observations we see that

157.218157.218 (3.50) (1 + |x|2)−k/2Sm,k(Rn;Rn) ⊂ C∞∞ (Rn;Sm(Rn).



52 3. THE RING Ψ∗(Rn)

So, we can quantize these double symbols using left quantization and define

157.219157.219 (3.51) Ψm,k
sc (Rn) = {A : S (Rn) −→ S (Rn);

A = (1 + |x|2)k/2QL((1 + |x|2)−k/2a), a ∈ Sm,k(Rn;Rn)}.

This algebra was introduced by Shubin,
MR0273463
[8], but I call it the scattering algebra,

which is the subscript sc, because it has a direct extension to compact manifolds
with boundary (as I hope we will see).

So, I am getting ahead of myself here:

157.220 Proposition∗ 3.3. The scattering psedudofferential operators from a double-
filtered algebra

157.221157.221 (3.52) Ψm,k
sc (Rn) ◦Ψm′,k′

sc (Rn) ⊂ Ψm+m′,k+k′

sc (Rn)

with residual space

157.222157.222 (3.53) Ψ−∞,−∞sc (Rn) =
⋂
m,k

Ψm,k
sc (Rn)

equal to the space of operators with kernels A ∈ S (R2n).

Maybe you would like to try your hand at proving this! You can easily see

why it should be true because Moyal’s formula for the composite of two

such operators gives

σL(AB) ∼
∑
α

1

α!
∂ξσL(A) ·DxσL(B) 157.223157.223 (3.54)

and the individual terms here are in

Sm−|α|,k(Rn;Rn) · Sm
′,k′−|α|(Rn;Rn) ⊂ Sm+m′−|α|,k+k′−|α|(Rn;Rn)157.224157.224 (3.55)

which is decreasing in both orders. It takes a little thought to prove that
everything ‘works’ correctly; here is an outline of one approach – where I

will use Kumano-go’s double symbols.

First go through the left/right reduction argument in this case. For con-
venience I take k ≤ 0 because we can always recover the general case by

multiplying by (1 + |x|2)k/2. So, we want to choose a 1-parameter family of

double symbols,

at ∈ C∞([0, 1]t;S
m,k(Rn;Rn)) 157.225157.225 (3.56)

so that the identity (
157.189
3.25) holds in the new sense. Looking at (

157.205
3.37) we can

see that if v0 = a is chosen in Sm,k(Rn;Rn) then the vj ∈ C∞([0, 1];Sm−j,k−j(Rn;Rn)
have both orders decreasing. Going back to the asymptotic summation
lemma we now need to do a little more with our cutoffs. So in this case we

would consider all the series∑
j>l

(1− φ(x/nj))φ(ξ/nj)vj(t, x, ξ) 157.226157.226 (3.57)

where we cut out the region where both |x| and |ξ| are less than nj . So

on the support of (1 − φ(x/nj)φ(ξ/nj)) either |x| > nj or |ξ| > nj but

the symbol lies in the space Sm−j,k−j(Rn;Rn) with j > l. So this is small

in the symbol space Sm−l,k−l(Rn;Rn) if we choose nj large enough. This

means we can make all the series converge by an appropriate choice of the
integers nj and then the error term and then the error term

d

dt
Qt(at) ∈ S (R2n) 157.227157.227 (3.58)

is a residual operator in the new sense. So we win and we see thatQt(Sm,k(Rn;Rn) =

Ψm,ksc (Rn) for all t ∈ [0, 1].
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Now to Kumano-go’s result. Suppose we ‘overspecify’ the amplitude of the

pseudodifferential operator by taking a ‘triple symbol’

b(x, y, ξ) ∈ Sm,k,k(Rn;Rn;Rn) = Sk(Rnx);Sk(Rny );Sm(Rnξ ).157.228157.228 (3.59)

This means we consider smooth functions on R3n which satisfy

sup(1 + |x|)−k+α(1 + |y|)−k+|γ|(1 + |ξ|)−m+|β||∂αx ∂γy ∂
β
ξ b(x, y, ξ)| <∞.157.229157.229 (3.60)

This defines a countably normed space. Notice that these are symbols ‘sep-

arately’ in all the variables, there is no joint decay.

157.230 Proposition 3.4. [Kumano-go] The ‘overspecified’ quantization map

Q : b −→
∫
Rn

ei(x−y)·ξb(x, y, ξ)dξ ∈ Ψm,ksc (Rn). 157.231157.231 (3.61)

Proof. We can think of the double symbols a(x, ξ) as special cases

of the triple symbols which are indpendent of y. Then (
157.231
3.61) is standard

quantization, so the range certainly contains Ψm,ksc (Rn). To see that it con-

tains nothing more, we can use the same deformation argument as above
and try to construct a family of triple symbols bt so that the intermediate

quantization maps

Qt : bt −→
∫
Rn

ei(x−y)·ξbt(x, tx+ (1− t)y, ξ)dξ 157.232157.232 (3.62)

have derivative a smoothing, here meaning Schwartz, kernel. �

3. Isotropic algebra
S.Isotropic

There is a text on this by Parmeggiani
MR2650633
[7].

157.468 Remark. Edited by Paige Dote.

The calculus Ψ∗,∗sc (Rn), due to Shubin, is described above. Let me introduce
yet another algebra of pseudodifferential operators on Rn. This one, as we will see
later, has direct topological applications, whereas the scattering algebra is more of
geometric significance. The symbols considered are the ‘pure symbols’ on R2n =
Rnx × Rnξ ,

Sm(R2n) = {a ∈ C∞(R2n);∀α, β ∈ Nn0 , sup(1 + |x|+ |ξ|)−m+|α|+|β||∂αx ∂
β
ξ a| <∞}.

So there is no difference in behavior between the x and ξ variables. That is what
‘isotropic’ is supposed to indicate here, meaning ‘the same in all directions’.

Rather than repeat the basic constructions again we can use the properties of
Ψ∗,∗sc (Rn) in view of the following Lemma:

157.471 Lemma 3.6. The pure symbols and symbol-valued symbols are related by the
following:

157.470157.470 (3.63)


Sm(R2n) ⊂ Sm(Rnx ;Sm(Rnξ )), m ≥ 0

Sm(R2n) ⊂ Sm/2(Rn;Sm/2(Rn)), m ≤ 0

S−∞(R2n) = S−∞(Rn;S−∞(Rn))

.

Proof. These results follow from

max{1 + |x|, 1 + |ξ|} ≤ (1 + |x|+ |ξ|) ≤ (1 + |x|)(1 + |ξ|).
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This gives the leading estimates in the first two statements in (
157.470
3.63) since a ∈

Sm(R2n) satisfies

|a(x, ξ)| ≤ (1 + |x|)m(1 + |ξ|)m, m ≥ 0

|a(x, ξ)| ≤ (1 + |x|)m/2(1 + |ξ|)m/2, m ≥ 0.

In Sm(R2n) an x-derivative corresponds to an extra decay factor of (1+|x|+|ξ|)−1 ≤
(1 + |x|)−1 and a ξ-derivative does as well but (1 + |x|+ |ξ|)−1 ≤ (1 + |ξ|)−1, giving
all of the ‘double’ symbol estimates. The last statement follows from the second
last. �

Thus, using left quantization we can define

(3.64) Ψm
iso(Rn) = QL(Sm(R2n

(x,ξ)))

and it follows that

(3.65)

{
Ψm

iso(Rn) ⊂ Ψm,m
sc (Rn), m ≥ 0

Ψm
iso(Rn) ⊂ Ψ

m/2,m/2
sc (Rn), m ≤ 0

.

157.472 Theorem 3.1. The isotropic operators form an ∗-closed filtered algebra of op-
erators with a well-defined principal symbol map giving a short exact sequence

Ψm−1
iso (Rn) ↪→ Ψm

iso(Rn)
σm
� Sm/Sm−1(R2n),157.473157.473 (3.66)

σm+m′(AB) = σm(A)σm′(B)157.474157.474 (3.67)

for A ∈ Ψm
iso(Rn), B ∈ Ψm′

iso(Rn).

Proof. We know that the Ψ∗,∗sc (Rn) is a (bi-)filtered algebra with products
asymptotic to Moyal’s formula. Hence, in this sense,

A ∈ Ψm
iso(Rn), B ∈ Ψm′

iso(Rn) =⇒ AB = QL(c)

for some c ∈ Sk(Rn;Sk(Rn)) and some k where

c ∼
∑
α

1

α!
(Dα

ξ a)(Dα
x b).

The the series here has terms in in Sk−j,k−j . Now since a ∈ Sm(R2n), b ∈ Sm′(R2n)
the terms in the Moyal series are

1

α!
∂αξ a ·Dα

x b ∈ Sm+m′−2|α|(R2n).

Thus, this series is asymptotic in the isotropic sense. It follows that we can choose
an asymptotic sum

Sm+m′(R2n) 3 c̃ ∼
∑
α

1

α!
∂αξ a ·Dα

x b.

Hence, it follows from Lemma
157.471
3.6, despite the 1

2 s in the orders, that

c̃ ∼
∑
α

1

α!
∂αξ a ·Dα

x b

in the sense of symbol-valued symbols. From the uniqueness of the asymptotic sum
in this sense, and the last part of Lemma

157.471
3.6, it follows that

Ψm
iso(Rn) ·Ψm′

iso(Rn) ⊂ Ψm+m′

iso (Rn)
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as claimed. Thus the Moyal product gives an asymptotic formula for the symbol of
a product so (

157.473
3.66) follows, with (

157.474
3.67) essentially being the definition of σm.

The closure under passage to adjoints is similar. �

Since these are lectures, one can ask rather impertinent questions such as: Why
would one be interested in this? One practical answer is that the algebra is closely
related to the harmonic oscillator on Rn.

Definition 3.1 (Harmonic Oscillator). The harmonic oscillator, H, on Rn is
defined as

H = ∆ + |x|2, where ∆ =
∑

D2
xi = −

∑
∂2
xi .

Indeed, H ∈ Ψ2
iso(Rn) is elliptic. I hope that somewhere below I will show how

one can use the isotropic algebra to prove Thom isomorphism in K-theory. This
is a very special case of the familiar Atiyah-Singer Index Theorem that I want to
describe below. The isotropic algebra is also an integral part of the proof, at least
for the proof I have in mind.

Now, for elliptic operators, such as H, in the isotropic calculus we can deduce
the existence of a parameterix just as is done microlocally in the standard case in
the next chapter and globally for manifolds later. It is significant that the error
here is compact.

157.475 Proposition 3.5. If A ∈ Ψm
iso(Rn) is elliptic then it has a two-sided parame-

terix modulo the ideal Ψ−∞S (Rn).

Proof. By definition, A = QL(a) where a ∈ Sm(R2n) is globally elliptic. Thus
for some δ > 0

|a(x, ξ)| ≥ δ(|x|+ |ξ|)m in |x|+ |ξ| ≥ 1

δ
,

then b(x, ξ) = 1−ϕ(x,ξ)
a(x,ξ) ∈ S−m(R2n) if ϕ ∈ C∞c (R2n) is equal to 1 on the ball

|x|+ |ξ| ≤ 1
δ . �

4. L2 boundedness

Project 2 P-Bounded

In this project I would like you to go through some ‘symbolic arguments’, giving
L2 boundedness of pseudodifferential operators.

4.1. Schur’s criterion. This is the same Schur as the lemma about irre-
ducibility, hence I just say ‘criterion’. This is quite a handy sufficient condition for
L2 boundedness in terms of the Schwartz kernel. It can be generalized to measure
spaces (and so manifolds), but for the moment let’s think about Rn. Then

Schur Proposition 3.6. If A : Rn −→ C is a Lebesgue measurable function which
satisfies

P2.2P2.2 (3.68) sup
x

∫
|A(x, y)|dy, sup

y

∫
|A(x, y)|dx <∞

then the integral operator (say defined initially on Cc(Rn)

P2.1P2.1 (3.69) Au(x) =

∫
Rn
A(x, y)u(y)dy is a bounded operator on L2(Rn).
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Proof. You might like to look it up, it is basically just a clever use of Schwarz
inequality. �

Problem 2.1
Show that if A ∈ Ψm(Rn) with m < −n then the Schwartz kernel is continuous

and satisfies

P2.3P2.3 (3.70) sup
x,y

(1 + |x− y|)N |A(x, y)| <∞ ∀ N.

Deduce that Schur’s criterion applies and hence conclude L2 boundedness.
In fact you can push this argument so that it applies for m < 0 but not up to

m = 0 (think of the identity).
Problem 2.2

For A ∈ Ψ0(Rn) construct Q ∈ Ψ0(Rn) such that

P2.4P2.4 (3.71) Q = Q∗, Q2 = C Id−A∗A+ E, C > 0 constant, E ∈ Ψ−1(Rn)

‘Hint’: It is enough to choose C > sup |a|2 where A = QL(a). Then show that

q = (C − |a|2)
1
2 ∈ C∞∞ (Rn;S0(Rn)) and the set Q = 1

2 (QL(a)) +QL(a)∗.
Problem 2.3

Now we want to improve the ‘error’ in (
P2.4
3.71). Show that if E ∈ Ψ−k(Rn),

k ≥ 1, and E∗ = E where E = QL(e) then the choice
P2.5P2.5 (3.72)

B = QL(e/q)+QL(e/q)∗ satisfies (Q−B)2 = C Id−A∗A−E′, E′ ∈ Ψ−k−1(Rn), (E′)∗ = E′.

Problem 2.4
Using this show that we may ‘correct’ Q (by adding a lower order term) so

that (
P2.4
3.71) holds with E ∈ Ψ−N (Rn) for any preassigned N. (Using asymptotic

summation this works for N = −∞.
Problem 2.5

Finally deduce L2 boundedness in the sense that A ∈ Ψ0(Rn) extends by con-
tinuity from A : S (Rn) −→ S (Rn) to a bounded operator on L2(Rn.

‘Hint’. This whole argument is due to Hörmander. It follows from (
P2.4
3.71) that,

for φ ∈ S (Rn), in terms of the L2 inner product

P2.6P2.6 (3.73) 0 ≤ 〈Qφ,Qφ〉 = 〈Q2φ, φ〉 = C‖φ‖2L2 − ‖Aφ‖2L2 + 〈Eφ, φ〉.

So, if we know that boundedness of E (which we do) then

P2.7P2.7 (3.74) ‖Aφ‖L2 ≤ (C + C ′)
1
2 ‖u‖L2 .

where C ′ comes from E.
Problem 2.6: Sobolev boundedness

The Sobolev space Hs(Rn) is defined as consisting of those elements of S ′(Rn)
(becauese we are allowing s ≤ 0 such that

P2.8P2.8 (3.75) (1 + |ξ|2)s/2û ∈ L2(Rn).

Deduce that the operator (1 + |D|2)t = QL((1 + |ξ|2)t/2) = QR((1 + |ξ|2)t/2) ∈
Ψt(Rn), for any t ∈ R, is an isomorphism

P2.9P2.9 (3.76) (1 + |D|2)t/2 : Hs(Rn) −→ Hs−t(Rn).

From this, L2 boundedness and the properties of the calculus deduce that

P2.10P2.10 (3.77) A ∈ Ψm(Rn) =⇒ A : Hs(Rn) −→ Hs−m(Rn).



4. L2 BOUNDEDNESS 57

‘Hint’: Consider for instance (1 + |D|2)−m+s/2A(1 + |D|2)−s/2.
Problem 2.7

For anyone who has read the section on the scattering (Shubin) calculus define
the weighted Sobolev spaces

P2.11P2.11 (3.78) Hs,t(Rn) = {u ∈ S ′(Rn); (1 + |x|2)t/2u ∈ Hs(Rn).

(1) Show that for any real orders

P2.12P2.12 (3.79) A ∈ Ψm,k
sc (Rn) =⇒ A : Hs,t(Rn) −→ Hs−m,t−l(Rn).

(2) Show that

P2.13P2.13 (3.80) F : Hs,t(Rn) −→ Ht,s(Rn), ∀ s, t.

(3) Show that, in contrast to the usual Sobolev spaces, the inclusionHs′,t′(Rn) ↪→
Hs,t(Rn) for s′ > s, t′ > t is compact.

Problem 2.7
For anyone who has followed the discussion above of the isotropic calculus.

(1) Define the isotropic Sobolev spaces in terms of the operators

P2.15P2.15 (3.81) Gs = QL((1 + |x|2 + |ξ|2)s/2 ∈ Ψs
iso(Rn)

by

P2.16P2.16 (3.82) Hs
iso(Rn) = {u ∈ S ′(Rn);Asu ∈ L2(Rn).

(2) Show that for any





CHAPTER 4

Ellipticity and wavefront set

L6

In the actual Lecture 6 I got a little carried away but let me record here what
I tried to cover. So, I am reviewing what we have done, or in some cases partly
done, and then expanding on it a little.

• Symbols:- The spaces Sm(Rn) ⊂ C∞(Rn) are Fréchet spaces defined by the
finiteness of the norms in (

157.99
2.55). They form a filtered (abelian) ring with

identity 1 ∈ S0(Rn) and have density (Proposition
157.102
2.5) and asymptotic

completeness (Theorem
157.140
2.2) properties.

When is an element invertible? For a ∈ Sm(Rn) to have an inverse
in S−m(Rn) a necessary and sufficient condition is

157.233157.233 (4.1) |a(ξ)| ≥ δ(1 + |ξ|)m ⇐⇒ a−1 ∈ S−m(Rn).

The necessity of (
157.233
4.1) follows from the bound |a−1(ξ)| ≤ C(1 + |ξ|)−m.

Conversely this certainly implies that

b(ξ) =
1

a(ξ)
∈ C∞(Rn) 157.234157.234 (4.2)

and the derivatives are then of the form

∂αb =
eα

a|α|+1
157.235157.235 (4.3)

where eα is a symbol or order (m − 1)|α|. This is clear for |α| = 0 and

follows by induction since taking one more derivative shows that

∂ξj∂
αb =

a∂ξj eα − (|α|+ 1)∂ξja

a|α|+2
157.346157.346 (4.4)

giving the inductive step. The symbol estimates on b follow.

• We defined I
m+n

4
S (Rn) = F −1(Sm(Rn)) and derived various properties of

these conormal distributions at 0.
• For such a Fréchet space we can define C∞∞ (Rm;Sm(Rn)) as the subspace

of C∞(Rm × Rn) with all derivatives with respect to the first variables
bounded in terms of the seminorms on Sm(Rn). Then our definiition of
Ψm(Rn) is in terms of their Schwartz kernels (which we identify with the
operators)

157.236157.236 (4.5) A ∈ Ψm(Rn) =⇒ A(x, x− z) ∈ C∞∞ (Rnx ; I
m+n

4
S (Rnz )).

This corresponds to the ‘quantization map’ in terms of the partial Fourier
tranform

157.237157.237 (4.6) C∞∞ (Rm;Sm(Rn)) 3 a(x, ξ) −→ QL(a) = F −1
ξ (a)(x, x− y) ∈ Ψm(Rn).

• We showed (most of the fact that) that for each t ∈ [0, 1] the ‘intermediate
quantizations’

157.238157.238 (4.7) Qt(a) = F −1
ξ (a)(tx+ (1− t)y, x− y) ∈ Ψm(Rn)

59
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give the same space of operators. For t = 1 this is ‘left’ quantization and
for t = 0 it is ‘right’ quantization where the kernel is written as

157.239157.239 (4.8) A(x, y) = B(y, x− y), B ∈ C∞∞ (Rny ; I
m+n

4
S (Rn)).

• Note that the case t = 1
2 is also of importance. It is called ‘Weyl quanti-

zation’ and means writing the kernel as

157.240157.240 (4.9) A(x, y) = B(
x+ y

2
, x− y), B ∈ C∞∞ (Rny ; I

m+n
4

S (Rn)).

It has some useful properties.
• The inverses of these quantization maps are the ‘total symbols’

157.241157.241 (4.10) σL, σR, σW : Ψm(Rn) −→ C∞∞ (Rny ;Sm(Rn)).

• The right and left symbols are related asymptotically by

157.244157.244 (4.11) σR(A) ∼
∑
α

1

α!
Dα
x∂

α
ξ σL(A) = exp(Dx · ∂ξ)σL(A)

where the exponential is to be formally expanded in Taylor series at 0.

157.248 Exercise 7. Derive a similar asymptotic relationships between σW
and σL.

• (Not discussed in lecture) The ‘formal’ (just meaning non-Hilbert space)
adjoint is defined for any continuous linear operator A : S (Rn) −→ S ′(Rn)
by duality

157.242157.242 (4.12) A∗ : S (Rn) −→ S ′(Rn),

∫
Rn

(Au)vdx =

∫
Rn
A∗vdx

(where the distribution pairing is written as an integral). Then

157.243157.243 (4.13) ∗ : Ψm(Rn) −→ Ψm(Rn), σR(A∗) = σL(A)).

• The composition theorem with

157.246157.246 (4.14) σL(A ◦B) ∼
∑
α

(∂αξ σL(A))(Dα
xσL(B)).

As suggested in Lecture, check this for differential operators. In fact it is
enough to take A = Dγ

x and B = b(x) and apply Leibniz’ formula to get
(
157.246
4.14).

• (Also not discussed at all). The elements of Ψm(Rn) define by bounded
linear maps for any M on the standard Sobolev spaces

157.247157.247 (4.15) A : HM (Rn) −→ HM−m(Rn).

Proof later. Here HM (Rn) = F −1((1 + |ξ|)−ML2(Rn)) is defined as usual
as the inverse Fourier transform of the weighted L2 spaces on the dual.

1. Ellipticity of symbols
S.EllipticSymbols

In the notes above the notion of ellipticity for elements of Sm(Rn) is discussed
(although I did not cover this in lectures). We want an extension of this idea
to C∞(RN ;Sm(Rn)) (I have dropped both the boundedness assumptions on the
coefficents and the assumption that N = n since they are both irrelevant here).

Most importantly a symbol is said to be elliptic at (x̄, ξ̄) ∈ RN × (Rn \ {0}) if
‘it is as big as it can be’ in a cone around this point.
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157.249 Definition 4.1. The elliptic set

Ell(a) = Ellm(a) ⊂ RN × (Rn \ {0}) of a ∈ C∞(RN ;Sm(Rn))

consists of those points x̄, ξ̄ corresponding to which there exists δ > 0 such that

157.250157.250 (4.16) |a(x, ξ)| > δ|ξ|m in |x| < δ, | ξ
|ξ|
− ξ̄

|ξ̄|
| < δ, |ξ| > 1/δ.

I have engaged in constant-saving here! Clearly the result remains true if δ
is decreased but remains positive. The basic region we are looking at here is a
‘conic neighbourhood’ of (c̄, ξ̄) which is then truncated by demanding |ξ| is large
as well. So the appearances of δ can be decreased individually and the estimate
remains true. Ellipticity is a ‘local invertibility’ condition on a in the filtered symbol
algebra, as shown below. It is a conic set from the definition which only depends
on ξ̄/|ξ̄| not ξ̄ itself. Thus

157.251157.251 (4.17) (x̄, ξ̄) ∈ Ell(a) =⇒ (x̄, tξ̄) ∈ Ell(a), t > 0.

It is also clear that Ell(a) is open for any a ∈ C∞(RN ;Sm(Rn)) as a subset of
RN × (Rn \ {0}), which is itself open in RN+n. Of course it could be empty, and it

certainly is if a ∈ C∞(RN ;Sm
′
(Rn)), m′ < m. So one should really write

157.253157.253 (4.18) Ellm(a) ⊂ RN × (Rn \ {0}) defined for a ∈ C∞(RN ;Sm(Rn))

but we treat the ‘m’ as understood from context.
We also give a name to the complement of the elliptic set, it is called the

characteristic set of the symbol

157.252157.252 (4.19) Char(a) =
(
RN × (Rn \ {0}

)
\ Ell(a).

It is then a (relatively) closed subset.
We define a third conic set corresponding to the region where the symbol is not

locally rapidly decaying with all derivatives as follows

157.254157.254 (4.20)

conesupp(a) =
{

(x̄, ξ̄) ∈ RN × (RN \ {0}); ∃ δ > 0 and φ ∈ C∞(RN ; S (Rn))

with a = φ in |x− x̄| < δ, |ξ| > 1

δ
, | ξ
|ξ|
− ξ̄

|ξ̄|
| < δ

}{
It follows that conesupp(a) is relatively closed and that

157.255157.255 (4.21) Ell(a) ⊂ conesupp(a)

where this relation is like that between the sets {u 6= 0} and supp(u) for a smooth
function.

In terms of mutliplication of symbols it is easy to see that

157.256157.256 (4.22)

Ell(ab) = Ell(a) ∩ Ell(b),

Char(ab) = Char(a) ∪ Char(b),

conesupp(ab) ⊂ conesupp(a) ∩ conesupp(b)

Note that we can construct symbols which are elliptic at a point (x̄; ξ̄) but have
cone support in any conic neighbourhood

157.259157.259 (4.23) Cδ = {(x, ξ) ∈ RN × (Rn \ {0}); |x− x̄| < δ, | ξ
|ξ|
− ξ̄

|ξ̄|
| < σ}, δ > 0.
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Indeed to arrange this we just need to choose a smooth function on the sphere, ψδ
which is equal to one in | ξ|ξ| −ω| < δ/2, where ω = ξ̄

|ξ̄| , is positive on | ξ|ξ| −ω| < δ/2

and has support in | ξ|ξ| − ω| ≤ δ in terms of the distance on the sphere. Similarly

choose ψ ∈ C∞c (RN ) positive on |x| < 1, equal to 1 in |x| < 1
2 and supported in

|x| ≤ 1 and a similar cutoff µ ∈ C∞(Rn) and consider

157.260157.260 (4.24) cδ(x, ξ) = (1− µ(δξ))ψ(
x− x̄
δ

)ψδ(
ξ

|ξ|
) ∈ C∞c (RN ;S0(Rn)).

157.261 Lemma 4.1. In terms of (
157.259
4.23) the ‘symbolic cutoff’ χδ in (

157.260
4.24) has

Ell(cδ) ⊃ Cδ′ , ∀ δ′ < δ157.262157.262 (4.25)

conesupp(cδ) ⊂ Cδ ⊂ Cδ′′ ∀ δ′′ > δ(4.26)

conesupp(1− cδ) ∩ Cδ′/2 = ∅ ∀ δ′ < δ.157.265157.265 (4.27)

Proof. Inspection. �

157.257 Lemma 4.2. If a ∈ C∞(RN ;Sm(Rn)) and (x̄, ξ̄) ∈ Ell(a) then there exists b ∈
C∞(RN ;S−m(Rn)) such that

157.258157.258 (4.28) (x̄, ξ̄) /∈ conesupp(ab− 1).

Proof. Take a symbolic cut-off as in (
157.260
4.24) and consider

157.263157.263 (4.29) b =
χδ(x, ξ)

a
.

For δ > 0 small enough this is well-defined since by the definition of ellipticity in
(
157.250
4.16), a 6= 0 on the support of χδ(x, ξ); as usual the quotient is extended as zero

outside this support. Then (
157.258
4.28) follows from (

157.265
4.27), since ba = χδ(x, ξ). So it

only remains to check that b ∈ C∞c (RN ;S−m(Rn)). Proceeding inductively

157.264157.264 (4.30) ∂αx ∂
β
ξ b =

gα,β
a|α|+|β|+1

, gα,β ∈ C∞c (RN ;S(m−1)|α|+m|β|(Rn)).

This is certainly true for α = β = 0 and the inductive step follows by differentiating
again with respect to either variable. �

It is important to note that

157.266157.266 (4.31) Ellm(a+ e) = Ellm(a) if a ∈ C∞(RN ;Sm(Rn))

and e ∈ C∞(RN ;Sm−ε(Rn)), ε > 0.

The same is true for Char(a) whereas

157.267157.267 (4.32) conesupp(a+ e) = conesupp(a) if e ∈ C∞(RN ;S−∞(Rn)).

2. Ellipticity of pseudodifferential operators

We now transfer the these notions from symbols to pseudodifferential operators.

157.268 Definition 4.2. If A = QL(a) ∈ Ψm(Rn), a ∈ C∞∞ (Rn;Sm(Rn)) we set

Ell(A) = Ellm(A) = Ellm(a),157.269157.269 (4.33)

Char(A) = Charm(A) = Char(a),157.270157.270 (4.34)

WF′(A) = conesupp(a).157.271157.271 (4.35)
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Here WF′(A) is called the ‘operator wavefront set’ of A for reasons that should
become clearer below – it is just a name.

Recall that we defined the principal sybmol of A to be σm(A) = [a] to be the
equivalence class in C∞∞ (Rn;Sm(Rn))/C∞∞ (Rn;Sm−1(Rn)) and then it is also equal
to the equivalence class of the right-reduced symbol.

157.272 Lemma 4.3. The elliptic set only depends on σm(A) and WF′(A) depends on
a modulo symbols of order −∞ and is also equal to the cone-support of the right
reduced symbol; for the product of operators

157.273157.273 (4.36) Ellm+m′(AB) = Ellm(A) ∩ Ellm′(B), WF′(AB) ⊂WF′(A) ∩WF′(B).

Proof. The first part follows directly from (
157.266
4.31) and the fact that left- and

right-reduced symbols differ by a term of order m − 1. The last part is a little
more subtle, and depends on the formula for the asymptotic expansion of the right-
reduced sybmol in terms of the left-reduced symbol a.

157.274157.274 (4.37)
∑
α

1

α!
Dα
x∂

α
ξ a.

If a is rapidly decreasing in a truncated cone, as (
157.254
4.20) then all the terms in (

157.274
4.37)

are rapidly decaying in the same cone, because of the locality of differential oper-
ators. It follows that any asymptotic sum is rapidly decreasing as well. The final
part (

157.273
4.36) follows similarly. �

Perhaps the most important construction associated to these definitions is ‘mi-
crolocal invertibility’ at elliptic points.

157.277 Proposition 4.1. If (x̄, ξ̄) ∈ Ell(A), A ∈ Ψm(Rn), there exists B ∈ Ψ−m(Rn)
such that

157.278157.278 (4.38) (x̄, ξ̄) /∈WF′(Id−AB) ∩WF′(Id−BA).

Proof. As the notation suggests, we start with

157.279157.279 (4.39) B0 = QL(b), b as in Lemma
157.257
4.2.

The properties of b mean that

157.281157.281 (4.40) WF′(B0) ⊂ Cδ = {(x, ξ) ∈ Rnξ(Rn \ {0}); |x− x̄| ≤ δ, ‖ ξ
|ξ|
− ξ̄

|ξ̄|
≤ δ}

where we are free to choose δ > 0. Then, from the product formula for symbols,

157.280157.280 (4.41) B0A = QL(cδ))− E, E ∈ Ψ−1(Rn), WF′(E) ⊂ Cδ.
Now, we can almost invert Id−E using the Neumann series. That is we can

choose

157.282157.282 (4.42) F ∈ Ψ−1(Rn), F ∼
∑
k≥1

Ek =⇒

(Id +F )(Id−E) = Id +E′L, (Id−E)(Id +F ) = Id +E′R, E
′
L, E

′
R ∈ Ψ−∞(Rn).

Define

157.283157.283 (4.43) B = (Id +F )B0 =⇒
BA = (Id +F )(QL(cδ)− E) = Id +E′L − (Id +F )(Id−(QL(cδ)) = Id +E′′,

(x̄, ξ̄) /∈WF′(E′′).
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Similarly we can proceed on the right,

157.284157.284 (4.44) AB0 = QL(cδ)− ER, Fr ∼
∑
k≥1

EkR

and see again that BR = B0(Id +FR) satisfies

157.285157.285 (4.45) ABR = Id +E′′R, (x̄, ξ̄) /∈WF′(E′′R).

Now, it is a form of the argument which gives the ‘uniqueness of the inverse in
a group’ to see that

157.286157.286 (4.46) B = BABR + S1 = BR + S1 − S2,

S1 = B(Id−ABR), S2 = (Id−BA) so (x̄, ξ̄) /∈WF′(Si), i = 1, 2.

It follows that (x̄, ξ̄) /∈WF′(BL −BR) so B also satisfies (
157.285
4.45) and (

157.278
4.38). �

157.347 Exercise 8. [Microlocal partition of unity] Suppose that K b Rn × Sn−1

and Ua ⊂ Rn × Sn−1, a ∈ A, is an open cover of K then there exist operators
Ai ∈ Ψ0(Rn), i = 1, . . . , N such that, in terms of the cones in Rn × (Rn \ {0}),

(4.47) WF′(Id−
∑
i

Ai) ∩ R+K = ∅, WF′(Ai) ⊂ R+Uai for some ai ∈ A.

3. Wavefront set of a distribution
S.WF

Now we are in a position to define the wavefront set (or wavefrontset) of a
distribution on Rn. First let’s work with compactly supported distributions and
then pass to the general case.

157.275 Definition 4.3. If u ∈ C−∞c (Rn) then

157.276157.276 (4.48) WF(u) =
{

(x̄, ξ̄) ∈ Rn × (Rn \ {0});

∃ A ∈ Ψm(Rn), Au ∈ S (Rn), (x̄, ξ̄) ∈ Ellm(A)
}{
.

We can characterize the wavefront set of a distribution in a more elemenatary
way.

157.287 Proposition 4.2. For u ∈ C−∞c (Rn) and (x̄, ξ̄) ∈ Rn × (Rn \ {0})

157.288157.288 (4.49) (x̄, ξ̄) /∈WF(u)⇐⇒

∃ φ ∈ C∞c (Rn), φ(x̄) 6= 0, ψ ∈ C∞c (Sn−1), ψ(
ξ̄

|ξ̄|
) 6= 0 s.t.

|ψ(
ξ

|ξ|
)F (φu)| ≤ CN (1 + |ξ|)−N ∀ N.

Proof. One way is straightforward, the other way depends on the construction
of microlocal invserses as above.

First, assume the right side of (
157.288
4.49) holds – for some φ and ψ as indicated.

Then we can choose another cut-off χ ∈ C∞c (Rn) around zero in Rn and conclude
that

157.289157.289 (4.50) (1− χ(ξ))ψ(
ξ

|ξ|
)F (φu)
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is also rapidly decreasing. Now

157.290157.290 (4.51) a = (1− χ(ξ))ψ(
ξ

|ξ|
)φ(x) ∈ C∞c (Rn;S0(Rn))

and if A = QR(a) then

157.291157.291 (4.52) F Au = (1− χ(ξ))ψ(
ξ

|ξ|
)F (φu)

by definition of right quantization. If follows that

157.292157.292 (4.53) Au ∈ S (Rn) =⇒ (x̄, ξ̄) /∈WF(u)

since A is elliptic at (x̄, ξ̄).

Remark. Edited by Paige Dote.

For the opposite implication, we suppose that u ∈ C−∞c (Rn) and A ∈ Ψ−m(Rn)
with (x, ξ) ∈ Ellm(A) are such that Au ∈ S (Rn). Choose B ∈ Ψ−n(Rn) as in
Proposition

157.277
4.1, so (x, ξ) 6∈WF′(Id−BA). It follows from the second part of (

157.273
4.36)

that, with cδ as in (
157.260
4.24) (so ψ is supported near x and ψ near ξ) and Cδ = QL(cδ))

for δ > 0 sufficiently small,

WF′(Cδ) ∩WF′(Id−BA) = ∅.

Then,

(CδBA)u = Cδu mod S (Rn),

and hence, Cδu ∈ S (Rn) which implies the condition on the right in (
157.274
4.37). �

We can also see that ‘pseudodifferential operators are microlocal’ and combine
it with ‘microlocal elliptic regularity’ which is a partial inverse

157.293 Proposition 4.3. For any u ∈ C−∞c (Rn) and A ∈ Ψm(Rn)

157.294157.294 (4.54) WF(u) ⊂ Char(A) ∪WF(Au), WF(Au) ⊂WF′(A) ∩WF(u) =⇒
WF(u) ∩ Ell(A) = WF(Au) ∩ Ell(A)

We have used the fact that A ∈ Ψm(Rn) and WF′(A) = ∅ =⇒ Au ∈ S (Rn)
if u ∈ C−∞c (Rn). Note that it is not true that WF′(u) = ∅ and u ∈ S ′(Rn) =⇒
AU ∈ S (Rn). This is one of the ‘defects’ of the algebra Ψ∗(Rn).

Proof. The first statement is equivalent to saying that

(x, ξ) ∈ Ellm(A), (x, ξ) /∈WF(Au) =⇒ (x, ξ) /∈WF(u).

Again, we use the construction in Proposition ?? to find B ∈ Ψ−m(Rn) with
(x, ξ) /∈ WF′(Id−BA). We can choose the cone-support of the symbol of B such
that B(Au) ∈ S (Rn)m abd then it follows that (x, ξ) /∈WF(u). �

So far I have limited the definition of WF(u) to elements of C−∞c (Rn). This
is only because Ψm(Rn) does not act on general distributions in C−∞(Rn). To
overcome this, we consider a smaller algebra consisting of the properly-supported
pseudodifferential operators.

A closed set S ⊂ R2n can be considered as a relation between subsets of Rn

S ◦ U = πL(S ∩ π−1
R (U))
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where πL;πR : R2n → Rn are the two projections

πR(x, y) = y and πL(x, y) = x.

I am thinking here of the support of the kernel of an operator. Thus,

x ∈ S ◦ U ⇐⇒ ∃(x, y) ∈ S such that y ∈ U.
The relation defined by S is said to be proper if

S ◦K b Rn ∀K b Rn

i.e. it takes compact sets to compact sets.

Definition 4.4 (Properly Supported). A pseudodifferential operator (or in-
deed any operator) is said to be properly supported if the support of its kernel and
the kernel of its adjoint define proper relations.

Lemma 4.4. The properly supported pseudodifferential operators, denoted Ψm
P (Rn)

form a ∗-closed filtered ring defining linear maps on C∞c (Rn), C∞(Rn), CmIc(Rn),
and C−∞(Rn). We further have

157.494157.494 (4.55) Ψm(Rn) = Ψm
p (Rn) + Ψ−∞(Rn).

Proof. Let ϕ ∈ C∞c (Rn) be a cutoff near 0, say ϕ(z) = 1 in |z| ≤ 1. Then,

(1− ϕ(x− y))K(x, y)

is the kernel of an element of Ψ−∞(Rn) as follows from (??). This proves the
equation (1). The relationship of operators and kernels show that

Au(x) =

∫
A(x, y)u(y)dy, u ∈ C∞c (Rn

vanishes if A(x, y)u(y) vanishes (??). If A has proper support S = supp(A), then
ψ ∈ C∞c (Rn) with supp(ψ) ∩ (S · supp(u)) = ∅ satisfies

ψ(x)A(x, y)u(y) = 0 =⇒ supp(ψ) ∩ supp(Au) = ∅.
Thus, supp(Au) is compact if

A : C∞c (Rn) −→ C∞c (Rn).

We have assumed the same for the adjoint (and hence the transpose) from which
the remaining properties follow by duality. Then,

WF(u) 63 (x, ξ) if ∃ A ∈ Ψm
p (Rn), (x, ξ) ∈ Ellm(A), Au ∈ C∞(Rn).

It follows that this is consistent with the properties ** defined when u ∈
C−∞(Rn). �

One of the important properties if the wavefront set is that it is a refinement
of the singular support.

Lemma 4.5. If u ∈ C−∞(Rn) then

x /∈ singsupp(u) ⇐⇒ (x, ξ) /∈WF(u)∀ ξ ∈ Rn \ {0}.

Proof. In the foward direction, this is immediate, since x /∈ singsuppu implies
∃ϕ ∈ C∞c (Rn) such that ϕu ∈ C∞c (Rn). As an element of Ψ0

P(Rn), this is elliptic at

all points (x, ξ) for any ξ ∈ Rn \ {0}.
For the opposite implication, we need a covering argument. Certainly, for each

ξ 6= 0, by **, there exists ϕξ ∈ C∞c (Rn) such that ϕ̂ξu is rapidly decreasing in a
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cone around ξ with ϕξ(x) 6= 0. In fact, we know from Proposition that this remains

true if we replace ϕξ by ϕϕξ for a fixed ϕ ∈ C∞c (Rn) around ξ with ϕ(x) 6= 0. The
cone of rapid decay does not decrease.

Now Sn−1 is compact and the cones of rapid decay of the ϕ̂ξu correspond to an

open cone of S2n−1. This has a finite subcover and it follows that we may choose
ϕ ∈ C∞c (Rn) with ϕ(x) 6= 0 and supp(ϕ) ⊂ {ϕξj = 1} for this finite cover. Then

ϕϕξj = ϕ and ϕ̂u is rapidly decreasing in all directions of Rn, so ϕu ∈ C∞c (Rn) and

hence x /∈ singsuppu. �

Remark 3. The scatting and isotropic algebras do have properly supported
subalgebras, but the analogue of (

157.494
4.55) is not valid in these cases. We will see why

later.

Recall that we have insisted that WF(u) is a closed cone in Rn × (Rn \ {0}).
The results above show that this condition in in R2n is

WF(u) = (singsupp(u)× {0}) ∪WF(u),

which gives a nice picture! L6-end





CHAPTER 5

Propagation of singularities

L7

Microlocal ellipticity, as discussed above, shows us that if u ∈ S ′(Rn) and
A ∈ Ψm(Rn) then

157.297157.297 (5.1) WF(u) ⊂WF(Au) ∪ Char(A).

In particular if Au ∈ C∞(Rn) then WF(u) ⊂ Char(A).
To see what else we might be able to say, consider a simple case, where A = D1

is differention with respect to the first variable. Letting p = ξ1 be the principal
symbol we see that

157.298157.298 (5.2) Char(D1) = {(x, ξ) ∈ Rn × (Rn \ {0}); ξ1 = 0}

is a smooth hypersurface. Any solution

157.299157.299 (5.3) D1u = 0 =⇒ u(x, x′) = v(x′)

is independent of x1, meaning that

157.300157.300 (5.4) u(φ) = v(ψ), ψ(x′) =

∫
φ(x1, x

′)dx1.

We already know that WF(u) ⊂ {ξ1 = 0} but more is true. Namely

157.301157.301 (5.5) WF(u) = {(x1, x
′, 0, ξ′); (x′, ξ′) ∈WF(v)}.

So the wavefront set of u is a union of lines where x1 alone varies. These are of
course the integral curves of ∂x1 but as a vector field on Rn × (Rn \ {0}) and only
those inside {ξ1 = 0}.

1. Hamiltonian mechanics

As we shall see, something like (
157.301
5.5) can be proved much more generally. To

do so we use commutator methods. The idea here is that we try to get information
about solutions of Pu = 0 where P ∈ Ψm(Rn) by taking a commutator with a
‘test operator’ B ∈ Ψk(Rn). I will explain this a bit more fully below, but for the
moment just recall that

157.302157.302 (5.6) P,∈ Ψm(Rn), B ∈ Ψk(Rn) =⇒ [P,B] ∈ Ψm+k−1(Rn) and

σm+k−1([P,B]) = −i
n∑
i=1

(
∂p

∂ξi

∂b

∂xi
− ∂p

∂xi

∂b

∂ξi

)
Here p and b are really representatives of the principal symbols of P and B and then
we are looking at a representative of the symbol of the commutator, all modulo a
term of one order lower. In fact we will assume that

157.303157.303 (5.7) P ∈ Ψm
cl (Rn), B ∈ Ψk

cl(Rn), σm(P ) = p, σk(B) = b

69
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where these are now homogeneous functions of orders m and k and we just ignore
the singularities at ξ = 0, meaing we work on Rn × (Rn \ {0}. Then (

157.302
5.6) gives the

homogeneous principal symbol of [P,B].
Thw important point is that we can ‘recognize’ the formula, it is the Poisson

bracket of the symbols (ignoring the i). As you will know this comes from the
symplectic form on Rn × Rn = T ∗Rn

157.304157.304 (5.8) ω =
∑
i

dξi ∧ dxi

which is actually completely independent of coordinates (which we will return to
later). Then the Hamilton vector field of p is by definition the unique vector field
Hp on Rn × (Rn \ {0}) (because p might be singular at ξ = 0) satifying

157.305157.305 (5.9) ω(·, Hp) = dp⇐⇒ Hp =
∑
i

(
∂p

∂ξi

∂

∂xi
− ∂p

∂xi

∂

∂ξi

)
and the Poisson bracket of two functions is

157.306157.306 (5.10) {p, b} = Hpb = −Hbp.

That is,

157.307157.307 (5.11) σm+k−1([P,B]) = −i{p, b} = −iHpb.

One of the basic points about Hamiltonian mechanics is that

157.310157.310 (5.12) Hpp = 0

which follows from the antisymmetry of ω. This means that

157.311 Lemma 5.1. Integral curves of Hp which have a point in {p = 0} are contained
in {p = 0}.

Here of course an integral curve is connected, it is a smooth curve defined on some
interval, I −→ Rn × Rn \ {0) which has tangent vector Hp at each point.

2. Hörmander’s Theorem

157.308 Theorem∗ 5.1. If P ∈ Ψm
cl (Rn) has real principal symbol then for any u ∈

S ′(Rn)

157.309157.309 (5.13) WF(u) \ Char(p)

is a union of maximally extended integral curves of Hp in Char(P ) \WF(Pu).

157.312 Exercise 9. Try to see what this says for the flat wave operator

157.313157.313 (5.14) P = D2
t −

b∑
j=1

D2
xj on Rn+1.

Check that the characteristic variety at each point is the cone τ2 = |ξ|2 (with the
obvious notation) and that the integral curves of Hp within Char(P ) project into
Rn to light rays.

Restated the claim of the Theorem is that a maximally extended integral curve
of Hp in the open set (Rn × (Rn \ {0})) \WF(Pu) on which p vanishes either does
not meet WF(u) or lies completely within it.
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Proof. We start can by making some elementary reductions before getting
to the constructive part of the proof. First note that if p is homogeneous (always
meaning in ξ of course) of degree m then Hp is homogeneous of degree m− 1. If we

premultiply P by an elliptic operators, setting P ′ = AP where A = (1 + |d|2)
−m+1

2 ,
then

157.315157.315 (5.15) p′ = σ(P ′) = (1 + |ξ|2)
−m+1

2 p, Hp′ = aHp + pHa.

It follows that the integral curves of hp′ in Char(P ′) = Char(P ) are simply repa-
rameterizations of the integral curves of Hp. Since A is globally elliptic, WF(P ′u) =
WF(Pu) and The statement for P is equivalent to that for P ′. Thus we can freely
assume that P is of order 1.

A smooth vector field such as Hp has two types of maximally extended integral
curves in an open set (of Rn× (Rn \ {0}). Namely constant curves valued at points
whereHp = 0 and through every other point an embedded curve, without stationary
points. This dichotomy corresponds to the vanishing of dp. For a constant curve the
statement is of course trivial. Thus in fact Hörmander’s Theorem tells us nothing
about points where

157.316157.316 (5.16) p(x̄, ξ̄) = 0, dp(x̄, ξ̄) = 0.

There is in fact another trivial case beyond (
157.316
5.16). Namely a point is radial for

p (and also P ) if

157.317157.317 (5.17) p(x̄, ξ̄) = 0, dp(x̄, ξ̄) = λξ̄ · dc, λ ∈ R.

Of course (
157.316
5.16) is the case where λ = 0. From (

157.305
5.9) we see that at such a point

157.318157.318 (5.18) Hp = −λξ · ∂ξ
is the radial vector field – hence the name. Since p is homogenous of degree 1 the
identiy (

157.318
5.18) must then hold along the ray (x̄,R+ξ̄) – which is then the integral

curve through (x̄, ξ̄). Again the statement is trivial for the this integral curve, since
WF(u) is itself radial.

3. The Hamilton vector field

Thus, we are reduced to considering a ray on which p vanishes, maximally
extended in (Rn × (Rn \ {0}) \WF(Pu) and through a non-radial point (x̄, ξ̄). By
the local uniqueness of integral curves it must consist of non-radial points. Let
the maximally extended integral curve, so defined on an open (possibly infinite)
interval be

157.319157.319 (5.19) χ : I −→ {p = 0} \WF(Pu), χ(0) = (x̄, ξ̄).

So we need to show is that

157.320157.320 (5.20) χ(I) 6⊂WF(u) =⇒ χ(I) ∩WF(u) = ∅.

Since {t ∈ I;χ(t) ∈WF(u)} is closed its complement is a countable union of open
intervals. Considering one of these intervals, either it is equal to I of, if not, has
at least one endpoint t̄ ∈ I with χ(t̄) ∈ WF(u). Reversing the sign of P does
not change the result, so all we have to exclude is that there is some t̄ ∈ I with
χ(t̄) ∈ WF(u) but χ(t) /∈ WF(u) for t ∈ (t̄, t̄ + ε), ε > 0. Clearly we can shift the
parameterization so that t̄ = 0.

We are therefore reduced to a (micro-)local statement.
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If (x̄, ξ̄) ∈ (Rn \{0}) is a non-radial point for p, (x̄, ξ̄) /∈WF(Pu)
and the integral curve of Hp starting at (x̄, ξ̄) immediately leaves
WF(u) then (x̄, ξ̄) /∈WF(u).

Q
To prove this we need to look closely at Hp. First we can choose local coordi-

nates near x̄ so that x̄ = 0 ξ̄ = (0, . . . , 0, 1). [Despite appearances we will not be
using the coordinate-invariance of pseudodifferential operatos here.] By the non-
radial assumption Hp 6= λ∂ξn since that is the radial direction. So at least one of
the other coefficients is non-zero at this point, and hence nearby, it could be any
one of the xi or one of the ξj , j < n. Denote this special variable ζ, we can solve
the initial value problem

157.321157.321 (5.21)

Hpyj = 0, j = 1, . . . , 2(n− 1),

HpΞ = 0, Ξ
∣∣
ζ=0

= ξn,

Hpτ = τ, τ
∣∣
ζ=0

= 0,

where the initial conditions on {ζ = 0} for the yj are all the xi and ξk/ξn, k < n
except the one that corresponds to ζ (which of course vanishes).

All the solutions exist in an open conic (because Hp is homogeneous of degree
0) neighbourhood of the base point and are homogenous of degree 0, except Ξ which
is positive and homogeneous of degree 1. Their differentials are indpendent so they
give a coordinate system in terms of which

157.322157.322 (5.22) Hp = ∂τ .

[In fact you can do essentially this with a homogeneous symplectic (‘canonical’)
transformation but we do not need it.]L-end

L9

4. Construction of symbols

This allows us to construct appropriate classical symbols. What we want is a
cut-off near the base point with useful properties, in fact a family of them depending
on a parameter 0 < δ < δ0. The basic function we have in mind is

157.323157.323 (5.23) aδ(τ, y) = µ(τ/δ)µ((ε/2− τ)/δ)φ(y/δ).

Here 0 ≤ φ ∈ C∞c (R2n−2) is a typical cut-off, supported in |τ | ≤ 1 and strictly
positive in |τ | < 1 and 0 ≤ µ ∈ C∞(R) vanishes in (−∞,−1), is positive on
(−1,∞) and is equal to 1 on [0,∞). We require

157.362157.362 (5.24) 0 < δ < ε/2.

Then

157.332157.332 (5.25)
supp(aδ) = {(τ, y);−δ ≤ τ ≤ ε/2 + δ, |y| ≤ δ},

aδ > 0 on supp(aδ′), δ
′ > δ.

Then consider

157.324157.324 (5.26) bδ(τ, y) = µ((ε/2− τ)/δ)2

∫ τ

−δ
(µ(s/δ)φ(y/δ))2ds ∈ C∞c (R2n−1)

where the missing variable is Ξ. Then

157.325157.325 (5.27) supp(bδ) = [−δ, ε/2 + δ]× {|y| ≤ δ}
and

157.326157.326 (5.28) Hpbδ = ∂τ b = a2
δ + eδ, supp(eδ) ⊂ [ε/2, ε]× {|y| ≤ δ}.
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Here e comes from ∂µ((ε/2− τ)/δ)2.
Thus bδ is homogeneous of degree 0 on Rn × (Rn \ {0}). We want to consider

similar functions homogeneous of degree 2m, for any m and also ‘regularized’. Since
∂τΞ = 0 we set

157.327157.327 (5.29) bδ,m,N (τ, y,Ξ) = (1− Φ(Ξ))2Ξ2mΦ2(Ξ/N)bδ(τ, y),

where 0 ≤ Φ ∈ C∞c (R), Φ(s) = 1 in |s| < 1

2
, Φ(s) = 0 in |s| > 1 =⇒

Hpbδ,m,N = a2
δ,m,N + eδ,m,N ,

aδ,M,n = (1− Φ(Ξ))ΞmΦ(Ξ/N)aδ, eδ,m,N = (1− Φ(Ξ))2Ξ2mΦ2(Ξ/N)eδ.

In fact we need to go a step further. Namely rather than the vector field Hp

what actually arises below is the operator with a zeroth order term

157.328157.328 (5.30) Hp + f, f smooth, real-valued and homogenous of degree 0.

Then we replace bδ by

157.329157.329 (5.31) bδ(τ, y,Ξ) = ψ(τ)2e−q(τ,y)

∫ τ

−δ
eq(s,y)a2

δ(s, y)ds

q(τ, y) =

∫ τ

0

f(s, y)ds.

The support properties are unchanged and now

157.330157.330 (5.32) (Hp + f)bδ,m,N (τ, y,Ξ) = a2
δ,m,N + eδ,m,N .

5. Proof of regularity

After all this preparation, let me add a few words about L2 boundedness –
which is in Problem set 2 – and uniformity before passing to the actual proof of
the statement above..

First uniformity. In the proof below, regularity for Au where A ∈ Ψm(Rn) is ob-
tained by looking at an approximating sequence AN ∈ Ψ−∞(Rn) which is bounded
in Ψm(Rn) and converges to A in Ψm+ε(Rn) for any ε > 0. This is constructed usual
sort of cutoff. Since WF′(AN ) = ∅ for finite N we reserve the notation for the uni-
form operator wavefront set defined as previously in terms of the cone-support of
the symbol. So in this sense

157.342157.342 (5.33) (x̄, ξ̄) /∈WF′(A∗) = QL(a∗)⇐⇒ (x̄, ξ̄) /∈ conesupp(a∗)⇐⇒
cδaN is bounded in C∞∞ (Rn;S−∞(Rn)) as N →∞.

Here cδ is a conic cut-off as in (
157.260
4.24). It follows for instance that for two such

families
157.343157.343 (5.34)

WF′(A∗) ∩WF′(B∗) = ∅ =⇒ A∗A
′
∗ψ ∈ Ψ−∞(Rn) is bounded for ω ∈ C∞c (Rn).

So for instance A∗A
′
∗u is bounded in S (Rn) if u ∈ C−∞c (Rn). Note that we do not

necessarily conclude that the product is bounded in Ψ−∞(Rn) since we have not
assumed any uniformity near infinity is space.

The basic result on L2 boundedness is that

157.344157.344 (5.35) A ∈ Ψm(Rn) : HM (Rn) −→ HM−m(Rn) ∀ M.
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In the argument below we need a little more than this. Namely for sequences AN
as above bounded in Ψ2m(Rn) if Ã ∈ Ψm(Rn) is fixed and if

157.345157.345 (5.36) WF′(A∗) ⊂ Ellm(Ã) then |〈ψA∗u, u〉L2 | ≤ C‖Ãu‖L2 + C‖u‖Hm0 ,

ψ ∈ C∞c (Rn), u ∈ C−∞c (Rn) ∩Hm0(Rn)

where the constants may depend on everything except N and u.

157.365 Lemma 5.2. If u ∈ C−∞c (Rn) and ANu is bounded in L2(Rn) then Au ∈
L2(Rn) and ‖Au‖L2 ≤ lim sup ‖ANu‖L2 .

Proof. This follows from the fact that L2(Rn) is a Hilbert space. Thus the
norm boundedness of ANu implies that it has a weakly convergent subsequence
ANu ↪→ v in L2. It follows that

157.366157.366 (5.37) 〈Au, φ〉 = lim〈ANiu, φ〉 = 〈v, φ〉

for all φ ∈ S (Rn) and hence Au = v as a distribution. �

So, to the proof. We are in the setup discussed above, (x̄, ξ̄) is a non-radial
characteristic point, (x̄, ξ̄) /∈WF(Pu) and exp(tHp)(x̄, ξ̄) /∈WF(u) for t ∈ (0, ε) for
some ε > 0. We can always shrink ε. In the local coordinates in Rn× (Rn \ {0}) we
choose 0 < δ0 < ε/2 such that

157.367157.367 (5.38) [−δ0, ε]× {|y| ≤ δ0} ∩WF(Pu) = ∅, [ε/2, ε]× {|y| ≤ δ0} ∩WF(u) = ∅.

We proceed to conclude from this that

157.368157.368 (5.39) Am,δu ∈ L2(Rn) ∀ δ < δ0, ∀ m =⇒ A0u ∈ C∞(Rn) =⇒ (x̄, ξ̄) /∈WF(u)

since A0 is elliptic at (x̄, ξ̄).
Set Bδ,m,N = QL(bδ,m,N (τ, y,Ξ)) which is uniformly bounded in Ψ2m(Rn) and

the formal adjoint is B∗δ,m,N = Bδ,m,N +Sδ,m,N where Sδ,m,N is uniformly bounded

in Ψ2m−1(Rn). Consider the L2 inner product

157.331157.331 (5.40) 〈Pu,Bδ,m,Nu〉L2 .

This is well-defined since Bδ,m,N is a smoothing operator. As N → ∞ the cone-
support of bδ,m,N is contained in the region in (

157.367
5.38) where Pu has no wavefront

set. Thus

157.333157.333 (5.41) Bδ,m,NPu −→ Bδ,mPu ∈ C∞c (Rn).

We use similar notation for the other families below.
Then

157.334157.334 (5.42) 2 Re(i〈Pu,Bδ,m,Nu〉L2)

= i〈Pu,Bδ,m,Nu〉L2 − i〈Bδ,m,Nu, Pu〉L2

= Re i〈([Bδ,m,N , P ] +Bδ,m,NF 〉L2 + i〈(Sδ,m,N )P )u, u〉L2 , F = (P − P ∗)

The last term here converges as N → ∞ for the same reason as (
157.333
5.41). So we

conclude that for any m,

157.335157.335 (5.43) i〈([Bδ,m,N , P ] +Bδ,m,NF 〉L2 converges as N →∞.
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Taking f to be the principal symbol of F = i(P −P ∗) ∈ Ψ0
cl(Rn) the construc-

tion of the family Bδ,m,N means that

157.336157.336 (5.44) i[Bδ,m,N , P ] +Bδ,m,NF = A2
δ,m,N + E′δ,m,N + Eδ,m,N ,

E′δ,m,N bounded in Ψ2m−2(Rn),

WF′(E′) ⊂ conesupp(bδ), WF′(E) ⊂ conesupp(e)

with e the error in (
157.330
5.32). From the L2 bounds in (

157.334
5.42) we deduce that

157.337157.337 (5.45) ‖Aδ,m,Nu‖L2 ≤ C|〈E′δ,m,Nu, u〉L2 |+ C|〈Eδ,m,Nu, u〉L2 |.

Such a bound holds uniformly in N and in 0 < δ < δ0 <
1
2ε. By assumption the last

term is uniformly bounded since WF′(Eδ,m,N ) is (uniformly) contained in a region
disjoint from WF(u).

By L2 boundedness we know that

157.338157.338 (5.46) |〈E′δ,m,Nu, u〉L2 | ≤ ‖u‖
Hm−

1
2

Since u is a distribution and the supports here are compact, u ∈ Hm0− 1
2 (Rn) for

some m0. It follows that the limit

157.339157.339 (5.47) Aδ,m0
u ∈ L2(Rn)

using Lemma
157.365
5.2.

Now, we can iterate this estimate, half a derivative at a time. The important
point is that we know (

157.337
5.45) for all δ < δ0. So at some stage of the iteration we

know that (
157.339
5.47) holds for a given m− 1

2 . However, the cone-supports of the terms
A and the lower order error E′ are such that

157.340157.340 (5.48) for δ < δ′, WF′(E′δ,m,N ) ⊂ Ellm(Aδ′,m− 1
2
).

Again from L2 boundedness and ellipticity (and the fact that the order of E′δ,m,N
is the same as A2

δ,m− 1
2

) it follows iteratively that

157.341157.341 (5.49) ‖Aδ,m,Nu|2L2 ≤ 〈E′δ,m,Nu, u〉L2 |+ C

≤ Cδ,δ′‖Aδ′,m− 1
2
u‖L2Hm−/ha + Cδ,δ′‖u‖Hm0 + C

giving the inductive step. �

6. A question about the wave equation

One question in lecture was: How much simpler is it to prove this for the wave
equation? Who asked this?

If we are talking about the flat wave equation then the discussion can be sim-
plified by shifting the ‘smoothing’ from the operators to the distribution u. For
constant coefficient operators this is straightforward since we can use convolution.
In any case smoothing u is an alternative approach but not much different. Apart
from that it is a lot simpler. Note however that there are other approaches which
can be used here (and more generally). Namely one has in the flat case a forward
fundamental solution, and in the general case one can construct forward microlocal
parametrices at non-radial points (this requires real work). Then one can shift the
discussion to analysing what such operators due to singularities. This amounts to
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analysing the wavefront set of the (the Schwartz kernel of) the fundamental solu-
tion or parametrix. I will likely get around to including something on this as ‘the
calculus of wavefront sets’.L9-end



CHAPTER 6

Smoothing operators and K-theory

K-theory L10

I want to take a serious look at smoothing operators. In particular I want to
introduce semiclassical (families of) operators in this context – this is another form
of ‘quantization’ closely related to what we have done so far. There are several
reasons behind this, the introduction of (topological, complex) K-theory being one.
This I will introduce by constructing a smooth classifying space, initially in the odd
case but eventually in the even case as well.

I will try to keep the line of reasoning as straight as I can here since it is easy
to get distracted by the myriad of possibilities that arise.

1. Hilbert space and operators

Let me recall here some of the basic facts, without proofs, about Hilbert

space and bounded operators. Since we do not need the non-separable case,

Hilbert space here means a separable, complex, infinite dimensional, Hilbert
space, H. One basic fact is that every such space is isometrically isomorphic

to l2(Z).

• The most basic properties of Hilbert space are the Riesz representation
thereom, identifying the dual with the conjugate

H′ = H, 157.521157.521 (6.1)

the existence of orthonormal bases and the convergence of the Fourier-

Bessel series.
• Compact sets in Hilbert space are precisely those closed bounded sub-

sets with the additional propery that the Fourier-Bessel series with
respect to any (one) orthonormal basis converges uniformly. This

amounts to a characterization for l2(Z).

• A second characterization of compact sets is that they are approx-
imable by finite-dimensional spaces – K has compact closure (is pre-

compact) if it is bounded and for every ε > 0 there exists a finite

dimensional subspace F such that

sup
p∈K

inf
q∈F

d(p, q) < ε. 157.518157.518 (6.2)

• The bounded operators form a complete normed, ∗-closed, algebra
(the fundamental example of a C∗-algebra), B (H), with

‖A∗‖ = ‖A‖, ‖AB‖ ≤ ‖A‖‖|B‖.

• For any closed subspace R ⊂ H

H = R⊕R⊥

defines the unique self-adjoint projection with range R, PR : H −→ R,

P ∗R = PR = P 2
R.

• The open mapping theorem: Any surjective bounded operator is open,

meaning they map open sets to open sets.

• Closed graph theorem: A linear map L : H −→ H with closed graph
in H ×H is bounded.

• A bounded bijection has a bounded inverse.

77
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• The resolvent of a bounded operator, B, is a holomorphic map

Res(B) = C \ Spec(B) 3 z 7−→ (B − z)−1 ∈ B (H) 157.524157.524 (6.3)

defined on the complement of the compact set Spec(B) ⊂ C where

B − z is not a bijection.
• The resolvent identity

(B − z)−1 − (B − τ)−1 = (z − τ)(B − z)−1(B − z)−1, z, τ ∈ Res(B),157.559157.559 (6.4)

holds.
• If χ : S −→ C \ Spec(B) is a smooth, simple, positively-oriented curve

then

Pχ =
1

2πi

∮
χ

(B − z)−1dz 157.558157.558 (6.5)

is a projection commuting with B such that PχB has spectrum in the

interior of χ and (Id−Pχ)B has spectrum in the exterior.
• The group of invertibles GL(H) ⊂ B (H) is open (but not dense) be-

cause of the convergence of the Neumann series

(Id +B)−1 =
∑
k

(−1)kBk, ‖B‖ < 1. 157.520157.520 (6.6)

• There is a functional calculus for each self-adjoint operator, A = A∗ ∈
B (H), defining a map of algebras

{f : Spec(A) −→ C; continuous} −→ B (H) s.t. f(A)g(A) = (fg)(A).

• There is a polar decomposition of each bounded operator as a product

B = AV where A = (B∗B)
1
2 and V is a partial isometry 157.523157.523 (6.7)

• It follows that unitary subgroup U(H) ⊂ GL(H) defined by the iden-

tity B∗B = Id is a deformation retract of GL(H).
• Kuiper’s theorem is the statement that U(H) is (weakly) contractible

in the norm topology (every continuous map from a compact space is

homotopic to the map to the identity).
• The compact operators, K (H) ⊂ B (H), consist of the operators map-

ping bounded to pre-compact sets. They constitute the norm-closure

of the finite rank operators (those with finite-dimensional range) and
form the only non-trivial closed ideal.

• The Fredholm operators, F (H) ⊂ B (H), are defined by the require-
ments that they have finite-dimensional null space and closed range

of finite codimension. The index

ind(F ) = dim null(F )− dim(Ran(F )⊥), ind : F (H) −→ Z 157.526157.526 (6.8)

labels the components.

• A bounded operator B is Fredholm if and only if it has a parametrix
modulo compact operators (an inverse in the Calkin algebra B (H)/K (H))
A ∈ B (H) such that

BA− Id, AB − Id ∈ K (H).

• The Hilbert-Schmidt ideal, HS(H) ⊂ B (H), is defined by the condition
that for any one orthonormal basis

‖B‖2HS =
∑
i

|〈Bei, ei〉|2 <∞. 157.529157.529 (6.9)

This is independent of choice and

‖AB‖HS ≤ ‖A‖HS‖B‖. 157.530157.530 (6.10)

• The trace ideal, T (H) ⊂ B (H), is HS(H)2 – the finite span of products

of elements of HS(H). Any element is the product of two Hilbert-

Schmidt operators and

‖T‖Tr = ‖(T ∗T )
1
4 ‖HS, ‖AB‖Tr| ≤ ‖A‖Tr‖B‖. 157.535157.535 (6.11)
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• The trace functional is

Tr : T (H) 3 T =
∑
i

〈Tei, ei〉H ∈ C 157.531157.531 (6.12)

for any orthornomal basis and

Tr(AB) = Tr(BA) if A ∈ T (H), B ∈ B (H) or A, B ∈ HS(H).157.532157.532 (6.13)

• Any Fredholm operator B has a parametrix A modulo trace class

errors and

ind(B) = Tr(BA−AB). 157.533157.533 (6.14)

• A Fredholm operator has a unique generalized inverse

AB = Id−Pnull(B), BA = Id−PRan(B)⊥ . 157.534157.534 (6.15)

• If B ∈ F (H) and K ∈ K (H) then B +K ∈ F (H) and

ind(B +K) = ind(B). 157.536157.536 (6.16)

• On the ring Id +T (H) the Fredholm determinant

det : Id +T (H) −→ C satisfies

det ((Id +T1)(Id +T2)) = det(Id +T1) det(Id +T2).
157.537157.537 (6.17)

• The group of invertibles in Id +T (H) is the inverse image det−1(C \
{0}) and if (−1, 1) 3 s −→ T (s) ∈ T (H) is C 1 and Id +T (0) is invert-

ible then

d

ds
det(Id +T (s))

∣∣
s=0

= det(Id +T (0)) Tr

(
(Id +T (0))−1 dT

ds
(0)

)
.157.538157.538 (6.18)

2. Schwartz smoothing algebra

The residual ideal in the standard pseudodifferential algebra Ψ−∞(Rn), is the
part that cannot be reached by the symbol calculus. As I have muttered all along,
it is not a very nice algebra because of the coefficient ring C∞∞ (Rn).

Let us instead concentrate on the smaller Schwartz smoothing algebra, Ψ−∞S (Rn)
– this is actually a two-sided ideal in Ψ−∞(Rn). It is also ‘very non-commutative’
in that it is simple with only the two trivial ideals. Thus

157.348157.348 (6.19) S (R2n) = Ψ−∞S (Rn) ⊂ Ψ−∞(Rn)

where the first equality is as a space of kernels. In fact it is the residual part of
both the scattering (Shubin) and isotropic algebras in Proposition

157.220
3.3 and §

C.PsiRn
3.
S.Isotropic
3.

The product in this algebra is

157.349157.349 (6.20) A ◦B(x, y) =

∫
Rn
A(x, z)B(z, y)dz.

In essence, Ψ−∞S (Rn) is an infinite-dimensional matrix algebra. To justify this
directly we need a ‘basis’ for S (Rn); the standard one is the Hermite basis. This
consists of the eigenfunctions for the harmonic oscillator

157.350157.350 (6.21) H =

n∑
i=1

D2
xi + |x|2, Heκ = (n+ 2|κ|)eκ, κ ∈ Nn0 .

Here the eigenfunctions are given as products of the L2 normalized eigenfunctions
in the case n = 1

157.351157.351 (6.22) eκ(x) =

n∏
j=1

fκj (xj), (D2
x + x2)fj = (1 + 2j)fj , fj(x) = hj(x) exp(−1

2
x2)

where the hj are the Hermite polynomials.



80 6. SMOOTHING OPERATORS AND K-THEORY

We need the isomorphism that these provide

157.352157.352 (6.23)

S (Rn) −→ s(n) = {c : Nn0 −→ C;
∑
κ

(1 + |κ|2)N |cκ|2 <∞ ∀ N},

u 7−→
{∫

Rn
u(x)eκ(x)dx

}
κ

.

This leads to the identification

157.353157.353 (6.24) Ψ−∞S (Rn) 3 A −→ a = (Aeκ′ , eκ)

∈ Ψ−∞s = {a : N2n
0 −→ C;

∑
κ,κ′

(1 + |κ|+ |κ′|)N |aκ,κ′ | <∞ ∀ N}

with the composition becoming ‘matrix multiplication’. That is, the ring of ‘rapidly
decreasing infinite matrices’.

157.371 Lemma 6.1. The algebras Ψ−∞S (Rn), for different n, are isomorphic (although
not naturally so).

Proof. Expansion in terms of the Hermite basis reduces Ψ−∞S (Rn) to ‘matri-
ces’ meaning rapidly decreasing maps

157.484157.484 (6.25) a : Nn0 × Nn0 −→ C,
∑
α,β

(1 + |α|+ |β|)N |a(α, β)|2 <∞.

The number of α with |α| ≤ N is bounded by Nn so rapid decay in the sense
of (

157.484
6.25) is the same as rapid decay in j if j 7−→ αj is any ordering in which

|αj | is non-decreasing. This shows that all the algebras are isomorphic to the case
n = 1. �

157.369 Lemma 6.2. The elements of Ψ−∞S (Rn) act as elements of the trace ideal of
compact operators on L2(Rn) (or any Sobolev space) and form a ‘corner’ (not an
ideal) in the bounded operators in the sense that if B ∈ B (L2(Rn))

157.370157.370 (6.26) A1, A2 ∈ Ψ−∞(Rn) =⇒ A1BA2 ∈ Ψ−∞(Rn).

Proof. Schur’s criterion (as discussed in Problem set 2) shows that these are
bounded operators and the fact that any sequence in S (Rn) bounded with respect
to the seminorms has a convergent subsequence in L2(Rn) shows that they are
compact operators.

That these operators are in the trace ideal follows from the fact that the diag-
onal operator, with respect to the Hermite basis

157.539157.539 (6.27) Tk 3 u 7−→
∑
α

(1 + |α|)−k〈u, eα〉eα

is in the trace ideal if (T ∗T )
1
4 is in Hilbert-Schmidt, which follows if

157.540157.540 (6.28) ‖(T ∗T )
1
4 ‖2HS =

∑
α

(1 + |α|)−k <∞.

This holds if k > n. If A ∈ Ψ−∞S (Rn) it follows that AT−1
k ∈ Ψ−∞S (Rn) is bounded

so A ∈ T (L2(Rn)). �
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Why should we be interested in Ψ−∞S (Rn)? One important reason is topological,
arising from the associated group which plays a major rôle in the discussion of K-
theory below,

157.354157.354 (6.29) G∞S (Rn) = {A ∈ Ψ−∞S (Rn); ∃ B ∈ Ψ−∞S (Rn) with (Id +A)◦(Id +B) = Id}.

Just as for square matrices, this one-sided inverse condition implies that Id +B is
a 2-sided inverse

157.355157.355 (6.30) (Id +B) ◦ (Id +A) = Id .

157.356 Lemma 6.3. The group G∞S ⊂ Ψ−∞S (Rn) is open and dense in Ψ−∞S (Rn) and
the union of the subgroups GL(N,C) of finite N × N matrices with respect to the
Hermite basis is dense.

157.485 Remark 4. I habitually writeG−∞S (Rn) ⊂ Ψ−∞S (Rn) by removing the identity.
This really corresponds to changing the product to A◦B = A+B+AB now giving
a ring structure.

Proof. I did not go through this in lecture but maybe I should have

done so. We know, from Schur’s criterion, that the norm as a bounded
operator defines a continuous map

Ψ−∞(Rn) 3 A −→ ‖A‖L2 . 157.390157.390 (6.31)

So the elements of a neighbourhood of 0 in Ψ−∞(Rn) give invertible ele-

ments Id +A ∈ B (L2(Rn)) by Neumann seris. The inverse being

(Id +A)−1 = Id +B, B =
∑
k≥1

(−1)kAk. 157.391157.391 (6.32)

All the elements in the series are in Ψ−∞(Rn) but convergence is in prin-
ciple only as bounded operators – in fact the Neumann series converges in

Ψ−∞(Rn), i. e. in S (R2n). To see this, expand the definition of B to see

that

B = −A+A2 +A(
∑
k≥1

(−1)kAk)A = −A+A2 +ABA. 157.392157.392 (6.33)

It follows from the corner property that ABA ∈ Ψ−∞(Rn) and that the
series for B actually converges in this sense.

Thus, G∞(Rn) contains a neighbourhood N of 0 ∈ Ψ−∞(Rn) and hence a
neighbourhood around any point of G∞(Rn). �

3. Odd K-theory

The group G−∞S (Rn) provides an entry point to ‘complex K-theory’.

157.357 Definition 6.1. The odd K-theory, of a manifold M consists of the smooth
homotopy classes of smooth maps

157.358157.358 (6.34) K1(M) = {u : M −→ G∞S ;

u = Id on M \K for some K bM}/smooth homotopy.

A smooth homotopy between two elements u0 and u1 is a smooth map

157.359157.359 (6.35) v : M × [0, 1] −→ G∞S with

v = Id on (M \K ′)× [0, 1] for some K ′ bM,

v
∣∣
M×{0} = u0, v

∣∣
M×{1} = u1.
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Note that there is no problem in understanding ‘smoothness’ here since

157.372157.372 (6.36) C∞(M ; S (Rm)) = {u : M ×Rm −→ C; smooth with all seminorms finite}.
So, the maps in (

157.358
6.34) actually form a group which can be written

157.486157.486 (6.37) C∞c (M ;G−∞(Rn))

where as always the identity is ‘removed’. Then smooth curves in this group become
elements of

157.487157.487 (6.38) C∞c ([0, 1]×M ;G−∞(Rn))

and we can write the odd K-groups as the groups of components

157.488157.488 (6.39) K1(M) = π0(C∞c (M ;G−∞(Rn))).

What justifies such a bald definition and how can we start to understand it?
It is actually saying that G∞S , in any of its variants, is a classifying group for odd
K-theory. You might object that K-theory is supposed to be related to vector
bundles. It is, as we shall see below, but I assert that (

157.358
6.34) (and (

157.389
6.42) below)

are rather natural definitions corresponding to the assertion that K-theory is the
topology associated to invertible matrices – since (

157.358
6.34) is a definition which can

be reduced to smooth maps into GL(N,C) (stabilized in N).
I do not want to spend too much time on this, but let me outline some of the

things which can be proved relatively easily and give the proofs later, perhaps some
of them not in lectures.

157.360 Proposition∗ 6.1. The odd K-theory of a manifold is an abelian group with

157.361157.361 (6.40) K1(Rk) =

{
0 k even

Z k odd

and for any manifold M there are natural isomorphisms

157.387157.387 (6.41) K1(R2k ×M) −→ K1(M).

The fundamental result (
157.387
6.41) is actually a consequence of (

157.361
6.40) if you know some

homotopy theory. In any case (
157.361
6.40) is ‘Bott periodicity’ and (

157.387
6.41) is periodicity

in K-theory. Of course (
157.361
6.40) is a consequence of (

157.387
6.41) and the special cases k = 0

and k = 1. There are lots of competing proofs, none of them really simple as far
as I know. I will describe a proof using semiclassical quantization to construct the
map (

157.387
6.41).

The idea is that (
157.387
6.41) is a prototype for the Atiyah-Singer index theorem for

families. It is an odd version, whereas the standard version is in even K-theory, but
these are closely related and the index theorems are in fact equivalent.

157.388 Definition 6.2. The even K-groups of a manifold M are the groups

157.389157.389 (6.42) K0(M) = K1(R×M).

4. The involutive Grassmannian
S.IGrass

As you are probably aware, ‘K-theory’ – usually meaning the even groupK0(M)
– for a manifold, is related to vector bundles over the manifold. I have not yet
reminded you of these and rather than proceed to do that I will simply assert for
the moment that vector bundles, like the groups GL(N,C) can be ‘stabilized’. So
I will work from the top down and start with the stabilized version.
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To be explicit consider the space L2(R;C2) = L2(R) ⊕ L2(R). We need (at
least) two copies because I want to have infinite ‘upside and downside’ options.
Now we replace the identity operator considered above for the group G−∞S (Rn) by
the involutive matrix (meaning the square is the identity)

157.541157.541 (6.43) β∞ =

(
1 0
0 −1

)
.

Things related to β∞ are often given a ‘super’ quantifier but not here.

157.542 Definition 6.3. The (involutive) Grassmannian associated to β∞ is the space
of involutive operators on L2(R;C2) of the form1

157.543157.543 (6.44) Υ−∞S (Rn;C2) =
{
β = β∞ +B, B ∈ Ψ−∞S (R;C2), β2 = Id

}
.

So these are the smoothing perturbations of β∞ which are involutive.
How is this related to vector bundles? Well, an involutive operator is really a

projection (by which I mean what is sometimes called an idempotent) namely

157.544157.544 (6.45) P =
1

2
(β + Id)⇐⇒ P 2 = P, β = 2P − Id .

So the space of involutive perturbations of β∞ is identified with the space of per-
turbations

157.545157.545 (6.46) P = P1 +A, P1 =

(
1 0
0 0

)
, A ∈ Ψ−∞S (R;C2), P 2 = P.

Such a projection is determined by its null space and range. These are the −1 and
1 eigenspaces, respectively, of the corresponding involution β.

157.546 Remark 5. Note that the ‘projection’ P need not be self-adjoint, so the range
need not be orthogonal to the null space. One could, and indeed it is more con-
ventional to do so, work with self-adjoint projections, for which this orthogonality
does hold, but I have elected not to do since the resulting ‘classifying space’ (

157.543
6.44)

is cleaner. Two projections with the same range are homotopy through projections.

Consider some points in Υ−∞S (Rn;C2). To do so, let Qk be the orthogonal
projection on the span of the first k ∈ N Hermite functions in L2(Rn) (with respect

to an order in which |α| is increasing but it really does not matter) and let Q
(i)
k ,

for i = 1, 2, be the corresponding projections on L2(Rn;C2) acting on the first

and second factors. Thus the Q
(i)
k commute with P1 and P2 = Id−P1 with Q

(i)
k a

subprojection of Pi. Then

157.547157.547 (6.47) βk =


2(P1 +Q

(2)
k )− Id for k > 0

β∞ = 2P1 − Id for k = 0

2(P1 −Q(1)
−k)− Id for k < 0

are involutions.
The group G−∞S (Rn) is a Fréchet manifold even though I have not defined the

meaning – simply because it is an open subset of the Fréchet space Ψ−∞S (Rn). It is
much less clear that this Grassmannian is a manifold. As a subset

157.548157.548 (6.48) Υ−∞S (R2;C) ⊂ Ψ−∞S (Rn;C2) is closed.

1If you are wondering, it is an Upsilon
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If it is to be smooth then it should have a decent tangent space, as a subspace of
Ψ−∞S (Rn;C2), at each point. So consider a smooth curve

157.549157.549 (6.49) (−1, 1) 3 t 7−→ β + a(t) ∈ Υ−∞S (Rn;C2), a(t) ∈ Ψ−∞S (Rn;C2), a(0) = 0.

Certainly we must have

157.550157.550 (6.50) (β + a(t))2 = Id =⇒ β
da

dt
(0) +

da

dt
(0)β = 0.

We can decompose any a′ = da/dt(0) ∈ Ψ−∞S (Rn;C2) as a sum of four terms,
determined by β,

157.551157.551 (6.51) a′ = Pa′P + (Id−P )a′P + Pa′(Id−P ) + (Id−P )a′(Id−P ).

The condition in (
157.550
6.50) reduces to

157.552157.552 (6.52) Pa′P = 0 = (Id−P )a′(Id−P ) =⇒ a(0) = Pa′(Id−P ) + (Id−P )a′P.

Thus a tangent vector at β must be off-diagonal with respect to the decomposition
defined by β.

157.555 Proposition 6.2. Given ε > 0 if a ∈ Ψ−∞S (Rn;C2) is sufficiently close to 0
and β ∈ Υ−∞S (Rn;C2) the resolvent

157.556157.556 (6.53) (β + a− z Id)−1 exists in {z; |z − 1| > ε/2} ∩ {|z + 1| > ε/2}

and the contour integral

157.557157.557 (6.54) βa =
1

2πi

∫
|z−1|=ε

(β + a− z Id)−1dz − 1

2πi

∫
|z+1|=ε

(β + a− z Id)−1dz

gives a smooth local retraction to Υ−∞S (Rn;C2) which is a bijection from the inter-
section with the tangent space in the sense of (

157.552
6.52).

Proof. The resolvent of β is

R.24R.24 (6.55) (β − z Id)−1 =
1

2
(1− z)−1(β + Id) +

1

2
(z + 1)−1(β − Id)

from which it follows that proved the norm ‖a(0)‖ < δ is small (β + a − z Id)−1

is holomorphic outside the two disks in (
157.557
6.54) where it is a smoothing pertur-

bation of (
R2
??). Standard arguments from the holomorphic calculus show that it

is an involution. So the map from a small L2 ball in the linear space, given by
(
157.551
6.51), to Υ−∞S (Rn;C2) is well-defined. As a map on bounded operators on L2 it

is differentiable and restricted to the diagonal elements (
157.551
6.51) it has derivative the

identity at a(0) = 0. Thus the Implict Function Theorem applies and the inverse
preserves regularity, showing that the retraction is indeed a local isomorphism from
the (putative) tangent space to Υ−∞S (Rn;C2). �

These retractions show that Υ−∞S (Rn;C2) is a smooth manifold locally mod-
elled on the tangent space at each point.

157.553 Theorem 6.1. The involutive Grassmannian Υ−∞S (Rn;C2) has components la-
belled by

157.554157.554 (6.56) R-ind : Υ−∞S (Rn;C2) 3 β 7−→ 1

2
Tr(β − β∞)

and on each component G−∞S (Rn;C2) acts transitively by conjugation.
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The ‘relative index’ function R-ind clearly takes the value k on the elements βk in
(
157.547
6.47).

Proof. The trace is well-defined, since β−β∞ is a smoothing operator. More-
over and smooth curve in Υ−∞S (Rn;C2) is locally the image of a curve in the tangent
space under (

157.557
6.54), so we know that R-ind varies smoothly along a curve and has

derivative

R.25R.25 (6.57)
1

2
Tr(

dβ

dt
) =

1

2
Tr(a′) = 0

because of (
157.551
6.51). Thus R-ind is constant on components of Υ−∞S (Rn;C2).

For the elements defined in (
157.547
6.47)

R.26R.26 (6.58) R-ind(βk) = k.

Now, consider the action of g ∈ G−∞S (Rn;C2). Certainly gβg−1 is again an
involutive perturbation of β∞ so G−∞S (Rn;C2) does act on Υ−∞S (Rn;C2). We know
that G−∞S (Rn;C2) is path connected so it must fix components of Υ−∞S (Rn;C2).

It remains to show that any element of Υ−∞S (Rn;C2) is conjugate to one of the
βk. For a given β ∈ Υ−∞S (Rn;C2) with positive projector P = 1

2 (β + Id) let HP be

the range of P acting on L2(R;C2), it is a closed subspace. Then the composite
operator

157.510157.510 (6.59) PP1 : L2(R)⊕ {0} −→ HP

is Fredholm. This follows from the fact that

P1PP1 = P0 + P1(P − P1)P1 = Id +Q on L2(R)⊕ {0}

is a compact (in fact Schwartz-smoothing) perturbation of the identity on the
range of P1. Similarly PP1P is a compact perturbation of the identity acting on
HP . Thus PP1 has finite dimensional null space and maps the orthocomplement
isomorphically onto a closed subspace of HP with a finite-dimensional (ortho)-
complement. However these two spaces may have different dimensions – that is
what R-ind(β) = Tr(P − P1) measures as we see below.

If the dimension of the null space of PP1 in (
157.510
6.59) is larger than that of the

complement of the range then we may replace P1 by P1(Id−Qk) where k is the
difference and Qk is the finite-rank projector onto the first k Hermite functions.
This may not be contained in the null space but now the operator PP1(Id−Qk)
has null space and complement of the range of the same dimension. We can then
add a finite rank smoothing operator S between these two spaces so that

157.512157.512 (6.60) PP1(Id−Qk) + S = P1 + S′, S, S′ smoothing

which is an isomorphism from the range of P1(Id−Qk) to HP . Then it follows that

157.513157.513 (6.61) g = P1+P2+S′ ∈ G−∞(R;C2), P̃ = g(P1(Id−Qk)g−1 : L2(R;C2) −→ HP

is a projection with the same range as P. The null space Ran(Id−P̃ ) of P̃ is a
complement to the range and

157.514157.514 (6.62) (Id−P ) : Ran(Id−P̃ ) −→ Ran(Id−P )

is an isomorphism since it has no null space and is surjective. It follows that
g̃ Id +(P̃ − P ) ∈ G−∞(R2;C2) conjugates P̃ to P.
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If the dimension of the null space of PP1 is smaller than the range then a similar
argument follows with P1 replaced by P1⊕Qk where Qk is the same projection but
now on the second factor.

This proves that the involution is conjugate to one of the options in (
157.547
6.47) and

then it follows that the relative trace is either k or −k in the two cases. �

If you are prepared to swallow a bit of homotopy theory you can see why the
Grassmannian is relevant here. Consider the component containing β0 = β∞ :

157.560157.560 (6.63) Υ−∞0,S (Rn;C2) = {β ∈ Υ−∞0,S (Rn;C2); Tr(β − β∞) = 0}.

The isotropy group of β∞ is

157.561157.561 (6.64) G−∞S (Rn)×G−∞S (Rn) = {g ∈ G−∞S (Rn;C2);hβ∞ = β∞g}

where the two factors act in the two components of C2. Thus in fact we have shown
that there is a natural isomorphism

157.563157.563 (6.65) Υ−∞0,S (Rn;C2) ≡ G−∞S (Rn;C2)/
(
G−∞S (Rn)×G−∞S (Rn)

)
.

These two subgroups commute with each other so we can also write the quotient
as

157.562157.562 (6.66)

Υ−∞0,S (Rn;C2) ≡(
G−∞S (Rn;C2)/{Id} ×G−∞S (Rn)

)
/G−∞S (Rn)× {Id}.

The first quotient here is weakly contractible – since G−∞S (Rn;C2) can be retracted
onto {Id}×G−∞S (Rn). This means that this base component is the quotient by the
free action of G−∞S (Rn) on a contractible space.

157.564 Proposition 6.3. The base component of Υ−∞0,S (Rn;C2), is a classifying space

for G−∞S (Rn) and hence

157.565157.565 (6.67) πj(Υ
−∞
S (Rn;C2)) =

{
Z j even

{0} j odd

and Υ−∞0,S (Rn;C2) is a classifying space for even K-theory.

Proof. Not given here but from the long-exact sequence of Serre the homotopy
groups can be identified from the identification of the homotopy groups of G−∞ in
(
157.361
6.40). These are proved below, using some of the properties of Υ−∞0,S (Rn;C2) – but

not (
157.565
6.67)! �

5. Semiclassical smoothing operators

If A ∈ S (R2n) is the kernel of an element of Ψ−∞S (Rn) we can, as we did for
pseudodifferential operators, introduce

157.373157.373 (6.68) B(x, z) = A(x, x− z) and B(x, z) = (2π)−n
∫
Rn
b(x, ξ)e−iz·ξdξ.

157.393 Definition 6.4. A semiclassical Schwartz family, A(ε) ∈ Ψ−∞sl,S (Rn), is defined
by a smooth family

157.377157.377 (6.69) a ∈ C∞([0, 1]ε; S (R2n))
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by setting, for ε > 0,

157.374157.374 (6.70)

A(ε)u(x) =

∫
Rn
A(ε;x, y)u(y)dy, u ∈ S (Rn) where

A(ε;x, y) = B(ε;x, x− y), B(ε;x, z) = (2π)−n
∫
Rn
a(ε;x, εξ)e−iz·ξdξ

= (2πε)−n
∫
Rn
a(ε;x, η)e−iε

−1z·ηdη.

For ε > 0 this does not do very much but the family certainly becomes singular
at ε = 0. L10-end

L11Said another way, an element of Ψ−∞sl,S (Rn) is a family of operators for ε ∈ (0, 1]
defined by

157.378157.378 (6.71) A(ε) = QL(a(ε;x, εξ)), a ∈ C∞([0, 1]; S (R2n
x,η)).

The basic result is that these families compose to give an algebra.

157.375 Proposition 6.4. The operator product on Ψ−∞S (Rn), applied for ε > 0 to

157.376157.376 (6.72) (A1 ◦ε A2)(ε;x, y) =

∫
Rn
A1(ε;x, y′)A2(ε, y′, y)dy′

extends to a smooth product defining the algebra Ψ−∞sl,S (Rn).

Proof. Writing the composite family in terms of the kernels ε−nBi(ε, x,
x−y
ε )

of the factors shows that

157.489157.489 (6.73)

A1 ◦A2 has kernel ε−nD(ε, x,
x− y
ε

) where

D(ε, x, t) = ε−n
∫
Rn
B1(ε, x, t+

y − z
ε

)B2(ε, z,
z − y
ε

)dz

=

∫
Rn
B1(ε, x, t− Z)B2(ε, x+ εZ, Z)dZ, Z =

y − z
ε

.

The integrand here is smooth in ε with values in the Schwartz functions in the
variables x, t, Z – as follows from the fact that

157.490157.490 (6.74) (1 + |x|+ |t− Z|+ |x+ εZ|+ |Z|) is comparable to (1 + |x|+ |t|+ |Z|).

Thus the integral is also Schwartz. Expanding in Taylor series at ε = 0 gives the
Moyal formula below.

Alternatively this follows from our earlier results on Ψ0(Rn). Observe that

157.379157.379 (6.75) ε(1 + |ξ|) ≤ (1 + |εξ|), ε ∈ (0, 1)

from which it follows that

157.380157.380 (6.76) (0, 1) 3 ε −→ a(ε, x, εξ) ∈ S (Rn;S0(Rn))

is (uniformly) bounded. Indeed the derivatives satisfy

157.381157.381 (6.77) ∂αx ∂
β
ξ a(ε;x, εξ) = ε|β|∂αx ∂

β
η a(ε;x, η)

∣∣
η=εξ

=⇒

|∂αx ∂
β
ξ a(ε;x, εξ)| ≤ Cα,βε|β|(1 + |εξ|)−|β| ≤ Cα,β(1 + |ξ|)−|β|.

So our earlier composition result shows that uniformly for ε > 0

157.382157.382 (6.78) A1(ε) ◦A2(ε) is bounded in Ψ0(Rn)
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Moreover the left-reduced symbol of the composite is given by the asymptotic for-
mula

157.383157.383 (6.79) A1(ε) ◦A2(ε) = QL(c(ε)), c(ε) ∼
∑
α

∂αξ a1(ε;x, εξ)Dα
xa2(ε;x, εξ)

=
∑
α

ε|α|∂αη a1(ε;x, η)Dα
xa2(ε;x, η)

∣∣
η=εξ

.

Using Borel’s Lemma to sum the Taylor series gives c ∈ C∞([0, 1]; S (R2n)) such
that

157.384157.384 (6.80)

c(ε;x, η)−
∑
|α|≤N

ε|α|∂αη a1(ε;x, η)Dα
xa2(ε;x, η) ∈ εN+1C∞([0, 1]; S (R2n)) ∀ N.

The claim then is that

157.385157.385 (6.81) E(ε) = QL(c(ε;x, εξ))−A1(ε) ◦A2(ε) ∈ C∞([0, 1]; Ψ−∞(Rn)

with
dkE(ε)

dεk
∣∣
ε=0

= 0 ∀ k.

�

From either proof we see that again ‘Moyal’s formula’ appears (I think it is
more historically legitimate here than before!)

157.397157.397 (6.82)

Ai ∈ Ψ−∞sl,S (Rn), Ai = QL(ai(ε, x, εξ)), ai ∈ C∞([0, 1]; S (R2n)) =⇒
A1 ◦A2 = QL(c), c ∈ C∞([0, 1]; S (R2n),

c(ε, x, η) '
∑
α

ε|α|∂αη a1(ε, x, η)Dα
xa2(ε, x, η)

Equality here is in the sense of formal power series (i.e. Taylor series) at ε = 0. So
this formula tells you nothing about what happens for ε > 0 as is to be expected.
However, the symbol of the product is determined by this formula up to terms
vanishing to infinte order.

157.398 Lemma 6.4. If a ∈ C∞([0, 1]; S (R2n)) vanishes to infinite order at ε = 0 then
the semiclassical family

157.399157.399 (6.83) A(ε) = QL(a(ε, x, xξ))

is simply a smooth map [0, 1] −→ Ψ−∞(Rn) vanishing to infinite order at ε = 0.

The analogue of the ‘principal symbol map’ for pseudodifferential operators is
played by the ‘semiclassical symbol’

157.394157.394 (6.84)
A(ε) = QL(a(ε, x, xξ)), ε > 0 =⇒

σsl : Ψ−∞sl,S (Rn) 3−→ a(0, y, η) ∈ S (R2n
x,η)

157.395 Proposition 6.5. The semiclassical symbol map (
157.394
6.84) gives a short exact se-

quence of algebras

157.396157.396 (6.85) εΨ−∞sl,S (Rn) // Ψ−∞sl,S (Rn)
σsl // S (R2n)

with the commutative product on S (R2n).

Proof. This is just the first term in the Moyal product. �
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Make sure you understand what a semiclassical smoothing operator ‘looks like’.
Its kernel is of the form

157.408157.408 (6.86) Aε(x, y) = ε−nB(ε, x,
x− y
ε

), B ∈ C∞([0, 1]ε; S (R2n)

so as ε ↓ 0 the kernel is ‘squashed’ around the diagonal.
There are semiclassical operators of finite order as well, I hope I will have time

to talk a little about them. A semiclassical differential operator on Rn might be of
the form

157.409157.409 (6.87) Pε = ε2
n∑
i=1

D2
xj + V (x).

Notice that if you set ε = 0 only the zeroth order term survives. This is not the
semiclassical symbol which is instead the ‘rescaled’ symbol including the lower order
term:

157.410157.410 (6.88) σsl(Pε) = |ξ|2 + V (x).

Operators like (
157.409
6.87) arose in quantum mechanices where ε ' ~ is the ‘coupling

constant’ relating the frequency of spectral lines to the jump in energy between
electron shells which produces them. In practice ~ ' 1/127 is small and the idea
is to think of it as ‘very small’ and perturb from ε = 0 (I don’t like to use ~ here
since it is actually a constant!) Simply setting ε = 0 is a bad idea since most of
the problem disappears. What is happening here is that the problem is becoming
commutative as ε ↓ 0 because of the commutation condition that

157.427a157.427a (6.89) [ε∂xi , xk] = εδik

so one is turning on the non-commutative product as ε becomes positive.
There is a lot one can do with semiclassical operators – see for instance the

book of Zworski
MR2952218
[9].

6. The group G∞sl

As remarked above we want to consider the semiclassical group analogous to
G∞S (Rn). In fact we need to generalize the discussion above by allowing ‘smoothing

values’. If we consider the Schwartz smoothing operators on Rn′+n then we know
that

157.400157.400 (6.90) S (R2n′+2n) = S (R2n′ ; S (R2n)).

The smoothing operators on Rn′+n can then be considered as ‘smoothing operators
with values in smoothing operators’, in either direction. We can do the same thing
for the semiclassical smoothing operators and consider the space

157.401157.401 (6.91) S (R2n′ ; Ψ−∞sl,S (Rn)).

Then we get a ‘stabilized’ algebra

157.402157.402 (6.92) Ψ−∞sl,S (Rn; Ψ−∞S (Rn
′
)).

For the kernel of an element in this algebra (
157.408
6.86) is replaced by

157.411157.411 (6.93) Aε(x, y, z, t) = ε−nB(ε, x,
x− y
ε

, t, t′), B ∈ C∞([0, 1]ε; S (R2n′+2n)).
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Observe what the form that the semiclassical symbol takes in this more general
case. It is just a symbol with values in the smoothing operators

157.406157.406 (6.94) σsl : Ψ−∞sl,S (Rn; Ψ−∞S (Rn
′
)) −→ S (R2n

x,ξ; Ψ−∞(Rn
′
))

giving a short exact sequence just like (
157.396
6.85)

157.407157.407 (6.95)

εΨ−∞sl,S (Rn; Ψ−∞S (Rn′)) // Ψ−∞sl,S (Rn; Ψ−∞S (Rn′)) // S (R2n; Ψ−∞(Rn′)).

So the product formula for the symbol in this case is multiplicative in the variables
(x, ξ) but with values in the non-commutative algebra Ψ−∞S (Rn′).

157.404 Proposition 6.6. The semiclassical group

157.405157.405 (6.96) G∞sl,S (Rn; S (Rn
′
)) = {A ∈ Ψ−∞sl,S (Rn; Ψ−∞S (Rn

′
));

∃ B ∈ Ψ−∞sl,S (Rn; Ψ−∞S (Rn
′
)) with (Id +A)(Id +B) = Id = (Id +B)(Id +A)}

is open in Ψ−∞sl,S (Rn; Ψ−∞S (Rn′)).

Proof. This is similar too, but a bit more involved than, the proof of Lemma
157.356
6.3.

The topology on the semiclassical algebra Ψ−∞sl,S (Rn; Ψ−∞(Rn′)) comes from its

identification with C∞([0, 1]; S (R2n+2n′)) through either (
157.411
6.93) or (

157.399
6.83). From the

latter it follows that A(ε) defines a bounded family of operators on L2(Rn) with
a uniform norm bound being a continuous seminorm. So if A lies in a sufficently
small neighbourhood of 0 the family, in ε, of operators

157.412157.412 (6.97) (Id−A(ε))−1 = Id +B(ε) exists for ε > 0

with B(ε) uniformly bounded as ε ↓ 0. So we only need to show that

157.413157.413 (6.98) B(ε) ∈ Ψ−∞sl,S (Rn; Ψ−∞S (Rn
′
)).

Proceeding ‘symbolically’ we can see that the model problem, the existence of
the inverse

157.414157.414 (6.99) (Id +σsl,S (A))−1(y, η) = Id +B0(x, η) ∈ G−∞S (R2n′),

has a unique solution, for A in a possibly smaller neighbourhood of 0. This indeed
follows from Lemma

157.356
6.3. Once we know that the principal symbol can be inverted,

the existence of a formal power series inverse follows from the behaviour of the Moyal
product. That is, we can find a sequence of elements Bk ∈ Ψ−∞sl,S (Rn; Ψ−∞S (Rn′))
such that for any p

157.415157.415 (6.100) (Id +A(ε)(Id +B0(ε)) +

p∑
k=1

εkBk(ε) ∈ Id +εp+1Ψ−∞sl,S (Rn; Ψ−∞S (Rn
′
)).

Using Borel’s lemma again we can sum the series and so find a ‘parametrix’ B′ ∈
Ψ−∞sl,S (Rn; Ψ−∞S (Rn′)) such that

157.416157.416 (6.101)

(Id +A(ε)(Id +B′(ε))− Id, (Id +B′(ε))(Id +A(ε))− Id ∈ Ċ∞([0, 1]; Ψ−∞S (Rn+n′))

(which is the same as saying a semiclassical error vanishing to all orders at ε = 0).
The corner identity as in (

157.392
6.33) then shows that the difference of the inverse

and the parametric B − B′ is uniformly bounded as a function of ε ∈ (0, 1] with

values in Ψ−∞S (Rn+n′). A similar argument for the derivatives with respect to ε
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shows that this difference is actually smooth and vanishes to infinite order at ε = 0
so proving (

157.413
6.98). �

For the semiclassical group the symbol sequence (
157.407
6.95) gives the map

157.418157.418 (6.102) σsl : G∞sl,S (Rn; Ψ−∞S (Rn
′
)) −→ S (R2n;G∞(Rn

′
))

which it is important to note is surjective. In fact we want a stronger lifting property

157.417 Proposition 6.7. The semiclassical group has the lifting property that for any
smooth symbol map u : M −→ S (R2n;G∞(Rn′)) of compact support (reducing to
the identity outside a compact set) there is a smooth map, also of compact support

ũ : M −→ G∞sl,S (Rn; Ψ−∞S (Rn′)) giving a commutative diagramme

157.419157.419 (6.103) G∞sl,S (Rn; Ψ−∞S (Rn′)) σsl // S (R2n;G∞(Rn′))

M.

ũ

ii
u

OO

Moreover any two such lifts are smoothly homotopic.

Proof. This is another symbolic argument, just a uniform version of the sur-
jectivity of (

157.418
6.102). � RBM:Expand?

This might appear a little arcane! However a consequence of the existence of
a lift as in (

157.419
6.103) is that this semiclassical group serves as a ‘bridge’ for odd K-

theory. Namely a family u ∈ C∞c (R2n ×M ;G−∞) as in Proposition
157.417
6.7 defines an

element of the group K1(R2n ×M). On the other hand the lifted group, restricted
to say ε = 1 (or ε = 1

2 if you prefer) defines an element of K1(M), since it is valued

in G−∞S (Rn+n′). Now we are getting closer to Bott periodicity.

157.420 Proposition∗ 6.8 (Bott periodicity). The lifting construction in (
157.419
6.103) de-

fines, for any manifold M and any n, a homomorphism

157.421157.421 (6.104) K1(R2n ×M) −→ K1(M)

which is an isomorphism.

This is a ‘protypical’ index map, it is a non-geometric version of Atiyah-Singer
which is used in the proof of the general version below.

Once the existence of the map (
157.421
6.104) is established there are two parts to the

proof that it is an isomorphism. First we show that it is surjective, by a computation
based on the existence of a ‘Bott element’ β ∈ K0(R2) which is a generator (so along
the way we prove that K0(R2) = Z). This is where the hard work lies – and I may
suppress some of it as far as the lectures are concerned (although it will all be in
the notes). The second part is a clever idea of Atiyah. This is based on the fact
that we can move some of the factors of R2 in (

157.421
6.104) into M. Indeed, once we have

the map (
157.421
6.104) for n = 1 we can get a similar map by iterating – applying the

map

157.422157.422 (6.105) q : K1(R2 ×M) −→ K1(M)

to R2n−2 ×M instead of M. This leads one to think in terms of the iterated map

K1(R4 ×M)
q−→ K1(R2 ×M)

q−→ K1(M)
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The way we are getting (
157.421
6.104) can be described as ‘turning on quantization’ by

writing R2n = Rnx×Rnξ . Looking again at (
157.423
6) we can think of R4 = R2

x,ξ×R2
y,η where

we first turn on quantization in (x, ξ) for the first map, then turn on quantization
in (y, η) for the second map. So we conclude easily enough that this is the same
as doing both simultaneously in the sense that we get a commutative diagramme
forming the upper right triangle

157.424157.424 (6.106) K1(R4 ×M)

''

//

��

K1(R2 ×M)

��
K1(R2 ×M) // K1(M)

where the diagonal map is (
157.421
6.104) for n = 2. Atiyah’s idea has two parts. The first

is that we get a further commutative triangle on the lower left where the roles of
the two quantizations are interchanged – the second set of variables are quantized
first, giving the same final result.RBM:Expand or refer

However, we can do a little more, namely we can rotate the variables, smoothly,
by looking at x cos θ + y sin θ and dually on the other variables. This gives us a
smooth family of double quantization maps starting at the first and finishing at
the second, with the sign reversed. By homotopy invariance these must all give the
same result.

The way we use this depends on a good understanding of the lifting map in
(
157.419
6.103) as giving us a right inverse to (

157.422
6.105) which we can write somewhat myste-

riously as

157.425157.425 (6.107) K1(M) 3 κ 7−→ β ⊗ κ ∈ K1(R2 ×M)

where as above, β is the Bott element of K0(R2).
So, suppose that κ ∈ K1(R2 ×M) is mapped to zero in K1(M) by (

157.422
6.105), so

along the right side of (
157.424
6.106). By surjectivity κ comes from β1 ⊗ κ ∈ K1(R4 ×

M) along the top line of (
157.424
6.106), so lifting in the first variables. Reversing the

quantization as discussed above we see that

157.426157.426 (6.108) κ = ±q2(β1 ⊗ κ) = ±β1 ⊗ q2(κ) = 0

so κ = 0 and we have injectivity.
This argument depends on seeing that quantization in one set of variables

commutes with the lifting map in a different set of variables which we will see in
the lifting construction.L11-end

L12/13

7. Constructing the Bott element

I am trying to take a minimalist approach here to avoid getting bogged down
in K-theory. The aim is to construct the lifting map in (

157.419
6.103) and think of it as

giving (
157.426
6.108). As already remarked, this is really an exterior product in K-theory

157.427157.427 (6.109) K0(R2)×K1(M) −→ K1(R2 ×M)

coming from β ∈ K0(R2) which is a generator.
The standard model for even K-theory over a manifold, X, is in terms of pairs

of (compactly supported) complex vector bundles. Such a vector bundle can always
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be realized as a family of projections in N ×N matrices for sufficiently large N so
as a smooth map

157.515157.515 (6.110) P : X −→M(N,C), P (x)2 = P (x).

For the Bott element in K0(R2) this projection arises in 2× 2 matrices and it
is convenient (but by no means necesary) to view the projection as coming from
a family of involutions. As we have seen above, if β is an involutive matrix (or
operator) meaning β2 = Id, then

157.516157.516 (6.111) P =
1

2
(β+Id) is a projection and conversely β = P −(Id−P ) = 2P − Id .

The explicit 2× 2 family of matrices we will to consider satisfies

157.428157.428 (6.112) β : R2 −→M(2,C), β2 = Id, β =

(
1 0
0 −1

)
= P1 − P2 near ∞.

The ‘triviality near infinity’ is analogous to the group G∞.
Explicitly in this sense the Bott element (although how it defines an element

of K0(R2) is not yet explained) is

157.430157.430 (6.113) β(x, ξ) =

(
cos(χ(r)) eiθ sin(χ(r))

e−iθ sin(χ(r)) − cos(χ(r))

)
.

Here (x, ξ) = r(cos θ, sin θ) are polar coordinates, χ ∈ C∞([0,∞)) is constant near
0 and ∞ and decreases monotonically from π to 0. Thus β is constant near 0 and
hence smooth and is equal to β∞ near ∞.

An easy computation shows

157.431157.431 (6.114) β2 = Id, β = 2Π(x, ξ)− Id,

Π(x, ξ) =

(
cos2( 1

2χ(r)) eiθ sin( 1
2χ(r)) cos( 1

2χ(r))
e−iθ sin( 1

2χ(r)) cos( 1
2χ(r)) sin2( 1

2χ(r))

)
.

Thus the range of the projection Π(x, ξ) is the span of

157.432157.432 (6.115)

(
cos( 1

2χ(r))
e−iθ sin( 1

2χ(r))

)
.

This is a complex line bundle which comes from a non-trivial line bundle on S2 as
the one-point compactification of R2.

8. Quantization of the Bott element

The way we will make use of the involution (
157.430
6.113) is by quantizing it to a

semiclassical family of involutions.
Since b0 = β − β∞ is a compactly supported smooth function with values in

2× 2 complex matrices we can apply semiclassical quantization to find

157.433157.433 (6.116) B0 ∈ Ψ−∞sl,S (R;C2) with σsl(B0) = b0 = β − β∞
So, B0 is a 2 × 2 matrix of semiclassical smoothing operators on R. As with the
identity we take the semiclassical quantization of the constant matrix β∞ = P1−P2

to be itself.

157.434 Proposition 6.9. There exists B ∈ Ψ−∞sl,S (R;C2) satisfying

157.435157.435 (6.117) σsl(B) = b0, (β∞ +B)2 = Id .
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Proof. First make any choice B0 as in (
157.433
6.116). Then, from the semiclassical

symbol calculus the principal semiclassical symbol of the square satisfies

157.436157.436 (6.118) σsl((β∞ +B0)2 − Id) = σsl(β∞bo − boβ∞ + b20) = 0.

Thus in fact

157.437157.437 (6.119) (β∞ +B0)2 = Id +εE1, E1 ∈ Ψ−∞sl,S (R;C2).

Now, we proceed, by induction, to construct successive corrections Bk ‘as usual’
(cf. Project 2) so that

157.438157.438 (6.120) (β∞ +B0 +

p∑
k=1

εkBk)2 = Id +εk+1Ek+1, Ek+1 ∈ Ψ−∞sl,S (R;C2).

Adding εp+1Bk+1, where Bk+1 has semiclassical symbol bk+1 what we need to
arrange in the inductive step is

157.439157.439 (6.121) (β∞ +B)Bk+1 +Bk+1(β∞ +B) = Ep+1 mod εΨ−∞sl,S (R;C2)

⇐⇒ βbk+1 + bk+1β = ek+1 = σsl(Ek+1).

This cannot be solved for an arbitrary ek+1. However, it follows from the defi-
nition, (

157.438
6.120), of the error at the previous stage of construction, that

157.440157.440 (6.122) (β∞ +B)Ek+1 − Ek+1(β∞ +B) ∈ εΨ−∞sl,S (R;C2) =⇒ βek+1 = ek+1β.

This means that

157.493157.493 (6.123) ek+1 = Pek+1P + (Id−P )ek+1(Id−P )

is ‘diagonal’ with respect to the two projections. Thus

157.441157.441 (6.124) bk+1 =
1

2
(Pek+1P − (Id−P )ek+1(Id−P ))

solves the inductive condition in (
157.439
6.121).

Asymptotically summing the resulting series in εk we find a semiclassical oper-
ator B′ with the correct principal symbol such that

157.442157.442 (6.125) (β∞ +B′)2 − Id ∈ ε∞Ψ−∞sl,S (R;C2)

is a smooth family of smoothing operators vanishing to infinite order at ε = 0.
It follows that as a family of bounded operators on L2(R;C2) the spectrum is,
uniformly for 0 < ε < ε0 (for suitable small ε0), concentrated very near to ±1. We
can then use a contour integral (the functional calculus for bounded operators on
a Hilbert space) to correct the quantization a little further, setting

157.443157.443 (6.126) β∞ +B = B+ −B−, B± = ± 1

2πi

∮
C±

(β∞ +B′ − z Id)−1dz.

Here C± are circular contours around ±1. Now an argument with resolvents shows
that the B± are commuting projections and

157.444157.444 (6.127) (β∞ +B+ −B−)2 = Id

where B± are defined only for 0 < ε < ε0 but B = B+ − B− is equal to a semi-
classical family on 0 < ε < 1

2ε0 (simply by rescaling the parameter ε to stretch the

interval [ 1
2ε0,

3
4ε] to [ 1

2ε, 1]). The difference B−B′ is a family of smoothing operators
vanishing to infinite order at ε = 0.

This completes the proof of Lemma
157.433
6.116. �
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9. Simplifying the quantized Bott operator
RBM:Relate to §

K-theory
6.
S.IGrass
4

So this was hard work, but we need to do a little more to see what we have really
produced and refine it further. Choose an L2-normalized element p ∈ S (R) ⊂ L2(R)
and let Q also denote the orthogonal projection onto (0, e0) where e0 is the ground
state of the harmonic oscillator (it is just a convenient rank one projection).

157.477 Proposition 6.10. There is a semiclassical family B ∈ Ψ−∞sl,S (R;C2), quantiz-

ing β as in (
157.435
6.117), such that

(6.128) β0 +B
∣∣
ε=1

= (Π1 +Q)− (P2 −Q).

Thus the effect of quantization is to move a one-dimensional space from the negative
to the positive eigenspace. This really is the fundamental ‘index theorem’ from this
point of view.

Proof. We first show that any (single, not semiclassical family) involution of
the form

157.517157.517 (6.129) β0 + S, S ∈ Ψ−∞S (R;C2), (β0 + S)2 = Id

can be deformed to a model. This argument does not depend on the particular β∞
nor on the dimension involved.

Where does the ‘one-dimensional’ come from. We have constructed P and
hence a projection

157.478157.478 (6.130) P =
1

2
(β∞ +B) + Id = Π1 + S, S ∈ Ψ−∞sl,S (R;C2) =⇒ P 2 = P.

The range of P (ε) for each ε > 0 is a closed subspace of L2(R2;C2)
So the idea is that for ε > 0 this is a projection which differs from Π1 by a

smoothing, hence trace classe, term. The relative index of these two projections is
therefore well-defined

157.479157.479 (6.131) R(ε) = Tr(P (ε)−Π1) ∈ C∞((0, 1]).

In fact, this is constant and necessarily an integer which we then proceed to com-
pute.

The constancy follows from the properties of the trace functional and projec-
tions. Differentiating

157.480157.480 (6.132)
dR

dε
= Tr(

dB

dε
) = Tr(

dB

dε
) = 0 since

dB

dε
= P

dB

dε
+
dB

dε
P =⇒ dB

dε
= P

dB

dε
(Id−P ) + (Id−P )

dB

dε
P.

Note that this is the same identity as used in the construction of B.
Having shown that R is constant we compute it in terms of the semiclassical

limit.

157.481 Lemma 6.5. For a semiclassical family of smoothing operators B ∈ Ψ−∞sl,S (R;CN ),

εTr(Bε) ∈ C∞([0, 1]) and if the kernel is

157.483157.483 (6.133) B = QL(b(ε, x, εξ))

then

157.482157.482 (6.134) Tr(Bε) = ε−1

∫
R2

tr(b(0)) +

∫
R2

tr(
∂b

∂ε
(0)) +O(ε).
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Proof. �

�

10. Surjectivity of the periodicity map

Now we have a Bott element and its quantization. Note that I defined K0(R2)
to be K1(R3) in Definition

157.388
6.2 so to get an element there we need to do just a little

more. Take a smooth function on R with ‘winding number one’ such as

157.445157.445 (6.135) exp(iψ(s)), ψ ∈ C∞(R;R), ψ = 0 in s < −R, ψ = 2π in s > R.

Now consider the family of operators

157.446157.446 (6.136) R 3 s −→ b (exp(iψ(s))b+ + exp(−iψ(s)b−) .

Both factors here are semiclassical families, the second depending on s, (with
values in 2× 2 matrices) which is the identity for |s| > R andL12/13-end

11. Manifolds with boundary

We have defined the K-theory of any manifold, including a manifold with
boundary, M. In this case there are three natural K-groups, well six including
even/odd groups. Namely

157.497157.497 (6.137)

K1(M) = C∞c (M ;G−∞)/homotopy

K1(M ; ∂M) = C∞c (M \ ∂M ;G−∞)/homotopy

K1(∂M) = C∞c (∂M ;G−∞)/homotopy.

According to our definition the even groups are defined as the odd groups for R×M.
These are related by a ‘six-term sequence’

157.498157.498 (6.138) K0(M ; ∂M) // K0(M) // K0(∂M)

��
K1(∂M)

OO

K1(M)oo K1(M ; ∂M)oo

The horizontal maps here are straightforward. Namely there is an inclusion
map

C∞c (M \ ∂M ;G−∞) ↪→ C∞c (M ;G−∞)

since the former are maps which are equal to the identity outside a compact set
and so can be extended (as the identity) up to the boundary. Similarly there is a
restriction map

C∞c (M ;G−∞)
|∂M−→ C∞c (∂M ;G−∞)

and both these maps ‘descend’ through homotopies.
The end maps, the connecting homomorphisms, are as usual a little less obvious.

On the right we start from the group

C∞c (R× ∂M ;G∞).

By a very simple version of the collar neighbourhood theorem a neighbourhood of
the boundary in M is diffeomorphic to a product

[0, 1)× ∂M ↪→M.
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We can take the radial compactification of R to [0, 1] and thereby convert the map
(
157.503
11) into a map

R× ∂M −→M.

The definition in terms of rapid decay then means that there is a pull-back map

157.505157.505 (6.139) S (R;C∞(∂M ;G−∞)) ↪→ C∞c (M ;G−∞)

which descends to give the connection homorphism on the right.
This leaves the connecting homomorphism on the left. This is where Bott

periodicity comes in. We are starting from (the components of) C∞c (M ;G−∞) on
the lower left. However, by Bott perioidicty – Theorem ?? – we can instead start
from C∞c (R2×M ;G−∞). Now, separating the factors of R2 into R×R we can apply
the argument of the preceeding paragraph, giving the connecting homomorphism
on the right, to R×M instead of M, and this gives the map on the left. There is
an orientation issue here but since it amounts to a sign the choise one makes does
not affect the main result, which is:

157.499 Theorem 6.2. The six-term sequence (
157.498
6.138) is exact for any manifold with

boundary.

12. Chern character-building

Project 3 P-Chern

I have laid rather heavy emphasis on the group(s) G−∞S (Rn) in the definition
of (complex, topological) K-theory. Indeed by fiat I have declared this to be a
classifying group for odd K-theory. Here I want you to sort out the map to deRham
cohomology leading to the Atiyah-Hirzebruch isomorphism.

In the first part I want you to explain, step by step, the meaning of the ‘odd
Chern character’

Ch(g) =

∞∑
k=0

(−1)kk!

(2πi)k(2k + 1)!
Tr
(
(g−1dg)2k+1

)
This is a formal sum of forms in odd degree.

(1) Recall that G−∞S (Rn) is an open subset of S (R2n) and it is ‘an infinite
matrix group’. Use this to give a clear meaning to the Maurier-Cartan
form g−1dg here.

Hint: Perhaps avoid going into a full discussion of Fréchet manifolds!
As an open subset of a Fréchet space the tangent space at each point g is
Ψ−∞S (Rn). Any element a ∈ Ψ−∞S (Rn) here defines a curve in the group
in the obvious way as g+ ta and the identification with the tangent space
(with elements equivalence classes of curves) is written ‘dg’ – meaning I
think that d(g+ ta)/dt is the tangent vector at g. Then g−1 acting on the
left on the group maps g to the origin. This is a concrete group in the
sense that this gives a linear map

g−1 : Ψ−∞S (Rn) −→ Ψ−∞S (Rn).

The push-forward on the tangent spaces would be denoted g−1
∗ but since

the map is linear we can drop the ∗ and then

g−1dg : Ψ−∞S (Rn) −→ Ψ−∞S (Rn)
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is the natural map from the tangent space at g to the tangent space at Id
(which is the Lie algebra).

(2) Then the formal product (g−1dg)j is supposed to be the j-fold exterior
product, with composiition thrown in, so it is a j-multilinear, totally
antisymmetric map from j copies of the tangent space at g to the tangent
space at Id .

(3) This explains (
P3.14
12) in the sense that the trace functional results in each

term being a (2k + 1)-multilinear function on the tangent space at each
point, which is what a form should be.

(4) The trace property Tr([a, b]) = 0 shows that

Tr((g−1dg)2k) = 0

which explains why there are no even terms.
(5) The deRhan differential is easy to define on 1-forms, even with values in

an infinite dimensional space, show that

d(g−1dg) = −g−1dg ∧ g−1dg

in an appropriate sense.
(6) Conclude that the terms in Ch(g) are all closed.
(7) Suppose [0, 1] 3 t 7−→ G−∞S (Rn) is a smooth curve, show that

d

dt
Ch(gt) = dEt(g)

where Et is the ‘Eta’ or Chern-Simons form

Et(g) =

∞∑
k=0

(−1)k−1k!

(2πi)k(2k)!
Tr

(
g−1 dg

dt
(g−1dg)2k

)
Hint: Make sense of the formula

d

dt
g−1dg = −g−1 dg

dt
g−1dg + g−1d

dg

dt
.

(8) Now, suppose M is a compact manifold and κ : M −→ G−∞S (Rn) is a
smooth map. Show that the pull-backed form is closed and so defines a
map

C∞(M ;G−∞S (Rn)) 3 κ 7−→ κ∗ Ch ∈ Hodd
dR (M).

(9) Conclude that this map descends to a map

Ch : K1(M) −→ Hodd
dR (M) the odd Chern character.

(10) Contemplate why this might induce the Atiyah-Hirzebruch isomorphism

K1(M)⊗ C −→ Hodd
dR (M).

(So this means torsion is killed in the K-group. This does not quite work
for general non-compact manifolds).

(11) Now, if you have the energy, do the even version! Start from (
P3.20
7) and show

that on the group C∞(R;G−∞S (Rn)), which is used above to define even
K-theory,

Chev =

∞∑
k=0

(−1)k−1k!

(2πi)k(2k)!
Tr

(
g−1 dg

dt
(g−1dg)2k

)
dt
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defines a closed form in each even degree. [I am not sure I have the
normalizing constants correct, but here it does not matter.]

(12) Conclude, proceeding as above, that this defines a map

K0(M)⊗ C −→ Hev
dR(M).

13. Isotropic K-pop

Project 4 P-Iso

P3b.0 Recall to isotropic pseudodifferential algebra, for simplicity of order 0,
on R2n is defined by quantization of the classical symbols joointly in the
variables (x, ξ) :

Ψ0
iso(Rn) = QL(C∞(R2n).

The product defines a smooth bilinear map

Ψ0
iso(Rn)×Ψ0

iso(Rn) −→ Ψ0
iso(Rn).

We can then define C∞(M ; Ψ0
iso(Rn) for any manifold M and in particular

S (R2n′ ; Ψ0
iso(Rn)).

Now, show that this allows us to define the ‘stabilized algebra’

Ψ0
iso(Rn; Ψ−∞S (Rn

′
)

by using the product of Schwartz smoothing operators and then the prod-
uct (

P3.3
13) to define

Ψ0
iso(Rn; Ψ−∞S (Rn

′
)×Ψ0

iso(Rn; Ψ−∞S (Rn
′
)←→ S (R2n′ ; Ψ0

iso(Rn)×Ψ0
iso(Rn)) −→ Ψ0

iso(Rn; Ψ−∞S (Rn
′
).

This is an associative algebra of bounded operators on L2(Rn+n′) which

maps S (Rn+n′) to itself.
(1) One reason that this algebra is interestimg is that it has a principal symbol

map

σ0 : Ψ0
iso(Rn; Ψ−∞S (Rn

′
) −→ C∞(S2n−1; Ψ−∞S (Rn

′
)

which is multiplicative and gives a short exact sequence

Ψ−1
iso (Rn; Ψ−∞S (Rn′) // Ψ0

iso(Rn; Ψ−∞S (Rn′) // C∞(S2n−1; Ψ−∞S (Rn′).

(2) We need to massage this a little more by identifying

R2n−1 −→ S2n−1

as the 1-point compactification – choose your favourite point (mine is the
South Pole). Anyway, this allows us to map

S (R2n−1; Ψ−∞iso (Rn
′
) ↪→ C∞(S2n−1; Ψ−∞S (Rn

′
)

with image being the subspace of functions vanishing to infinite order at
the point at infinity.

(3) Denote by Ψ̇0
iso(Rn; Ψ−∞S (Rn′) which is the inverse image under σiso of

S (R2n−1; Ψ−∞iso (Rn′)
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(4) This is an algebra without identity, so add Id to get a ring which we can
denote

Id +Ψ̇0
iso(Rn; Ψ−∞S (Rn

′
).

Check that we now a multiplicative exact sequence

Id +Ψ−1
iso (Rn; Ψ−∞S (Rn′) // Id +Ψ̇0

iso(Rn; Ψ−∞S (Rn′) // Id +S (R2n−1; Ψ−∞S (Rn′).

(5) Finally we can finish the setup by defining

Ė(Rn; Ψ−∞(R2n′)) =
{
A ∈ Id +Ψ̇0

iso(Rn; Ψ−∞S (Rn
′
;σiso(A) ∈ C∞(R2n−1;G−∞S (Rn

′
)
}′

and now there is a multliplicative exact sequence

Id +Ψ−1
iso (Rn; Ψ−∞S (Rn′) // Ėiso(Rn; Ψ−∞S (Rn′) // S (R2n−1;G−∞S (Rn′).

14. Bott and Clifford

Project 5 P-BC

In lectures I wrote down an explicit family of involutive matrices on R2 rep-
resenting the ‘Bott’ element (in even K-theory) and showed that the semiclassical
quantization of this family is a 1-dimensional shift from the constant family. Here I
ask you to do this for R2n. Initially I assumed you knew about the structure of the
complex Clifford algebra, I have now added a brief derivation in case you do not.

(1) Deconstruct the matrix I simply wrote down in lectures

µ =

(
cos(χ(r)) eiθ sin(χ(r))

e−iθ sin(χ(r)) − cos(χ(r))

)
.

First write it out as

µ = cos(χ(r))Z + sin(χ(r)) (cos θE1 + sin θE2) .

Show that these 2× 2 matrices satisfy

E2
i = Z2 = Id, E1E2 + E2E1 = ZE1 + E1Z = ZE2 + E2Z = 0.

(2) Recall the complexified Clifford algebra on a real Euclidean vector space,
V, of even dimension, 2n, defined as the quotient of the infinte tensor
algebra

T (V ) = C⊕ VC ⊕ (VC ⊗ VC)⊕ · · · =
∑
k

V ⊗kC , VC = V ⊗ C

by the two-sided ideal (under tensor product) generated by the elements

I (V ) 3 ξ ⊗ η + η ⊗ ξ − 2〈ξ, η〉, ξ, η ∈ V.
Here 〈, 〉 is the Euclidean inner product. Thus,

Cl(V ) = T (V )/I (V ).

Remind yourself that this has dimension 22n, the same as the exterior
algebra. You should also note that it is isomorphic to the 2n × 2n matrix
algebra.

The Clifford algebra is closely related to the exterior algebra, but on
Cn rather than R2n. So we are passing to the standard complex structure
on R2n in which a basis, over the complex numbers, is

fi = ei + iei+n, i = 1, . . . , n.
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Show that Cl(R2n), the complexified Clifford algebra (not the Clifford
algebra on the complexification!) acts on λ∗Cn through the formula we
saw for the Hodge-Dirac operator

cl(ek + iek+n)fα = i
√

2fk ∧ fα, cl(ek − iek+n)fα = −i
√

2ι(fk)fα, k ≤ n
where the constants are for length normalization an here α is a strictly
increasing sequence in {1, . . . , n}. This specifies the action of all basis
elements and we see that

cl(ek + iek+n) cl(ek − iek+n) + cl(ek − iek+n) cl(ek + iek+n) = 2 Id,

cl(ek + iek+n)2 = 0 = cl(ek − iek+n)2

=⇒ cl(ek) cl(ek′) + cl(ek′) cl(ek) = 2δkk′ Id, k, k
′ = 1, . . . , 2n.

(3) If ei is an (oriented) orthonormal basis of V, let Ei be the corresponding
elements in the Clifford algebra so

EiEj + EjEi = δij Id .

Then show that the Clifford algebra has a ‘maximal element’

Z = in(2n−1)E1E2 . . . E2n =⇒ Z2 = Id, ZEi + EiZ = 0.

(4) Okay, now observe that (
P3.28
1) is now

P3.35P3.35 (6.140) µ(ζ) = cos(χ(|ζ|)Z + sin(χ(r))(ζ̂ · E∗)
where E∗ = (E1, . . . , E2n) is thought of as a vector with values in matrices
and · is the inner product.

(5) Now observe that the definition (
P3.35
6.140) extends to V = R2n to give a

smooth family of involutive matrices. Here, as before χ(r) is decreasing
from π near 0 to 0 near ∞.

(6) Review the proof in the notes to check that there is a semiclassical family
of idempotents qunatizing µ (so now to smoothing operators on Rn).

(7) For a bonus, show that the quantization is again has relative index 1
(assuming I got the signs right which would be a pleasant accident). You
might like to do this by quantizing in two variables repeatedly, so working
by induction over n.





CHAPTER 7

Operators on manifolds

C.OpMa L14

In this second half of the course I will, finally, get to the discussion of analysis
on manifolds. First what I hope is a reminder of the invariant description of kernels
of operators.

1. Functions and densities

The basic object defined on a smooth manifold M is the algebra of smooth
functions C∞(M). Since we will want to include non-compact manifolds we need to
also consider the subspace of functions of compact support

157.566157.566 (7.1) C∞c (M) ⊂ C∞(M).

In general there is no good analogue of schwartz functions on a non-compact man-
ifold but on a manifold with corners the space, Ċ∞(M), of functions vanishing to
infinite order at the boundary satisfies

157.567157.567 (7.2) Ċ∞(M) ⊂ C∞(M)

Ċ∞c (M) ⊂

⊂

C∞c (M)

⊂

and does correspond to the Schwartz space at least in the sense that

157.568157.568 (7.3) Ċ∞(Rn) = S (Rn).

Recall the change-of-variable formula for the integral of functions on Euclidean
space. If F : Ω′ −→ Ω is a diffeomorphism between open subsets of Rn and
f ∈ C∞c (Ω) then

157.569157.569 (7.4)

∫
Ω′
F ∗f |det

∂F

∂x
|dx =

∫
Ω

f(y)dy.

So there is no invariant integral of functions on a manifold.
To integrate we need something that transforms with the absolute value of the

determinant of the Jacobian of the diffeomorphism that appears in (
157.569
7.4). This

is provided by densities. Recall that on an n-manifold the maximal degree, n−,
forms at a point, ΛnmM for m ∈ M, may be defined as the linear space of totally
antisymmetric multilinear maps

157.570157.570 (7.5) TmM × n factors × TmM −→ C.

Equivalently if we let λnTmM denote the totally antisymmetric part of the n-fold
tensor product of TmM with itself (so ΛnmM = λnT ∗mM) then ΛnmM is the space
of linear maps

157.571157.571 (7.6) µ : λnTmM −→ C.

103
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The closely related space of t-densities, for t ∈ R, is

157.572157.572 (7.7) ΩtmM = {ν : λnTmM \ {0} −→ C; ν(sv) = |s|tν(v), ∀ t ∈ R \ {0}}.
So these are t-absolutely homogeneous maps. That this is a vector space de-
pends on the one-dimensionality of λnTmM. Just as for the form bundles these
one-dimensional vector spaces form a smooth bundle over M

157.573157.573 (7.8) ΩtM −→M.

The particularly important case t = 1 is just denoted ΩM.
So if µ ∈ C∞(M ; ΛnM) is a smooth n-form on an n-manifold then

157.574157.574 (7.9) |µ|t ∈ C 0(M ; Ωt) is a continuous density.

A non-vanishing n-form on M exists if and only if M is orientable and then the
t-density (

157.574
7.9) becomes smooth. Note that positivity of a density is well-defined

because of the transformation law in (
157.572
7.7).

157.575 Lemma 7.1. The density bundles are always trivial, i.e. there exists a smooth
positive section of ΩtM.

Proof. In local coordinates the ‘Lebesgue section’ |dx|t is smooth and positive
so summing over a partition of unity gives a global smooth positive section. �

157.576 Proposition 7.1. There is a well-defined integral

157.577157.577 (7.10)

∫
: C∞c (M ; Ω) −→ C

for any manifold.

Of course this can be extended to locally integrable (but compactly supported)
sections of ΩM.

157.578 Lemma 7.2. There are natural isomorphisms

157.579157.579 (7.11) ΩtM ⊗ ΩsM = Ωs+tM, Ωt(M ×N) = π∗MΩtM ⊗ π∗NΩtN.

So one can define an integral on C∞c (M) by choosing a density (probably pos-
itive) ν ∈ C∞(M ; Ω) and using

157.580157.580 (7.12)

∫
M

fν for f ∈ C∞c (M).

It is just that there is, in general, no natural choice of ν. On a Riemannian manifold
there is an associated, smooth positive, Riemann density νg defined as |α1 ∧ . . . αn|
for any orthonormal basis αi of T ∗mM.

2. Distributions

The existence of the integral on densities leads to consistent pairings

157.581157.581 (7.13) C∞c (M)× C∞(M ; Ω)

))
C∞c (M)× C∞c (M ; Ω) 3 (f, g)

?�

OO

� _

����

//
∫
fg ∈ C

C∞(M)× C∞c (M ; Ω)

55
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Each of the spaces of smooth sections of Ω has a topology coming from the
isomorphism with the corresponding space of functions given by the choice of a
smooth positive section of Ω (and the fact that multiplication by a positive smooth
element f ∈ C∞(M) is an isomorphism on both C∞c (M) and C∞(M)). This means
that we can define the spaces of distributions by

157.582157.582 (7.14)
C−∞c (M) = {u : C∞(M ; Ω) −→ C linear and continuous}
C−∞(M) = {u : C∞c (M ; Ω) −→ C linear and continuous}.

This is arranged so that these are ‘generalized functions’ with natural inclusions

157.583157.583 (7.15) C∞c (M) ↪→ C−∞c (M), C∞(M) ↪→ C−∞(M).

3. Vector bundles

In fact we want to generalize this in several respects. First for sections of a
vector bundle. I am already assuming you know what a vector bundle is. Just for
completness sake let me remind you that a vector bundle (either real or complex)
over a manifold M is another manifold V (often called the total space of the vector
bundle) with a surjective smooth map

157.584157.584 (7.16) π : V −→M

such that each fibre Vm = π−1(m) ⊂ V has a linear space structure which is ‘smooth
and locally trivial’. This means that each point m ∈ M has a neighbourhood Om
for which there is a diffeomorphism giving a commutative diagramme

157.585157.585 (7.17) π−1(Om)
F //

π
$$

Om ×KN

π1
zz

Om

with F linear on each fibre. Here K stands for R or C in the real or complex case
respectively. One can always assume that the Om are coordinate patches on M
and then the maps (

157.585
7.17) give a special atlas on V – the transition conditions are

automatic.
There are sections of any vector bundle just as for functions (and densities)

C∞c (M ;V ) ↪→ C∞(M ;V ) corresponding to smooth maps u : M −→ V with π ◦ u =
IdM .

The dual bundle, V ′, of a vector bundle V is defined, as a set, as the union of
the duals of the fibres

157.586157.586 (7.18) V ′ =
⊔
m∈m

V ′m.

It has a smooth structure coming from the local trivializations (
157.585
7.17) by replacing

the map Fm : Vm −→ KN by (F t)−1 : V ′m −→ KN .
There is then a pointwise pairing

157.587157.587 (7.19) C∞(M ;V )× C∞(M ;V ′) −→ C∞(M)
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and this leads to pairings analogous to (
157.581
7.13):∫

〈f, g〉m, f ∈ C∞c (M ;V ), g ∈ C∞(M ;V ′ ⊗ Ω), or

f ∈ C∞(M ;V ), g ∈ C∞c (M ;V ′ ⊗ Ω).

Then, noting that there are again appropriate topologies, the spaces of distribu-
tional sections are defined as the spaces of continuous linear maps

157.589157.589 (7.20)
C−∞c (M ;V ) = {u : C∞(M ;V ′ ⊗ Ω) −→ C; linear and continuous}
C−∞(M ;V ) = {u : C∞c (M ;V ′ ⊗ Ω) −→ C; linear and continuous}.

4. Operators and kernels

The operators we will consider on a manifold are, at worst, continuous linear
maps

157.590157.590 (7.21) A : C∞c (M ;V ) −→ C−∞(M ;W )

taking smooth sections of one vector bundle to distributional sections of another.
In fact we generally will not encounter anything quite this general. One of the
important features of distributions is that these operators are again distributions.

157.591 Theorem 7.1 (Schwartz’ kernel). There is a 1-1 correpondence between con-
tinuous linear maps (

157.590
7.21) and distributions

157.592157.592 (7.22) KA ∈ C−∞(M2;π∗LW ⊗ π∗R(V ′ ⊗ Ω)).

So I am assuming you see how to define the tensor product of two bundles and the
pull-back of a bundle under a smooth map. Here πL and πR are the projections
from M2 to M as the left and right factors.

Proof. None given, since I do not really use this result below. Still I should at
least specify what I mean by the continuity which is in terms of the weak topology
on the image. This is really the first part of the proof. Namely we can replace A,
in (

157.592
7.22), by a bilinear map

157.593157.593 (7.23) C∞c (M ;W ′ ⊗ Ω)× C∞c (M ;V ) ∈ (f, g) 7−→ A(g)(f)

from which A can be recovered. Continuity of A actually means separate continuity
of this bilinear form. The theorem is that such a bilinear form extends uniquely to
a distribution KA under the (bilinear) inclusion

157.594157.594 (7.24) C∞c (M ;W ′ ⊗ Ω)× C∞c (M ;V ) ↪→ C∞c (M2;π∗L(W ′ ⊗ Ω)⊗ π∗RV )

given by pulling back under the projections.
In this sense the Schwartz kernel theorem is an infinite-dimensional generaliza-

tion of the identifications for finite-dimensional vector space

157.595157.595 (7.25) {L : V −→W ; linear} ←→ {BL : W ′ × V −→ C; bilinear} ←→W ⊗ V ′.

The proof is not actually so hard. �

So, the way we will use this is by specifying operators in terms of their kernels,

157.596157.596 (7.26) (Av)(w) = KA(w ⊗ v).

Note the reversal of order which is made so that pairing corresponds to proximity.
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157.602 Remark 6. I will generally identify operators and their kernels, using the same
letter to denote both.

If M is not compact we also need to think again about the ‘calculus of supports’.

5. Smoothing operators

Suppose M is a compact manifold without boundary, so all the support annoy-
ances are absent.

157.597 Definition 7.1. The space of smoothing operators between sections of two
bundles, V, W over a compact manifold, M, is defined by the space of kernels

157.598157.598 (7.27) Ψ−∞(M ;V,W ) = C∞(M2;π∗LW ⊗ π∗R(V ′ ⊗ Ω)).

When W = V we abbreviate the notation to Ψ−∞(M ;V ).

157.599 Remark 7. Smoothing operators are characterized (for M compact) by the
two conditions that

157.600157.600 (7.28)
A : C−∞(M ;V ) −→ C∞(M ;W ) and

At : C−∞(M ;W ′ ⊗ Ω) −→ C∞(M ;V ′ ⊗ Ω).

For M compact it is again the case that the smoothing operators on a fixed
bundle V – so with W = V – form an algebra. The composition written in terms
of kernels is

157.601157.601 (7.29) A ◦B =

∫
M

A(·,m)B(m, ·).

Make sure you understand why the integral here makes sense and gives again a
smoothing operator.

157.603 Proposition∗ 7.2. The group of invertibles in the ring Id +Ψ−∞(M ;V ) for
a vector bundle over a compact manifold is isomorphic (but not naturally so) to
G−∞S (Rn).

To prove this we need a decent basis for L2(M ;V ) – we will get this as the
eigenbasis for any self-adjoint elliptic pseudodifferential operator acting on V.

157.604 Exercise 10. Give an appropriate definition for the space Υ−∞(M ;V ⊗ C2)
for any complex vector bundle, V, over a compact (connected) manifold M and
check that it is isomorphic to Υ−∞S (Rn;C2).

L14-end

L15

6. Cornormal distributions at the zero section

Let W be a real vector bundle (any complex vector bundle has an underlying
real bundle) over a manifold S. We proceed to introduce the space of conormal
distributions on W, the total space of the vector bundle, relative to S appearing
as the zero section of W. We will want this to be a module over S (W ) = Ċ∞(W )
and the elements should be singular only at the zero section. In the case that
W = S × RN we know what we want, namely

157.605157.605 (7.30) ImS (S × RN ;S × {0}) = C∞(S; I
m− s4
S (RN )).

Here s = dimS and the only the shift in the order is questionable. We already
considered such a space (with restricted coefficients) in case that S = Rn and
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N = n in defining the kernels of pseudodifferential operators on Rn. Note that
what this says about the symbol involved is that

157.606157.606 (7.31) ImS (S × RN ;S × {0}) =⇒ u(s) = F −1(a(s, ξ)), a ∈ Sm− s4 +N
4 (RN )

so it is consistent with our earlier notation.
One thing we can see immediately is that we can restrict such distributions to

a submanifold Y ⊂ S, since this just restricts the smooth map

157.617157.617 (7.32)
∣∣
Y

: ImS (S × RN ;S × {0}) −→ Im+codimY
S (S × RN ;S × {0}), Y −→ S.

157.618 Remark 8. In sofar as I can remember the normalization, this is one way to
do it. First, restricting to a submanifold of S increases the (apparent) order by
1/4 for each dimension, i,e, by codim(Y, S)/4 as indicated. Secondly when ‘base
dimension’ s = dimS and ‘fibre dimension’ are equal the order is equal to the order
of the symbol.

Why is the order so normalized you might well ask? The ultimate reason is the
appearnce of ‘Lagrangian deistribution’ which do not have a strict separation of
base and fibre dimension. Together with the fact that we want a pseudodifferential
operator to have the same order as its symbol (so that it is consistent with the order
of differential operators) that determines the normalization. The normalization
is further complicated (to those like me who are numerically challenged) by the
fact that there are three dimensions as work here. As well as s and n there is
the dimension of W as a manifold, n = s + N. So, N is the codimension of the
submanifold S (the zero section) in W which is of dimension n. It follows that the
relation ship between the orderIM and a ∈ Sm in (

157.606
7.31) is

157.619157.619 (7.33) u ∈ IM (W,S)⇐⇒ a ∈ SM
′
, M ′ = M +

n

4
− N

2
.

Let’s hope I am right. (See Problems 5?).
We also know what happens if we subject such a conormal distribution to a

linear transformation on the fibres, even if it depends on the point in S :
157.607157.607 (7.34)

A ∈ C∞(S;RN ), u ∈ ImS (S × RN ;S × {0}) =⇒ u(s,A(s, ·)) ∈ ImS (S × RN ;S × {0})
u = F −1(a(s, ξ)) =⇒ u(s,A(s, y)) = F −1(a(s, ((A−1)tξ)|detA(s)|).

157.608 Definition 7.2. If W is a real vector bundle of rank N over S, a manifold of
dimension s then we define

157.609157.609 (7.35) ImS (W ; 0W ) ⊂ C−∞(W )

to consist of those distributions u ∈ C−∞(W ) such that if φ ∈ C∞c (S) is supported
in an open set O over which W is trivial, τ : W

∣∣
O
≡ O × RN then

157.610157.610 (7.36) π∗φu = τ∗(vO), vO ∈ ImS (O × RN ;O × {0}).

We can see from (
157.607
7.34) that the symbol of such a distribution, defined locally,

will transform as a density on the dual bundle. So let’s make sure that this is
well-defined.

157.613 Lemma 7.3. Suppose U is a real vector bundle over a manifold S and E is a
complex vector bundle over S then the space of symbols on (the fibres of) U with
values in E is well-defined by reference to local trivializations.

Proof. �
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157.611 Proposition 7.3. Under fibre-wise inverse Fourier transform the space of Schwartz
conormal distributions with respect to the zero section of a vector bundle is globally
isomorphic to a space of symbolic densities

157.612157.612 (7.37) ImS (W ; 0W ) ∈ F −1(C∞(S;Sm+ dimW
4 − dimfibW

2 (W ′; ΩW ′))).

Proof. �

157.620 Proposition 7.4. If W −→ S is a real vector bundle, U −→ S is a complex
vector bundle and

157.621157.621 (7.38) F : D2 −→ D1

is a diffeomrophism between open neigbhourhoods of the zero section of W which
maps the zero identically to itself, then

157.622157.622 (7.39)
F ∗ : {u ∈ Im(W,OW , U); supp(u) b D1} −→ {v ∈ Im(W,OW , U); supp(u) b D2}.

Proof. Since conormal distributions are smooth away from the zero section
we may shrink the domain D1 with D2 replaced by the image and the result remains
unchanged.

We also know that the conormal space is a module over C∞(S) so we can use
a partition of unity in S to localize to an open sets over each of which W is trivial.
So we may assume W = S × RN .

To see how much remains to be proved, consider the following factorization of
F – in a possibly smaller domain

157.623157.623 (7.40) F = L ◦ F̃ .

Here G is the fibre-preserving diffeomorphism constructed from the differential of
F as follows. At each point s ∈ S the tangent space to W is the direct sum

157.624157.624 (7.41) TsW = TSS ⊕ RN

where the second part is the tangent space of the fibre. Since S is fixed pointwise
by F the differential maps is the identity on TsS and so decomposes into the sum
of two linear maps

157.625157.625 (7.42) F∗RN 3 w 7−→ (L′w,Lw) ∈ TsS ⊕ Rn.

So L is a well-defined family of linear maps on RN . We already know the invariance
under such maps so it suffices to consider he remainder term F̃ .

This defines the first, fibre-linear, factor in (
157.623
7.40), and hence the second. By

construction this has differential at s ∈ S which is the sum of the identiy and the
‘off-diagonal’ term mapping TsWs to TsS. This means that the map itself is of the
form, in any locall trivialization

157.626157.626 (7.43) F̃ (s, v) = (s, w) + v · h(s) + E(s, v), E(s, v) = O(|v2), v ∈ RN .

Then we can deform F̃ to the identity through the family of diffeormorphisms

157.627157.627 (7.44) F̃ (s, v) = (s, w) + t(v · h(s) + E(s, v)), t ∈ [0, 1].

Now we can use the ‘homotopy method’ again. Very close to S this 1-parameter
family of diffeomorphism is generated by a 1-parameter family of vector fields

157.628157.628 (7.45)
d

dt
F ∗t u = F ∗t (Vtu), Vt = vanishes at S and Vtvj = O(||v|)2.
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Now we replace u by a smooth family ut were we want to arrange that

157.629157.629 (7.46) u1 = u,
dut
dt

+ Vtut ∈ C∞.

�

7. Conormal distributions at a submanifold

8. Pseudodifferential operators
PseudoML15-end

L16 We now have completed the definition of the basic space of sections of a complex
vector bundle conormal with respect to a closed embedded submanifold. Moreover
we have shown that there is a well-defined (principal) symbol map

157.630157.630 (7.47)

σ : Im(M,S;V ) −→ Sm
′
(N∗S;V ⊗ Ω(N ∗ ∗S)), m′ = m+

1

4
dimM − 1

2
codimS.

Here Ω(N∗S) is a trivial real line bundle over S with fibre the space of densities on
the fibres of N∗S. We know that this captures the leading part of the singularity
of the elements so that

157.631157.631 (7.48) Im−1(M,S;V ) �
� // Im(M,S;V ) // // Sm

′
(N∗S;V ⊗ Ω(N ∗ ∗S))

is a short exact sequence. In the process of examining the coordinate-invariance
the error terms were all local at the symbolic level. This means the two sets

157.632157.632 (7.49) WF(u) ⊂ N∗S \ 0S

defined as the complement of the larges open cone where where the local full symbol
is rapidly decaying is invariantly defined.

We use this space to define the space of pseudodifferential operators acting
between any two complex bundle vector bundles over a manifold in terms of their
kernels

157.633157.633 (7.50) Ψm(M ;V,W ) = Im(M2,Diag;π∗LW ⊗ π∗R(V ′ ⊗ Ω).
L16-end

L17

9. Elliptic operators
EllipticM

Now we turn to the construction of a parametrix for a globally elliptic op-
erator A ∈ Ψm(M ;V,W ). Thus the principal symbol of A has a representative
a ∈ Sm(T ∗M ;π∗ hom(V,W )) which is elliptic. This means there is an inverse
modulo a compactly supported error,

157.634157.634 (7.51) b ∈ S−m(T ∗M ;π∗ hom(W,V )),

ba− Id ∈ C∞c (T ∗M ; hom(V )), ab− Id ∈ C∞c (T ∗M ; hom(W )).

157.635 Proposition 7.5. An elliptic element A ∈ Ψm(M ;V,W ) has a parametrix
B ∈ Ψ−m(M ;W,V ) modulo smoothing operators,

157.636157.636 (7.52) BA− Id = E ∈ Ψ−∞(M ;V ), AB − Id = E′ ∈ Ψ−∞(M ;W )

and any two such parametrices differ by an element of Ψ−∞(M ;W,V ).
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Proof. The surjectivity of the symbol map

157.637157.637 (7.53) Ψ−m(M ;W,V ) // S−m(T ∗M ;W,V )

allows us to choose an element B0 ∈ Ψ−m(M ;W,V ) with σ−m(B0) = b as in (
157.634
7.51).

It follows from the multiplicativity and exactness of the symbol sequence that

157.638157.638 (7.54) B0A− Id = E1 ∈ Ψ−1(M ;V ) and AB0 − Id = E′1 ∈ Ψ−1(M ;W ).

Now we proceed by induction to find a sequence Bj ∈ Ψ−m−j(M ;W,V ), such that

157.639157.639 (7.55)

(

k∑
j=0

Bj)A− Id = Ek+1 ∈ Ψ−k−1(M ;V ) and

A(

k∑
j=0

Bj)− Id = E′k+1 ∈ Ψ−k−1(M ;W ).

In the inductive step for Bk+1 ∈ Ψ−m−k−1(M ;W,V ) to satisfy the first condition
in (

157.639
7.55) we must have

157.640157.640 (7.56) Bk+1A− Ek+1 = Ek+2 ∈ Ψ−k−2(M ;V ) =⇒

σ−m−k−1 = σ−k−1(Ek+1)b mod S−m−k−2(T ∗;π∗ hom(W,V )).

So not only is this possible but the choice is unique up to a addition of a term in
Ψ−m−k−2(M ;W,V ). Applying A on the left in the first equation in (

157.639
7.55) and on

the right in the second it follows that

157.641157.641 (7.57) AEk+1 = E′k+1A.

So in fact

157.642157.642 (7.58) aσ−k−1(Ek+1) = aσ−k−1(E′k+1) =⇒ σ−k−1(Ek+1)b = σ−k−1(E′k+1)b

modulo terms of order −m − k − 2. Thus in fact ABk+1 − E′k+1 = E′k+2 ∈
Ψ−k−2(M ;W ) so Bk+1 satisfies both conditions required in the inductive step.

The asymptotic completeness of the pseudodifferential spaces means that we
can choose

157.643157.643 (7.59) B ∼
∑
j≥0

Bj ∈ Ψ−m(M ;W,V )

which is then a parametrix in the sense of (
157.636
7.52).

The uniqueness follows from the existence since if B′ is any left parametrix
then

157.644157.644 (7.60) B′A− Id ∈ Ψ−∞(M ;V ) =⇒ (B′ −B)A ∈ Ψ−∞(M ;V ) =⇒
B′ −B = (B′ −B)(AB − E′) = ((B′ −B)A)B − (B′ −B)E′ ∈ Ψ−∞(M ;W,V ).

�

The boundedness properties on Sobolev spaces now show that an elliptic oper-
ator of order m is Fredholm as an operator

157.645157.645 (7.61) A : Hs(M ;V ) −→ Hs−m(M ;W ).

Recall that even acting on distributions

157.648157.648 (7.62) A : C−∞(M ;V ) −→ C−∞(M ;W )
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the null space of A is a finite dimensional subspace of C∞(M ;V ) since its elements
satisfyb

157.649157.649 (7.63) Au = 0 =⇒ u = Eu, E ∈ Ψ−∞(M ;V ).

If we choose hermitian inner products on V and W and a smooth density ν on
M then the formal adjoint of A is the unique element

157.650157.650 (7.64) A∗ ∈ Ψm(M ;W,V ) satisfying

∫
M

〈Au, v〉W ν =

∫
M

〈u,A∗v〉V ν.

The uniqueness of A∗ follows from this condition.
To see existence, obvserve that the inner products give (antilinear) identifica-

tions of V with V ′ and W with W ′ and define an adjoint isomorphism of bundles

157.651157.651 (7.65) π∗LW ⊗ π∗RV ′ −→ π∗LW
′ ⊗ π∗RV.

Then the Schwartz kernel is the image of the kernel

A = Dπ∗Rν, D ∈ Im(M2,Diag;π∗LW ⊗ π∗RV ′)

under this isomorphism and reversal of the variables so

A∗(x, y) = (B(y, x)∗π∗Rν.

It is straightforward to see that this operator satisfies (
157.650
7.64).

157.646 Lemma 7.4. The index of an elliptic element A ∈ Ψm(M ;V ;W ) as an operator
(
157.645
7.61) is

157.647157.647 (7.66) ind(A) = dim (A)− dim (A∗)

where A∗ ∈ Ψm(M ;W,V ) is the formal adjoint of A with respect to any choice of
hermitian inner products on the bundles V, W and smooth density on M.

Proof. From the defining property of A∗ it follows that if A is considered as
an operator

157.652157.652 (7.67) A : Hm(M ;V ) −→ L2(M ;W )

then the orthocomplement of the range is (A∗) where

A∗ : L2(M ;W ) −→ H−m(M,V ).

This gives (
157.647
7.66) for the index. Changing the Sobolev order to A : Hs(M ;V ) −→

Hs−m(M ;W ) does not change the null space and changes the range either by
replacing it by its intersection with Hs−m(M ;W ) if s > m or by the closure if
s < m. In either case (A∗) remains a complementary space (but not orthogonal)
since the (extension of) the L2 pairing still vanishes. �

157.663 Lemma 7.5. If A ∈ Ellm(M ;V,W ) then there exists A′ ∈ Ψ−∞(M ;V,W ) such
that

157.664157.664 (7.68)

if ind(A) > 0, A+A′ is surjective

if ind(A) = 0, A+A′ is bijective

if ind(A) < 0, A+A′ is injective.
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Proof. Suppose ind(A) ≤ 0. By Lemma
157.646
7.4 dim (A) ≤ dim (A∗). Thus we

can choose a smoothing operator A′ : (A) −→ (A∗) which is injective. Then any
element of the null space of A+A′, satisfies Au = −A′u. These lie in complementary
spaces so both must vanish and hence u ∈ (A) and A′u = 0 so u = 0. If ind(A) = 0
it follows that (A∗) ⊂ Ran(A + A′) so A + A′ is a bijection. If ind(A) ≥ 0 thus
argument applies to A∗. �

157.655 Lemma 7.6. For any real order m and any bundle V there is an elliptic and
invertible operator Qm ∈ Ψm(M ;V ) with diagonal, positive principal symbol.

Proof. Take a Riemann metric on m and consider the symbol |ξ|m Id valued
in hom(V ). Clearly this is elliptic. For the case m = 0 we can of course take the
identity. Suppose m < 0 then choose an operator Lm/2 ∈ Ψm/2(M ;V ) with symbol

|ξ|m/2 Id . It is a compact operator on L2(M ;V ). Taking an hermitian inner product
on V and a positive smooth density on M gives L2(M ′V ) an explicity Hilbert inner
product. Then the adjoint L∗m/2 ∈ Ψm/2(M ;V ) has the same principal symbol

so Q′m = L∗m/2Lm/2 ∈ Ψm(M ;V ) is selfadjoint with principal symbol |ξ|m Id .

It is elliptic of order 0 with (Q′m) ⊂ C∞(M ;V ) finite dimensional. Choosing a
positive definite matrix on (Q′m) and adding it to Q′m gives an invertible element
of Ψm(M ;V ) with the same principal symbol. For m > take Q−m. �

The existence of such an element shows that it really suffices to consider oper-
ators of order 0 in the discussion of the index since if A ∈ Ψm(M ;V,W ) is elliptic
then so is A0 = AQ−m ∈ Ψ0(M ;V,W ) and

157.656157.656 (7.69) σ0(A0) = σm(A)||ξ|−m.
Corresponding to the stability of the index of Fredholm operators on a fixed

Hilbert space it also follows that

157.654157.654 (7.70) ind(A+ E) = ind(A) if A ∈ Ψm(M ;V,W ) is elliptic and

E ∈ Ψm′(M ;V,W ), m′ < m.

Indeed, the index of (A+E)Q−m = AQ−m +EQ−m is the same as that of A+E
and EQ−m is compact from L2(M ;V ) to L2(M ;W ) so the index is the same as
that of AQ−m and hence A.

Said a different way, we have proved that

157.657 Lemma 7.7. The index of and elliptic element A ∈ Ψm(M ;V,W ) is determined
by any reprentative of

157.658157.658 (7.71) σm(A)|ξ|−m ∈ S0(T ∗M ;π∗ hom(V,W )).

and so defines a map

157.659157.659 (7.72) ind : Ell(V,W ) = {a : S0(T ∗M ;π∗ hom(V,W ));

with an inverse modulo lower order terms} −→ Z

for any bundles V and W.

Of course the bundles certainly have to have the same rank before such an elliptic
symbol exists.

We can think of the pseudodifferential algebra (modules really) as define the
index map (

157.659
7.72) through ‘quantization of the symbol’.
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157.660 Lemma 7.8. If A1 ∈ Ψm(M ;V,W ) and A2 ∈ Ψm′(M ;W,U) are two elliptic
operators between bundles then the composite is elliptic and

157.653157.653 (7.73) ind(A2 ◦A1) = ind(A2) + ind(A1).

Proof. Using Lemma
157.655
7.6 We can replace A1 by AQ−m and A2 by Q−m′A2

and reduce to the case that m = m′ = 0. From Lemma
157.646
7.4 we see that ind(A∗) =

− ind(A). So if A1 and A2 have opposite signs we can assume that ind(A1) ≥ 0
and ind(A2) ≤ 0 or else pass to the adjoint, which reverses the order. If A1 and
A2 have the same sign then we can assume that both are non-negative. So it
suffices to consider the case ind(A1) ≥ 0. Then, adding a finite rank surjective
smoothing operator mapping the null space of A onto a complement to its range
we can assume that A1 is surjective. Then the range of A2 ◦ A1 is the range of
A2 and its null space is inverse image of the null space of A2 under A1, which has
dimension dim((A1)) + dim((A2). Thus (

157.653
7.73) holds. �

157.661 Corollary 4. The index map (
157.659
7.72) is additive under the product

157.662157.662 (7.74) Ell(W,U) ◦ Ell(V,W ) −→ Ell(V,U)

(when these spaces are non-empty).

10. Self-adjoint operators

Although I will concentrate on the index theorem in these lectures it is even
more important to discuss the spectral theory of self-adjoint ellipitc operators on a
compact manifold. Indeed I am assuming that you have seen this before.

P1.16 Theorem 7.2. An elliptic pseudodifferential operator acting on sections of a
vector bundle V over a compact manifold without boundary, M ,A ∈ Ψm(M ;V ),
which is symmetric, with respect to a density on M and a fibrewise Hermitian inner
product on V, is self-adjoint and, if m 6= 0, has eigenfunctions forming a complete
orthonormal basis of L2(M ;V ).

Proof. Symmetry here means ‘formal self-adjointness’
P1.17P1.17 (7.75)

〈Av,w〉L2 =

∫
M

〈Av,w〉V ν =

∫
M

〈Av,w〉V ν = 〈v,Aw〉L2 ∀ v, w ∈ C∞(M ;V ).

If m ≤ 0 it follows from the L2 boundedness of A that this identity extends by
continuity to all v, w ∈ L2(M ;V ) and so A is a bounded self-adjoint operator.

If m > 0 then we know that A : Hm(M ;V ) −→ L2(M ;V ) is continuous. Then
A is a closed unbounded operator with domain Hm(M ;V ) ⊂ L2(M ;V ) and elliptic
regularity shows us that the adjoint of this operator, which by definition has domain

P1.18P1.18 (7.76)
Dom(A∗) = {w ∈ L2(M ;V );C∞(M ;V ) 3 u −→ 〈Au,w〉L2 is bounded on L2}

is A again as an unbounded operator.
If m < 0 then A is a compact operator and the theory of compact self-adjoint

operators applies to give the complete orthonormal basis. If m > 0 we know that A
has a unique generalized inverse determined by the L2 structure and it follows that
B ∈ Ψ−m(M ;V ) is also self-adjoint. The non-zero eigenvalues of A are the inverses
of the non-zero eigenvalues of B and the null spaces are, essentiallt by definition,
the same. �



11. FIBRE BUNDLES 115

One of the things that I set out to do was to prove that such an elliptic operator
has ‘Weyl asymptotics’. L17-end

11. Fibre bundles
L18

The definition of homotopy of elliptic pseudodifferential operators involves a
‘family’ in the sense of a smooth map [0, 1] 3 t 7−→ A(t) ∈ Ψm(M ;V,W ). However
we really want to allow the bundles V and W to ‘vary’ as well. In making this
precise we may as well pass to the notion of a family of pseudodifferential operators
on the fibres of a fibre bundle.

157.665 Definition 7.3. A fibre bundle is a smooth surjective map between manifolds
φ : X −→ Y which is locally a product in the sense that there is a manifold
Z (the model fibre) such that each y ∈ Y has a neighbourhood U ⊂ Y with a
diffeomorphism giving a commutative diagramme

157.667157.667 (7.77) φ−1(U)
F //

φ
##

Z × U

πU
||

U.

So this is just like a vector bundle except the fibres are manifolds, not vector
spaces, and correspondingly the ‘local trivializations’ F are fibre-preserving diffeo-
morphisms. Of course the most obvious case is a product

157.668157.668 (7.78) X = Z × Y
which is globally trivial as a fibre bundle. You are probably familiar with the Hopf
fibration

157.669157.669 (7.79) S2n+1 −→ S2n

given by thinking of S2n+1 as the unit sphere in Cn+1 and then taking the fibres to
be given by the multiplicative action of the circle S ⊂ C.

The ‘fibre above y ∈ Y ’, meaning φ−1(Y ), is diffeomorphic to the model fibre
Z and is often written Zy. There is in general no natural choice of the trivialization
map F in (

157.667
7.77) so no natural diffeomorphism between Z and Zy. A fibration is

how we are to interpret the notion of a ‘smooth family of manifolds’.

157.670 Proposition 7.6. If φ : X −→ Y is a surjective smooth map between compact
manifolds then it defines a fibre bundle if and only if it is a submersion, i.e. F∗ :
TxX −→ TF (x)Y is surjective for each x ∈ X.

The compactness, or at least some additional condition, is needed here. The sur-
jectivity is less of an issue, since if φ is a submersion between compact manifolds its
image if open and closed and hence is some union of components of Y – assuming
we are not requiring manifolds to be connected!

Proof. This is a form of the Implicit Function Theorem. For a submersion,
there is a local version of (

157.667
7.77) near each point of X. Namely, the surjectivity of

the differential φ∗ is equivalent to the injectivity of φ∗ : TF (p)Y −→ T ∗pX. So if
yi are local coordinates in U ⊂ Y near F (p) then the functions φ∗yi defined on
φ−1(U) have independent differentials. So they can be completed to a coordinate
system, φ∗yi, zk on X in some neighbourhood of p. Then the fibres localy are the
surfaces φ∗yi =const. This needs to be globalized along φ−1(φ(p)).
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In each of the coordinate patches constructed along the ‘base fibre’ Z(p) =
φ−1(φ(p)), the fibre containing p, the choice of local coordinates gives vector fields,

just the V
(k)
i = ∂yi in the local coordinates label by k, which satisfy φ∗(V

(k)
i ) =

∂yi are the coordinate vector fields in the base. The V
(k)
i in different coordinate

patches will be different but if we take a partition of unity rk on X near Z(p)

and subordinate to the cover then the Vi = ρkV
(k)
i satisfy φ∗(Vi) = ∂yi . The

compactness of Z(p) means that this is only a finite sum and so the Vi are defined in
an open set φ−1(U) for some neighbourhood p ∈ U in Y. The Vi need not commute
but we can simply integrate successively with respect them starting at Z(p). So
for each q ∈ Z(p) integrating V1 gives a smooth surface in Y containing Z(p) and
projecting under φ onto the y1 access in U. Then integrating from this surface gives
a submanifold of one dimension higher projecting onto the y1, y2 coordinate plane
in U, where this may need to be shrunk at each step. After dimY steps we have
a smooth map from a neighbourhood of the form φ−1(U ′) of Z(p) in Y to Z(p)
which together with the projection to U ′ gives a diffeomorphism F as required in
(
157.667
7.77). �

157.672 Proposition 7.7. If V −→ X is a vector bundle over the total space of a fibre
bundle then there are local trivializations of the bundle as in (

157.667
7.77) over which there

are bundle isomorphisms

157.673157.673 (7.80) V
∣∣
φ−1(U)

��

τ // VZ × U

��
φ−1(U)

F //

φ
##

Z × U

πU
{{

U

where VZ is a fixed bundle over the model fibre.

Notice that there is some constructive confusion between the total space of a vector
bundle and the vector bundle itself (which includes the projection to the base).

Proof. �

Now, the kernel of a pseudodifferential operator on Z acting from sections of
one bundle to another is a distribution on Z2. So we need to consider the product
of each fibre with itself.

157.671 Proposition 7.8. If φ : X −→ Y is a fibre bundle then X2 3 (x, x′) −→
(φ(x), φ(x′)) ∈ Y 2 is a fibre bundle as is the fibre product, which is the closed
embedded submanifold

157.674157.674 (7.81) X [2] = {(x, x′) ∈ X2;φ(x) = φ(x′)}

and the diagonal is the closed embedded submanifold

157.675157.675 (7.82) Diag = {(x, x) ∈ X2;x ∈ X}.

Clearly the diagonal is diffeomorphic to X.

Proof. �
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12. Families of pseudodifferential operators

To define the space Ψm
φ (X;V,W ) of operators

157.676157.676 (7.83) A : C∞(X;V ) −→ C∞(X;W )

for two vector bundles over the total space of a fibre bundle we have two clear
options. Use Proposition

157.673
7.80 locally in the base and then patch things together or

start globally and see what happens. As you have seen I prefer to take the latter
course, at least for the moment!

157.677 Definition 7.4. The space of fibrewise pseudodifferential operators for a fibre
bundle φ : X −→ Y between sections of bundles V and W over X is identified with
the space of conormal distributions

157.678157.678 (7.84) Ψm
φ (X;V,W ) = Im−

1
4 dimY (X [2],Diag;π∗LW ⊗ π∗R(V ′ ⊗ Ωfib).

Here πL, πR : X [2] −→ Y are the restrictions of the two projections from X2 and
Ω is the bundle over Y of densities on the fibres of φ.

A more standard notion for this space would be Ψm(X/Y ;V,W ) where there
is no space X/Y but it is supposed to suggest a family acting on the fibres of X. I
will not use that notation because it does not really fit with various generalizations
below.

So, we need to see that this definition does give a linear space of operators as
in (

157.676
7.83) and then that they form an algebra. Again we can do this by localization

or we can think globally. What we want to do is make sense of the formula

157.679157.679 (7.85) Av(x) =

∫
fib

A(x, x′)v(x′), v ∈ C∞(X;V ).

We can certainly pull v back to X [2] under πR to give the a section of π∗RV over

X [2] which is independent of x – constant on the fibres of πL. Then the product
with the kernel makes sense and using the pairing of V ′ and V gives a section
of π∗LW ⊗ π∗RΩfib. This is singular only at the diagonal and the projection πL is
transversal to the diagonal. So, we can see that the integral is well-defined and
gives a smooth section of W over X.

The tangent bundle of X has a subbundle, TfibX ↪→ TX consisting of the
vectors tangent to the fibe at each point. For each y ∈ Y the restriction if this fibre
tangent bundle is therefore just the tangent bundle of the fibre

157.683157.683 (7.86) TφX
∣∣
Zy

= TZy.

The dual bundle to TφX which I will denote T ∗φX is then the collection of the fibre
cotangent bundles

157.684157.684 (7.87) T ∗φX
∣∣
Zy

= T ∗Zy.

The adjustment in the order in (
157.678
7.84) is so that:

157.680 Proposition 7.9. There is a well-defined principal symbol map giving a short
exact sequence

157.681157.681 (7.88) Ψm−1
φ (X;V,W ) ↪→ Ψm

φ (X;V,W )
σm−→ Sm(T ∗φX;π∗ hom(V,W ))
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consistent with the single operator case in the sense that for each y ∈ Y there is a
restriction map

157.682157.682 (7.89) Ψm
φ (X;V,W ) 3 A 7−→ A(y) ∈ Ψm

φ (Zy;Vy,Wy), σm(A(y)) = σm(A)
∣∣
T∗Zy

.

Returning to the discussion of the index of an elliptic operator observe that

157.685 Proposition 7.10. The ‘numerical’ index of an elliptic family of pseudodiffer-
ential operators ind(A(y)) is constant.

For vector bundles over a manifold, let us denote by iso(V,W ) ⊂ hom(V,W )
bundle with fibre the invertible linear maps between fibres at each point. For two
pairs of bundles Vi, Wi i = 1, 2 there is a direct sum operation

157.688157.688 (7.90) iso(V1,W1)× iso(V2,W2) −→ iso(V1 ⊕ V2,W1 ⊕W2).

157.686 Proposition 7.11. Any elliptic operator is homotopic to a classical elliptic
operator and hence for any compact manifold and vector bundle the index induces
a map

157.687157.687 (7.91) ind : C∞(S∗M ;π∗(iso(V,W )) −→ Z

which is additive under direct sums as in (
157.688
7.90) and under products giving commu-

tative diagrammes

C∞(S∗M ;π∗ iso(V1,W1))× C∞(S∗M ;π∗ iso(V2,W2))

⊕
��

ind× ind// Z× Z

+

��
C∞(S∗M ;π∗ iso(V1 ⊕ V2,W1 ⊕W2))

ind // Z.

157.689157.689 (7.92)

C∞(S∗M ;W,U)× C∞(S∗M ;V,W )

◦
��

ind× ind// Z× Z

+

��
C∞(S∗M ;V,U)

ind // Z.

(7.93)

Now, we need to relate this to K-theory. Consider all of the triple (V,W, a)
where V and W are complex vector bundles over M and a is an isomorphism
between them , which we can write as a ∈ C∞(S∗M ;π∗ iso(V,W )). We impose
three relations on this biggish set of data.

Bundle isomorphism invariance: (V1,W1, a) ' (V2,W2, bae
−1)

if b ∈ C∞(M ;W1,W2), e ∈ C∞(M ;V1, V2)

157.690157.690 (7.94)

Homotopy invariance: (V1,W1, a1) ' (V0,W0, a0) if ∃
h ∈ C∞(S∗M×[0, 1]; iso(V,W )) where V,W are bundles over M × [0, 1]

with V
∣∣
M×{0} = V0, V

∣∣
M×{1} = V1, W

∣∣
M×{0} = W0, W

∣∣
M×{1} = W1

157.692157.692 (7.95)

Stability: (V ⊕ U,W ⊕ U, a⊕ IdU ) ' (V,W, a) for any bundle U −→M.157.691157.691 (7.96)

Each of these is an equivalence relation – for the first and last this is straightfor-
ward, for homotopy equivalence one needs to do a littl work in concatenating two
homotopies to get a smooth one. The trick is to replace an initial homotopy by its
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pull back under a smooth bijective map [0, 1] −→ [0.1] which is constant to infinite
order at both ends. Then following one of these with another gives smooth objects
over [0, 2] which can be reparameterized to a homotopy.

Theorem 7.3. ∗ The collection of the C∞(S∗M ;π∗ iso(V,W )) subject to the157.693
equivalence relation combining (

157.690
7.94), (

157.692
7.95) and (

157.691
7.96) is an abelin group under

the additive operation (
157.688
7.90) which is naturally isomorphic to K0(T ∗M) and to

which the (numerical) index map descends giving the push-forward map

157.694157.694 (7.97) K0(T ∗M)
π!−→ K0({pt}) = Z.

Most of proof later. The identification of K0(T ∗M) with the equivalence
classes of the data in C∞(S∗M ;π∗ iso(V,W )) uses the results in Chapter ?? and
is discussed below, as is the definition of the ‘wrong-way map’ π!. The existence of
this map, uses the notion of the K-orientation of T ∗M. However, the fact that the
index map does descend through the equivalence relations (

157.690
7.94), (

157.692
7.95) and (

157.691
7.96)

follows directly from the preceding discussion. �

So my basic claim is that it is ‘better’ to prove the more general families index
theorem. In the more general families case the plan is to pass through semiclassical
quantization since this has better functorial properties (whilst being equivalent to
the pseudodifferential qunatization we have been employing).

13. Families index theorem

The ‘numerical index’ that we have been discussing exactly characterizes the
invertibility properties of elliptic operators, up to smoothing perturbation as seen in
Lemma

157.663
7.5. For an elliptic family we can ask the stronger question:- When is there

a perturbation, A′ ∈ Ψ−∞φ (X;V,W ) for an elliptic family A ∈ Ψm
φ (X;V,W ) such

that A+A′ is invertible? Clearly the vanishing of the numerical index is necessary,
and this implies the existence of such a perturbation locally near each point in the
base, but it is not sufficient to imply the existence of a global perturbation working
at every point. The obstruction is precisely the families index which, in line with
the discussion above, we will find as a map

157.695157.695 (7.98) indφ : C∞(S∗φX;π∗ iso(V,W )) −→ K0(Y ).

To construct such a map we look for a ‘good’ pertubation and parametrix.

157.696 Proposition 7.12. If A ∈ Ψm
φ (X;V,W ) is an elliptic family then there exists

A′ ∈ Ψ−∞φ (X;V,W ) and a parametrix B ∈ Ψ−mφ (X;W,V ) such that

157.697157.697 (7.99) B(A+A′) = Id−p1, (A+A′)B = Id−p2

where p1 ∈ Ψ−∞φ (X;V ) and p2 ∈ Ψ−∞φ (X;W ) are finite rank projections (idempo-

tents).

We show below that the formal difference p1 	 p2 defines an element of K0(Y )
which is defined independent of choices and this gives the map (

157.695
7.98). In fact this

defines a map

157.698157.698 (7.100) indφ = (φπ)! : K0(T ∗φX) −→ K0(Y )

the identification if which is the Atiyah-Singer theorem in K-theory.

Proof. �
L18-end

L19
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14. Spin and Dirac

Most of the geometric examples of elliptic operators, and families of them,
are first order differential operators. Perhaps the most basic is the ‘Hodge-Dirac’
operator.

If M is a compact manifold (it need not be oriented) the form bundles ΛkM
are well-defined real vector bundles over M but we will allow complex coefficients
as well. Then the deRham operator is a well-defined first order differential operator

157.702157.702 (7.101) d : C∞(M ; Λk) −→ C∞(M ; Λk+1) d2 = 0.

By convention, for k < 0 or k > dimM, the form bundles are trivial, just the zero
vector space at each point. The deRham differential is not an elliptic operator,
indeed it symbol is

157.703157.703 (7.102) σ1(d)(x, ξ) = iξ∧ ∈ S1/S0(T ∗M ; hom(Λk,Λk+1), (x, ξ) ∈ T ∗M.

If we choose a Riemann metric on M we get, by definition, a fibrewise Euclidean
inner product on TM and hence the dual inner product on T ∗M and by standard
constructions inner products on all the ΛkM. Moreover we also get a well-defined
Riemannin density (not a volume form unless M is oriented) which I will write as
dg. This data determines a formal adjoint of d,

157.704157.704 (7.103) δ = d∗ : C∞(M ; Λk+1) −→ C∞(M ; Λk) ∀ k, δ2 = 0.

Then the Hodge-Dirac operator is

157.705157.705 (7.104) ð = d+ δ ∈ Ell1(M ; Λ∗) σ1(ð)(x, ξ) = i(ξ ∧ −ι(ξ))
where ι(ξ) is contraction with the metrically dual tangent vector to the cotangent
vector ξ.

157.706 Theorem 7.4 (Hodge). If M is compact without boundary, the null space of ð
is naturally isomorphic to the deRham cohomology of M.

Proof. The operator ð is elliptic since

157.707157.707 (7.105) σ1(ð)2 = ξ ∧ ι(ξ) + ι(ξ)ξ∧ = |ξ|2 Id .

Thus ð2 = ∆ (the Laplacian, or Laplace-Beltrami operator) has scalar principal
symbol which is invertible where ξ 6= 0. As an elliptic, formally self-adjoint operator
we know that it is self-adjoint and the range has an orthogonal decomposition which
restricts to smooth sections to

157.708157.708 (7.106) C∞(M ; Λ∗) = null(ð)⊕ ð (C∞(M ; Λ∗)) .

This is the Hodge decomposition.
Note that if h ∈ null(ð) ⊂ C∞(M ; Λ∗) then

157.711157.711 (7.107)

∫
M

〈dh, dh〉 =

∫
M

〈dh,−δh〉 =

∫
M

〈d2h, h〉 = 0

so dh = δh = 0.
Applying (

157.708
7.106) to a closed form u ∈ C∞(M ; Λ∗) gives

157.709157.709 (7.108) u = h⊕ (dv + δv), v ∈ C∞(M ; Λ∗), dh = δh = 0.

This defines a surjective map

157.710157.710 (7.109) {u ∈ C∞(M ; Λ∗); du = 0} 3 u 7−→ h ∈ null(ð).

since h is mapped to itself.
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Taking the inner product of (
157.709
7.108) with δv shows that δv = 0 (since u is

closed) and hence that

157.712157.712 (7.110) u = h+ dv.

If v = dw then taking the inner product with u shows that u is in the null space of
(
157.710
7.109). Conversely if u is in the null space u = dv. Thus the map (

157.710
7.109) descends

to an isomorphism

157.713157.713 (7.111) H∗dR(M ;R) −→ null(ð).

�

157.714 Corollary 5. The restriction of the Hodge-Dirac operator to

ð+ : C∞(MΛev) −→ C∞(M ; Λodd)

has index the Euler characteristic of M

157.715157.715 (7.112) ind(ð+) =

n∑
k=0

(−1)k dimHk
dR(M).

L19-end
On a Riemann manifold a Clifford module is a complex vector bundle W −→M

with Hermitian metric together with a norm-preserving bundle map

157.716157.716 (7.113) cl : T ∗M −→ hom(W )

satisfying the condition

157.717157.717 (7.114) cl(ξ) cl(η) + cl(η) cl(ξ) = 2〈ξ, η〉 Id in hom(W ).

157.718 Lemma 7.9. A Clifford module has a unitary connection ∇ satisfying

157.719157.719 (7.115) ∇v cl(ξ)w = cl(∇ci)w + cl(ξ)∇vw,
∀ v ∈ C∞(M ;TM), ξ ∈ C∞(M ;T ∗M), w ∈ C∞(M ;W )

where ∇vξ is the action of the Levi-Civita connection on the cotangent bundle.

Proof. As usual the idea is to construct such a connection locally and then
patch using a partition of unity. �

Interpreting the connection as a differential operator ∇ : C∞(M ;W ) −→
C∞(M ;T ∗⊗W ) and the Clifford action as a contraction map cl : T ∗W ⊗W −→W
the associated Dirac operator is a well-defined differential operator

157.720157.720 (7.116) ð = cl ◦∇ : C∞(M ;W ) −→ C∞(M ;W ).

So, how do such Clifford modules arise and what is the index of the associated
Dirac operator? Let me restrict to the case that the dimension of M is even, 2k
– the odd-dimensional case is slightly different. Give a Riemann metric on M
the complexified Clifford algebra at each point, defined as the quotient of the full
complexified tensor algebra of T ∗mM by the ideal generated by the elements as in
(
157.717
7.114), i.e.

157.721157.721 (7.117) ξ ⊗ η + η ⊗ ξ − 〈ξ, η〉 Id
forms the fibre of a bundle

157.722157.722 (7.118) Cl(M) −→M.

This is an Azumaya algebra – not only is it a complex vector bundle by the fibres
are algebras and these algebras are isomorphic to the 2k × 2k matrix algebra. A
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local orthonormal basis gives a trivialization of the bundle consistent with these
identifications.

A Clifford module is then a vector bundle with a multiplicative bundle map

157.723157.723 (7.119) Cl(M) −→ hom(W ).

Such modules arise from a Spin structure or a Spin-C structure on M. Both of
these only make sense on an oriented manifold. They have to do with the groups

157.724157.724 (7.120) Spin−C(2k) −→ Spin(2k) −→ SO(2k).

Here (for k > 1) the spin group is the universal cover of SO(2k). Since π1(SO(2k) =
Z2 this is a double cover. One way to construct concretely is using the Clifford
algebra on R2k. An element of SO(2k) acts on the Clifford algebra through its
action on T ∗0 R2k = R2k which preserves the ideal generated by (

157.721
7.117). Such

an algebra-preserving isomorphism of a matrix group is necessarily generated by
conjugation so for O ∈ SO(2k) there is an element LO ∈ Cl(R2k) such that the
action of O is

157.725157.725 (7.121) cl(Oξ) = LO cl(ξ)L−1
O .

Such an element can be constructed by factorizing O into products of reflections.
Then LO is the product of the clifford actions of the unit normal vectors to the
fixed set of the reflection and is determined by up to sign. These LO form the Spin
group. It has a reflection action, given by the kernel of Spin(2k) −→ SO(2k) and
the Spin-C group is

157.726157.726 (7.122) Spin−C(2k) = Spin(2k)×Z2 S.

15. Gerbes?

I do not expect to have time to discuss this in lectures. The idea is that this give
a rather systematic approach to Spin and Spin-C structures on manifolds. Since it
is relevant, at least as background, let me briefly recall the classification of real and
complex line bundles over a manifold – which is generalized by gerbes.

A real line bundle over a manifold M can be given a smooth family of fibre
metrics and so reduced to a principal Z2 bundle the ‘sphere’ in the line at each
point

157.728157.728 (7.123) Z2 M̂

��
M.

Thus, M̂ is a double cover of M with the action of Z2 being to interchage the points
in each fibre.

Such a principal bundle is classified by H1(M ;Z2). This is most easily seen in
terms of Čech cohomology. To be brief about this, any open cover of a manifold
has a refinement to a ‘good’ open cover – one in which all the open sets and all
non-trivial finite intersections of them are contractible. A covering by small (with
radius below the injectivity radius) Riemannian balls satifies this.

So, one can find such a good open cover over each element of which, Ui, the
Z2 bundle has a section. Then over each intersection Uij = Ui ∩ Uj the relation
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between these sections gives a map

157.729157.729 (7.124) χij : Uij −→ Z2.

This is a Čech cocycle, since over triple intersections

157.730157.730 (7.125) χijχjkχki = 1.

It follows (this is Čech theory) that this determines a cohomology classe

157.731157.731 (7.126) χ ∈ Ȟ(M ;Z2).

The vanishing of this cohomology class is equivalent to the exactness of cocylcle
(because the cover is good), meaning the existence of smooth (i.e. continuous)
maps

157.732157.732 (7.127) ηi : Ui −→ Z2 s.t. χij = ðiη−1
j on Uij .

Such a collection of map allows the original sections to be ‘corrected’ to a global
section – implying the Z2 cover, and hence line bundle, is trivial. Conversely given
a cocycle χij one can construct a Z2-principal bundle from it which recover χ.

Similarly for complex line bundles over M are classified by Ȟ2(M ;Z). Again
one can choose a metric on the line bundle and so reduce it to a principal-S bundle

157.733157.733 (7.128) S S

��
M.

Now the local trivialization over a good open cover give a map

157.734157.734 (7.129) cij : Uij −→ S s.t. cijcjkcki = 1 over Ui ∩ Uj ∩ Uk.
This cocycle yields a cohomology class, the Chern class, c ∈ Ȟ1(M ;S) which is the
same as Ȟ2(M ;Z). The triviality of c implies the existence of a section of (

157.733
7.128)

and conversely. Moreover a prinicpal circle bundle can be constructed from a class
c ∈ Ȟ2(M ;Z) with this as Chern class.

The relationship between real line bundles, and their complexification (obtained
by tensoring with C) is the Bocksteim homomorphism

157.735157.735 (7.130) H1(M ;Z2) −→ H2(M ;Z).

Gerbes, in particular bundle gerbes, are the next step up from line bundles. I
include a brief discussion of ‘lifting bundle gerbes’, specifically for spin and spinC
structures. L20





CHAPTER 8

Semiclassical quantization

1. Blow up

11.4.2022.1 Definition 8.1. If S ⊂M is a closed embedded submanifold a blow-up of M
along S, also called the blow-up (actually the radial blow-up) of S, is a manifold
with boundary [M ;S] and smooth surjective map β : [M ;S] −→M (the blow-down
map) with the properties

(1) β : [M ;S] \ ∂[M ;S] −→M \ S is a diffeomorphism
(2) β : ∂[M ;S] −→ S is a sphere bundle
(3) If 0 ≤ q ∈ C∞(M) vanishes precisely at S and exactly to second order then

β∗q = x2 is the square of a boundary defining function x ∈ C∞([M ;S])
(4) The Lie algebra of smooth vector fields on M which are tangent to S lift

to span, over C∞([M ;S]), the Lie algebra of vector fields tangent to the
boundary.

The ‘precise second order vanishing’ is the statement that the Hessian of q at
each point s ∈ S is postive definite as a quadratic form vivjq on NsS, the normal
bundle to S.

If you recall the notion of compactification from early in the course you will see
some similarity. However blow-up is much more functorial.

Why blow up submanigolds? There are several reasons (but it isn’t always a
good idea!).

11.4.2022.2 Theorem 8.1. Any closed embedded submanifold has a blow-up and any two
are naturally diffeomorphic.

Recall that the normal bundle to S, NS = TSM/TS parameterizes the vector
fields at S ‘pointing into N ’. As we shall see the boundary of the blow-up is the
corresponding sphere bundle SNS = (NS \ 0S)/R+. So the definition of [M ;S]
involves gluing this onto M \ S to get a manifold with boundary.

Proof. The existence will use the collar neighbourhood theorem, discussed in
§
Sect.collar
3.

We start with a simple case, namely M = W is a real vector space and S = {0}
is the origin. We can get a quadratic function q = |w|2 as the square of the length
for some Eucludean norm on W. Then we ‘introduce polar coordinates’. These are
‘singular coordinates’ (whatever that means) but correspond to a smooth map

11.4.2022.311.4.2022.3 (8.1) β : [0,∞)× (W \0)/R+ −→ [0,∞)×{w ∈W ; |w| = 1} 3 (r, ŵ) 7−→ rŵ ∈W.

Here the first map is a diffeomorphism where the metric is used to identify the
quotient with the unit sphere. The inverse of β, restricted to W \ 0, is

11.4.2022.411.4.2022.4 (8.2) w 7−→ (|w|, [w]) ∈ [0,∞)× (W \ 0/R+).

125
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So we conclude that under change of norm from |w| to |w|′ the identity map on
W \ 0 lifts to the smooth diffeomorphism

11.4.2022.511.4.2022.5 (8.3) β : [0,∞)× (W \ 0/R+) 3 (x, [w]) 7−→ (
|w|
|w|′

x, [w])

which is the identity on the boundary. So the construction does give the set

11.4.2022.611.4.2022.6 (8.4) (W \ 0/R+) t (W \ 0)

a unique topology and C∞ structure.
Now, we should check that this has the desired properties. The first two con-

ditions are clear since β is clearly a diffeomorphism of (0,∞) × (W \ 0)/R+ onto
W \ {0} and the boundary is a sphere. The quadratic function corresponding to
the metric used to define (

11.4.2022.5
8.3) is |w|2 so the third condition holds for this metric

and any other quadratic function is the sum of some other Euclidean metric (its
Hessian) and a function vanising to third order at the boundary. The first part is
the product of |w|2 with a smooth function on the sphere so it is the square of a
defining function for the boundary and the higher order term is smooth (since β is
smooth and vanishes to third order at the boundary.

So, it remains to check the fourth property. The vector fields tangent to 0 are
those which vanish there and so the are of the form, in any linear coordinates,

157.736157.736 (8.5)
∑
ij

aijwi∂wj , aij ∈ C∞(W ).

The coefficient pull back to be smooth, so to show that these lift, i.e. extend
smoothly from x > 0 down to x = 0, it suffices to show this for the wi∂wj .
These are homogeneous of degree 0 on W and under β radial scaling becomes
(x, [w]) −→ (tx, [w]), t > 0. Thus writtend in terms of the product decomposition
(
11.4.2022.3
8.1)

157.737157.737 (8.6) wi∂wj = a([w])x∂x + V

where V is a smooth vector field and a is a smooth function on the sphere. Both
extend smoothly down to x = 0. The radial vector field w∂w lifts to x∂x and the
wi∂wj span all vector fields on W away from 0 so the V in (

157.737
8.6) span all the vector

fields on the sphere.
This completes the proof for the blow-up of 0 ∈ W. It is clear that the linear

map reversing one coordinate lifts to be smooth as the reflection in the sphere.
Then the smoothness of the lifts of the linear vector fields wi∂wj , which form the
Lie algebra of GL(W ) shows that the action of this group on W \ {0} extends to
[W, {0}]. It follows that the action

157.738157.738 (8.7) GL(W )× [W, {0}] −→ [W, {0}]
is smooth.

Now we pass to the case of the zero section of a real vector bundle, U −→ M.
We define this as the union over the base of the blow-up of the fibres just defined,
with blow-down maps

157.739157.739 (8.8) [U, 0U ] =
⊔
m∈M

[Um, {0}]
β−→ U.

A local trivialization over an open subset O ⊂ M gives β−1(O) a product trivial-
ization as a fibre bundle and the smoothness of (

157.738
8.7) means this patches smoothly
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to make (
157.739
8.8) into a smooth fibre bundle with smooth map. Similarly the first

and third conditions follow directly. The vector fields tangent to 0U are given in a
spanned in a local trivialization by the

157.740157.740 (8.9) ∂zi , wi∂wj

where the zi are coodinates on M. All these vector fields have smooth lifts in the
product decompositon of [U ; 0U ] and so globally and clearly span the vector fields
tangent to the boundary.

Finally then we pass to the general case but this follows from the collar neigh-
bourhood theorem (or working locally if you prefer) which gives a diffeomorphism χ
from a neighbourhood Q′ of an embedded submanifold S ⊂M to a neighbourhood
Q of the zero section of its normal bundle. This gives a C∞ stucture to

157.741157.741 (8.10) [M ;S] = (M \ S) ∪ SNS
as a manifold with boundary and by the lifting property it is independent of the
choice of χ. �

The discussion above is for a closed embedded submanifold of a manifold with-
out boundary, of course it applies unchanged if M has a boundary, including cor-
ners, but S does not meet the boundary. If S does meet the boundary we need to
specify the meaning of ‘embedded’. What is needed for the existence of a collar
neighbourhood theorem is the following condition.

157.742 Definition 8.2. A subset S ⊂M of a manifold with corners is a p-submanifold
(the ‘p-’ being for ‘product’) if at each point of S of codimension k there are
‘adapted’ local coordinates

157.743157.743 (8.11) x1, . . . , xk, y1, . . . , yn−k in O ⊂M
where the xi ≥ 0 are local boundary defining functions and

157.744157.744 (8.12) S ∩O = {xl+i = 0, i = 1 . . . , k − l, yj+p = 0, p = 1, . . . , n− k − j}.
Here S has codimension n− l − j.

157.745 Theorem 8.2. Any closed p-submanifold of a manifold with corners has a
blow-up which is unique up to natural diffeomorphism.

Proof. Maybe it is best to prove the collar neighbourhood theorem in this
context first! �

2. Semiclassical smoothing operators

As usual we have two ways of approaching the definition of semiclassical smooth-
ing operators on a manifold, and more generally on the fibres of a fibration. We
can either use the original definition on Rn and localize or proceed globally. As you
can already see, I favour the latter appropach.

First recall the case of Euclidean space. We defined the semiclassical smoothing
operators in terms of Schwartz functions A ∈ C∞([0, 1]; S (R2n)), depending on a
paramater, with the kernel being

157.699157.699 (8.13) A(ε, x,
x− y
ε

)ε−ndy

where I have included the measure since we know now that we should!
One reason for introducing blow-up above is that we can understand the kernels

directly as smooth sections of a bundle.
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157.701 Proposition 8.1. The space of semiclassical smoothing operators on Rn have
kernels which are smooth sections of a rescaled density bundle over

157.700157.700 (8.14) [Rn × Rn × [0, 1]; Diag×{0}]
L20-end

L21
Proof. �

3. Pull-back and push-forward

This should really have come earlier in the course, but there is some virtue in
leaving things until you need them, even if ‘just in time’ has its drawbacks!

Essentially the definition of smoothness of a map F : M −→ N between mani-
folds means that the pull-back map is defined, linear and continuous on functions

157.748157.748 (8.15) F ∗ : C∞(N) −→ C∞(M).

We can add in a vector bundle on the image space to get

157.746157.746 (8.16) F ∗ : C∞(N ;W ) −→ C∞(M ;F ∗W )

Indeed, the pulled-back bundle, having fibes

157.747157.747 (8.17) (F ∗W )m = WF (m)

is defined so that this is true. A trivialization of W over an open set O ⊂ N induces
a trivializaation of F ∗W over F−1(O) and then (

157.748
8.15) applies to the coefficients to

give (
157.746
8.16).

The map (
157.746
8.16) has a ‘formal transpose’

157.749157.749 (8.18) F∗ : C−∞c (M ;W ′ ⊗ Ω) −→ C−∞c (N ;W ′ ⊗ Ω)

since these are the dual spaces – so

157.750157.750 (8.19) (F∗w)(φ) = w(F ∗φ), φ ∈ C∞(N ;W ), w ∈ C−∞c (M ;W ′ ⊗ Ω).

We need compactness of the support of w (really a bit less) to make sure that the
pairing on the right is defined.

In general the push-foward map does not preserve smoothness. If you consider
the constant map F : M −→ {p} ∈ N then it follows from (

157.750
8.19) that F∗w has

support contained in {p}. Indeed, if p /∈ supp(φ) then supp(F ∗φ) = 0. In fact in
general it follows that φ∗φ is constant on M for this map (with F ∗W trivial) so
the pairing on the right in (

157.750
8.19) is just an integral. Clearly this is not always zero,

and then F∗w is necessarily singular.
So one cannot expect too much regularity for F∗w even if one assumes that

w ∈ C∞c (M ;W ′ ⊗Ω). However, one of the properties of a fibration (the map corre-
sponding to a fibre bundle) is that a version of Fubini’s Theorem holds.

157.751 Proposition 8.2. If F : M −→ N is a fibre bundle then for any vector bundle
W −→ N,

157.752157.752 (8.20) F∗ : C∞c (M ;W ′ ⊗ Ω) −→ C∞c (N ;W ⊗ Ω)

is surjective.

Proof. As I say, Fubini. The regularity of F∗w is a local question on N since
we can see from (

157.750
8.19) that if φ ∈ C∞(N) then

157.753157.753 (8.21) ψF∗(w) = F∗(F
∗ψw).
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So it is enough to assume that w has support in F−1(O) where the fibre bundle
is trivial over O ⊂ N and then use a partition of unity; we can arrange that W
is trivial over O as well. Then the diffeomorphism invariance of integration (of
densities) means that we really are reduced to the case that F−1(O) = Z×) and
we are integrating over Z. �

Once we know this we can reverse the definition of push-forward and see that
for a fibration pull-back extends by continuity to

157.754157.754 (8.22) F ∗ : C−∞(N ;W ) −→ C−∞(M ;F ∗W ) and is injective.

Really the pull-back is ‘constant along the fibres of F ’.
We are interested in more refined version of this. In particular notice that if

S ⊂ N is a closed embedded submanifold then for a fibration

157.755157.755 (8.23) F−1(S) ⊂ N is closed and embedded.

157.756 Proposition 8.3. Pull back under a fibration, as in (
157.754
8.22) defines a continu-

ous linear map

157.757157.757 (8.24) F ∗ : Im(N,S;W ) −→ Im−d/4(M ;F−1(S);F ∗W )

for any closed embedded submanifold of N of codimension d and any vector bundle
W over N.

Proof. �

We can, and should, ask a similar question abovt the push-foward map (
157.752
8.20).

So consider a closed, embedded submanifold D ⊂ M. There are already lots of
submanifolds of M as the total space of a fibration, namely the fibres. Recall

157.758 Definition 8.3. Two embedded submanifolds D and Z in a manifold M meet
transversally if at each point intersection

157.759157.759 (8.25) p ∈ D ∩ Z =⇒ TpD + TpZ = TpM ⇐⇒ N∗pD ∩N∗)pZ = {0}.

157.760 Lemma 8.1. The transversal intesection of two embedded submanifolds is an
embedded submanifold with codimension the sum of the codimenstions.

In particular two manifolds which do not intersect ‘intersect transverally’. For two
embedded submanifolds the notation for their intersection D t Z means that they
intersect transversally.

Proof. By definition near any point of D there are local defining functions
wi which vanish on DW with independent differentials. Similarly there are local
defining functions uj for Z. At a point of intersection the transversality condition
means that the wi and uj have independent differentials. Since they vanish precisely
on the intersection locally, it is an embedded submanifold. �

157.762 Definition 8.4. We say that a smooth map F : M −→ N is transvesal to an
embedded submanifold D ⊂M (or that the submanifold is transversal to the map)
if the differential F∗ : TpD −→ TF (p)N is surjective for each p ∈ D.

157.761 Proposition 8.4. A submanifold D ⊂ M of the total space of a fibration is
transversal to the fibration if and only if it is transversal to each fibre; if D is closed
then

157.763157.763 (8.26) F∗ : Imc (M,D;F ∗W ⊗ Ω) −→ C∞c (M ;W ⊗ Ω).
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So integrating along the fibres of a fibration which is transvesal to a submanifold
‘wipes out’ the singularities of conormal distributions.

Proof. �

4. Abstract product theorem

Now, what I have been building up to here is a result which we can use to
prove composition result for operators. The case to bear in mind is one we have
already covered. Namely take the triple product M3 and denote a general point
(m1,m2,m3). Then consider the three diagonals,

157.771157.771 (8.27) D1 = {m1 = m2}, D2 = {m2 = m3}, S3 = {m1 = m3}.

Each pair of these intersect transversally in the same ‘triple diagonal’

157.772157.772 (8.28) T = {m1 = m2 = m3}.

Now consider the smooth map

157.773157.773 (8.29) φ : M3 3 (m1,m2,m3) 7−→ (m1,m3) ∈M2.

So

157.774157.774 (8.30) D3 = φ−1(S), S = Diag = {(m,m) ∈M2}.

The product formula for pseudodifferential operators involves the multiplication
of conormal distributions with respect to D1 and D2 and push forward under φ.

The first step involves a result which really goes way back to the beginning of
the course.

157.765 Lemma 8.2. If Di ⊂ M, i = 1, 2 are closed embedded submanifolds which in-
tersect transversally then the product of conormal distributions is well defined

157.766157.766 (8.31) × : I∗(M,D1;W1)× I∗(M,D2;W2) −→ C−∞(M ;W1 ⊗W2).

There is no statement of conormality of the product, because it is not true in general
(and with our definitions so far does not make sense which is reassuring)!

157.764 Theorem 8.3. If D1, D2 are closed embedded transversal submanifolds of the
total space of a fibration F : M −→ N to each of which the fibration restricts to be
a diffeomorphism and such that there exists a closed embedded submanifold S ⊂ N
with

157.767157.767 (8.32) φ−1(S) t D1 = φ−1(S) t D2 = D1 t D2

and a bundle map

157.769157.769 (8.33) h : W1 ⊗W2 −→ φ∗(W )⊗ ΩM

then the composite map

157.768157.768 (8.34) φ∗(gξ) : Im1
c (M,D1;W1)× Im2c(M,D2;W2) −→ Im(N,S;W ⊗W ).

Proof. Consider the three submanifolds D1, D2 and D3 = φ−1(S). By as-
sumption, (

157.767
8.32), they intersect transversally in pairs. Since φ is assumed to be a

diffeomorphism when restricted to D1 it follows that the restriction of the fibration

157.770157.770 (8.35) φ : D1 ∩D2 −→ S
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is a diffeomorphism. Now it follows from (
157.767
8.32) that all three manifolds must have

the same codimension – since the intersection has codimension which is equal to
the sum of each pair.

To prove (
157.768
8.34), first note that away from D1 ∩ D2 the image of the product

map in (
157.766
8.31) lies in the sum of I∗(M ;D1,W1 ⊗W2) and I∗(M,D2;W1 ⊗W2) so,

after composing with the bundle map h, so Proposition
157.761
8.4 applies and shows that

the push-forward is smooth. Thus, it suffices to consider a small neighbourhood of
a point n ∈ S ⊂ N and its preimage. We may also assume that the elements of
Im1
c (M,D1;W1) and Im2

c (M,D2;W2) are supported near unique preimage n′ of n
in D1 ∩D2 (by using a partition of unity and discarding smooth terms).

Now, it is convenient to observe that D1 and D2 and the fibration can be
brought to simultaneous normal form near such a point n′ ∈ D1 ∩ D2. Let z =
(z′, z′′) be local coordinates in the base, N, near n in which S = {z′′ = 0}. Since
φ is assumed to be a diffeomorphism when restricted to D1 it follows that it is a
graph over N locally. So we can introduce additional variables y near n′ so that
(y, z′, z′′) form a coordinate system and

157.778157.778 (8.36) D1 = {(y, z′, z′′); y = 0} near n′.

Since D2 is also a graph over N near n′ it takes the form

157.779157.779 (8.37) yi = Yi(z
′, z′′) near n′.

The codimension of D1, the number of yi, is equal to the codimension of S ⊂ N,
i.e. the number of z′′ variables.

The assumtion that D1 ∩ D2 ⊂ φ−1(S) means that Y (z′, 0) = 0 and the
transversality of D1 and D2 implies that

157.780157.780 (8.38) dz′′Yi(z
′, z′′) are linearly independent at (0, 0, 0)

(since the dz′′Yi = 0. These form a square matrix, so the Yi can be introduced
as new variables in the base, in place of the z′′ and defining S. This then is the
coordinate normal form

157.781157.781 (8.39) D1 = {y = 0}, D2 = {z′′ − y = 0}, D3 = {z′′ = 0}.
Ignoring the bundles, it follows that the conormal distributions locally take the

form
157.782157.782 (8.40)

u1 = (2π)−d
∫
Rd
a(z′, z′′, η)eiy·ηdη, u2 = (2π)−d

∫
Rd
b(z′, z′′, η′)ei(z

′′−y)·η′dη′

where we can assume that the symbols a and b are supported near (z′, z′′) = 0. The
push-forward of the product is then

157.783157.783 (8.41)

∫
u1(z, y)u2(z, y)

= (2π)−2d

∫
R3d

a(z′, z′′, ξ + η′)b(z′, z′′, η′)ez
′′·η′eiy·ξdηdξdy, ξ = η − η′.

Formally at least the ξ, y double integral can be interpreted as a Fourier/inverse
Fourier transform which evaluates the integrand at ξ = 0 giving

157.784157.784 (8.42) φ∗(u1u2) = (2π)−2

∫
R3d

a(z′, z′′, η′)b(z′, z′′, η′)ez
′′·η′dη′ ∈ I∗(N,S).

To justify these last step we use continuity in the symbol topology as usual. �
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5. Semiclassical pseudodifferential operators

The semiclassical pseudodifferential algebra quantizes the semiclassical Lie al-
gebroid. First we need to understand what this means.

157.785 Definition 8.5. A Lie algebroid on a manifold N is determined by a real
vector bundle, W, over N and a bundle map (the anchor map)

157.786157.786 (8.43) a : W −→ TN

with the following additional properties

(1) The space of smooth sections C∞(N ;W ) is a Lie algebra
(2) The Lie bracket satisfies

157.787157.787 (8.44) a([V1, V2]) = [a(V1), a(V2)] ∀ Vi ∈ C∞(N ;W ), i = 1, 2.

The space of sections C∞(N ;W ) is normally called the Lie algebroid.
So of course V (N) = C∞(N ;TN) is a Lie algebroid. In the compact case its

‘quantization’ is taken to be the space Ψ∗(N) of pseudodifferential operators.
I will leave open for the moment the precise definition of quantization, I may

suggest a definition below but it depends rather on how much one wishes to demand.
We have met a second example above, namely if φ : X −→ Y is a fibration of
compact manifolds then

157.788157.788 (8.45) Vφ(X) = {V ∈ V (X);V φ∗f = 0 ∀ f ∈ C∞(Y )}

is a Lie algebroid. The quantization is the algebra Ψφ ∗(X) of fibre-wise pseudodif-
ferential operators, which is directly involved in the definition of the Atiyah-Singer
index above. What is the bundle? If we take local coordinates yi in the base and
extend these to coordinates near a point of X by adding some zj then the elements
of Vφ(X) are locally of the form

157.789157.789 (8.46)
∑
j

aj(y, z)∂zj .

So the bundle involved here is precisely the fibre tangent bundle φTX ⊂ TX with
the anchor map being the natural inclusion (so of constant rank).

The case of immediate interest is the semiclassicl Lie algebroid which is closely
related to Vφ. Namely, take a manifold M and consider

157.790157.790 (8.47) M [1, sl] = M × [0, 1]ε −→ [0, 1].

On this space we consider fibre vector fields which in addition vanish at the bound-
ary ε = 0. Clearly in local coordinates, zi, on M this means the smooth vector fields
of the form

157.791157.791 (8.48)
∑
i

ai(ε, z)ε∂zj .

These clearly form a Lie algebra, but what is the bundle V ? We have to construct
it. The form of (

157.791
8.48) makes it rather clear that we have a local basis with elements

157.792157.792 (8.49) ε∂zi .

So these give a basis for the bundle slTM (which is a bundle over M [1, sl] not M
despite my notation). You might struggle a bit to think of ε∂zi as an ‘entity’ rather
than the product of ε and ∂zi but that is precisely what is involved here.L21-end

L22
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6. Semiclassical index map

7. The Atiyah-Singer index theorem

The setting here is a smooth, compact fibre bundle

157.793157.793 (8.50) Z X

φ

��
Y.

The compactness of the base is not very critical – we just need to assume that
everything is trivial outside a compact set; non-compactness of the fibres is not
much worse but see the discussion of Atiyah-Patodi-Singer below.

The basic question then, is given a smooth family of differential operators acting
between sections of vector bundles on the fibres of φ as a map

157.804157.804 (8.51) A : C∞(M ;V ) −→ C∞(M ;W )

when is it invertible?
This is hard.
Here is a step-by-step outline of the proof of the Atiyah-Singer index theorem

(for families, in K-theory) showing what remains to be done – since I do not expect
to have enough time to do every thing in detail.

i.data (1) Definition of the index map – this is still a little incomplete. We can
think of ‘quantization data’ as a triple (V,W, a) where V and W are
vector bundles over X and

157.794157.794 (8.52) a ∈ C∞(S∗φX;π∗ hom(V,W ))

is an invertible isomorphism between the lifts of V and W from X to the
fibrewise cotangent sphere bundle over X. We talked about more general
elliptic symbols earlier.

(2) We have not quite finished the proof that the K-group K0(T ∗φX) is identi-

fied with the equivalence classes of the data (
157.794
8.52) under the three relations

of bundle isomorphism (over X of V and W ), homotopy and stability.
(3) Then we can quantize a to a family of pseudodifferential operators A ∈

Ψ0
φ(X;V,W ) – this is the surjectivity of the symbol map. Any two such

quantizations are homotopic and there are qunatizations where the null
spaces form a vector bundle over Y.

(4) The K-group K0(Y ) can be identified with equivalence classes of pairs of
vector bundles over Y with the relations, bundle isomorphism, homotopy
and stability (by adding an one bundle to both).

(5) The quantizations have appropriate properties under these maps so that

157.795157.795 (8.53) ind : K0(T ∗fibX) −→ K0(Y )

is well-defined with the index being the difference of the null bundle and
a complement to the range for a quantization A (any one for which the
null spaces form a bundle).

(6) Now we want to deform the index map (
157.795
8.53) into the semiclassical cal-

culus. To do this we generalize the data in
i.data
1. Namely we consider triples

(β1, β1, b) where the βi are involutive families T ∗fibX −→ GL(N,C) and
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b ∈ C∞(T ∗fibX; hom(CN )) is such that b : Ran(P1) −→ Ran(P2) is an iso-

morphism over S∗fibX (the boundary of T ∗fibX) with Pi = 1
2 (βi + Id) the

positive projections of the involutions. This is the semiclassical data con-
sidered above the equivalence classes under homotopy and stability again
form the group K0(T ∗fibX. Semiclassical quantization results in the same
index map (

157.795
8.53) when the data reduces to that in

i.data
1.

i.escl (7) The data where β2 is constant and b = Id exhausts K8(T ∗fibX) so we can
get the index map (

157.795
8.53) from semiclassical smoothing operators – were

β1 is constant near infinity.
(8) Now the main part of the proof of the index theorem is the embedding of

φ in a trivial fibration Rk × Y for some (largish) k :

157.796157.796 (8.54) Z X

φ

��

� � ι×φ // Rk × Y

π2

{{

Rk

Y.

This follows by choosing an embedding ι : X −→ Rk and then into Rk×Y
by adding the map φ.

(9) Now we think of X as a submanifold of Rk×Y and contemplate its normal
bundle – so an open neighbourhood of the image. Each fibre Zy of X is
embedded in Rk so the full normal bundle is the bundle over X which
over Zy is NZy ⊂ Rk × {y}. So we actually have a ‘tower’ of fibrations

157.797157.797 (8.55) Rd NX

ψ

��
Z X

φ

��
Y

(10) The main idea in this proof by Atiyah-Singer (they had another one too,
using cobordism) is that we can ‘extend’ the data and quantization from
T ∗fibX to

157.798157.798 (8.56) T ∗ψψNX = NX ⊕N∗X −→ X.

The fibres of ψ in (
157.797
8.55) are non-compact but of course they are real vector

spaces. So the fibewise cotangent bundle in (
157.798
8.56) has fibres the sum of a

vector space and its dual.
(11) So, we can find a family of involutions on T ∗ψψNX which are costant

outside a compact set and quantize (semiclassically) to have index a trivial
one-dimensional bundle over X.

(12) Then we take what is essentially the tensor product of this ‘Bott element’
(well, better to say a ‘Thom’ element) with the original family over X to
be a family for φ ◦ ψ : NX −→ Y which quantizes to the have the same
image as a given element

i.escl
7. We do this by quantizing in two steps.

(13) Now, we can arrange the support of the Thom element to be very close
to the zero section and thereby move it, using a collar map, to Rk × Y
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as a family. This is ‘excision’ and gives the same index for the extended
family.

(14) The index map from Rk×Y to Y is an isomorphism – again this is explicit
Bott periodicity.

(15) Finally then we have an extended construction of the index map giving a
commutative diagram

157.799157.799 (8.57) K0(T ∗φX)

ind ''

⊗τ // K0(T ∗φψ(NX))

ind

��

exc // T ∗π2
(Rk × Y )

indvv
K0(Y )

(16) The final step then is to see that this diagram is the definition of the
push-forward in K-theory, the ‘Gysin’ map in this context.

8. Index formula

Of course this is not the end of the story, quite apart from the fact that there
are a few gaps in the argument – which I try to fill in below. The index in K-theory
as above precisely captures the obstruction to an ellipitic family (or semiclassical
family) have a smoothing perturbation which makes it invertible. In the case that
Y is a point K0(Y ) = Z and we can look for a formula for the actual ‘numerical
index’. In the case of a family we can look for a simpler obstruction to perturbative
invertibility, corresponding to the image of the the index in (let’s say deRham)
cohomology under the Chern character

157.800157.800 (8.58) Ch : K0(Y ) −→ Hev(X;R).

Either of these is the index formula.

157.801 Theorem 8.4. The index of the image in cohomology is

157.802157.802 (8.59) Ch ◦ ind = φ∗(Ch([(V,W, a]) ∧ Td) =

∫
Ch([(V,W, a]) ∧ Td

where the push-forward in cohomology if realized as integration of a (compactly
supported) form over the fibres of T ∗fibX.

The extra factor is the Todd class, which we can see from the proof above should
be

157.803157.803 (8.60) Td = Ch(τ)

appropriately interpreted.

9. The Dirac case
L22-end

L23

L23-end

L24





CHAPTER 9

Manifolds with boundary

Cmb
In these last three lectures I want to go through another example of quanti-

zation, leading to an algebra of pseudodifferential operators. In fact this is better
thought of as ‘microlocalization’ of a Lie algebroid. In this case we consider a com-
pact manifold with boundary M. We have already come across the Lie algebroid of
smooth vector fields on M which are tangent to the boundary. You might like to
check what happens on a manifold with corners but for the monment I will stick
with codimension one.

Set

157.805157.805 (9.1) Vb(M) = {V ∈ C∞(M ;TM); V is tangent to the boundary}.

There is always a boundary defining function x ∈ C∞(M) and the tangency condi-
tion just requires

157.806157.806 (9.2) V ∈ Vb(M)⇐⇒ V x ∈ xC∞(M).

So these are the vector fields which map the ideal of functions vanishing at the
boundary (which is a primitive ideal generated by x) into itself. There is a strong
‘naturality’ case for the consideration of Vb(M) since it is the Lie algebra of the
group of diffeomorphism of M.

If we take local coordinates near a boundary point with yi coordinates on the
boundary then locally

157.807157.807 (9.3) V ∈ Vb(M)⇐⇒ V = a(x, y)x∂x +
∑
i

bi(x, y)∂yi

for arbitrary smooth coefficients. This means that there is a vector bundle bTM
over M with sections precisely these vector fields

157.808157.808 (9.4) Vb(M) = C∞(M ; bTM).

Let’s think a little about the structure of the vector bundle bTM, since I am
asserting it is, in context, the appropriate replacement for the ‘ordinary’ tangent
bundle TM (to which is it isomorphic – just not naturally so). Over the interior
of M there is not much to say since these two bundles are naturally isomorphic.
Since the elements of Vb(M) are smoth vector fields there is a completely natural
smooth vector bundle map (the anchor map of the Lie algebroid Vb(M))

157.899157.899 (9.5) bTM −→ TM.

Over the boundary this has corank 1 – there is a 1-dimensional null space since
the vector field (in local coordinates) x∂x vanishes in the ordinary sense at the
boundary. So there is a 1-dimensional subbundle

157.900157.900 (9.6) bN∂M ⊂ bT∂MM.

137
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In fact this is a canonically trivial subbundle. The element x∂x is actually (at a
boundary point) defined independently of coordinates. Indeed it satisfies

157.901157.901 (9.7) (x∂x)ρ = ρ+O(ρ2)

for any defining function ρ. This just reflects the fact that any other defining func-
tion ρ = a(y)x+O(x2).

In this behavour bT∂MM is ‘reversed’ from T∂M .M The latter has T∂M as a
subbundle, with the quotient being N∂M, the normal bundle. The former has a
(trivial) subbundle with quotient naturally T∂M.

Let’s go a little further with this analysis of tangency. The primitive ideal of
functions vanishing at the boundary, I∂ , generated by x, leads to a Lie ideal

157.902157.902 (9.8) I∂ ·Vb(M) ⊂ Vb(M), [I∂ ·Vb(M),Vb(M)] ⊂ I∂ ·Vb(M).

This means that the space of sections of bT∂MM as a bundle over ∂M is itself a
Lie algebra. This is clear enough in local coordinates. So there is actually a Lie
algebra map

157.903157.903 (9.9) Vb(M) −→ C∞(∂M ; bTM).

I have perhaps not emphasized enough uthat the Lie algebra structure of V (M)
in the boundaryless case, or Vb(M) here, is what leads to the properties of the
differential operators, in particular that the leading part defines the (polynomial)
symbol map. This is fair warning that we should expect something similar at the
boundary for our, yet to be defined, b-pseudodifferential operators. It will be the
‘indicial operator’ and arises precisely because (

157.903
9.9) is a map of Lie algebras. We

can even guess it should take values in the pseudodifferential operators on the
boundary but with ‘an extra parameter’.

So what we want to find is an algebra of operators, say on C∞(M), which
include the vector fields Vb(M) and multliplication by C∞(M) and which away
from the boundary should reduce to ordinary pseudodifferential operators. One
can approach this as for the semiclassical calculus. Writing, informally, a pseudo-
differential operator in terms of symbols we can try to replace a symbol

157.809157.809 (9.10) a(x, y, ξ, η) by a(x, y, xξ, η)

where (ξ, η) are the dual variables to (x, y). This does work but there are significant
issues involved.

Proceeding formally we can plug such a symbol into the inverse Fourier trans-
form and then change variables as for the semiclassical calculus (ignoring isses of
domains and convergence)

157.867157.867 (9.11)

∫
a(x, y, xξ, η)ei(x−x

′)ξ+i(y−y′)dξdη

=

∫
a(x, y, xξ, η)ei(

x−x′
x )τ+i(y−y′) dτ

x
dη, τ = xξ.

So, from this point of view what we need to do is to find a space on which (x−x′)/x
is smooth, at least where it is finite. This we can do by an appropriate blow-up.
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1. The b-generalized products

The approach I have taken, from the beginning, to pseudodifferential operators
is to try to define them directly as spaces of conormal kernels. I have mentioned
in passing the problem that immediately arises on a manifold with boundary, that
the diagonal in M2 – which is where we expect the singularities to be – does not
meet the boundaries transversally. Namely there is an obvious dependence relation
between the two defining functions x on the left and x′ on the right and one of the
defining functions for the diagonal, x − x′, at the intersection x = x′ = 0, i.e. the
corner. There is no problem with the tangential variables.

The geometric solution to this conundrum is to do as we did for the semiclassical
caluclus and blow up the offending submanifold, in this case the corner. Thus we
define

157.810157.810 (9.12) β : M [2,b] = [M2; (∂M)2] −→M2.

by blowing up the corner x = x′ = 0.
There is quite a lot to get used to in this new space! The result of the blow

up of the corner is that the new manifold has a new boundary hypersurfaces sep-
aratig two corners to the single corner before blow up (assuming the boundary is
connected, which I am doing implicitly here; nothing really bad happens if there
are several components). We know that the blow-up can be defined in terms of
polar coordinates, in this case since only the variables x and x′ are involved,

157.811157.811 (9.13) (x, x′) = r(cos θ, sin θ), r ≥ 0, θ ∈ [0,
π

2
].

The new boundary hpersurface, here r = 0, is the ‘front face’ denoted

157.812157.812 (9.14) ff(M [2,b]) = I × ∂M × ∂M, Iθ = [0,
π

2
].

We have also seen that we can cover a neighbourhood of the front face of a blow-up
by projective coordinates. In fact here this can be done with just one coordinate
system as far as x and x′ are concerned – of course we also need coordinates in the
two copies of ∂M – because the one variable x+ x′ dominates both x and x′ over
the manifold. So the two functions

157.813157.813 (9.15) x+ x′ and µ =
x− x′

x+ x′
∈ [−1, 1]

together with tangential coordinates cover the front face. The two functions 1 + µ
and 1 − µ are defining functions for the lifts of the ‘old’ boundaries x = 0 and
x′ = 0 (the lift here means the closure of the inverse image of the complement of
the centre, (∂M)2, of blow up). Then the lifted diagonal is locally

157.814157.814 (9.16) Diagb = {µ = 0} ×Diag∂M near ff .

It follows that now it is transversal to the boundary which it only meets in ff .
In fact the coordinates (

157.813
9.15) are sometimes a bit awkward and it is simpler to

use the more obvious projective coordinates

157.815157.815 (9.17) x′ and s =
x

x′
or x and t =

x′

x
= 1/s

valid respectively away from the lifts of {x′ = 0} and {x = 0}. In particular either
of these simpler systems is valid near the diagonal.
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The idea of this blow-up is to introduce a space of kernels which is much easier
to describe there than directly on M2. Note that one version of the Schwartz kernel
theorem states that, on a manifold with corners, continuous linear operators

157.816157.816 (9.18) A : Ċ∞(M) −→ C−∞(M) = (Ċ∞(M ; Ω))′

are identified with distributions

157.817157.817 (9.19) A ∈ C−∞(M2;π∗RΩ).

The image space in (
157.816
9.18) is the space of extendible distributions as is the space

of kernels on M2 (apart from the density factor). These distributions are defined
on any compact manifold with corners X as the dual of Ċ∞(X; Ω) (they are the
analogue of tempered distributions on Rn with which they are identified for the
radial compactification).

157.818 Lemma 9.1. The blow-down map gives an isomorphism

157.820157.820 (9.20) β∗ : Ċ∞(M2) −→ Ċ∞(M [2,b])

and in consequence the Schwartz kernel theorem also identifies the space of contin-
uous linear operators (

157.816
9.18) with

157.819157.819 (9.21) A ∈ C−∞(M [2,b];π∗RΩ)

The point is that we are not actually changing the space of extendible distri-
butions by passing from M2 to M [2,b], what is changing is the space of smooth
functions (which is getting bigger) and the space of conormal distributions with
respect to the diagonal (which is a pain to define on M2).

Now, before going on let’s check that the passage to M [2,b] does ‘resolve’ the
Lie algebroid Vb(M) in an appropriate sense. The vector fields in Vb(M) acting
on the left (or the right) factor of M in M2 are tangent to the corner x = 0 = x′

since they annihilate x′ and satisfy (
157.806
9.2). Thus they lift to be smooth on M [2,b].

In terms of (
157.807
9.3) and the local coordinates (

157.815
9.17), the ∂yi lift unchanged whereas

157.821157.821 (9.22) x∂x = s∂s.

This may not seem like much of an improvement! However, the lifted diagonal is
at s = 1 so this vector field does not vanish there and we see:

157.822 Lemma 9.2. The elements of Vb(M) lifted to M [2,b] from the left (or right)
factor of M in M2 are transversal to the lifted diagonal Diagb ⊂ M [2,b] and so
the normal bundle to this submanifold is identified with bTM.

This is a minimal requirement for ‘resolution’ of Vb(M).

As well as the ‘stretched double space’ there are similar replace-
ments for the higher products Mk. I will invoke the stretched
triple space below. let me continue to assume that the bound-
ary of M is connected – if it has more than one component you
should proceed component by component, not thinking of inter-
action between the components which are ‘far apart’.

We can see that the boundary faces of Mk consist of prod-
ucts where in each factor we have either ∂M or M. Now arrange
these in order of increasing dimension – starting at (∂M)k – and
then blow them up, one after another

M [k,b] = [Mk; (∂M)k; Mk−1(Mk), . . . ,M2(Mk)]157.868157.868 (9.23)
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where Mp(M
k)) is the collection of boundary faces of codimen-

sion p. We stop at p = 2 since boundary faces of codimension
1 are hypersurfaces and blowing them up does nothing. Now,
what (

157.868
9.23) really means is that we blow up the successive lifts

of the boundary faces. To see that (
157.868
9.23) is well-defined we need

to note first that

157.869 Lemma 9.3. Under blow up of a boundary face the lift of the
other boundary faces are boundary faces.

157.870 Lemma 9.4. The sequence of blow ups in (
157.868
9.23) is well-

defined since after the blow up of Mp(M
k) the lifts of the ele-

ments of Mp−1 are disjoint.

This means that the order at each step in (
157.868
9.23) is immate-

rial.

157.871 Proposition 9.1. All the projections Mk −→ M j , for j <
k, lift to be smooth maps and simple/x b-fibrations.

Here a b-fibration is a natural extension of the notion of
a fibration to the category of manifolds with corners (it is the
analogue of a Lefschetz map in algebraic geometry if that helps!)
Rather than discuss these in detail here let me just say they are
smooth surjective maps which near a point of the domain, of
codimension l take the form in appropriately chosen coordinates
in domain and range

F (x1, . . . , xl, y1, . . . , ym)) = (xα1 , . . . , xαk , y1, . . . , yq),

where the xαi are monomials in the xj

with no common factor.157.872157.872 (9.24)

Thus each xj can appear as a positive power in at most one of
the xαi . In Lemma (

157.871
9.1) the each xj at most once and as a single

power which is the meaning of ‘simple’. For such maps the αi
can be identified with disjoint subsets of {1, . . . , l}.

The importance of b-fibrations is that they have some of the
properties of fibration – to which they reduce in the absence of
boundaries.

157.873 Proposition 9.2. Under a simple b-fibration F :: M −→ N
between compact manifolds with corners

F∗ : {u ∈ C∞(MΩb;u ≡ 0 at M2(M)} −→ C∞(M ; Ωb).157.874157.874 (9.25)

In fact much more is true than (
157.874
9.25) for a simple b-fibration.

Namely even if we don’t assume the vanishing of the Taylor series
at the corners as in (

157.874
9.25), 7C∞(M ; Ωb pushes forward into∑

finite

(log x)βC∞(M ; Ωb). 157.875157.875 (9.26)

So the push-forward is smooth except for powers of logs of the
defining functions. These powers come from the behavour at the
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corners of M, as follows from (
157.874
9.25), and can be described much

more precisely.
In particular, Proposition

157.873
9.2 must apply to the projection

maps
πL,Rβ : M [2,b] −→M. 157.876157.876 (9.27)

Here it is essy to check Proposition
157.871
9.1 by hand. Away from ff

the map is just locally one of the projection from M2 to M for
which (

157.872
9.24) certainly holds. Near the front face we have one of

the two coordinate systems

s =
x

x′
, x′, y, y′ or t =

x′

x
, x, y, y′. 157.877157.877 (9.28)

The left projection, to (x, y) therefore becomes either

(s, x′, y, y′) 7−→ (x = sx′, y) or (x, y) 157.878157.878 (9.29)

depending on the point in ff both of which satisfy (
157.872
9.24).

It follows directly from (
157.872
9.24) that a simple b-fibration is

locally a fibration in the interior and also at boundary points of
codimension one. This allows us to deduce

157.879 Lemma 9.5. For a compact manifold with corners

(πL)∗ : Ψm
b (M) −→ C∞(M). 157.880157.880 (9.30)

This gives a direct proof of the mapping property (
157.804
8.51).

2. Conormality at the boundary
Cmb.con
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3. The b-calculus

The most basic operator in (
157.816
9.18) is the identity operator. We know that in

local coordinates the kernel of this is the Dirac ‘function’ at the diagonal

157.823157.823 (9.31) δ(x− x′)δ(y − y′).

This is, as it must be, a distributional section of the right density bundle

157.824157.824 (9.32) Id ∈ I0(M2;π∗RΩ).

To see that this makes invariant sense observe that it must be possible to pair the
delta ‘function’ with an element of C∞(M2;π∗LΩ) since

Ω(M2) = π∗LΩ⊗ π∗RΩ.

Say using a partition of unity to localize, we need to be able to make sense of the
distributional pairing, written formally as an integral

157.826157.826 (9.33)

∫
M2

δ(x− x′)δ(y − y′)ψ(x, y, x′, y′)|dxdy| =
∫
M

ψ(x, y, x, y)|dxdy|

which is indeed invariantly defined – so this is what (
157.824
9.32) actually means.

Now, what happens when we look at the lift of this kernel to M [2,b] as an
extendible distribution – these form a subspace of the distributions on the interior.
It is certainly still supported at the diagonal, so it is only a question of what it
looks like in the new coordinates say (

157.815
9.17). The homogeneity of delta means it

becomes

157.827157.827 (9.34) δ(x− x′)δ(y − y′) = (x′)−1δ(s− 1)δ(y − y′).

We can absorb the extra singular factor of x′ into the measure to see that

157.828157.828 (9.35) Id ∈ I0(M [2,b],Diagb;π∗RΩb)

where Ωb is the density bundle coming from bTM so in fact in a natural way it has
a basis near the boundary

157.829157.829 (9.36) |dx
x
dy| =⇒ Ωb = x−1Ω.

This leads us to the definition of b-pseudodifferential operators through their
kernels.

157.830 Definition 9.1 (‘Small’ b-calculus). The space of b-pseudodifferential oper-
ators on a compact manifold with boundary, acting between sections of vector
bundles V and W is

157.831157.831 (9.37) Ψm
b (M ;V,W ) = {A ∈ Im(M [2,b],Diagb;

π∗LW ⊗ π∗R(V ′ ⊗ Ωb));A ≡ 0 at both lifted boundaries}.

I have not actually defined the conormal space here but it is exactly the re-
striction of the usual conormal space if one extends across the boundary. These
distributions are smooth away from the diagonal so (

157.831
9.37) makes sense since these

‘old’ boundaries do not meet the diagonal. Locally such a kernel, with the b-density
removed, just looks like

A(x, y, s, y − y′) smooth in (x, y) and conormal at s = 1, y − y′ = 0.
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The symbol map for conormal distributions gives us
157.833157.833 (9.38)

σm : Ψm
b (M ;V,W ) −→ (Sm/Sm−1)(N∗Diagb;π∗(hom(V,W )⊗ Ωb)⊗ Ω(N∗)).

Recall that here N∗Diag is the dual of the normal bundle, so we see from Lemma
157.822
9.2

that this is identified with bT ∗M (replacing T ∗M in the boundaryless case). The
last book-keeping bundle in (

157.833
9.38) is therefore Ω(bT ∗M) which is the dual of Ωb so

these two factor cancel and the symbol map is as simple as we could hope giving a
short exact sequence

157.834157.834 (9.39)

Ψm−1
b (M ;V,W ) �

� // Ψm
b (M ;V,W )

σm // (Sm/Sm−1)(bT ∗M ;π∗ hom(V,W )).

157.835 Theorem 9.1. The b-pseudodifferential operators, Ψm
b (M ;V,W ), define con-

tinuous linear maps

157.836157.836 (9.40) A : C∞(M ;V ) −→ C∞(M ;W )

and form modules over the filtered *-closed algebra Ψm
b (M ;V ) for which the symbol

sequence (
157.834
9.39) is multiplicative.

Proof. First let us check that the b-psuedodifferential operators defined by
(
157.831
9.37) do indeed define operators (

157.836
9.40). This is not quite obvious, but notice that

the space of kernels in (
157.831
9.37) is a module over C∞(M [2,b]) so we can localize as

we wish using a partition of unity. In particular we can work in (relatively) open
subsets of M over which the bundles are trivial and so we are free to ignore them
and assume that V = W = C; this simplifies the notation. If we look at a pair
of neighbourhoods which do not meet the boundary then we are in the interior
case where we know (

157.836
9.40). Similarly if one of the open sets does not meet the

boundary then the operator is again locally an interior pseudodifferential operator
plus a smoothing operator vanishing rapidly at the boundary from which (

157.836
9.40)

follows.
So we can localize to a product of neighbourhoods of points in the boundary –

although the two open sets need not meet the diagonal. One thing that is easy to
see is then is that

157.844157.844 (9.41) A : Ċ∞(M ;V ) −→ Ċ∞(M ;W ).

Indeed (localized) the action on u ∈ Ċ∞(U) where U ⊂ M is a coordinate neigh-
bourhood of a boundary point is by pushing forward the product

157.845157.845 (9.42) (πL)∗(A · π∗Ru)

By assumption, u vanishes to infinite order at x′ = 0 (the boundary of the right
factor) so π∗Ru vanishes to infinite order at the preimage, which includes ff . It
follows that the product also vanishes to infinite order at ff and then we are dealing
again with an ordinary pseudodifferential operator on M2.

Now, it actually follows from this that

157.846157.846 (9.43) A : C−∞(M ;V ) −→ C−∞(M ;W )

so we know that Au is defined if u ∈ C∞(M ;V ) and we just need to show that it is
smooth up to the boundary. The argument giving (

157.844
9.41) is included to show that

in this case Au ‘at the boundary’ should only depend on u ‘at the boundary’.
To make this precise we can again localize as above and only the terms where

x and x′ are near 0 are not clearly C∞. Using the density properties of conormal
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distributions and of smooth functions we can assume more about A and then use
continuity. Namely we can suppose that the kernel A is continuous (we could
assume smoothness) and has support actually disjoint from the two ‘old boundaries’.
Then the coordiantes t = x′/x, x y and y′ are admissible over the support after
localization

157.847157.847 (9.44) A = A(x, y, t, y − y′)|dx
′

x′
dy′|.

The action of U on u is then the integral

157.848157.848 (9.45) Au =

∫
x′≤ε

A(x, y, t, y − y′)u(x′, y′)|dx
′

x′
dy′|

where u has compact support down to x′ = 0. This integral certainly exists for
x > 0 since then the integrand has compact supprt. We can change the variable of
integration from x′ to t and see that

157.849157.849 (9.46) Au =

∫
[0,∞)

A(x, y, t, y − y′)u(x/t, y′)|dt
t
dy′|.

Now the integral exists (by fiat the support in t is in [C, 1/C] for some finite C)
and the integrand is smooth in x and y, so the result is C∞ and we have (

157.836
9.40)

under these assumptions on A. In fact we can pass to unrestricted A as in (
157.831
9.37)

since these kernels vanish rapidly at t = 0 and t = ∞ and the only singularity is
conormal at t = 1 – across which we are integrating. Thus (

157.836
9.40) follows in general

and as a bonus we see that, as anticipated above

157.850 Corollary 6. Restriction to the boundary in (
157.836
9.40) gives

157.851157.851 (9.47)

Au
∣∣
∂M

= (A∂)u
∣∣
∂M

, A∂ ∈ Ψm(∂M ;V,W ),

A = Ã(x, y, t, y − y′)|dx
′

x′
dy′| =⇒ A∂ =

∫
R+

A(0, t, y, y − y′)dt|dy′|

so the kernel of A∂ is the integral over the fibres of β : ff −→ (∂M)2 of the kernel
of A.

We still need to prove that the product of two b-pseudodifferential operators is
b-pseudodifferential. �

Thus everything is very much as in the boundaryless case except that we have
much more structure at the boundary. You might like to reflect on the similarity
to the behaviour of the semiclassical calculus here.

For a moment return to the Lie algebra Vb(M) – these of course define elements
of Ψ1

b(M). Certainly they satisfy (
157.836
9.40) but also

157.837157.837 (9.48) (V u)
∣∣
∂M

= (V
∣∣
∂M

)u
∣∣
∂M

, u ∈ C∞(M).

They are ‘localized at the boundary.’ However we know that the analogous state-
ment for the semiclassical calculus holds but misses important structure at the
boundary. Much the same happens here.

The Collar Neighbourhood Theorem reminds us that a neighbourhood of a
submanifold looks like a neighbourhood of the zero section of its normal bundle.
For the boundary this translates to mean that a model for M near the boundary
is the inward-point half of the normal bundle

157.838157.838 (9.49) N+∂M = {v ∈ T∂M ; vx ≥ 0}/T∂M.
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The choice of a boundary defining function gives a positive section and hence triv-
ialization

157.839157.839 (9.50) N+∂M ←→ [0,∞)dx × ∂M

where dx defines a linear functional on the fibres of T∂MM which vanishes on the
subbundle T∂M.

Let’s pass to the radial compactification of N+∂M = I×∂M where I is a closed
interval, thought of as the radial compactification of [0,∞) – there is no natural
trivialization but any choice of boundary defining function provides one through
(
157.839
9.50). The fibre R+ action extends smoothly to the compactification (fixing the

two boundaries {0} × ∂M and {∞} × ∂M).

157.840 Proposition 9.3. There is a natural multiplicative map, the ‘indicial map’ to
R+-invariant operators on the normal bundle, giving a short exact sequence

157.841157.841 (9.51) xΨm
b (M ;V,W ) �

� // Ψm
b (M ;V,W )

I // Ψm
R+(N+∂M ;V∂M ,W∂M ).

Proof. Let’s choose a boundary defining function, rather than try to do things
invariantly – in the end nothing will depend on this choice. Then the model at the
boundary is

157.842157.842 (9.52) N+∂M = I × ∂M, I = [0,∞]x.

The space on which the kernels for the b-pseudodifferential operators are defined is
therefore

157.843157.843 (9.53) I[2,b] = [I2, {0} × {0}, {∞} × {∞}].

If you consider the R+ action on both factors starting at a point in the interior of
I[2,b] you will see that it is an open interval but the closure is smooth up to both
the front faces. An R+-invariant operator, as on the right of (

157.841
9.51) corresponds

to a kernel which is constant under this action. So in fact it is determined by
its restriction to either of the front faces. Nothing much happens at the other
boundaries since everything is required to vanish to infinite order there.

So, the invariant operators are determined uniquely by their restrictions to the
front face ff0 over x = 0. However this face for the model space is precisely the
same as the face ff(M [2,b]) – canonically diffeomorphic to it (independent of the
choice of defining function). So the indicial map in (

157.841
9.51) is restriction of the kernel

to the front face, and then its null space consists of kernels that vanish there. You
might object that x + x′, not x = (x + x′)/(1 + s) is the defining function for the
front face, but the kernel vanish to infinite order where s → ∞ so we can just as
well divide by x.

This does not explain the multiplicativity of the sequence but it follows that
the null space in (

157.841
9.51) is pretty clearly an ideal, so the quotient is an algebra – it

is a question of what the product is!
To approach this reconsider Corollary

157.850
6. We have already noted that the space

of kernels in (
157.831
9.37) is a module over C∞(M [2,b]) but more is true because of the

assumption of rapid vanishing at the boundary hypersurfaces other than ff . The
quotient of defining functions from the left and right, x/x′, is smooth except at
one these two hypersurfaces and the rapid vanishing of the kernels there quashes
the singularity from x′ = 0. In fact the same is true for any power of this quotient,
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which is to say that

157.852157.852 (9.54) (x/x′)iz is a multiplier on Ψm
b (M ;V,W ) for all z ∈ C.

157.853 Lemma 9.6. Conjugation generates an entire holomorphic family

157.854157.854 (9.55) C 3 z 7−→ xizAx−iz

of automorphisms of Ψm
b (M ;V,W ).

It follows (even without knowing the multiplicative property for the operators)
that

157.855157.855 (9.56) (AB)∂ = A∂B∂

and we see from (
157.851
9.47) that

157.856157.856 (9.57) (xizAx−iz)∂ =

∫
R+

A(0, t, y, y − y′)t−izdt|dy′|

is an entire family of pseudodifferential operators on ∂M.
The integral in (

157.856
9.57) is the Mellin transform of the kernel of A restricted to

ff(M [2,b]). This is the (inverse) Fourier transform with respect to the variable
− log t ∈ R. In terms of log t the kernel is conormal at 0 × {y = y′} and decreases
faster than any exponential at ±∞. It follows that this indicial family determines
and is determined by the image in (

157.841
9.51). In fact the multiplicativity of the map I

then follows from (
157.855
9.56) and (

157.856
9.57), with the latter being a convolution represen-

tation of the R+-invariant operators on N+∂M. �

We also want to analyse ‘L2 boundedness’ of b-pseudodifferential operators.
To conform to the general ‘b-yoga’ we should replace ‘ordinary L2 – meaning

computed with respect to a non-vanishing smooth density on a compact manifold
with boundary – with L2

b(M) computed with respect to a non-vanishing b-density.
Since the latter is just x−1 times the former, we see that

157.882157.882 (9.58) L2(M) = x−
1
2L2

b(M).

These spaces are well-defined for sections of vector bundles.

157.883 Proposition 9.4. Elements of Ψ0
b(M ;V,W ) are bounded operators

157.884157.884 (9.59) xsL2
b(M ;V ) −→ xsL2

b(M ;W ) ∀ s ∈ R.

Proof. The case of general s in (
157.884
9.59) follows from the case s = 0 in view of

Lemma
157.853
9.6.

For s = 0 we note that if we divide A ∈ Ψ0
b(M ;V,W ), using a cut-off, into a

part supported very near ff(M [2,b]) and a part supported away from this boundary
hypersurface then the boundedness of regular pseudodifferential operators shows the
boundedness of the second part. We can further localize and reduce to the case
that V = W = C.

The argument for boundedness in Problems2, using the symbol sequence can
be applied almost verbatim here to show that boundedness follows if we can show
the boundedness of the ‘residual term’ Ψ−∞b (M).

Now, consider the R+-invariant calculus on [0,∞] × ∂M. We can characterize
the space L2

b([0,∞]× ∂M) in terms of the Mellin transform applied globally in the
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first variable x – since this reduces to the Fourier transform on log x ∈ R. Thus in
fact

157.885157.885 (9.60) v(x, y) −→ vM (z, y) =

∫
R
v(x, y)xiz

dx

x

extends from Ċ∞([0,∞]× ∂M) to an isomorphism

157.886157.886 (9.61) L2
b([0,∞]× ∂M) −→ L2(Rz × ∂M), z ∈ R.

The fact that the transformed operator in (
157.856
9.57) is a family of pseudodifferential

operators in Ψ0(∂M) which is bounded as a function of z ∈ R shows that it is
bounded on the image of (

157.886
9.61) so in fact the R+-invariant operators are bounded

on the space on the left in (
157.886
9.61). For the invariant operators we can again localize

near and away from the boundary and deduce that the part localized near the
boundary is bounded on L2

b([0,∞]× ∂M).
In view of the exact sequence (

157.841
9.51) it suffices to consider elements of xΨ−∞b (M)

(using the preceding argument). The extra vanishing at ff shows that this follows
directly from Schur’s criterion. �

Of course we really want boundedness on Sobolev spaces, but the ones we want
here are the xsHm

b (M) which we need to define. If we work in a fixed product
decomposition near the boundary we can use the Mellin isomorphism (

157.885
9.60) as we

would for Euclidean space and define

157.887157.887 (9.62) Hm
b ([0,∞)× ∂M) = {v ∈ C−∞([0,∞)× ∂M); vM ∈ L1

loc(Rz;Hm(∂M),

(1 + |z|)mvM (z) ∈ L2(R× ∂M)}, m ≥ 0

For m < 0 we can use dualityL24-end

L25

4. Metrics and boundaries

There are several intersting classes of metrics on a compact manifold with
boundary.

The most ‘obvious’ one I do not have time to talk about. This
is the case of a metric smooth, and non-degenerate up to the
boundary. It is rather a standard result, not too hard to see, that
the distance from the boundary is, at least near the boundary, a
smooth defining function and so can be extended to be smooth
and positive in the interior. Then the metric takes a particular
form in terms of the product decomposition near the boundary
given by flow along the normal geodesic

g = dx2 + h+ xh′, h a metric on ∂M. 157.857157.857 (9.63)

Here h′ is actually an x-dependent family of symmetric tensor
on ∂M but in any case can be taken to be a smooth symmetric
2-tensor on M near the boundary.

Near the boundary there is then a corresponding decompo-
sition of the form bundle on M

Λ∗M = Λ∗∂M ⊕ (dx ∧ Λ∗∂M) 157.858157.858 (9.64)
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in which it is reduced to two copies of the forms on ∂M. The
Hodge-Dirac operator becomes a 2× 2 matrix of operators

ð = d+ δ =

(
ð∂M −∂x
∂x −ð∂M

)
157.859157.859 (9.65)

where ∂x is acting on the coefficients in (
157.858
9.64).

Certainly

ð : C∞(M ; Λ∗) −→ C∞(M ; Λ∗) 157.860157.860 (9.66)

but is not symmetric on this domain (with respect to the inner
products on forms and density induced by g.) There are two
standard boundary conditions which lead to symmetry, namely
the vanishing of one or other of the two summands in (

157.858
9.64).

More formally

DomAbs = {u ∈ C∞(M ; Λ∗); i∗∂M (ινu) = 0}
DomRel = {u ∈ C∞(M ; Λ∗); i∗∂Mu = 0}

157.861157.861 (9.67)

where ν = ∂x is the Riemannian normal vector field at the
boundary.

Then

ð : DomAbs/Rel −→ C∞(M ; Λ∗) are Fredholm 157.862157.862 (9.68)

and lead to Hodge decompositions as in the boundaryless case.
From this one deduces the two Hodge theorems

null(ð) ∩DomAbs ≡ H∗dR(M),

null(ð) ∩DomRel ≡ H∗dR(M,∂M).
157.863157.863 (9.69)

These two deRham theories can be identified as the cohomologies
of the ‘absolute’ and ‘relative’ sequences

d : C∞(M) −→ C∞(M ; Λ1) −→ · · · −→ C∞(M ; ΛdimM )

d : Ċ∞(M) −→ Ċ∞(M ; Λ1) −→ · · · −→ Ċ∞(M ; ΛdimM ).
157.864157.864 (9.70)

The main work here is to prove (
157.862
9.68) and discuss the cor-

responding Hodge decompositions – which ultimately are very
much as in the boudaryless case. This can be done using the
‘edge’ calculus, or Boutet de Monvel’s ‘transmission’ calculus. I
probably will not have the time/energy to include these.

There is a long exact sequence relating the two cohomol-
ogy theories and the cohomology of the boundary that we will
encounter below

. . . // Hk−1(∂M) // Hk(M,∂M) // Hk(M) // . . . .157.866157.866 (9.71)

5. Hodge theorems

Rather than the ‘regular metrics’ as in (
157.857
9.63) I want to consider two classes

of metrics which are known in the geometric literature as ‘cylindrical end’ and
‘asymptotically locally Euclidean’ metrics. In fact the precise definition of these
terms is a bit vague, so instead I will use the following notation.
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157.865 Definition 9.2. A b-metric on a compact manifold with boundary is a fibre
metric on bTM which near the boundary is of the form

157.881157.881 (9.72) gb =
dx2

x2
+ h+ xh′

on some product decomposition, where h is a Riemann metric in ∂M and h′ is a
smooth quadratic form on bTM.

A scattering metric is then of the form

157.888157.888 (9.73) gsc = x−2gb =
dx2

x4
+

h

x2
+ x−1h′

near the boundary.

Since a product decomposition near the boundary always exists, every compact
manifold with boundary has a metric of either type.

Note in particular that an example of (
157.888
9.73) is a Euclidean metric on a real

vector space, written in terms of the radial compactification.
Now, the idea is that we are supposed to think of these metrics ‘categorically’.

To analyse the Hodge-Dirac operator, we decompose the form bundle on M, near
the boundary, in terms of the product decomposition. So in the case of (

157.881
9.72)

157.889157.889 (9.74) Λ∗bM = Λ∗∂M ⊕ dx

x
∧ Λ∗∂M near ∂M.

Then

157.890157.890 (9.75) ðb = d+ δb =

(
ð∂ −x∂x
x∂x −ð∂

)
+ xD

sign change comes from having to move past the dx/x factor. The ‘error’ term here
is a b-differential operator. Thus

157.891157.891 (9.76) ðb ∈ Ψ1
b(M ; Λ∗bM), I(ðb) =

(
ð∂ −x∂x
x∂x −ð∂

)
.

If you do not put the dx/x in (
157.889
9.74), but use (

157.858
9.64) instead you will not get a

b-differential operator.
There is an analogue of the Hodge isomorphism here.

157.892 Theorem 9.2. For a b-metric (
157.881
9.72) on a compact manifold with boundary

there is a natural isomorphism

157.893157.893 (9.77) {u ∈ L2
b(M ; ΛkbM); ðu = 0} −→ Im

(
Hk

dR(M,∂M) −→ Hk
dR(M)

)
.

For a scattering metric we can proceed in a similar fashion. We ‘rescale’ the
form bundle according to the forms in (

157.888
9.73) – which are the ones that pair smoothly

with the vector fields in xVb(M) – and see that

157.894157.894 (9.78) ΛkscM = x−kΛk∂M ⊕ dx

x2
∧ x−k+1Λk−1∂M near ∂M.

A short calculation shows that in terms of this decomposition
157.895157.895 (9.79)

ðsc = d+ δsc =

(
xð∂ −x2∂x − x(k + d)

x2∂x − xk −xð∂

)
+ x2D on ΛkscM, d = dim ∂M

where D is again a b-differential operator.
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Now you may see why I have not needed to develop the theory of ‘scattering
pseudodifferential operators’ to handle this case since in fact

157.896157.896 (9.80) ðsc = xR, R ∈ Ψ1
b(M ; Λ∗M), I(R) =

(
ð∂ −x∂x − (k − d− 1)

x∂x − k −ð∂

)
.

This means that it is b-pseudodifferential operators which are relevant for the null
space of ðsc. It is a different matter if you wish to discuss the spectral theory of
this operator (which I feel you should want to do)– which is indeed really scattering
theory.

157.897 Theorem 9.3. For a scattering metric (
157.888
9.73) on a compact manifold with

boundary of dimension n there is a natural isomorphism

157.898157.898 (9.81) {u ∈ x 1
2nL2

b(M ; ΛkbM);ðscu = 0} −→
Hk(M,∂M) k < 1

2n

Im
(
H

1
2n

dR (M,∂M) −→ H
1
2n

b (M)
)

k = 1
2n

Hk(M) k > 1
2n.

The L2 space in (
157.898
9.81) is the metric L2 space for gsc. Of course the ‘middle dimen-

sional case’ can only occur if n is even.
Try it out for the Euclidean metric on M = Rn. It follows that there is no

L2 null space at all! This corresponds to the fact that here are no L2 harmonic
forms on Rn – their coefficients would be harmonic functions which would mean
they decay at infinity.

Let’s think about a strategy for proving Theorem
157.892
9.2. First we need to get

some way to approach the deRham cohomology in this setting.

157.904 Proposition 9.5. For ε > 0 the cohomology of the deRham complex

157.905157.905 (9.82) xεH∞b (M)
d // xεH∞b (M ; Λ1)

d // . . .
d // xεH−∞(M ; Λnb)

is naturally isomorphic to H∗dR(M,∂M) and the cohomology of

157.906157.906 (9.83) x−εH∞b (M)
d // x−εH∞b (M ; Λ1)

d // . . .
d // x−εH−∞(M ; Λnb)

is naturally isomorphic to H∗dR(M).

The main step is the parametrix construction giving some ‘elliptic regularity’
and a Hodge decomposition.

157.907 Proposition 9.6. On a compact manifold with boundary and for ε > 0 small
enough the Hodge-Dirac operator for a b-metric has null(ð)L2

b
⊂ xεH∞b (M ; Λ∗b) and

is Fredholm as an operator on x−εH∞b (M ; Λ∗b) satisfying

157.909157.909 (9.84) x−εH∞b (M ; Λ∗b) = null(ð)L2
b
⊕ d

(
x−εH∞b (M ; Λ∗b)

)
⊕ δ

(
x−εH∞b (M ; Λ∗b)

)
.

L25-end

L26

6. Ellipticity and parametrices

How do we prove say Proposition
157.907
9.6? We try to construct a parametrix as

a b-pseudodifferential operator; as we shall see this does not quite work; we shall
soon see why. An extension of the bounded result above is that
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157.910 Lemma 9.7. An element of Ψ0
b(M ;V ) is compact as an operator on L2

b(M ;V )
if and only if both its principal symbol and its normal operator vanish.

It follows immediately that the same condition is necessary and sufficient for com-
pactness on any of the weighted spaces xsL2

b(M ;V ).

Proof. The important point is the sufficiency, well the necessity is important
but only to know! �

To prove that ðb is Fredholm as a map x−εH1(M ; Λ∗b) −→ x−εH1(M ; Λ∗b) we
will want to construct a right parametrix modulo compact operators on L2

b(M ; Λ∗b).

If there were to be an element B ∈ Ψ−1
b (M : Λ∗b) satisfying

157.911157.911 (9.85) ðbB = Id−E, E ∈ xΨ−1(M ; Λ∗b)

with compact remainder E then we would need to have

157.912157.912 (9.86) σ1(ðb)σ−1(B) = Id, I(ðb)I(B) = Id .

The first, symbolic, statement or ‘division problem’ is just ellipticity and is straigh-
forward. The second is an issue, and is almost never possible to satisfy within the
class of operators Ψ−1

b (M ; Λ∗b).
What is the problem? Well we know that the indicial operator is equivalent, in

terms of information, to the indicial family and in this case we can see from (
157.891
9.76)

what it is:

157.913157.913 (9.87) Î(ðb)(z) =

(
ð∂ −iz
iz −ð∂

)
.

We are asking that the inverse of this entire family of pseudodifferential operators
on ∂M exist for all z ∈ C. This is totally unreasonable!

What we can see is that there are values of z for which this operator has null
space. In fact we can see exactly what they are. Suppose we have an eigenvector
for ð∂ (which we do!)

157.914157.914 (9.88) ð∂u = λu =⇒ Î(iλ)

(
u
−u

)
= 0, Î(−iλ)

(
u
u

)
= 0

Then there are points of non-invertibility at

157.915157.915 (9.89) i Spec(ð∂) ⊂ C.

157.916 Lemma 9.8. The indicial family Î(ðb) is invertible for z ∈ C \ iSpec(ð∂) and
defines a meromorphic family

157.917157.917 (9.90) Î(ðb)−1 : C \ i Spec(ð∂) −→ Ψ−1(∂M ; Λ∗b
∣∣
∂M

)

with poles of order 1 at (
157.915
9.89) with finite residues the orthogonal projections onto

the mull spaces of Î .

157.918 Proposition 9.7. For any w ∈ R the operator I(ðb) has an R+-invariant
inverse with kernel

157.919157.919 (9.91) K(s, y, y′) ∈ ff(M [2,b]; Λ∗b ⊗ π∗RΩb)

which lies in sw−εH∞ near s = 0 and t−w+εH∞ near t = 0 = 1/s for ε > 0
sufficiently small.
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We are mainly interested in the case w = 0.
In fact we can be much more specific about the behaviour of this kernel which

has expansions as discussed in §
Cmb
9.
Cmb.con
2. There is a significant difference between the

cases that w ∈ Spec(ð∂) or not. We are actually interested in the case that w is an
eigenvalue, in particular 0, of the Hodge-Dirac operator on the boundary.

By elliptic regularity we know that any solution of

157.920157.920 (9.92) I(ðb)K = δ(s− 1)δ(y − y′)

must be smooth away from Diagb where the delta function is supported. The
solution given by the Proposition is unique. It has an expansion in the sense of §

Cmb
9.
Cmb.con
2

at the boundaries of ff(M [2,b]) determined by the spectrum of ð∂

157.921157.921 (9.93)

K ∼
∑
λi≥w

sλiai(y, y
′) as s ↓ 0

K ∼
∑

λi>−w

t−λia′i(y, y
′) as s ↓ 0.

Proof. We are really working with the spectral theory of ð∂ here. First notice
that any solution of (

157.920
9.92) has a conormal singularity at the ‘diagonal’ appearing

on the right. Morevover, using the symbol map, we can construct a parameterix
satisfying

157.922157.922 (9.94) I(ðb)K0 = δ(s− 1)δ(y − y′)− E(s, y, y′), E ∈ C∞c (ff(M [2,b]).

So it remains to ‘solve away’ the error term E which has support in the interior of
ff .

We ‘know’ (I hope) that the expansion of a smooth function such as E (valued
here in 2× 2 matrices acting on Λ∗∂M) in the y variable in terms of the eigenbasis
of ð∂M converges rapidly. So on each eigenspace, with eigenvalue λi ∈ Spec(ð∂M )
we wish to solve

157.924157.924 (9.95)

(
λi −s∂s
s∂s −λi

)
K ′i(s, y

′) = Ei(s, y
′).

This ordinary differential, and R+-invariant, equation has a unique solution
which vanishes near s = 0 and any two solutions differ by an element of the 2-
dimensional null space which is spanned by

xλi
(
u
−u

)
and x−λi

(
u
u

)
where u is the eigenvector.

As s = 1/t→∞ the chosen solution is in the null space. Thus we can arrange
(
157.921
9.93) for this one term by adding the approriate element of the null space. Sum-

ming over the eigenexpansion gives rapid convergence and hence we do in fact find
a unique solution to (

157.922
9.94) with the desired behaviour, (

157.921
9.93), with respect to a

given w ∈ R. There can only be equality there if the wright w is equal to one of the
eigenvalues but since these form a discrete set the kernel satisfies

157.926157.926 (9.96) K ∈ xw−εH∞b near {s = 0} and K ∈ x−w+εH∞b near {t = 0}.

�
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The idea of course is that this kernel is to be the restriction to ff(M [2,b]) of the
parametrix for ðb. Now it should be clear why we cannot get a parametrix in the
space Ψ−1

b (M ; Λ∗b) – because the solution we have found to (
157.912
9.86) does not decay

rapidly at the boundaries of the front face as required by Definition
157.830
9.1.

157.928 Definition 9.3. Given a pair of index sets E = (EL,ER) we define

157.929157.929 (9.97) Ψ−∞,Eb (M ;V,W ) = A 0,EL,ER(M [2,b];π∗LW ⊗ π∗R(V ′ ⊗ Ωb))

+ A EL,ER(M2;π∗LW ⊗ π∗R(V ′ ⊗ Ωb)).

Here the first space consists of C∞ sections away from the left and right boundaries
of M [2,b] which are conormal in the sense of §

Cmb.con
2 with index sets EL and ER at the

left and right boundaries.

The second term will not appear below but needs to be there if we want to capture
the structure of the generalized inverse.

In fact these operators form a module over the operators in Definition
157.830
9.1 and

we write

157.930157.930 (9.98) Ψm,E
b (M ;V,W ) = Ψm

b (M ;V,W ) + Ψ−∞,Eb (M ;V,W ).

157.931 Lemma 9.9. The elements of Ψm,E
b (M ;V,W ) define bounded operators from

xw1Hs
b(M ;V ) to xw2Hs−m

b (M ;W ) for any s ∈ R and w1 ≥ w2 provided w2 <
inf ReEL and w1 > − inf ReER.

7. Hodge theorem for b-metrics

Using the parametrix constructed above we proceed to prove Theorem
157.892
9.2.

First we need to finish the proof of Proposition
157.907
9.6 and so (

157.909
9.84). The parametrix

construced in Proposition
157.918
9.7 for w = 0 shows that

157.943157.943 (9.99) ðb : x−εH∞b (M ; Λ∗) −→ x−εH∞b (M ; Λ∗)

is Fredholm. A complement to the range, namely the annihilator with respect to
the metric pairing, is the null space of

157.944157.944 (9.100) ðb : xεH−∞b (M : Λ∗) −→ xεH−∞b (M : Λ∗).

In fact we already know that the null space lies in xεH∞b (M : Λ∗). In fact this is
elliptic regularity at the level of the ‘small calculus’ as in (

157.911
9.85) – or bettwer we

know that the error can be arranged to be in Ψ−∞b (M ; Λ∗). This is not compact
but does map

157.945157.945 (9.101) Ψ−∞b (M : Λ∗) : xεH−∞b (M : Λ∗) −→ xεH∞b (M : Λ∗).

We are really interested in the Hodge cohomology, the null space of ðb on the
metric space L2

g(M ; Λ∗) = L2
b(M ; Λ∗). The same elliptic regularity shows that this

the same as the null space of ðb on H∞b (M ; Λ∗) and so contained in the null space
of (

157.943
9.99) – so finite dimensional. Now, the form of the parametrix shows the second

‘boundary’ part of elliptic regularity, namely that the null space of (
157.943
9.99) consists

of elements with expansions, i.e. is contained in A E (M ; Λ∗) where the index set is
as in (

157.915
9.89). So we conclude that

157.946157.946 (9.102) {u ∈ x−εH−∞b (M ; Λ∗);ðbu = 0} =⇒ u− u0 ∈ xεH∞b (M ; Λ∗)
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where u0 is smooth up to the boundary, corresponding to 0 ∈ Spec(ð∂). However,
u0 /∈ L2

b(M : Λ∗) – the integral is logarithmically divergent – so

157.947157.947 (9.103) {u ∈ L2(M : Λ∗);ðbu = 0} ⊂ xεH∞b (M ; Λ∗) is the null space of (
157.944
9.100).

So now we have our Hodge decomposition, initially in the form we have derived
from (

157.943
9.99)

157.948157.948 (9.104) x−εH∞b (M ; Λ∗) = (d+ δ)x−εH∞b (M ; Λ∗)⊕ {u ∈ L2(M : Λ∗);ðbu = 0}.

The Hodge summand here consists of the closed and coclosed eleemnts of
xεH∞b (M ; Λ∗) since the positive order of decay is enough to justify the integra-
tion by parts argument

157.949157.949 (9.105) 0 = 〈(d+ δ)u, du〉 = ‖du‖2L2 .

So, assuming we accept Proposition
157.904
9.5, we already see that the Hodge cohomology, RBM:Proof of Proposi-

tion
157.904
9.5 neededgiven by (

157.947
9.103), is mapped into H∗dR(M ; ∂M). The usual proof of injectivity works.

In fact the extra decay means that

157.950157.950 (9.106) v ∈ x−εH∞b (M ; Λ∗), dv = 0 =⇒ 〈v, u =⇒L2= 0.

This map is therefore injective to

157.951157.951 (9.107) {u ∈ xεH∞b (M ; Λ∗}/
(
xεH∞b (M ; Λ∗) ∩ dx−εH∞b (M ; Λ∗)

)
= Im

(
Hk

dR(M,∂M) −→ Hk
dR(M)

)
so we have the existence and injectivity of the map (

157.893
9.77). The Hodge decomposi-

tion (
157.948
9.104), applied to a closed form in xεH∞b (M : Λ∗) gives a two-sided inverse.

Thus Theorem
157.892
9.2 is proved.

8. Hodge theorem for scattering metrics

To prove Theorem
157.897
9.3 we proceed very much as for a b-metric, obviously with

some changes.
First, the L2 space with respect to a scattering metric is

157.940157.940 (9.108) xn/2L2
b(M ; Λ∗)

since the Riemannian density is a positive multiple of x−nνb. Of course the L2 space
uses the inner product from gsc on the form bundles, which gives a positive-definite
inner product on the rescaled bundle Λ∗sc in (

157.894
9.78). The Fredholm properties of ðsc

are determined by those of I(R) in (
157.896
9.80).

So we apply Proposition
157.918
9.7 for w = n/2 to the elliptic b-differential operator

x−1ðsc and conclude that

157.952157.952 (9.109) ðsc : xn/2−1−εH∞b (M ; Λ∗sc) −→ xn/2−εH∞b (M ; Λ∗sc)

is Fredholm. Just as in the b-case, the Hodge cohomology

157.953157.953 (9.110) H∗sc(M) = {u ∈ L2
g(M ; Λ∗);ðscu = 0} ⊂ xn/2+εH∞b (M ; Λ∗sc)

is a complement, to the range in (
157.952
9.109).

We need to analyse the indicial roots of R = x−1ðsc, which is to say the singular
values of

157.954157.954 (9.111) I(R) =

(
ð∂ −x∂x − (N + n)

x∂x +N −ð∂

)
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where N is the number operator on boundary forms. Again these are generated
by the spectrum of ð∂ but the relationship is more complicated than in the b-case
above.

Each harmonic k-form, γ, on the boundary, in the null space of ð∂ , generates
a two-dimensional space on which I(R) acts, spanned by

157.955157.955 (9.112) x−kγ,
dx

x2
∧ x−kγ.

These each correspond to an solution of I(R)v = 0, namely

157.956157.956 (9.113) xk
γ

xk
,
dx

x2
∧ xn/2−k γ

xk
.

The first can be the leading term of a square-integrable form only if k > n/2 and
the second only if k < n/2.

To claify square-integrability we need to analyze the other indicial roots. An
eigenform for ð∂ with non-zero eigenvector corresponds to a pair of forms, a coclosed
(k−1)-form hk−1 and a closed k-form uk with duk−1 = λuk and δuk = λek−1. These
generate a 4-dimensional bundle invariant under I(R) spanned by

157.957157.957 (9.114)
uk−1

xk−1
,
dx

x2
∧ uk
xk
,
uk
xk

and
dx

x2

uk−1

xk−1
.

Since the 2-dimensional space spanned by the first two elements maps into that
spanned by the second two and conversely, the null space of I(R) is conatained in
these two subspaces.

In the two cases the indicial roots correspond to a null vector of

157.958157.958 (9.115)

(
λ −iz + (n− k − 1))

iz − k + 1 −λ

)
and

(
λ −iz + (n− k)

iz − k −λ

)
which occur when

157.959157.959 (9.116) (iz − k + 1)(iz − n+ k + 1) = λ2, (iz − k)(iz + (n− k) =−→2=⇒
(iz)2−(n−2)iz−(n−k−1)(k−1)−λ2 = 0, (iz)2+(n−2k+1)iz)−k(n−k+1)−λ2 = 0 =⇒

iz =
(n− 2)

2
±1

2

√
(n+ 1− 2(k − 1))2 − 4(n− k)(k − 1) + 4λ2, iz = x

(n+ 1)

2
±1

2

√
(n+ 1)2 + 4λ2

157.941 Lemma 9.10. The indicial family Î(R)(z) acting on Λk∂M ⊕ Λk−1 ± M is
invertible except for

157.942157.942 (9.117) z =
d+ 1

2
±
√
λ2
j,k + (

d+ 1

2
− k)2.

where the λ2
j,k are the eigenvalues of the Laplacian on ∂M acting on closed k-forms.

9. Atiyah-Patodi-Singer index theorem

157.932 Proposition 9.8. Any element A ∈ Ψm
b (M ;V,W ) which is elliptic, i.e. σ(A)

is invertible, is Fredholm as a map

157.933157.933 (9.118) xwHs
b(M ;V ) −→ xwHs−m

b (M ;W )

for w ∈ R \ S where S ⊂ R is discrete.
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Proof. The main point here is that ellipticity alone does imply that the indi-
cial operator I(A) is invertible as an R+-convolution operator such a set of weights.
The main part of this is that the indicial family

157.934157.934 (9.119) Î(A) : C −→ Ψm(∂M ;V,W )

which is entire, has a meromorphic inverse – so with a discrete set of poles

157.935157.935 (9.120) b -Spec(A) ⊂ C s.t. zj ∈ b -Spec(A), |zj | → ∞ =⇒ |Re zj | → ∞.

So this means there are only finiteley many poles in any strip Re z| < R.
This in turn is a form of ‘analytic Fredholm theory’. For a holomorphic family

of elliptic operators, such as we have here, defined on a connected open set, the
inverse is meromorphic there is one point at which the operator is invertible. In
this case the existence of such a point, and the bound on the set of poles in (

157.935
9.120)

is a consequence of

157.936 Lemma 9.11. The indicial family I(A)(t+iτ) for t ∈ R is a semiclassical family
down to ε = ±1/τ as τ → ±∞ in R.

Proof. �

Then the parametrix construction above generalizes to yield the Fredholm prop-
ery (

157.933
9.118) for

157.937157.937 (9.121) w /∈ Re b -Spec(A).

�

So the Fredholm condition for (
157.933
9.118) for w in an open set with discrete comple-

ment. The index is necessarily constant on the open sets but changes as w crosses
an end-point. In fact there is a multiplicity function corresponding to the algebraic
multiplicity of the residues at the poles of Î(A),

157.938157.938 (9.122) rank : b -Spec(A) −→ Z

and the change of the index in passing from one interval to the next is the sum
of the multiplicity of the points in b -Spec(A) with real part corresponding to the
end-point. It is elementary to see that the index is a decreasing function of w.

For Dirac operators Atiyah, Patodi and Singer (
APS
[?]) gave a formula for the

index which applies in this case. This is extensively discussed, from the present
point of view, in

tapsit
[?]. You might ask, is there a formula for the index in this general

b-pseudodifferential case? The answer of course is yes!
If you have survived this far, you would certainly be tempted to ask: Is there

a families index theorem? There is, at least there is a families index formula for
the Dirac case in the literature and this can be extended to the case of families of
Fredholm b-pseudodifferential operators. However, unlike the case of one operator
discussed above, for an elliptic family of b-pseudodifferentia operators on the fibres
of a fibre bundle (so of course the fibres are compact manifolds with boundary)
there is an obstruction to this forming a Fredholm family.

157.939 Proposition 9.9. The family of indicial operators of an elliptic family of b-
pseudodifferential operators on the fibres of a compact fibre bundle define an index
class in K1 the vanishing of which is a necessary and sufficient condition for the
existence of a Fredholm family with the same symbol.
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10. Spectral and scattering theory

11. What else?
L26-end
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