Let me start with an example of a Lie algebra of smooth vector fields which is geometrically relevant but is not a Lie algebroid. Suppose M is a manifold and S is a closed embedded submanifold. For simplicity I will assume that S is compact but that doesn’t really matter. So, near each point of $\bar{m} \in S$ there are local coordinates on M, $t_1, \ldots, t_k, s_1, \ldots, s_{n-k}$, in a coordinate neighbourhood $U \ni \bar{m}$ such that

$$S \cap U = \{ t_1 = \cdots = t_k = 0 \}.$$

So k is the codimension of S and the s_i give local coordinates on $U \cap S$.

Consider

$$W_S = \{ W \in C^\infty(M; TM); W \text{ is tangent to } S \}.$$

This just means that in each coordinate system such that (1) holds $W s_i$ also vanishes at S. So consider the ideal

$$\mathcal{I}_S = \{ u \in C^\infty(M; TM); u \big|_S \in 0 \}.$$

Then by definition

$$\text{for } V \in C^\infty(M; TM), \ W \in W_S \iff W \mathcal{I}_S \subset \mathcal{I}_S.$$

If $k > 1$, so S is not a hypersurface, the ‘issue’ is that \mathcal{I}_S is not a principal ideal and consequently W is not a Lie algebroid. This means that there is no vector bundle over M of which W_S it is all sections. Indeed in the local coordinates above

$$W \in W \iff W = \sum_{j=1}^{n-k} a_j(s, t) \partial_{s_j} + \sum_{i=1}^k b_i(s, t) t^i \partial_{t_i}$$

where the coefficients are arbitrary smooth functions. The problem is that they are not linearly independent. Indeed if c is any smooth function then adding $t_k c$ to a_{kl} and subtracting $t_i c$ from a_{kl} leaves W unchanged.

However, we can resolve the Lie algebra to a Lie algebroid.

Proposition 1. If $S \subset M$ is a closed embedded submanifold of a manifold then there is a manifold with boundary \tilde{M} and a smooth map (‘blow-down’) $\beta : \tilde{M} \longrightarrow M$ which restricts to a diffeomorphism of $\tilde{M} \setminus \partial \tilde{M}$ to $M \setminus S$ and is such that

$$\beta^* \mathcal{I}_S \text{ spans } \mathcal{I}_0(\tilde{M}) \text{ over } C^\infty(\tilde{M}).$$

Furthermore, \tilde{M} is essentially unique in the sense that given another such manifold and map $\beta' : \tilde{M}' \longrightarrow M$ the map $\beta^{-1} \beta' : \tilde{M}' \setminus \partial \tilde{M}' \longrightarrow \tilde{M} \setminus \partial \tilde{M}$ extends to a diffeomorphism $\tilde{M}' \longrightarrow \tilde{M}$. A smooth vector field on M is β-related to a smooth...
vector field on \tilde{M} if and only if it is tangent to S, the ‘lift’ is then unique and W_S lifts to span $V_0(\tilde{M})$ over $C^\infty(\tilde{M})$.

I will denote the blown-up manifold by $[M; S]$. We can say more about it. First, we can identify the boundary explicitly. The ideal I_s defines a subbundle of the cotangent bundle restricted to S,

$$\{df; f \in I_s\}|_S = N^*S \subset T^*_S M.$$

This is the conormal bundle to S. In local coordinates as above this is the span of the dt_i at each point of s. The annihilator is the tangent bundle of S

$$T_S M \supset TS = \{v \in T_S M; v \cdot df = 0, \ df \in N^*S\}.$$

The normal bundle to S, NS can be identified either as the dual bundle of N^*S or, in view of (8), as the quotient

$$NS = T_S M / TS.$$

As a vector bundle we can identify its ‘radial’ sphere bundle as the quotient by the S^+-action

$$SNS = (T\ S \setminus 0) / R^+$$

so the space of half-lines through the origin in the fibres. Then

The boundary of $[M; S]$ is naturally identified with SNS, the spherical normal bundle to S.