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3. (a) I'll sketch two methods of doing this.

i.

ii.

We first show that U is unitary. Indeed, U is an isometrey from H =im B —

im R(:) = H.! Thus
So, D(A) = im R(—i) = im R(:)* = im BU* = im B.
That D(A) C im B is clear:
R(—i) = R(i)* = BU",
and so D(A) = im R(—i) C im B. For the reverse inculusion, observe that
foru e D(A),v € H,
(Au, Bv) = ((A — i)u, Bv) + i{u, Bv)
= ((A —i)u, Bv) + i{u, Bv)
= ((A—=d)u, (U ()) v) +i{u, Bv)
= (A = i)u, R(i)"U"v) + i(u, Bv)
= (u, U"v) + i{u, Bv),

and so the functional u — (Au, Bv) has a bounded extension to H, and so
Bv € D(A).2

(b) We will start off by proving a few facts about spectral subspaces. These are all
easy to prove if one has a Borel functional calculus coming from a projection-
valued measure, as briefly mentioned in the L14 notes. However we will argue in
a more direct way from the definition of £/ = E)/, given therein.

Lemma 3.1. Suppose L is a bounded operator commuting with B. Then L : E —

E and E+ —

E*. In particular, this is true of L = B.

!This argument has many forms. The present one, which I think is the shortest, is due to Donghao Wang.
2The argument written like this was taken from Julien Clancy.


http://math.mit.edu/~rbm/18.155-F16/L14.pdf

Proof. To show that L : E — E,we need to show that if y € C?((1/2,00)), and
(u, x(B)v) = 0 for all v, then (Lu, x(B)v) = 0, too. Since L commutes with y(B)
taking adjoints shows that this last expression is (u, x(B)Lv) = 0.

We will give two arguments to show that L : E+ — E+. One simple, and another
one which will also be used below.

i. Since B is self-adjoint?®, L* commutes with B, too. If v € E+, then for all v,
(Lu, x(B)v) = (u, x(B)L™v) = 0,

so L: E+ — E+, too.

ii. It is a general fact that
i
(@ CJ) =(¢5
j j
and taking complements on both sides,
1
@ C; = (ﬂ Cj) .
j j

In particular this works if C; = im(x(B))*. So suppose v € E+. This then
happens if and only if

Jn
where x;, € C%(1/2,00). Since L commutes with x;,(B), it follows that
Lue E+. So L: E+t — E+.
[

Lemma 3.2. B is invertible from E+ — E*.

Proof. Set ¢ € CJ(1/3,00) to be any function satisfying ¢(t) = 1/t for t > 1/2.
Then
X(B)¢(B)B = Be(B)x(B) = x(B)

(since to(t)x(t) = x(t)), and p(B) is bounded. If u € E+, then by the above,
u= 1i7rlﬂZXjn(B)an = By(B) (1171?2)0“(3)%) = Bp(B)(u).
Jn Jn

Similarly, p(B)Bu = u. Since ¢(B) commutes with B, it preserves E*, and so
0(B)|pr = B|Ei [

3The argument written like this was taken from Jesse Freeman.

2



Lemma 3.3. Suppose B — X is invertible. Then if x € C°(R) is supported in a
sufficiently small neighbourhood of A, x(B) = 0.

Proof. For simplicity, we assume A = 0. Set ¢(t) = x(1/t). Then ¢ € C(R)
(after setting p(0) = 0). We claim that x(B) = ¢(B™'). It clearly holds for
x = 1. We show it for x(t) = (t — 2z)~! for z € C\ R. This will be sufficient
since by the Stone-Weierstrass theorem for functions vanishing at infinity, such
functions are dense in C§(R). Indeed, taken x,, — x uniformly. Then ¢, — ¢
uniformly, too. Then x,,(B) — x(B) and ¢,(B) — ¢(B) since the assignment is
continuous, and so x(B) = ¢(B).

If x(t) = (t — 2)7%, the o(B™') = B7'(1 — 2B™Y)~!. This is a well-defined
operator since z is not realy and B~ is self-adjoint, so 1/z is not in its spectrum.
It is each to check that B — z is an inverse to this. Since we already know
X(B —z2) = (B —2)"!, we deduce that x(B) = ¢(B™1).

Now, if x is supported close to 0, ¢ is supported close to infinity. By definition
of the functional calculus, as soon as ¢ is not supported in [— ||B~!|, ||B~|],
©(B™1) vanishes, and thus so does x(B).* O

Lemma 3.4. ||B|g|| < 1/2.

Proof. Let ¢ € C°(R) be identically 1 on [—e,1/2] and supported in [a,b] 2
[0,1/2]. Set 1(t) = te(t). By the functional calculus, ||¢(B)|| < max(|al, |b]). We
will show that in fact ¢/(B) = B|g. Approximating 1jg /9 with ¢ € C2(R) then
proves the lemma.
If v € E, then for x € CY([1/2,00), x(B)v € E since x(B) commutes with B.
But

(x(B)v, x(B)v) =0
since x(B)v € E. Sov = (1 — x)(B)v. Let k € C°(R) be any function which
is 0 for t < a, and 1 for ¢ > 0. We want to show that x(B)v = v. Indeed, B is
positive so B — t is invertible for all @ < 0. Using a partition of unity and the
previous lemma, we check that (1 — x)(B)v = 0, which is sufficient.
So, v = (k(1 — x))(B)v if v € E. We may choose &, x so that (1 — x) is 1 on
[a,b], and so (k(t)(1 — x(t)))¥(t) = t(k(t)(1 — x(t)). It follows immediately that

Bv = B(x(1 - \))(B)v = $(B)v.
]

We now return to proving the four required facts.

First, we need to show that im B = Et + im(B|g). It is clear that im B =
im(B|g.) +im(B|g). By definition, B : E+ — E+. Now B is invertible on E*,
so im(B|pL) = E+.

41t would be interesting to give an elementary proof which just used the elementary properties of the
functional calculus (i.e. without using the Borel functional calculus) rather than its construction.
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For the rest, we begin by showing that various operators commute with each
other. It is clear that, at least on D(A), A—1i and R(7) commutes, and thus so do
A and R(i), and thus so do R(—i) and R(i). Since R(—i) = R(i)*, we conclude
that R(i) and R(i)%st commute, at least on D(A). Since both are bounded, they
commute on H. In particular, R(i) commutes with R(i)*R(i) = B?, and thus
R(i) commutes with v B2 = B, too. The same reasoning show that A commutes
with B, at least on D(A).

In particular, R(i) preserves E, and E+. Thus R(i) : E+ — E* is bounded. We
next show that A —i : B+ — E*. The domain makes sense by part (a). We
now show that the codomain is correct. If u € E+, write (A —i)u = v + w,
where v € E+ and w € E. Applying R(i) to both sides and using that R(i)
maps E to E and E+ to E+ means that u — R(i)v = R(i)w, where the left-hand
side is in B+, and the right-hand side is in E. Thus R(i)w = 0, and w = 0, i.e.
(A—d)u=ve B+

Thus A—i = R(i)"! asamap E+ — E* is bounded by the open mapping theorem,
and as a consequence so is A. That A is self-adjoint follows by symmetry on D(A)
and that A is bounded.

Next we show that A :im(B|g) — E. Suppose u € E, and v € E+. Then
(ABu,v) = (Bu, Av)

by symmetry (since B+, im(B|g) € D(A)). But the first argument is in £ and the
second in £+, and so ABu € E++ = E. We just need to show that it is bijective.
First, notice that the graph I'(Alim(s|,)) is closed, being I'(A) N {E x H}.

We give two arguments to show that A : im(B|g) — FE is a bijection, with
bounded inverse, which both ultimately depend on the same observation. We
observe for future reference that im(B|g) is dense in E. This is because if it were,

then D(A) would also not be dense. Also, D(A) N E = im(B|g). This is because
D(A) = im(B|g) + E* is an orthogonal decomposition.
i. First, notice that the graph I'(Alim(p|,)) is closed, being I'(A) N {E x H}.
Next, observe that, at least on D(A),

(AB)* = A’B* =1 — B2
Indeed, this follows since
(A2 +1)B* = (A+i)(A—4)BB = 1.

Both 1 — B? and (AB)? make sense as maps £ — E. We thus wish to prove
that they are the same as maps £ — F.

1 — B?% is clearly bounded as a map on E. Since A has closed graph on
im(B|g) and B is bounded, AB : E — E has closed graph, and is thus
bounded. So (AB)? extends to a bounded operator, too. Since im(B|g) is
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dense, we therefore have that (AB)?> = 1 — B? as maps £ — E, and not
just on D(A). But ||B|] < 1/2 on E by the lemma. So 1 — B> = (AB)?
is invertible £ — FE, and so is AB. This means that A : im(B|g) — E is
bijective.

Its inverse A~! maps E — E. Its graph is closed, being just a homeomorphism
((z,y) = (y,z)) applied to the graph of Alim(s|,), which we know to be closed.

Thus A~! is bounded by the closed graph theorem.

ii. Observe®

A= (A+4i)(1—-1iR()),

at least as maps D(A) — H. Like in the first proof, ||R(i)|| < ||B]| <1 on E.
So (1 —iR(7)) is invertible from E — E. Moreover, (1 —iR(7)) : im(B|g) —
im(B|g) since it commutes with B.

A simple formal computation shows that (1 — iR(i))"'R(—i)A is equal to
the identity map, and the formal computation is valid when the domain is
D(A)NE =im(B|g). So

(1 —iR(i)) ' R(—i)A = Lin(B|n):

and A is injective.
Likewise a formal computation shows that A(1—iR(:)) ' R(—1) is equal to the
identity map. The formal computation is valid on the preimage of im(B|g)
under (1—iR(:)) "' R(—i). Since (1—4R(i))~! is a bijection mapping im(B|g)
to itself and R(—i) is a bijection F — E'N D(A) = im(B|g), the preimage is
just all of E. So

A1 —iR(1)) ' R(—i) = 1g.
Thus A is surjective, with bounded inverse (1 —iR(i))"*R(—i) : E — E (one
can also show directly self-adjointness, but we will not do that here).

Since A is symmetric on im(B|g), to show that A™! is self-adjoint, we need only
use that im(B|g) is dense in E

4. We give two arguments for this.

i. Define f(A) : B+ — E* using the usual functional calculus. Set g(t) = f(1/t).
Then g is bounded and continuous (really extends to be bounded and continuous).
Set f(A) : E — E by f(A) = g(A™!), where the latter is defined using the
functional calculus. f(A) is a bounded operator because g(A™!) is. Observe that
this defines f(A) : H = E + E+ — H, which may seem odd since we may have
D(A) C H, but this is in fact what happens so long as f is bounded. That the
assignment is an algebra homomorphism and is continuous follows from that for
the ordinary calculus, check on E, E+ separately.

®The idea of this argument is due to Donghao Wang, Tim Large and Sarah Tammen. A small modification
was needed to provided to have a complete proof.



Lastly, we need to show that B = (A% + 1)7/2 = (22 + 1)"/2(A). Since square
roots are unique, B> = R(i)R(—1), by the homomorphism properties of the func-
tional calculus it suffices to check that R(Fi) = (z4i)7!(A). On E* this is clear
since we in fact have a polynomial functional calculus which is consistent with the
bounded functional calculus (in the sense that (fp)(A) = f(A)p(A) for a bounded
f and polynomial p).

On E, we use our definition:

1 x 1 At
(w87 (4) = (1im> A7) =1
which makes sense as an operator on E (notice that (1 + A7)~ is well-defined
since A is self-adjoint and 7 is not in its spectrum). Notice that the second equality
follows since we are using the functional calculus on A~!, which we already know
to behave how we need it to. That this is actually R(Fi) is easily checked by
multiplying on the left and right by (A £4) : im(B|g) — F (and using arguments
similar to problem 3 to justify that we expect R(Fi) : E — im(B|g)).

Notice that we used a complex-valued functional calculus here. Of course this
follows from the real-valued calculus, or alternatively the proof of the real calculus
also applies to the complex-valued functional calculus if one uses an extension of
Weierstrass approximation.

ii. We use that unitary operators also have a functional calculus.® The proof of this is
analogous to the one that self-adjoint operators have a functional calculus, except
one uses the unit circle S* C C instead of an interval [— ||A||, || A]|] in the proof.

Observe that (A —i)R(—i) is a bijection H — H. Also, it is an isometry. Indeed
for u € H, using that A + i and A — ¢ commute with each other and are each
others adjoints,

(A — ) R(—i)u, (A — ) R(—i)u) = (A + ) R(—i)u, (A + ) R(—i)u) = (u, u).

Thus (A — i) R(—1) is an isometry.

Let ¢(z) = %=X, One checks that ¢ : R — S is continuous, with inverse 1 :
S"\ {1} — R given by ¢(y) = it5. If f € CY(R), set ®(f) € C°(S") by
(f)(y) = f(¥(y)), and &(f)(1) = 0. We define

f(A) = @(f)((A =) R(—i)).

It is then clear from the functional calculus from unitary operators that the as-
signment is a continuous homomorphism.

Like above we check that R(Fi) = (x +1)7!(A). Using our definition,
N 1 —(A—14)R(—1)
—i)H(A) = :

@ =" = S =R

6This argument is due mostly to Kaavya Valiveti.



Observe that

so the above is

Similarly,

(A—i)R(—i) = (A +i)R(—i) — 2iR(—1),




