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In this course I hope to cover four (types of) theorems which involve microlocal

analysis and in particular the theory of pseudodifferential operators. Namely

(1) Hörmander’s theorem on the propagation of singularities
(2) Weyl’s law for the distribution of eigenvalues
(3) The Atiyah-Singer index theorem and K-theory
(4) Hodge theory and boundaries

As a first step I will proceed to discuss the algebras of pseudodifferential op-
erators on Euclidean space and on a compact manifold and then similar algebras
(and related modules) on manifolds with boundary and for fibration . . . )

(1) Ψ∗(Rn), Ψ∗(M), Ψ∗∗(M)

where the upper star is an order and the lower star is some sort of structural
information.

To me the four results listed above are fundamental, and I like them! The
first two are relatively closely related and both give realization of the ‘semiclassical
limit’, the interplay between the non-commutative theory of (pseudo-)differential
operators and the more familiar behaviour of analysis of functions. The latter two
are more global but both involve the essential invertibility of (pseudo)differential
operators.

Let me briefly indicate what these theorems are about.
Hörmander’s theorem on the propagation of singularities is a precise version,

and massive generalization, of ‘Huyghen’s Principle’. The latter describes the
spreading of the singular edge of solutions of the wave equation. The precise version
is one of the consequences of ‘microlocalization’, transferring analysis from ‘space’
to ‘phase space’ interpreted concretely as a manifold and its cotangent bundle re-
spectively.

Weyl’s asymptotic formula describes, at ‘high energy’, the number of eigen-
values of a self-adjoint elliptic operator, on a compact manifold, in terms of the
volume inside the energy surface in the cotangent bundle. The original theorem
was actually about the eigenvalues of the Dirichlet problem on a domain in R2.

Elliptic (pseudo-)differential operators on a compact manifold are Fredholm –
they are invertible modulo finite dimensional null space and complement of the
range. The index, the difference of these two dimensions, is a very stable number
in the sense that it only depends on the ‘topology’ defined by the leading part of
the operator and the theorem gives a formula for it. One classical version of this
is the Riemann-Roch theorem for the ∂ operator on (line bundles over) a compact
Riemann surface. This already requires some effort to understand! There is a
one-dimensional real version of the theorem, due to Toeplitz, which states that the
index of an elliptic Toeplitz operator on the circle (the projection onto the Hardy
space, consisting of the functions smooth on and holomorphic on the interior of the
disk, of multiplication by a non-vanishing smooth function) is equal to (minus) the
winding number of the function.

The Hodge theorem you probably do know for a compact manifold without
boundary as the identification of the deRhm cohomology with the space of harmonic
forms. For non-compact manifolds there is no simple generalization, rather there
are many corresponding to structures at infinity.
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Clearly, each of these could easily expand to take the whole semester. Still I
hope to show how they can be approached using pseudodifferential operators and
‘quantization’. In fact an alternative title for this course might be ‘Smooth quanti-
zation’. So most of the time will be devoted to preparing the background material,
specifically pseudodifferential operators on Rn, pseudodifferential operators on a
manifold, families of pseudodifferential operators and then rings of pseudodifferen-
tial operators quantizing a Lie algebroid.

I plan to give 26 one-hour lectures in the 9:30-10:30 slot on Tuesdays and Thurs-
days and leave 20 minutes for questions and discussions (even short presentations
by students); if there is sufficient interest I will organize another ‘discussion’ time,
perhaps on Wednesdays in the afternoon. There will be notes for each topic (the
precise correspondence to the individual lectures will depend on various things),
which will include topics I will not have time to cover and will certainly include
further references – to books, lecture notes and papers. With any luck at least
some of the lectures at should appear on my webpage before the beginning of the
semester.

Problem sets: There will be approximately 5, every two weeks. Grading may
be by discussion with me.

Grades: Graduate students are expected to participate actively. That is what
‘A’ means to me. By this I mean that I expect people to attend lectures and to ask
questions. For undergraduates this course might be heavy lifting, it is for me, so
please talk to me by early in the semester at the latest. We can discuss what you
should expect. There are no exams.

Prerequisites: I will assume familiarity with manifolds and distributions, essen-
tially as in 18.155 but plan to review pretty much everything.

Why don’t I just follow a book or my earlier lecture notes? This probably
reflects some personal failing and general disatisfaction with how things are done!
I find it difficult to think through things without seeing some other way of ap-
proaching them. If it is not to your taste, I am sorry but that is the way it is. I
may not get to all the results listed above, but I expect to at least get to the point
where they are all within reach and that is really what I want to do – try to put
these results in a general context that maybe encourages them to be exploited (i.e.
applied) and extended.

In the interim, feel free to contact me with questions or comments.
Richard Melrose, 17 November, 2021.



CHAPTER 1

Pseudodifferential operators, Manifolds and
compactification

1. Lecture 1

The main aim of this course is to describe various algebras of pseudodiffer-
ential operators. Let me start with a traditional ‘crypto-historical’ description of
the ‘standard’ algebra of pseudodifferential operators on Rn. I recall notation for
functions below, but let’s assume you know about the spaces of smooth functions
on Euclidean and the subspaces of compactly supported, Schwartz and functions
with all derivatives bounded

(2) C∞c (Rn) ⊂ S(Rn) ⊂ C∞∞(Rn) ⊂ C∞(Rn)

maybe including their topologies and duals.
For any multliindex α ∈ Nn0 , N0 = {0, 1, 2, . . . } being the non-negative integers,

the corresponding iterated partial derivative acts on each of these space

(3) u 7−→ Dαu, Dαu(x) = i−|α|
∂α1

∂x1
. . .

∂αn

∂xn
. . . u(x), |α| = α1 + . . . αn

where the normalizing power of i is inserted to help with notation for the Fourier
transform.

These generate the commutative ring of differential operators with constant
coefficients with general element

(4) p(D) =
∑
|α|≤m

cαD
α, cα ∈ C.

This is a filtered ring which is isomorphic to the ring of polynomials in n variables.
Similarly, each of the spaces in (2) is a ring, so multiplication of functions is

defined. Combining these we consider linear partial differential operators which are
given by sums

(5) P (x,D)u =
∑
|α|≤m

pα(x)Dαu.

In each case when the coefficients are in one of the spaces (2) we get an operator –
a continuous linear map – on the corresponding space.

Whilst this is probably very familiar, and the operator product is given explicitly
by Leinbiz’ formula, it is very significant that these form a ring (and algebra)

(6) P (x,D)Q(x,D) =
∑
γ≤α,β

pα(x)(Dγ
xqβ(x))Dα+β−γ , Q(x,D) =

∑
|β|≤m′

qβ(x)Dβ .

It is worth thinking a little more about what is going on here. First note that
(5) is not as ‘natural’ as (4) in so far as we have chosen to write the ‘coefficients’,
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the function pα(x) on the left. This is true in (4) as well but there the constants
commute with the differentiation operators. Of course is reflected in the fact that
the product (6) is not commutative.

Now, let’s concentrate on the Schwartz space. For this we have the Fourier
transform

(7) F : S(Rn) −→ S(Rn), Fu(ξ) = û(ξ) =

∫
Rn

e−ix·ξdx.

It is a linear isomorphism. We know that

(8) u ∈ S(Rn) =⇒ F(Dαu)(ξ) = ξαû(ξ).

The Fourier transform conjugates differentiation to muliplitaction. Of course a
monomial such as ξα is not in the Schartz space, but it does define an operator on
it by multiplication.

So the inverse Fourier transform allows us to write

(9) Dαu(x) = (2π)−n
∫
Rn

eix·ξξαû(ξ)dξ.

A linear partial differential operator, (5), is given by a finite sum so we can
combine (9) with (5) and write

(10) Pu(x) = (2π)−n
∫
Rn

p(x, ξ)û(ξ)dξ, p(x, ξ) =
∑
|α|≤m

pα(x)ξαdξ.

Since û ∈ S(Rn), the integral converges absolutely. If we just assume that the
coefficients are in C∞(Rn) then the integral converges uniformly on compact subsets
in x ∈ Rn, with all its formal derivatives in x because of the obvious estimates

(11) |Dγ
xp(x, ξ)| ≤ CK,γ(1 + |ξ|)m, x ∈ K b Rn, ξ ∈ Rn.

We can actually define the ‘standard’ space of pseudodifferential operators of
order m ∈ R by considering those functions a ∈ C∞(Rnx × Rnξ ) which satisfy the
symbol estimates

(12) |Dγ
xD

β
ξ a(x, ξ)| ≤ Cβ,γ(1 + |ξ|)m−|β , ∀ γ, β ∈ Nn0 .

Notice that p in (10) satisfies these estimates for an integer m if the coefficients
are in the space

(13) C∞∞(Rn) = {f ∈ C∞(Rn); sup |Dγ
xf(x)| <∞ ∀ γ}

the space of smooth functions with all derivatives bounded.
The space of functions satifying estimates (12) is often written Sm1,0 as part

of a more general class of spaces Smρ,δ where the exponent m − |β| is replaced by

m−ρ|β|+ δ|α|. I will make this notation more precise below, and will probably not
talk about the general ρ, δ space – in fact there are many variants of such estimates
(see for instance [?]) and we will already have enough things to think about.

It follows directly that if a ∈ Sm1,0, in the sense that all the estimates (12) hold,
then the direct generalization of (10),

(14) Au(x) = (2π)−n
∫
Rn

a(x, ξ)û(ξ)dξ =⇒ a : S(Rn) −→ C∞∞(Rn).

In fact much more is true
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Theorem 1. ∗ The space of operators, Ψm
1,0(Rn) defined by symbols a satisfying

(12) act on S(Rn) and these form a filtered ∗-closed (∗ for adjoint here) ring

(15) Ψm
1,0(Rn) ◦Ψm′

1,0(Rn) ⊂ Ψm+m′

1,0 (Rn), ∀ m,m′ ∈ R.

This is the main content of the first chapter of [?], see also [?]. Probably the first
place this result appeared in this form is [?].

The ∗ in the header of the theorem is to indicate that I will not prove it
immediately but a full proof will follow later and more. It is not that it iso hard
to prove such a result, it is rather that I prefer to approach it from a position of
strength, so somewhat indirectly, in the sense that I want to give a good deal of
background before proving it.

Still it is important to see what is straightforward to prove and
what may require some more thought. First let’s make sure we
do have (14).

Proof of (14). If u ∈ S(Rn) then the product

a(x, ξ)û(ξ) ∈ S−∞1,0 =
⋂
M∈R

SM1,0 (16)

meaning that the estimates in (12) hold for all m. Indeed this
is just the product rule for differentiation. Written out fully in
terms of Leibniz’ formula

Dγ
xD

β
ξ (a(x, ξ)û(ξ)) =

∑
γ≤β

(
β

γ

)
Dα
xD

γ
ξ a(x, ξ) ·Dβ−γ

ξ û. (17)

Then one can apply the more obvious fact the product is rapidly
decaying in ξ :

Sm1,0 · S(Rnξ ) ⊂ Sm−k1,0 ∀ k ∈ R. (18)

The integral (14) is therefore convergent. Again it you like
to be precise you can see that

Sm1,0 ⊂ C0∞(Rn;L1(Rnξ )), m < −n (19)

since (1 + |ξ|)−n−ε ∈ L1(Rn) if ε > 0. Now use can use standard
properties of Lebesgue (or improper Riemann) integrals to see
that Au ∈ C0∞(Rn) is a bounded continuous function and the
same holds for all derivatives giving (14). �

Now, I want to check a couple of other statements, weaker
than Theorem 1. First the stronger mappting property that

A : S(Rn) −→ S(Rn). (20)

This is a matter of getting ‘decay’. Namely we need to show
that for any monomial and any derivative

xγDα
xAu ∈ C0∞(Rn). (21)

We can approach this one step at a time, asking just about xjAu.
Note that we can certainly multiply by xj but the operator xjA
is not in general in Ψm

1,0(Rn) (for any m) since xja(x, ξ) is not
bounded as |xj | → ∞ even for fixed ξ. Howver the integral in



8 1. PSEUDODIFFERENTIAL OPERATORS, MANIFOLDS AND COMPACTIFICATION

(14) still converges rapidly in ξ for x in compact sets if we replace
a by xja so

xjA : S(Rn) −→ C∞(Rn) (22)

for instance.

Lemma 1. In the sense of operators (22)

[xj , A] = xjA−Axj ∈ Ψm−1
1,0 (Rn). (23)

Proof. We use ‘integration by parts’. Consider the opera-
tor Axj . The Fourier transform of xju, u ∈ S(Rn) is i∂ξj û so

Axju = (2π)−n
∫
a(x, ξ)eix·ξi∂ξj û(ξ)dξ = xjA(x,D)u+bj(x,D)u, bj(x, ξ) = −i∂ξja(x, ξ) ∈ Sm−11,0 .

The rapid decay of a(x, ξ)û(ξ) in ξ means that∫
∂ξj
(
a(x, ξ)eix·ξû(ξ)

)
dξ = 0. (24)

Proceeding by induction we conclude that

xγA(x,D) =
∑
δ≤γ

Bδ(x,D)xδ, Bδ(x,D) ∈ Ψ
m−|γ|+|φ|
1,0 (Rn).a1 (25)

�

In fact rather than Ψm
1,0(Rn) I am more interested in the smaller space which I

will denote just Ψm(Rn) often called the ring (with the composition property (15))
of ‘classical’ pseudodifferential operators where the symbols a have the additional
property:

There exists a sequence ai ∈ C∞(Rn× (Rn \ {0})) of homogeneous functions of
degree m− i (in the ξ variables)

(26) ai(x, tξ) = tm−ia(x, ξ), t > 0, (x, ξ) ∈ Rn × (Rn \ {0})

such that for (any) cutoff χ ∈ C∞c (Rnξ ) with χ = 1 near 0

(27) a(x, ξ)−
N∑
i=0

(1− χ(ξ))ai(x, ξ) ∈ Sm−N−11,0 .

These ‘classical’ symbols form a filtered subring Sm ⊂ Sm1,0. The relationship (27)
is often written

(28) a '
∑
i

ai

and a is then said to have a complete asymptotic expansion. There is no statement
of convergence in (27) (although there is one lurking in the background) but you
should be able to see that the ai, assuming they exist are determined by the relations
(27).

Now, when we insert the classical symbols in (14) (or if you prefer, restrict
to classical symbols) then the space of operators constitutes a filtered subring
Ψm(Rn) ⊂ Ψm

1,0(Rn) which for positive integral m includes the differential oper-
ators of order m discussed above.



2. MANIFOLDS WITH CORNERS 9

These rings have many important properties but one of the most importan is
that one can recover the terms ai in (27) from the operator A and the leading term
defines the principal symbol as a map

(29) Ψm(Rn)
σm // {a0 ∈ C∞(Rn × (Rn \ {0}) homogeneous of degree m in ξ}

and this map is surjective, multiplicative and defines a short exact sequence

(30)

σm+m′(A ◦B) = σm(A)σm′(B), A ∈ Ψm(Rn), B ∈ Ψm′
(Rn)

Ψm−1(Rn) ↪→Ψm(Rn) −→
{a0 ∈ C∞(Rn × (Rn \ {0})) homogeneous of degree m in ξ}

Here I have stuck with a cumbersome notation for the homogeneous space which
will be refined below.

So, we want to prove all these things and a lot more! However, I do not want to
go there directly but rather map out the territory a bit first, in particular discussing
the ‘symbol spaces’ concretely.

2. Manifolds with corners

This might appear to be a serious non-sequitor but I hope you will get used
to the idea of these sections on background material and see a bit later why I am
proceeding this way.

Both for ‘local’ analysis and the formulation of global results it is very conve-
nient to focus on manifolds with corners as our basic ‘category of spaces’ (which it
is as will be made precise later). There are several reasons to introduce these. An
immediate one is to understand the symbol spaces and their generalizations. This
I will get to next time. This allows me to introduce the spaces of conormal distri-
butions which arise as the Schwartz kernels of the pseudodifferential operators we
are interested in. Thinking about the kernels abstractly will allow us to generalize
readily later. This involves manifolds with boundary, but then products will get
you to manifolds with corners.

So, this is one of the basic settings for the course – analysis on manifolds with
corners – but only taken as far as we need for the moment. Let me start with an
explicit definition and then explain all the terms used in it. I’m assuming familiarity
with the standard definition of a manifold without boundary.

Definition 1. A manifold with M is a metrizable, separable (so second count-
able) topological space with an open covering giving a (maximal) atlas of C∞-related
coordinate patches modelled on [0,∞)n and with embedded boundary hypersur-
faces.

I will not assume connectedness without explicitly saying so, but the definition
then requires all the components to have the same dimension.

So we are given a separable metric space, M, where the ‘metrizable’ means we
do not take the actual metric seriously, just the open sets it defines as the unions
of open balls. A coordinate patch in such a topoligical space is a triple (F,U, V )
consisting of a homeomorphism F : U −→ V of an open subset U ⊂ M onto a
(relatively) open subset V ⊂ [0,∞)n. So this means there exists an open subset
V ′ ⊂ Rn such that the range V = V ′ ∩ [0,∞)n. The coordinates on the coordinate
patch are the pull-backs of the coordinate functions xi on Rn.
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To make clear what ‘C∞-related’ for two such coordinate patches means, we
need to define C∞(V ) (I will not bother with lower regularity than C∞):
(31)
C∞(V ) = {u : V −→ R( or C); ∃ V ′ ⊂ Rn open V = V ′∩]0,∞)n, u′ ∈ C∞(V ′) and u = u′

∣∣
V
}.

So I am assuming you know about C∞(V ′) for open subsets of Rn.
Now the C∞-compatibility of two coordinate patches (Fi, Ui, Vi), i = 1, 2, as

introduced above, means that either U1 ∩ U2 = ∅ or else the transition maps
(32)
F12 = F1◦F−12 : F2(U1∩U2) −→ F1(U1∩U2) and F21 = F2◦F−11 : F1(U1∩U2) −→ F2(U1∩U2)

are C∞ in the sense that F ∗12 : C∞(F1(U1 ∩ U2)) −→ C∞(F2(U1 ∩ U2)) and F ∗21 :
C∞(F2(U1 ∩U2)) −→ C∞(F1(U1 ∩U2)); this is equivalent to saying either pull-back
map is an isomorphism. This is also equivalent to saying that the pull-backs of
the coordinate functions under either of the maps Fi restrict to U1 ∩ U2 to be C∞
functions of the other coordinates.

So now an atlas is a covering by such (pairwise) C∞-compatible coordinate
patches. If some coordinate patches are compatible with all the elements of an
atlas then the combined collection is still an atlas – they are necessarily compatible
amongst themselves as well. Hence any atlas is contained in a unique maximal atlas
– all this is as in the boundaryless case.

If we just stop at this point then M is what I call a tied manifold although
there is no general agreement on this. The missing point is the additional condition
that ‘boundary hypersurfaces are embedded’. A point in a coordinate patch is a
boundary point of codimension k if exactly k of the coordinate functions vanish on
it (note that coordiante patches map into [0,∞)n so by fiat all coordinates are non-
negative – I will actually drop this requirement later but it makes things easier to
state initially). By considering the differential of the transition map it follows that
the codimension is well-defined at each point, it is independent of the coordinate
patch used). This means that M has a stratification, a decomposition into disjoint
pieces, based on the codimension

(33) M = M0 ∪M1 ∪ · · · ∪Mn

where the Mj can be empty (from some k > 0 onward). The points of boundary
codimension zero are the interior points of the manifold (there is a slight incon-
sistency between openness of subsets of [0,∞)n and this, so the interior there is
(0,∞)n, of course otherwise there would be no point in talking about the interior
of a relatively open subset).

Each Mj itself is a manifold without boundary and the closures of the compo-
nents of the Mj are called the boundary faces of codimension j; the set of these
boundary faces I will write asMj(M). In particular the boundary faces of codimen-
sion one, the Hi ∈ M1(M) are called the boundary hypersurfaces. The ‘boundary
hypersurfaces are embedded’ part of the definition is just the statement that the
restrictions of the coordinate patches to each Hi given them C∞-compatible atlases.
The point of this functorial, that the boundary hypersurfaces (and in consequence
all boundary faces) are themselves manifolds with corners. There are several useful
ways to restate this condition but note how it fails for a ‘tear-shaped region’ in the
plane.

Pictures needed!
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The C∞ functions on M are those that are C∞ in each coordinate patch

(34) f ∈ C∞(M)⇐⇒ (F−1)∗(f
∣∣
U

) ∈ C∞(V ) for each coordinate patch.

This is equivalent to the same condition for any one compatible atlass.
The direct consequence of the ‘embedded’ requirement is that the boundary

hypersurfaces have defining functions:

(35) Hi ∈M1(M) =⇒ ∃ ρi ∈ C∞(M), ρi ≥ 0, Hi = {ρi = 0},
d((F−1)∗ρi)(F (p)) 6= 0 ∀ p ∈ Hi for all coordinate patches containing p.

This last condition means that for each p ∈ Hi there is a coordinate patch containing
p in which ρi is a coordinate function.

If M̃ is a manifold without boundary, i.e. M̃1 = ∅, then M ⊂ M̃ is a(n embed-

ded) submanifold if M has a covering by coordinate patches of M̃ which restrict to
give it the structure of a manifold with corners.

Theorem 2. For any manifold with corners there exists a manifold without
boundary M̃ of the same dimension in which M is embedded as a submanifold; if
M is compact then M̃ can be taken to be compact.

Although there is no quite canonical way of constructing such an extension M̃
all the standard constructions of the tangent, cotangnet, form bundles and other
bundles associated to the frame bundle, pass over to the case of a manifold with
corners in such a way that the restrictions for an extension of this type are canonical

(36) TM = TM̃
∣∣
M
, T ∗M = T ∗M̃

∣∣
M

etc.

However, there are important additional structures which arise from the boundary
faces as I will discuss later.

So, which work in this degree of generality? Manifolds with corners are the
smooth (i.e. C∞) analogue of smooth algebraic varieties with divisors and the occur
for similar reasons. One such corresponds to the notion of compactification.

3. Compactification

Although we will deal with non-compact manifolds, the ones that arise below
have some ‘structure at infinity’. One way to describe what this means is through
the notion of compactification.

Definition 2. A compactification of a manifold M is a compact manifold M
and a smooth injection ι : M −→ M which is a diffeomorphism to a (relatively of
course) open dense submanifold.

Here both M and M may have corners. As always we need to specifiy when
two compactifications are ‘the same’.
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Definition 3. Two compactifications ιi : M −→ M i are equivalent if there
exists a diffeomorphism e : M1 −→M2 giving a commutative diagramme

(37) M1

e

��

M

ι1

==

ι2

!!
M1.

Notice that the equivalence map e is unique if it exists since it is fixed on an
open dense subset by (37). We also say that one compactification is finer than
another if there is a smooth map e giving a commutative digaramme; again it if
it exists it is determined. This defines a partial order on compactification – as we
shall see below there can be non-comparable compactifications.

If M is compact it is a compactification of itself and it is unique in this sense
of equivalence..

We might well want more structure for the compactification – for instance if
M is a complex manifold then we might want M to be complex and all maps
to be holomorphic. There are important examples from algebraic geometry here.
Most relevant at the moment is the projective compactification of a complex vector
space W ↪→ PW which I mention below but there are much more sophisticated
examples to check out. There is the Deligne-Mumford compactification of the
Riemann moduli spaces Mg,n (okay I here a complaint from someone that the
Mg,n are not quite manifolds, they are orbifolds in general, but take the number of
punctures n large compared to the genus g ≥ 0). Also there is the deConcini-Procesi
‘wonderful’ compactification of complex adjoint Lie groups [] (if you are interested
look also the real version of this in []). Also, compactificaiton of ‘Gravitational
Instantons’ (aren’t the Physicists good at inventing names!).

The examples I will consider immediately are more prosaic, namely of a real
finite-dimensional vector space V. This is both to illustrate the notion and for later
reference. I will discuss

(1) The one-point compactification(s) given by a sphere V
o
.

(2) The parabolic compactification given a closed ball V
p

(3) The radial compactification also given by a closed ball V = V
R
.

From the notation you can see that I have a preference for the radial compacti-
fication – I hope the discussion below shows why. Only the radial compactification
is really used subsequently.

These can all be constructed using variants of stereographic projection. So, let’s
start with V = Rn, i.e. choose a basis. We embed Rn into Rn+1 as the hyperplane

(38) Rn 3 x 7−→ (x, 1) ∈ P ⊂ Rn+1.

In the first case consider the the sphere So of radius 1
2 centred at (0, 12 ) and in the

second and third cases take the sphere SR of radius 1 centred at the origin. In both
cases a point of Rn determines a unique line Lo(x) or LR(x) through the image of
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x in P and the centre of the corresponding sphere then

(39)

Io : Rn −→ So, Iox is the other point in So ∩ Lo(x)

IR : Rn −→S+R,
IRx is the other point in SR ∩ L1(x) ⊂ S+R = SR ∩ {xn+1 ≥ 0}

Ip : Rn −→Bp ⊂ Rn,
Ipx is the projection of LRx onto the closed unit ball in Rn × {0}.

In all three cases the full orthogonal group O(n), acting on the first factor of Rn×R
satisfies I•Ax = AL•x for all A ∈ O(n), effectifely reducing the discussion to the
cae n = 1. Explicit formulæ for the maps are easily derived:

(40)

Iox = (
x

1 + |x|2
,

1

1 + |x|2
) ∈ So

IR = (
x

(1 + |x|2)
1
2

,
1

(1 + |x|2)
1
2

)) ∈ S+R

Ipx =
x

(1 + |x|2)
1
2

∈ Rn.

Thus, for the radial compactification (1 + |x|2)−
1
2 is a boundary defining function

and hence |x|−1, which is a smooth function of it away from x = 0, is a defining
function near the boundary. It follows that

(41) {|x| > ε > 0} 3 x 7−→ (
1

|x|
,
x

|x|
) ∈ [0, 1)× Sn−1

extends to a smooth product decomposition of RnR near the boundary. For the
parabolic compactification it follows similarly that

(42) {|x| > ε > 0} 3 x 7−→ (
1

|x|2
,
x

|x|
) ∈ [0, 1)× Sn−1

is a product decomposition near the boundary.
It can be seen directly that

(43) Io(
x

|x|2
) = SIo where S : So \ {(0, 1), (0, 0)} −→ So \ {(0, 1), (0, 0)},

with S(y, yn) = (y,−yn + 1)

is equatorial reflection on So.
In all cases it is clear either geometrically, or from the forumlæ (40), that the

action of O(n) extends smoothly from Rn to the compactification. Similarly the
scaling action by R+, with generator on Rn

(44)
∑
i

xi
∂

∂xi

extends smoothly. For the one-point compactification this follows from (43) and in
the other two cases

(45) lim
|x|→∞

tx

(1 + t|x|2)
1
2

=
x

(|x|2)
1
2

and lim
|x|→∞

1

(1 + t|x|2)
1
2

= 0.

Thus in all cases the action of the conformal group O(n)×R+ extends smoothly
to the compactification.
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Proposition 1. The action of the general linear group extends smoothly from
Rn to the radial and parabolic compactifications but not to the one-point compactifi-
cation; the translation action of Rn extends smoothly to the radial and the one-point
compactifications but not to the parabolic compactification and there are smooth sur-
jective maps, which are not diffeomorphisms, giving a commutative diagramme
(46)

GL(n,R) nRn

Sn+R

yy %%
O(n) n (R+ × Rn) Sn0 RnIooo

IR

OO

Ip // Bnp GL(n,R).

Outline of proof. That the group actions extend as indicated follows by
noting that the Lie algebra of GL(n,R) consists of vector fields homogenous of
degree 0 and similarly the translations are homogeneous of degree −1. Similar
arguments show that the groups shown are the maximal subgroups of GL(n,R)nRn
which extend to act smoothly on the one-point and parabolic compactifications. �

Corollary 1. The one-point compactification is defined for a vector space
with conformal-Euclidean structure, the radial comactification is well-defined for
an affine space and the parabolic compactification is well-defined for a vector space.

Both the radial and the parabolic compactifications have boundaryless vari-
ants, in which the boundaing sphere is replaced by an embedded projective space
Sn−1/± by doubling across the boundary. The apparent advantage of this smaller
compactification does not seem to be realized in practice.

Conjecture 1. The five compactifications are minimal in their respective cat-
egories (i.e. as manifolds with/without boundary) among compactifications with the
invariance properties in (46).

Although, as noted above, it is the radial compactification which mostly appears
below other variants are relevant. In particular none of these compactifications are
natural for products – the radial compactification of V1 × V2 is not ‘comparable’
to the products of the radial compactifications. Still this relationship is significant
and is examined below.



CHAPTER 2

Symbols and conormal distrubutions at a point

1. Lecture 2

Before tackling the properties of the ring Ψ∗(Rn) of pseudodifferential operators
on Rn I want to look into the properties of the Schwartz kernels of these operators,
so we can get a picture of them. For a start let me dispense with the ‘coefficients’
and just look at the (commutative) algebra of constant-coefficient pseudodifferential
operators.

Recall the convolution of distributions on Rn. On cannot define the convolution
of arbitrary distributions, even arbitary tempered distributions – this however is
an issue of ‘growth’ rather than singularities. In particular the convolution

(47) u ∗ v is defined if either u or v has compact support.

I denote the space of distributions of compact support as

(48) C−∞c (Rn).

So the space of distriutions of compact support is actually a commutative ring,
since the support of a convolution as in (47) satiesfies

(49) supp(u ∗ v) ⊂ supp(u) + supp(v).

It is also the case that S(Rn) is closed under convolution and we know that the
Fourier transform satisfies

(50) F(u ∗ v) = F(u)F(v), u, v ∈ S(Rn).

The ring we are interested in is contained in

(51) C−∞c (Rn) + S(Rn)

for which the identity (50) still holds. Note that

(52) F(C−∞c (Rn) + S(Rn)) ⊂ C∞(Rn) ∩ S ′(Rn).

So, we are looking for are some interesting space of smooth functions on the
dual Rn which are closed under multiplication.

In the notes related to the first lecture I discussed the radial compactification
of a real, finite-dimensional, vector space V, to a ball V . Ignoring all the niceties,
for Euclidean space, Rn with the standard Euclidean norm, we can identify the
complement of the origin with the product

(53) Rn \ {0} 3 x 7−→ (|x|, x
|x|

) = (r, ω) ∈ (0,∞)× Sn−1.

The inversion map r −→ 1/r is a diffeomorphism of (0,∞) to itself ‘switching the
ends’. this allows us to add the sphere at infinity of Rn setting

(54) Rn = Rn t [0,∞)× Rn−1/I

15
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where

(55) I : Rn\ 3 x 7−→ (
1

|x|
,
x

|x|
) ∈ (0,∞)× Sn−1

identifies the complement of the origin with the interior of the second part.
Thus Rn is a compact manifold with boundary ‘obtained by introducing in-

verted polar coordinates near infinity’. The interior is Rn−1 and the boundary is
‘the sphere at infinity.

This immediately gives us a ring of functions on Rn, namely

(56) C∞(Rn) ↪→ C∞(Rn).

I can write inclusion here for what is really the restriction from Rn to its interior
since this map is injective.

This is the space of ‘classical symbols on Rn of order zero’ which I would write
as

(57) S0(Rn) = C∞(Rn).

I will approach the issue of characterizing them precisely on Rn below.
As a consequence of the discussion of radial compactification in § 3, or directly,

we can see that the coordinate vector fields on Rn extend to be smooth on Rn. In
fact

Proposition 2. The coordinate vector fields on Rn extend to smooth vector
files on Rn and span, over C∞(Rn, all the smooth vector fields which are of the form

(58) ρW, W smooth and tangent to the boundary of Rn.

Here ρ ∈ C∞(Rn vanishes at the boundary.

Corollary 2. The space S0(Rn) consists of smooth functions which satisfy
the estimates

(59) sup
ξ∈Rn

|(1 + |ξ|)|α|∂αξ a(ξ)| <∞ ∀ α.

Note that I do not say that this characterizes S0(Rn) = C∞(Rn), because it
does not.

Definition 4. We denote the subspace of C∞(Rn) of functions satisfying all
the estimates (59) by

(60) S0(Rn) ⊃ S0
cl(Rn).

These are the ‘symbols with bounds’ containing the classical symbols.

More generally, consider the function

(61) (1 + |x|2)z/2 on Rn, z ∈ C.
This is certainly smooth on Rn. It is rather clear that

(62) (1 + |x|2)z/2 ∈ C∞(Rn) iff z ∈ −N0.

Indeed, in x 6= 0 it can be written

(63) t−z(1 + t2)z/2, t = 1/|x|.

This is smooth down to t = 0, the boundary of Rn if and only if −z is non-negative
integer.
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We define the space of classical symbols of (complex) order z to be the products

(64) Szcl(Rn) = (1 + |x|2)z/2C∞(Rn) = (1 + |x|2)z/2S0
L(Rn).

The space of symbols (with bounds) or real order m is similarly defined to be

(65) Sm(Rn) = (1 + |x|2)m/2S0(Rn).

Why no complex order in the second case?

Exercise 1. Show that in terms of Definition 4

(66) (1 + |x|2)is/2 ∈ S0(Rn) ∀ s ∈ R.
This in turn implies that

(67) Szcl(Rn) ⊂ SRe z(Rn) ∀ z ∈ C.

Definition 5. The space of (Schwartz-) conormal distributions on Rn, with
respect to the origin, of order m− n/4, is

(68) I
m−n/4
S (Rn) = F−1 (Sm(Rn)) .

The corresponding spaces of classical (Schwartz-) conormal distributions at the
origin of complex order z − n/4 are

(69) I
z−n/4
cl,S (Rn) = F−1 (Szcl(Rn)) .

So

(70) Izcl,S(Rn) ⊂ IRe z
S (Rn).

Why the weird normalization of the order with the n/4? This is part of a bigger
scheme that I hope will be explained later. It is the standard notion with the n
interpreted as the codimension of the submanifold, here the origin, with respec to
which we are defining conormality.

So, apart from the issue with the order these are just the inverse Fourier tran-
forms of our ‘classical symbols’.

Theorem 3. If u ∈ Imcl,S(Rn) ⊂ S ′(Rn) then

(71)
singsupp(u) ⊂ {0}

(1− φ)u ∈ S(Rn) if φ ∈ C∞c (Rn), 0 /∈ supp(1− φ).

The conditions in (71) do not characterize the conormal distributions.
I have made a rather mixed definition of classical and non-classical symbols

here. The classical ones defined in terms of the radial compactification and the
non-classical ones in terms of estimates on Rn more directly, let me try to unravle
this.

Lemma 2. The ‘residual symbol spaces’ are

(72) S−∞(Rn) =
⋂
m∈R

Sm(Rn) = S(Rn) = Ċ∞(Rn) ⊂ Szcl(Rn) ∀ z ∈ C.

Here I am using the notation for any manifold with boundary

(73) Ċ∞(M) = {u ∈ C∞(M);u vanishes to infinite order at ∂M}.
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