Abstract. I had originally intended to postpone the discussion of Lie algebroids but it now seems to me that it would be better to discuss the abstract notion now.

So a Lie algebroid over a manifold M is the following data

(LA1) A (real) vector bundle $E \longrightarrow M$ over M
(LA2) A smooth bundle map $a : E \longrightarrow TM$ (called the anchor)
(LA3) A Lie algebra structure on $\mathcal{C}^\infty(M;E)$, the space of sections of E, so an antisymmetric map (bilinear over constants)

\[[\cdot, \cdot] : \mathcal{C}^\infty(M;E) \times \mathcal{C}^\infty(M;E) \longrightarrow \mathcal{C}^\infty(M;E) \]

satisfying the Jacobi identity

\[[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 \quad \forall \quad X, Y, Z \in \mathcal{C}^\infty(M;E). \]

(LA4) The compatibility condition that

\[a([X, fY]) = Xf \cdot a(Y) + fa([X, Y]) \quad \forall \quad X, Y \in \mathcal{C}^\infty(M;E), f \in \mathcal{C}^\infty(M). \]

Note that the smoothness in (LA2) means that $a \in \mathcal{C}^\infty(M;\text{Hom}(E,TM))$ so if $X \in \mathcal{C}^\infty(M;E)$ then $a(X) \in \mathcal{C}^\infty(M;TM)$ is a smooth vector field. It follows from (3) (taking $f = 1$) that a is a Lie algebra map

\[a([X, Y]) = [a(X), a(Y)]. \]

Thus the image $a(\mathcal{C}^\infty(M;E))$ is a Lie subalgebra of $\mathcal{C}^\infty(M;TM)$.

Here are some examples, including the ones of immediate interest.

- First a trivial example. If \mathfrak{g} is a finite-dimensional (real) Lie algebra then it defines a Lie algebroid over a point.
- The obvious example of $E = TM$ with a the identity maps
- Combining these two consider $E = TM \oplus \mathfrak{g}$ for a Lie algebra \mathfrak{g}. The Lie algebra structure on sections $X = V + v$, $v \in \mathcal{C}^\infty(M;\mathfrak{g})$ is

\[[V + v, W + w] = [V, W]_TM + Vw - Wv + [v, w]_\mathfrak{g}. \]

I will talk about a special case of this below.

- Now, an important example that I have already been talking about.
 If $\phi : M \longrightarrow Y$ is a fibre bundle – for instance a submersion between compact manifolds – then we can take

\[E_m = \text{Nul}(\phi_* : T_m M \longrightarrow T_{\phi(m)} Y) \implies E \subset TM \]

is the subbundle of vector fields tangent to the fibres of ϕ. Thus the Lie algebra structure on

\[\mathcal{C}^\infty(M;E) = \{ V \in \mathcal{C}^\infty(M;TM); V\phi^* f = 0 \quad \forall \quad f \in \mathcal{C}^\infty(Y) \} \]
is the restriction of the commutator for vector fields to the subspace — clearly $[X,Y]φ^*f = X(Yφ^*f) - Y(Xφ^*f) = 0$ is $X, Y ∈ C^∞(M;E)$. The anchor map is the inclusion map.

• A more substantial example, that is very closely related to the Dirac operator on (the radial compactification of) Euclidean space that we talked about earlier and that I still need to come back to.

Let M be a (usually compact but it doesn’t matter here) manifold with boundary. Then we look at the space

$$V_b(M) = \{V ∈ C^∞(M;TM); V \text{ is tangent to the boundary}\}.$$

(8)

This is somewhat similar to the preceding example in that there is always a ‘boundary defining function’ on a manifold with boundary — $x ≥ 0, ∂M = \{x = 0\}$ and $dx ≠ 0$ at $∂M$. Near a boundary point such a function can be extended to a local coordinate system

$$x, y_1, \ldots, y_{n-1}, \ n = \dim M$$

(9)

where the y_i’s are tangential coordinates — they induce coordinate on the boundary near the point. Then the defining condition in (8) can be written

$$Vx|_{x=0} = 0 \text{ or } Vx ∈ xc^∞(M).$$

(10)

Either way it is clear that $V_b(M)$ is a Lie subalgebra of $C^∞(M;TM)$. We need to find $E!$ Over the interior $E = TM$. Near a boundary point we can use coordinates of the form (9) with the boundary locally defined by $x = 0$. Then any smooth vector field on M is locally of the form

$$V = a(x,y)∂_x + \sum_{i=1}^{n-1} b_i(x,y)∂_{y_i}.$$

(11)

Since $∂_{y_i}x = 0$ and $∂_x x = 1$ this must satisfy

$$a(0,y) = 0 \implies a(x,y) = xα(x,y), \ α \text{ smooth}$$

(12)

if $V ∈ V_b(M)$. Conversely, if (11) holds near every boundary point then $V ∈ V_b(M)$. Thus $V ∈ V_b(M)$ if near every boundary point in coordinates (9) it is of the form

$$V = α(x,y)(x∂_x) + \sum_{i} b_i(x,y)∂_{y_i}.$$

(13)

This shows how to define $E = bTM$. In coordinates a basis is $x∂_x, ∂_{y_i}$.

Exercise 1. Check what happens to this basis under change of coordinates between two systems of the form (9). The answer of course is that it defines a smooth bundle map between the local coordinate bases.

This is an important example (the ‘b’ stands for boundary). The Lie algebra $V_b(M) = C^∞(M; bTM)$ really does replace $C^∞(M;TM)$ when $∂M ≠ ∅$ in the sense that it is the Lie algebra of the diffeomorphism group.

• The example of immediate interest is somewhat between these two. Namely for a fibration $φ : X → Y$ between (let’s say compact but it is not crucial at this stage) manifolds we consider the ‘adiabatic algebroid’ on

$$M = X × [0,1).$$

(14)
So, the space of sections of the ‘putative’ bundle \(E \to M \) satisfies two conditions corresponding to the two fibrations \(\pi : M \to [0,1) \), and \(\phi : X \to Y \), fixing \(\phi : M \to Y \) where I don’t change the notation.

\[
\mathcal{V}_{\text{ad}}(M) = \{ V \in \mathcal{C}^\infty(M; TM); V\epsilon = 0 \text{ and } V(\phi^*f) \in \epsilon \mathcal{C}^\infty(M) \}.
\]

So, in \(\epsilon > 0 \) the second condition is void and the first means that \(V \) must be of the form

\[
V = \sum_k e_k(m,\epsilon)\partial_{m_k}
\]

just an \(\epsilon \) dependent vector field on \(M \). This corresponds to fibre vector fields for the fibration \(\pi \). Now, near any point we can introduce coordinates in \(X \), and hence \(M \), corresponding to the fibration \(\phi \) so

\[
V = \sum_{i=1}^k a_i(z,y,\epsilon)\partial_z + \sum_{j=1}^m b_j(z,y,\epsilon)\partial_y, \ m = \dim Y, \ k = \dim Z.
\]

Since \(\phi^*f \) is just a function of \(Y \) and \(\partial_z y_j = 0 \) the second condition in (15) just becomes

\[
b_j(z,y,0) = 0 \iff b_j(z,y,\epsilon) = \epsilon \beta_j(z,y,\epsilon)
\]

for smooth functions \(\beta_j \). Just as before we see that \(\mathcal{V}_{\text{ad}}(M) \) has basis over \(\mathcal{C}^\infty(M) \) namely

\[
E_m = \text{sp}\{\partial_z, \epsilon \partial_y\}.
\]

The Lie algebra structure is again ‘inherited’ from \(\mathcal{C}^\infty(M; TM) \).

That is enough for the moment but there are many more.

I did not do this in lecture but it is quite a good exercise in recalling the construction of the deRham complex. First note what happens for the differential of functions on the manifold \(M \). Let \(E^* \) be the dual bundle of \(E \), so also a smooth vector bundle over \(M \). Locally if \(e_i \) is a local basis for \(E \) over an open set of \(M \) then there is a canonically defined dual basis \(e_i^* \) of \(E^* \). The consider the sum

\[
du = \sum_i a(e_i)u \cdot e_i^*; \ u \in \mathcal{C}^\infty(M).
\]

I will not change the notation for \(d \), although I should call it maybe \(E^d \). It is a well-defined linear differential operator

\[
d : \mathcal{C}^\infty(M) \to \mathcal{C}^\infty(M; E^*).
\]

I will write out the formulæ for the specific cases of interest.

The important part of the deRham complex is the extension to higher forms, and this really reduces to 1-forms. So we need to define \(d\alpha \) where \(\alpha \in \mathcal{C}^\infty(M; E^*) \) as an antisymmetric section \(d\alpha \in \mathcal{C}^\infty(M; E^* \wedge E^*) \). The key here is the standard formula for differential of a 1-form on a manifold:-

\[
d\alpha(V,W) = V(\alpha(W)) - W(\alpha(V)) - \alpha([V,W]), \ V, W \in \mathcal{C}^\infty(M; TM).
\]

Dropping to a coordinate basis you can check that this is correct – in particular it is linear over mutlication \(V \mapsto fV, f \in \mathcal{C}^\infty(M) \). So, we just extend (22) using the
Lie algebra structure on sections of E and define

\begin{equation}
E^d \alpha(V, W) = E^d(\alpha(W))(V) - E^d(\alpha(V))(W) - \alpha([V,W]) \in C^\infty(M; E^2),
\end{equation}

$V, W \in C^\infty(M; E), \alpha \in C^\infty(M; E^*)$.

Here the E^Λ^k are the totally antisymmetric parts of the k-fold tensor products of the E^*. Then

\begin{equation}
C^\infty(M) \xrightarrow{E^d} C^\infty(M; E^*) \xrightarrow{E^d} C^\infty(M; E^\Lambda) \xrightarrow{E^d} \ldots \xrightarrow{E^d} C^\infty(M; E^\Lambda^N) \xrightarrow{E^d} 0, \quad N = \text{rank } E
\end{equation}

is a complex.

Department of Mathematics, Massachusetts Institute of Technology

Email address: rbm@math.mit.edu