PROBLEM SET 7, 18.155 DUE NOVEMBER 4, 2016

This week I ask you to think about *unbounded self-adjoint operators* (I mentioned these earlier). By definition this means a linear map

$$A: D(A) \longrightarrow H$$

where $D(A) \subset H$ is a dense linear subspace of a (separable) Hilbert space H and in addition we assume/require symmetry:

$$(Au, v) = (u, Av) \ \forall \ u, v \in D(A)$$

and an adjoint condition:

if $v \in H$ and $D \ni u \longmapsto (Au, v)$ extends to be continuous on H

then $v \in D(A)$.

Q1 Show that if $P(\xi)$ is a real and elliptic polynomial of degree m in n variables and $V \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{n})$ is real-valued then

 $P(D) + V(x) : H^m(\mathbb{R}^n) \longrightarrow L^2(\mathbb{R}^n)$

is an unbounded self-adjoint operator (with $H^m(\mathbb{R}^n)$ as domain).

Hint: Use the density of $\mathcal{S}(\mathbb{R}^n)$ in $H^m(\mathbb{R}^n)$ to get the symmetry condition. If $v \in L^2(\mathbb{R}^n)$ satisfies the adjoint condition then $(P(D) + V)v \in L^2(\mathbb{R}^n)$ and hence $v \in H^m(\mathbb{R}^n)$ by elliptic regularity.

Q2 If A is unbounded self-adjoint show that

- (a) The graph of A is closed in $H \times H$.
- (b) The spectrum, defined as

 $\operatorname{Spec}(A) = \{ z \in \mathbb{C}; A + z \operatorname{Id} : D(A) \longrightarrow H \text{ is not a bijection} \}$

is a closed subset of \mathbb{R} .

(c) $R(z) = (A + z \operatorname{Id})^{-1} \in \mathcal{B}(H)$ for $z \in \mathbb{C} \setminus \operatorname{Spec}(A)$ is holomorphic in z.

Hint:

(

(a) If $(v_n, A(v_n))$ in the graph and $(v_n, Av_n) \to (v, f)$ in $H \times H$ and $u \in D(A)$ then by the by the symmetry condition

1)
$$(Au, v) = \lim_{n} (Au, v_n) = \lim_{n} (u, Av_n) = (u, f)$$

extends by continuity to $u \in H$ so $v \in D(A)$ and Av = f (by symmetry) showing that the graph is closed.

- (b) By symmetry if $u \in D(A)$ then (Au, u) is real. Certainly $A + z : D(A) \longrightarrow H$ and $\operatorname{Im}((A + z)u, u) = \operatorname{Im} z ||u||^2$ so A + z is injective. If $u_n \in D(A)$ and $f_n = Au_n \to f$ in H then $|\operatorname{Im} z|||u_n||^2 = \operatorname{Im}(f_n, u_n) \leq ||f_n|| ||u_n||$. Applying the same inequality to $u_n u_m$ (and assuming z is not real) it follows that u_n is Cauchy and hence converges and so (A + z) is a bijection from D(A) to H. Thus the spectrum is contained in \mathbb{R} . Whenever A + z is a bijection it has an 'alegbraic' inverse, R(z), the graph of which is the 'reverse' of the graph of A+z so as a map $H \longrightarrow H R(z)$ is bounded since its graph is closed. If $z \notin \operatorname{Spec}(A)$ then $R(z)(A + z + t) = \operatorname{Id} + tR(z)$ and similarly for the opposite composition so for |t| small A+z+t is also a bijection. Thus the sectrum is closed and real.
- (c) The Neumann series for $\operatorname{Id} + tR(z)$ converges for small t and shows that R(z) is holomorphic on the open set where it is defined.
- Q3 If A is unbounded self-adjoint let R(i) = UB be the polar decomposition of R(i).
 - (a) Show that $D(A) = \operatorname{Ran}(B)$.
 - (b) If E is the spectral subspace for B corresponding to the interval $(-\infty, \frac{1}{2}]$ then

$$D(A) = E^{\perp} + \operatorname{Ran}(B|_E),$$

 $A:E^{\perp}\longrightarrow E^{\perp}$ is bounded and self-adjoint

 $A: \operatorname{Ran}(B|_E) \longrightarrow E$ is a bijection and

 $A^{-1}: E \longrightarrow E$ is bounded and self-adjoint.

Hint:

(a) Since R(i) has range D(A) it follows from the proof of the polar decomposition that U is unitary – it is a bijection on H. Taking the adjoint $R(-i) = BU^*$ shows that the range of B is equal to the range of R(-i) is D(A). Now R(i) commutes with A and hence with A-i and so with $R(-i) = R(i)^*$ (so R(i) is normal) and hence R(i) commutes with $B^2 = R(-i)R(i)$ and so with B. [Maybe there is an easier way to see this!]

- (b) Any bounded operator that commutes with B maps E to itself and E^{\perp} to itself (from the definition of the E as a spectral subspace for B). It follows that R(i) does this and is invertible on E^{\perp} with inverse A + i; it follows that $E^{\perp} \subset D(A)$ and that $A : E^{\perp} \longrightarrow E^{\perp}$ is bounded and self-adjoint.
- (c) I leave the last part to you!
- Q4 Show how to define $f(A) \in \mathcal{B}(H)$ if A is unbounded self-adjoint and $f \in \mathcal{C}_0(\mathbb{R}; \mathbb{R})$ is real valued and vanishes at infinity to give a continuous linear map

$$\mathcal{C}_0(\mathbb{R};\mathbb{R}) \ni f \longrightarrow f(A) \in \mathcal{B}(H) \text{ s.t.}$$

 $f(A)g(A) = (fg)(A), \ B = (A^2 + 1)^{-\frac{1}{2}}$

where B is given in (Q3).

Hint: Define it separate on E and $E \perp$.

Q5 For the special case of (Q1), $\Delta + V$, $P(\xi) = |\xi|^2$, show that $\operatorname{Spec}(\Delta + V) \subset [M, \infty), \ M = \inf_{x \in \mathbb{R}^n} V(x).$

Hint: Just use the fact that $V - M \ge 0$ to show that $A = \Delta - M + V$ is unbounded self-adjoint with domain $H^2(\mathbb{R}^n)$ and $(Au, u) \ge 0$ so A has no spectrum in $(-\infty, 0)$.

- Q6-Opt Continue (Q5) to show that the part of the spectrum below 0 (if any) consists of a finite number of eigenvalues of finite multiplicity.
- Q7-Opt Under the same conditions as (Q5) show that $\operatorname{Spec}(\Delta + V) \supset [0, \infty)$.