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3. (a) I’ll sketch two methods of doing this.

i. We first show that U is unitary. Indeed, U is an isometrey from H = imB →
imR(i) = H.1 Thus
So, D(A) = imR(−i) = imR(i)∗ = imBU∗ = imB.

ii. That D(A) ⊆ imB is clear:

R(−i) = R(i)∗ = BU∗,

and so D(A) = imR(−i) ⊆ imB. For the reverse inculusion, observe that
for u ∈ D(A), v ∈ H,

〈Au,Bv〉 = 〈(A− i)u,Bv〉+ i〈u,Bv〉
= 〈(A− i)u,B∗v〉+ i〈u,Bv〉
= 〈(A− i)u, (U∗R(i))∗v〉+ i〈u,Bv〉
= 〈(A− i)u,R(i)∗U∗v〉+ i〈u,Bv〉
= 〈u, U∗v〉+ i〈u,Bv〉,

and so the functional u 7→ 〈Au,Bv〉 has a bounded extension to H, and so
Bv ∈ D(A).2

(b) We will start off by proving a few facts about spectral subspaces. These are all
easy to prove if one has a Borel functional calculus coming from a projection-
valued measure, as briefly mentioned in the L14 notes. However we will argue in
a more direct way from the definition of E = E1/2 given therein.

Lemma 3.1. Suppose L is a bounded operator commuting with B. Then L : E →
E and E⊥ → E⊥. In particular, this is true of L = B.

1This argument has many forms. The present one, which I think is the shortest, is due to Donghao Wang.
2The argument written like this was taken from Julien Clancy.
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Proof. To show that L : E → E,we need to show that if χ ∈ C0
c ((1/2,∞)), and

〈u, χ(B)v〉 = 0 for all v, then 〈Lu, χ(B)v〉 = 0, too. Since L commutes with χ(B)
taking adjoints shows that this last expression is 〈u, χ(B)Lv〉 = 0.
We will give two arguments to show that L : E⊥ → E⊥. One simple, and another
one which will also be used below.

i. Since B is self-adjoint3, L∗ commutes with B, too. If u ∈ E⊥, then for all v,

〈Lu, χ(B)v〉 = 〈u, χ(B)L∗v〉 = 0,

so L : E⊥ → E⊥, too.
ii. It is a general fact that (⊕

j

Cj

)⊥
=
⋂
j

C⊥j ,

and taking complements on both sides,

⊕
j

Cj =

(⋂
j

C⊥j

)⊥
.

In particular this works if Cj = im(χ(B))⊥. So suppose u ∈ E⊥. This then
happens if and only if

u = lim
n

∑
jn

χjn(B)vjn ,

where χjn ∈ C0
c (1/2,∞). Since L commutes with χjn(B), it follows that

Lu ∈ E⊥. So L : E⊥ → E⊥.

Lemma 3.2. B is invertible from E⊥ → E⊥.

Proof. Set ϕ ∈ C0
0(1/3,∞) to be any function satisfying ϕ(t) = 1/t for t ≥ 1/2.

Then
χ(B)ϕ(B)B = Bϕ(B)χ(B) = χ(B)

(since tϕ(t)χ(t) = χ(t)), and ϕ(B) is bounded. If u ∈ E⊥, then by the above,

u = lim
n

∑
jn

χjn(B)vjn = Bϕ(B)

(
lim
n

∑
jn

χjn(B)vjn

)
= Bϕ(B)(u).

Similarly, ϕ(B)Bu = u. Since ϕ(B) commutes with B, it preserves E⊥, and so
ϕ(B)|E⊥ = B|−1

E⊥ .
3The argument written like this was taken from Jesse Freeman.
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Lemma 3.3. Suppose B − λ is invertible. Then if χ ∈ C0
c (R) is supported in a

sufficiently small neighbourhood of λ, χ(B) = 0.

Proof. For simplicity, we assume λ = 0. Set ϕ(t) = χ(1/t). Then ϕ ∈ C0
b (R)

(after setting ϕ(0) = 0). We claim that χ(B) = ϕ(B−1). It clearly holds for
χ = 1. We show it for χ(t) = (t − z)−1 for z ∈ C \ R. This will be sufficient
since by the Stone-Weierstrass theorem for functions vanishing at infinity, such
functions are dense in C0

0(R). Indeed, taken χn → χ uniformly. Then ϕn → ϕ
uniformly, too. Then χn(B)→ χ(B) and ϕn(B)→ ϕ(B) since the assignment is
continuous, and so χ(B) = ϕ(B).
If χ(t) = (t − z)−1, the ϕ(B−1) = B−1(1 − zB−1)−1. This is a well-defined
operator since z is not realy and B−1 is self-adjoint, so 1/z is not in its spectrum.
It is each to check that B − z is an inverse to this. Since we already know
χ(B − z) = (B − z)−1, we deduce that χ(B) = ϕ(B−1).
Now, if χ is supported close to 0, ϕ is supported close to infinity. By definition
of the functional calculus, as soon as ϕ is not supported in [−‖B−1‖ , ‖B−1‖],
ϕ(B−1) vanishes, and thus so does χ(B).4

Lemma 3.4. ‖B|E‖ ≤ 1/2.

Proof. Let ϕ ∈ C0
c (R) be identically 1 on [−ε, 1/2] and supported in [a, b] ⊇

[0, 1/2]. Set ψ(t) = tϕ(t). By the functional calculus, ‖ψ(B)‖ ≤ max(|a|, |b|). We
will show that in fact ψ(B) = B|E. Approximating 1[0,1/2] with ϕ ∈ C0

c (R) then
proves the lemma.
If v ∈ E, then for χ ∈ C0

c ([1/2,∞), χ(B)v ∈ E since χ(B) commutes with B.
But

〈χ(B)v, χ(B)v〉 = 0

since χ(B)v ∈ E. So v = (1 − χ)(B)v. Let κ ∈ C0(R) be any function which
is 0 for t ≤ a, and 1 for t ≥ 0. We want to show that κ(B)v = v. Indeed, B is
positive so B − t is invertible for all a < 0. Using a partition of unity and the
previous lemma, we check that (1− κ)(B)v = 0, which is sufficient.
So, v = (κ(1 − χ))(B)v if v ∈ E. We may choose κ, χ so that κ(1 − χ) is 1 on
[a, b], and so (κ(t)(1− χ(t)))ψ(t) = t(κ(t)(1− χ(t)). It follows immediately that

Bv = B(κ(1− χ))(B)v = ψ(B)v.

We now return to proving the four required facts.
First, we need to show that imB = E⊥ + im(B|E). It is clear that imB =
im(B|E⊥) + im(B|E). By definition, B : E⊥ → E⊥. Now B is invertible on E⊥,
so im(B|E⊥) = E⊥.

4It would be interesting to give an elementary proof which just used the elementary properties of the
functional calculus (i.e. without using the Borel functional calculus) rather than its construction.
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For the rest, we begin by showing that various operators commute with each
other. It is clear that, at least on D(A), A− i and R(i) commutes, and thus so do
A and R(i), and thus so do R(−i) and R(i). Since R(−i) = R(i)∗, we conclude
that R(i) and R(i)ast commute, at least on D(A). Since both are bounded, they
commute on H. In particular, R(i) commutes with R(i)∗R(i) = B2, and thus
R(i) commutes with

√
B2 = B, too. The same reasoning show that A commutes

with B, at least on D(A).
In particular, R(i) preserves E, and E⊥. Thus R(i) : E⊥ → E⊥ is bounded. We
next show that A − i : E⊥ → E⊥. The domain makes sense by part (a). We
now show that the codomain is correct. If u ∈ E⊥, write (A − i)u = v + w,
where v ∈ E⊥ and w ∈ E. Applying R(i) to both sides and using that R(i)
maps E to E and E⊥ to E⊥ means that u−R(i)v = R(i)w, where the left-hand
side is in E⊥, and the right-hand side is in E. Thus R(i)w = 0, and w = 0, i.e.
(A− i)u = v ∈ E⊥.
Thus A−i = R(i)−1 as a map E⊥ → E⊥ is bounded by the open mapping theorem,
and as a consequence so is A. That A is self-adjoint follows by symmetry on D(A)
and that A is bounded.
Next we show that A : im(B|E)→ E. Suppose u ∈ E, and v ∈ E⊥. Then

〈ABu, v〉 = 〈Bu,Av〉

by symmetry (since E⊥, im(B|E) ⊆ D(A)). But the first argument is in E and the
second in E⊥, and so ABu ∈ E⊥⊥ = E. We just need to show that it is bijective.
First, notice that the graph Γ(A|im(B|E)) is closed, being Γ(A) ∩ {E ×H}.
We give two arguments to show that A : im(B|E) → E is a bijection, with
bounded inverse, which both ultimately depend on the same observation. We
observe for future reference that im(B|E) is dense in E. This is because if it were,
then D(A) would also not be dense. Also, D(A) ∩E = im(B|E). This is because
D(A) = im(B|E) + E⊥ is an orthogonal decomposition.

i. First, notice that the graph Γ(A|im(B|E)) is closed, being Γ(A) ∩ {E ×H}.
Next, observe that, at least on D(A),

(AB)2 = A2B2 = 1−B2.

Indeed, this follows since

(A2 + 1)B2 = (A+ i)(A− i)BB = 1.

Both 1−B2 and (AB)2 make sense as maps E → E. We thus wish to prove
that they are the same as maps E → E.
1 − B2 is clearly bounded as a map on E. Since A has closed graph on
im(B|E) and B is bounded, AB : E → E has closed graph, and is thus
bounded. So (AB)2 extends to a bounded operator, too. Since im(B|E) is
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dense, we therefore have that (AB)2 = 1 − B2 as maps E → E, and not
just on D(A). But ‖B‖ ≤ 1/2 on E by the lemma. So 1 − B2 = (AB)2

is invertible E → E, and so is AB. This means that A : im(B|E) → E is
bijective.
Its inverse A−1 maps E → E. Its graph is closed, being just a homeomorphism
((x, y) 7→ (y, x)) applied to the graph of A|im(B|E), which we know to be closed.
Thus A−1 is bounded by the closed graph theorem.

ii. Observe5

A = (A+ i)(1− iR(i)),

at least as maps D(A)→ H. Like in the first proof, ‖R(i)‖ ≤ ‖B‖ < 1 on E.
So (1− iR(i)) is invertible from E → E. Moreover, (1− iR(i)) : im(B|E)→
im(B|E) since it commutes with B.
A simple formal computation shows that (1 − iR(i))−1R(−i)A is equal to
the identity map, and the formal computation is valid when the domain is
D(A) ∩ E = im(B|E). So

(1− iR(i))−1R(−i)A = 1im(B|E),

and A is injective.
Likewise a formal computation shows that A(1−iR(i))−1R(−i) is equal to the
identity map. The formal computation is valid on the preimage of im(B|E)
under (1− iR(i))−1R(−i). Since (1− iR(i))−1 is a bijection mapping im(B|E)
to itself and R(−i) is a bijection E → E ∩D(A) = im(B|E), the preimage is
just all of E. So

A(1− iR(i))−1R(−i) = 1E.

Thus A is surjective, with bounded inverse (1− iR(i))−1R(−i) : E → E (one
can also show directly self-adjointness, but we will not do that here).

Since A is symmetric on im(B|E), to show that A−1 is self-adjoint, we need only
use that im(B|E) is dense in E

4. We give two arguments for this.

i. Define f(A) : E⊥ → E⊥ using the usual functional calculus. Set g(t) = f(1/t).
Then g is bounded and continuous (really extends to be bounded and continuous).
Set f(A) : E → E by f(A) = g(A−1), where the latter is defined using the
functional calculus. f(A) is a bounded operator because g(A−1) is. Observe that
this defines f(A) : H = E + E⊥ → H, which may seem odd since we may have
D(A) ( H, but this is in fact what happens so long as f is bounded. That the
assignment is an algebra homomorphism and is continuous follows from that for
the ordinary calculus, check on E,E⊥ separately.

5The idea of this argument is due to Donghao Wang, Tim Large and Sarah Tammen. A small modification
was needed to provided to have a complete proof.
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Lastly, we need to show that B = (A2 + 1)−1/2 = (x2 + 1)−1/2(A). Since square
roots are unique, B2 = R(i)R(−i), by the homomorphism properties of the func-
tional calculus it suffices to check that R(∓i) = (x± i)−1(A). On E⊥ this is clear
since we in fact have a polynomial functional calculus which is consistent with the
bounded functional calculus (in the sense that (fp)(A) = f(A)p(A) for a bounded
f and polynomial p).
On E, we use our definition:

(x± i)−1(A) =

(
x

1± ix

)
(A−1) =

A−1

1± iA−1
,

which makes sense as an operator on E (notice that (1 + iA−1)−1 is well-defined
since A is self-adjoint and i is not in its spectrum). Notice that the second equality
follows since we are using the functional calculus on A−1, which we already know
to behave how we need it to. That this is actually R(∓i) is easily checked by
multiplying on the left and right by (A± i) : im(B|E)→ E (and using arguments
similar to problem 3 to justify that we expect R(∓i) : E → im(B|E)).
Notice that we used a complex-valued functional calculus here. Of course this
follows from the real-valued calculus, or alternatively the proof of the real calculus
also applies to the complex-valued functional calculus if one uses an extension of
Weierstrass approximation.

ii. We use that unitary operators also have a functional calculus.6 The proof of this is
analogous to the one that self-adjoint operators have a functional calculus, except
one uses the unit circle S1 ⊆ C instead of an interval [−‖A‖ , ‖A‖] in the proof.
Observe that (A− i)R(−i) is a bijection H → H. Also, it is an isometry. Indeed
for u ∈ H, using that A + i and A − i commute with each other and are each
others adjoints,

〈(A− i)R(−i)u, (A− i)R(−i)u〉 = 〈(A+ i)R(−i)u, (A+ i)R(−i)u〉 = 〈u, u〉.

Thus (A− i)R(−i) is an isometry.
Let ϕ(x) = x−i

x+i
. One checks that ϕ : R → S1 is continuous, with inverse ψ :

S1 \ {1} → R given by ψ(y) = iy+1
1−y . If f ∈ C0

c (R), set Φ(f) ∈ C0(S1) by
Φ(f)(y) = f(ψ(y)), and Φ(f)(1) = 0. We define

f(A) := Φ(f)((A− i)R(−i)).

It is then clear from the functional calculus from unitary operators that the as-
signment is a continuous homomorphism.
Like above we check that R(∓i) = (x± i)−1(A). Using our definition,

(x− i)−1(A) =
1− (A− i)R(−i)
2i(A− i)R(−i)

.

6This argument is due mostly to Kaavya Valiveti.

6



Observe that
(A− i)R(−i) = (A+ i)R(−i)− 2iR(−i),

so the above is
((A− i)R(−i))−1R(−i) = R(i).

Similarly,

(x+ i)−1(A) =
1− (A− i)R(−i)

2i
= R(−i).
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