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6 OCTOBER, 2016

RICHARD MELROSE

Abstract. Notes before and then after lecture.

Read:
This week: Ellipticity of polynomials and elliptic regularity. This pre-lecture

discussion is for both L8 and L9.

Before lecture

• First I want to do a little more localization. For any open set Ω ⊂ Rn we
have defined C∞(Ω) ⊂ C−∞(Ω). There are many space in between these
two, but clearly they need to admit lots of growth near the boundary. We
define

(1) Hs
loc(Ω) = {u ∈ C−∞(Ω);φu ∈ Hs(Rn) ∀ φ ∈ C∞c (Ω)}.

I add a little discussion on these spaces and where we are going with them
for you to check how much you have absorbed about localization and the
identifications and results implicit in this definition. If you can’t follow this
and are brave enough, let me know so I can try to fix things.

– First recall we can multiply distributions on Ω by smooth functions
and then φu ∈ C−∞c (Ω) = (C∞(Ω))′ ⊂ S ′(Rn) by ‘extension as zero’
corresponding by duality to the restriction map S(Rn) −→ C∞(Ω). So
it is meaningful to say φu ∈ Hs(Rn) and hence the definition makes
sense.

– Note that Hs
loc(Rn) is not contained in Hs(Rn). (Why?)

– Then you can think briefly about the topology. We can make Hs
loc(Ω)

into a metric space (it is a Fréchet space) by taking an exhaustion by
compact sets Kj of Ω and corresponding elements φj ∈ C∞c (Ω) such
that φj = 1 in a neighbourhood of Kj . From the requirement that
φju ∈ Hs(Rn) for all j it follows that u ∈ Hs

loc(Ω)? (Why?)
– Then we can define

(2) d(u, v) =
∑
j

2−j
‖φj(u− v)‖Hs

1 + ‖φj(u− v)‖Hs

in terms of Hs norms. Why is this a metric on Hs
loc(Ω) and why is the

space complete?
– Then you might like to check that any differential operator of order m

with smooth coefficients, P =
∑
|α|≤m

aα(x)Dα, aα ∈ C∞(Ω) defines a

continuous linear map P : Hs+m
loc (Ω) −→ Hs

loc(Ω) for every s.
1
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– To orient you a little let me continue. Such a differential operator is
said to be elliptic if the homogeneous polynomials depending on x ∈ Ω
as parameter,

(3) pm(x, ξ) =
∑
|α|=m

aα(x)ξα

do not vanish on Ω× (Rnξ \ {0}).
– Elliptic regularity says that for such an elliptic operator, if u ∈ C−∞(Ω)

and Pu ∈ Hs
loc(Ω) then u ∈ Hs+m

loc (Ω).
– This week we will prove this for constant coefficient differential oper-

ators.
• Another concept I want to introduce now – because it is rather useful and

important – is that of a symbol (technically of type 1 for the moment).
These form a linear space for each order m ∈ R, Sm(Rn) ⊂ C∞(Rn) and
are modelled on two case we already understand. Namely polynomials of
degree (less than or equal to) m and our ‘weight functions’ b = 〈x〉m =
(1 + |x|2)m/2. The latter satisfy estimates

(4) |∂αx b(x)| ≤ Cα〈x〉m−|α| ∀ α.

In words, each derivative lowers the order by one – polynomials do this too
of course.

Really we normally think of symbols as being ‘on the Fourier transform
side’. Clearly Sm(Rn) ⊂ S ′(Rn) and we can state the important result we
want as follows

Theorem 1. If b ∈ Sm(Rn) then v = Gb ∈ S ′(Rn) is such that

(5)
v∗ : Hs(Rn) −→ Hs−m(Rn) ∀ s ∈ R

if χ ∈ C∞c (Rn), χ = 1 near 0 then (1− χ)v ∈ S(Rn) =⇒ singsupp v ⊂ {0}.

• Suppose P (ξ) =
∑
|α|≤m

cαξ
α is a polynomial of degree m then the following

conditions are equivalent
(1) P is elliptic (of order m)

(6) Pm(ξ) =
∑
|α|=m

cαξ
α 6= 0 for ξ ∈ Rn.

(2) There exists c > 0 such that

(7) |P (ξ)| ≥ c|ξ|n in |ξ| > 1/c.

(3) There exists b ∈ S−m(Rn) such that

(8) Pb = 1− φ, φ ∈ C∞c (Rn).

• Probably not until Thursday. If P is an elliptic polynomial, which by
definition is the same as saying P (D) =

∑
|α|≤m

cαD
α, Dj = −i∂j , is an

elliptic operator, and u ∈ C−∞(Ω) is such that P (D)u ∈ Hs
loc(Ω) then

u ∈ Hs+m
loc (Ω).

• First we will prove that if P (D)u ∈ C∞(Ω) then u ∈ C∞(Ω) assuming of
course that P is elliptic. This follows by taking the b in the last part of the
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result immediately above and setting E = χGb where χ ∈ C∞c (Rn) is equal
to 1 near 0. This gives us a ‘convolution parameterix’

(9) P (D)E = δ + ψ, ψ ∈ C∞c (Rn).

The convolution operator defined by E satisfies

(10)

E∗ : C−∞c (Rn) −→ C−∞c (Rn),

singsupp(E ∗ f) ⊂ singsupp(f)

P (D)(E ∗ f) = (P (D)) ∗ f = f + ψ ∗ f.

Now apply this to fj = P (D)(φju) where φj ∈ C∞c (Ω) and φj = 1 in a
neighbourhood of Kj for an exhaustion Kj and it follows that

(11) P (D)(E ∗ (φju)) = E ∗ (P (D)(φju)) = E ∗ fj
= (P (D)E) ∗ (φju) = (δ + ψ) ∗ (φju) = φju+ C∞c (Rn).

However, singsupp(fj)∩Kj = ∅ so singsupp(φju)∩Kj = ∅ from the second
part of (10) but from this, for all j it follows that u ∈ C∞(Ω).

• The Sobolev version is similar.

After lecture

I started off talking about the space Hs
loc(Ω) for an open set Ω ⊂ Rn mostly as

a reminder about how to do things. First the definition

(12) Hs
loc(Ω) = {u ∈ C−∞(Ω) = (C∞c (Ω))′;φu ∈ Hs(Rn), ∀ φ ∈ C∞c (Ω)}.

This involves a few steps. First that φu ∈ C−∞c (Ω) is defined (via the weak defini-
nition φu(ψ) = u(φψ) which makes sense for all ψ ∈ C∞(Ω) because φψ ∈ C∞c (Ω)).
Then that C−∞c (Ω) ↪→ S ′(Rm) by ‘extension as zero outside Ω’ which is dual to the
restriction map

∣∣
Ω
S(Rn) −→ C∞(Ω) so that φu ∈ S ′(Rn) makes sense and then

that Hs(Rn) ⊂ S ′(Rn) is a well-defined subspace.
Then recall that we can find an exhaustion of Ω by compact sets and a corre-

sponding sequence of cut-offs, φj ∈ C∞c (Ω), 0 ≤ φj ≤ 1 (which we don’t use here)
such that for each compact set K b Ω there exists j such that φj = 1 on K (and
so by increasing K a little, maybe for a different j, φj = 1 in a neighbourhood of
K). We can also arrange that φj+1 = 1 in a neighoubrhood of supp(φj) just by
thinning out the sequence a bit.

The point of this sequence is that it allows us to replace the apparently uncount-
able number of conditions in (12) by the countable collection

(13) u ∈ Hs
loc(Ω)⇐⇒ φju ∈ Hs(Rn) ∀ j.

Of course this is a subset of the conditions in (12) so holds if u ∈ Hs
loc(Ω). Con-

versely, the support properties mean that for any φ ∈ C∞c (Ω) there is a j such that
φj = 1 on a neighbourhood of the support of φ and hence φjφ = φ. So from the
right side of (13) it follows that

φu = φφju = φ(φju) ∈ Hs(Rn)

giving the equivalence in (13).
Now, this allows us to see that Hs(Ω) is a Fréchet space. There is a countable

collection of semi-norms defined on it, in this case

(14) ‖u‖j = ‖φju‖Hs
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which collectively capture everything – if ‖u‖j = 0 for all j then φju = 0 for all j
and hence φu = 0 for φ ∈ C∞c (Ω). However this implies that u(φ) = 0, i.e. u = 0 in
C−∞(Ω).

The condition that a space be Fréchet with respect to such a sequence of semi-
norms is that it be complete with respect to the metric

(15) u(u, v) =
∑
j

2−j
‖u− v‖j

1 + ‖u− v‖j
.

We know that a sequence un which is Cauchy with respect to this distance is Cauchy
with respect to each seminorm (check that you DO know this) and hence that φjun
is Cauchy in Hs(Rn) of each j. By the completeness, this implies convergence,
φjun → vj in Hs(Rn). So we need to check that there exists u ∈ Hs

loc(Ω) such that
φju = vj for all j, since this implies φjun → φu. Observe from the properties of the
φj that

φj+1φjun = φjun −→ vj =⇒ φj+1φjun → φjvj+1, vj = φjvj+1.

This means we can define

(16) u(ψ) = lim
j→∞

vj(ψ) ∀ ψ ∈ C∞c (Ω)

where in fact the sequence is constant for each ψ as soon as ψφj = ψ.
I (meaning you) should check that u so defined is an element of C−∞(Ω) and

then un → u in terms of the distance.
So Hs

loc(Ω) is a Fréchet space – and I am assuming you can pretty much ‘see’
this by now.

What doesHs(Ω) being a Fréchet space actually buy us? I did not talk about this
in lecture but I will get to it eventually. Many of the standard results from Banach
spaces carry over, for instance Hahn-Banach. So if you have a linear function
defined on a subspace and continuous there (with respect to the metric) then it
can (provided you believe in the Axiom of Choice or something a little weaker) be
extended to a continous linear functional on the whole space. This is actually just
the usual Hahn-Banach since the original continuity means the absolute value is
bounded by a multiple and this is what Hahn-Banach assumes.

Now, I introduced these spaces mainly to give the corresponding version of elliptic
regularity. For any polynomial of order m

(17) P (D) : Hs+m
loc (Ω) −→ Hs

loc(Ω).

Theorem 2. If P (ξ) is an elliptic polynomial of order m (really a polynomial
elliptic of order m, so it really is of order m and no lower) then for any open set
Ω

(18) u ∈ C−∞(Ω), P (D)u ∈ Hs
loc(Ω) =⇒ u ∈ Hs+m

loc (Ω).

In fact (less usefully) the ‘converse’ is also true – if P (D) is such that this holds
for some non-trivial (non-empty) open set and some s then P (D) must be elliptic
of order m.

Proof. I did this in the case of s = ∞ last time. The key ingredient is the same,
our ‘parametrix’ for P (D) which was constructed last time. Namely we found a
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distribution b ∈ C−∞c (Rn) with the following properties

(19)

P (D)b = δ + v, v ∈ C∞c (Rn)

singsupp(b) ⊂ {0}
b∗ : Hs(Rn) −→ Hs+m(Rn) ∀ s.

You can usefully recall how this was constructed, but for the moment we want to
use it.

The obstruction is that convolution only works on Rn. So we need to cut things
off and this introduces errors. Let’s use our φj ’s to do the cut-offs. The basic ideas
is that b∗, convolution with b, is ‘almost’ an inverse to P (D), specifically
(20)
b ∗ (P (D)w) = P (D)(b ∗ w) = (P (D)b) ∗ w = δ ∗ w + v ∗ w, for any w ∈ C−∞(Rn).

Now, v ∗ w ∈ C∞(Rn). If we apply (20) for w = φj+1u and reorganize

(21) φj+1u = −v ∗ (φj+1u) + b ∗ (P (D)(φj+1u).

We need to use the locality of P (D) to analyze the last term. A cheap way is to
muliply (21) by φj :

(22) φju = −φj(v ∗ (φj+1u)) + φj(b ∗ (P (D)(φj+1u)).

Recall the support properties of convolution:

(23) supp(b ∗ w) ⊂ supp(b) + supp(w) =⇒
singsupp(b ∗ w) ⊂ singsupp(b) + supp(w), b ∈ C−∞c (Rn).

The second part follows from the first, since if b ∈ C∞c (Rn) then b ∗ w ∈ C∞(Rn).
To prove the second part it suffices to show that for any compact set K containing
singsupp(b) (which is compact) in its interior the weaker version holds

singsupp(b ∗ w) ⊂ K + supp(w).

To see this we can use a cut-off ψ ∈ C∞c (K) which is equal to 1 in a neighbourhood
of singsupp(b) – and we know that this exists. This writes b = ψb+ (1−ψ)b where
the second term is smooth so does not contribute to the singular support. So we
can use the first part of (23) to prove the second.

Now, let’s think about the last term in (22). We can expand out the action of
the differential operator on the product

(24) P (D)(φj+1u) = φj+1P (D)u+
∑
|α|<m

ψαD
αu.

Here the sum comes from the terms where at least one derivative lands on the
smooth factor φj+1 – which is why the sum is over |α| < m. This allows an inductive
approach to regularity (which is in the notes somewhere). Instead we can observe
that

(25) supp(ψα) ∩ supp(φj) = ∅.
This follows from the fact that φj+1 = 1 in a neighbourhood of suppφj . So, since
we have differentiated it at least once to get the ψα, (25) follows. Writing out (22)
in this form gives

(26) φju = φj(b ∗ (φj+1P (D)u)) +
∑
|α|<m

φj(b ∗ ψαDαu)− φj(v ∗ (φj+1u))
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where I have written the important term first. The last term is smooth and by
assumption

(27)
P (D)u ∈ Hs

loc(Rn) =⇒ φj(b ∗ (φj+1P (D)u)) ∈ Hs+m(Rn)

singsupp(b ∗ ψαDαu) ⊂ supp(ψα) =⇒ φj(b ∗ ψαDαu) ∈ C∞c (Rn).

The second line here comes from (23), the fact that singsupp(b) = {0} (why can’t
it be smaller? – we only really need inclusion) and then (25) which shows that
φj(b ∗ ψαDαu) has empty singular support, i.e. is smooth.

So we have proved the Sobolev form of elliptic regularity �

I then discussed the efficay of having a fundamental solution. This is a distribu-
tion E ∈ C−∞(Rn) such that

(28) P (D)E = δ.

The most direct use of this comes from setting

(29) u = E ∗ f, f ∈ C−∞c (Rn)

where we need compactness of the support to make sure that the convolution is
well-defined. Then

(30) P (D)u = (P (D)E) ∗ f = δ ∗ f = f.

So, if we have a fundamental solution then for any f ∈ C−∞c (Rn) we can find
u ∈ C−∞(Rn) such that P (D)u = f. Of course the converse is also true since we
can get such an E by setting f = δ.

Question 1. If P (D) is elliptic and E1, E2 are two fundamental solutions what can
be said about the regularity of E1 − E2?

In fact any P (D), other than the zero polynomial, has such a fundamental solu-
tion. I will show this later after talking about Paley-Wiener.

This suggests we think about the mapping properties of P (D) :

(31)

P (D) : C∞(Rn) −→ C∞(Rn)

P (D) : C−∞(Rn) −→ C−∞(Rn)

P (D) : C−∞c (Rn) −→ C−∞c (Rn)

P (D) : C∞c (Rn) −→ C∞c (Rn)

The third map is injective. This follows from the current homework since if
P (D)u = 0 where u has compact support we can take the Fourier transform and
see that

(32) P (ξ)û = 0.

You are supposed to check that û is a smooth function, and since a polynomial is
non-zero on an open dense subset of the reals, it follows from (32) that û = 0 and
hence u = 0. It follows that the fourth map is injective too.

A similar argument shows that this third map can never be surjective except in
the case that P (ξ) s a non-zero constant. This will follow from the Paley-Wiener
theorem later. So let me exclude this case of P (ξ) constant. What is then true is
that the first and second maps are never injective but are surjective. Whereas the
third and fourth maps are always injective but never surjective.
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Proposition 1. The third and fourth maps in (31) have continuous inverses (for
non-trivial P ) .
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