PROBLEM SET 8, 18.155 DUE 18 NOVEMBER, 2016

One thing that I have not been able to describe is the *wavefront set* of a distribution, so I ask you to assimilate the definition and deduce some basic properties. This notion involves cones in $\mathbb{R}^n \setminus \{0\}$ so let me define 'the open cone of aperture $\epsilon > 0$ around a point' to be

(1)
$$\Gamma(\bar{\xi},\epsilon) = \left\{ \xi \in \mathbb{R}^n \setminus \{0\}; \left| \frac{\xi}{|\xi|} - \frac{\bar{\xi}}{|\bar{\xi}|} \right| < \epsilon \right\}.$$

Make sure you see that this is just a ball around the point in the sphere $\bar{\xi}/|\bar{\xi}| \in \mathbb{S}^{n-1}$ extended radially.

If $u \in \mathcal{C}^{-\infty}(\Omega)$, $\Omega \subset \mathbb{R}^n$ open, the wave front set of u is the subset

(2)
$$WF(u) \subset \Omega \times (\mathbb{R}^n \setminus \{0\})$$

defined in terms of its complement

(3)
$$\Omega \times (\mathbb{R}^n \setminus \{0\}) \ni (\bar{x}, \xi) \notin WF(u) \iff$$

 $\exists \phi \in \mathcal{C}^{\infty}_{c}(\Omega), \ \phi(\bar{x}) \neq 0 \text{ and } \epsilon > 0 \text{ such that}$
 $\sup_{\Gamma} |\xi|^{N} |\mathcal{F}(\phi u)(\xi)| < \infty \ \forall \ N, \ \Gamma = \Gamma(\bar{\xi}, \epsilon).$

The idea is that the wavefront set gives information about the (co-)direction of singularities, not just their position.

Q1. For
$$u \in \mathcal{C}^{-\infty}(\Omega)$$
 show that
(a) WF(u) $\subset \Omega \times (\mathbb{R}^n \setminus \{0\})$ is closed (as a subset of course)
(b) WF(u) is 'conic' i.e.
(4)
(x, \xi) \in WF(u) \Longrightarrow (x, t\xi) \in WF(u), (x, \xi) \in $\Omega \times (\mathbb{R}^n \setminus \{0\})$, $t > 0$.
(c)
(5) WF(u) \subset singsupp(u) $\times (\mathbb{R}^n \setminus \{0\})$.

WF(u) ⊂ singsupp(u) × (ℝⁿ \ {0}).
 Q2. Given ξ̄ ∈ ℝⁿ \ {0} and ε₁ > ε₂ > 0 construct a(n almost) conic cut-off 0 ≤ ψ ∈ S⁰(ℝⁿ) (the symbol space) such that

(6)
$$\operatorname{supp} \psi \subset \Gamma(\bar{\xi}, \epsilon_1), \ \psi = 1 \text{ on } \Gamma(\bar{\xi}, \epsilon_2) \cap \{|\xi| > 2\}.$$

Show that $(\bar{x}, \bar{\xi}) \notin \operatorname{WF}(u)$ is equivalent to

(7)
$$\psi \mathcal{F}(\phi u) \in \mathcal{S}(\mathbb{R}^n) \iff b_{\psi} * (\phi u) \in \mathcal{S}(\mathbb{R}^n), \ \hat{b}_{\psi} = \psi,$$

for some $\phi \in \mathcal{C}^{\infty}_{c}(\Omega), \ \phi(\bar{x}) \neq 0, \ \epsilon_1 > \epsilon_2 > 0.$

Hint:- One way is easy here. The other way the issue is that the definition of WF(u) only gives directly the condition that $b_{\psi} * \phi u \in H^{\infty}(\mathbb{R}^n)$ (the intersection of the Sobolev spaces). You should recall that b_{ψ} is the sum of a compactly supported distribution and an element of $\mathcal{S}(\mathbb{R}^n)$.

Q3. Now show that $(\bar{x}, \bar{\xi}) \notin WF(u)$ implies that for some $\phi \in \mathcal{C}^{\infty}_{c}(\Omega), \ \phi(\bar{x}) \neq 0$ and some cone $\Gamma(\bar{x}, \epsilon), \ \epsilon > 0$

(8)
$$b * (\phi u) \in \mathcal{S}(\mathbb{R}^n) \ \forall \ \hat{b} \in S^m(\mathbb{R}^n), \ \operatorname{supp}(\hat{b}) \subset \Gamma(\bar{\xi}, \epsilon).$$

Hint: This is not hard.

Q4. (a) Recall (you do not have to prove this, I did it in class and it should be in the notes by now – see L16) that if $b \in S^m(\mathbb{R}^n)$ and $\phi \in \mathcal{S}(\mathbb{R}^n)$ then there exist $\phi_\alpha \in \mathcal{S}(\mathbb{R}^n)$ and $b_\alpha \in S^{m-j}$ such that given k there exists $N = N_k$ such that the operator

(9)
$$E_N: u \longmapsto b * (\phi u) - \sum_{|\alpha| \le N} \phi_j(b_j * u)$$

has Schwartz kernel in $\mathcal{C}^k(\mathbb{R}^{2n})$.

(b) Conclude that if (8) holds then for any $\mu \in \mathcal{C}^{\infty}_{c}(\Omega)$

 $b * (\mu \phi u) \in \mathcal{S}(\mathbb{R}^n) \ \forall \ \hat{b} \in S^m(\mathbb{R}^n), \ \operatorname{supp}(\hat{b}) \subset \Gamma(\bar{\xi}, \epsilon).$

Hint: A kernel in $\mathcal{C}^k(\mathbb{R}^{2n})$ defines a map from $H_c^{-k}(\mathbb{R}^n)$ to $H_{\text{loc}}^k(\mathbb{R}^n)$ so as k increases this becomes 'increasingly a smoothing operator'. If you know something about the support properties as well (from its definition) you get more.

(c) Hence deduce that $(\bar{x},\xi) \notin WF(u)$ is equivalent to the apparently stronger statement that for some $\epsilon > 0$

(10)
$$b * (\phi u) \in \mathcal{S}(\mathbb{R}^n) \ \forall \ \phi \in \mathcal{C}^{\infty}_{c}(\Omega), \ \operatorname{supp} \phi \subset B(\bar{x}, \epsilon),$$

 $\hat{b} \in S^m(\mathbb{R}^n), \ \operatorname{supp}(\hat{b}) \subset \Gamma(\bar{\xi}, \epsilon).$

Q5. Show that for any $u \in \mathcal{C}^{-\infty}(\Omega)$ the wavefront set is a refinement of the singular support in the sense that

(11)
$$\pi(WF(u)) = \operatorname{singsupp}(u), \ \pi(x,\xi) = x$$

Q6-Opt. Show the 'microellipticity of elliptic operators': If $P(x, D) = \sum_{|\alpha| \le m} p_{\alpha}(x) D^{\alpha}$ has coefficients $p_{\alpha} \in \mathcal{C}^{\infty}(\Omega)$ and is elliptic in Ω then

(12)
$$WF(P(x,D)u) = WF(u) \ \forall \ u \in \mathcal{C}^{-\infty}(\Omega).$$

Q7-opt. Show that if $u, v \in \mathcal{C}^{-\infty}(\Omega)$ and there is no point $(x, \xi) \in WF(u)$ such that $(x, -\xi) \in WF(v)$ then it is possible to define the product $uv \in \mathcal{C}^{-\infty}(\Omega)$ consistently with multiplication when one element is smooth.

Hint: First think about the corresponding result for singular supports, which is just that $\operatorname{singsupp}(u) \cap \operatorname{singsupp}(v)$ allows you to define uv and try to do something similar.