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Abstract. Notes before and then after lecture.

Read: Chapter 3, end of Sect 1.

Before lecture

Last lecture I promised to discuss ‘indefinite integration’ of tempered distribu-
tions, for the moment in one dimension. By the fundamental theorem of calculus
this amounts to discussing the invertibility of the differential operator d/dx.

Lemma 1. The linear map

(1)
d

dx
: S(R) −→ S(R)

is injective with closed range of codimension one and (hence)

(2)
d

dx
: S ′(R) −→ S ′(R)

is surjective with one-dimensional null space.

Exercise 1. Work out what this says about the operator −d2/dx2 which is the
Laplacian in one dimension.

Hint after lecture. If you want to do this ‘properly’, define a generalized inverse for
−d2/dx2 by generalizing (4) below to show that

(3) φ =

∫
R φ√
2π

exp(−x
2

2
) + c(

∫
R
xφ(x))x exp(−x

2

2
)
d2

dx2
η, η ∈ S(R)

where the constant c should be chosen carefully. Since
∫
x exp(−x2/2) = 0 and

x exp(−x2/2) = −d/dx exp(−x2/2) this means that η = Iψ for the correct choice
of constant and the fact that d2/dx2 has closed range of codimension two on S(R)
follows. �

Proof. The injectivity of d/dx on test functions is clear enough since no constant
function other than 0 can be in S(R). To characterize the range we really just need
to integrate but I will write down the answer.

(4) φ ∈ S(R) =⇒ φ =

∫
R φ√
2π

exp(−x
2

2
) +

d

dx
ψ, ψ ∈ S(R).

In fact ψ is unique and the map I : φ 7−→ ψ is a ‘left inverse’ to d/dx so let me
write down the identities you should check

(5) I ◦ d

dx
= Id,

d

dx
◦ I = Id−Π, Π(φ) =

∫
R φ√
2π

exp(−x
2

2
).
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To prove (4) just observe that the difference of φ and Πφ, which is the first term
on the right, has integral 0. So if we define Iφ = ψ by the second equality

(6) Iφ = ψ(x) =

∫ x

−∞
(φ−Πφ) = −

∫ ∞
x

(φ−Πφ)

the third follows by the vanishing of the integral. We certainly get a smooth function
which is rapidly vanishing with all derivatives as x → −∞ from the first equality
and as x→∞ from the second. So indeed I : S(R) −→ S(R) is a continuous linear
map. Estimates on dψ/dx are immediate and the rapid decay estimates on φ follow
from those of φ so that for instance

(7) ‖ψ‖(k) ≤ Ck‖φ‖k+n+1

where need to estimate the integral of φ. This proves (4).
Check that (1) and (5) follow.
Now to get (2) observe that if u ∈ S ′(R) then by the continuity of I we can

define

(8) v(φ) = −u(Iφ) =⇒ dv

dx
(µ) = −v(

dµ

dx
) = u(I

dµ

dx
) = u(µ), ∀ µ ∈ S(R).

This shows the surjectivity on tempered distributions. Similarly if du
dx = 0 then

(9) u(φ) =

∫
φ√
2π
u(exp(−x

2

2
) = c

∫
φ =⇒ u = c is constant

using (4). So the null space of d/dx is indeed one dimensional, spanned by the
constant functions. �

Exercise 2. Write down a left inverse of d/dx on S ′(R) (it is implicit in (8)) and
the identities corresponding to (5) (they are the other way around). Are these two
‘generalized inverses’ unique?

• Support of a continuous function in two ways, C∞c (Ω).
• Compact exhaustion of an open set.
• The topology of C∞c (Ω).
• The space C−∞(Ω) of distributions on an open set
• Restriction including S(Rn) −→ C−∞(Ω).
• Sheaves (the definition only)
• If K ⊂ Ω is a compact subset of an open set then there exists φ ∈ C∞c (Ω)

such that φ = 1 in a neighbourhood of K.
• Vanishing of a distribution on an open set.
• The sheaf properties.
• Support of a distribution
• I actually got o here.
• Singular support of a distribution
• Support and singular support of convolutions
• I hope to get to around here.

(10) C−∞(Rn) ∗ C−∞c (Rn) ⊂ C−∞(Rn).

• Convolution and supports.
• Fundamental solutions of constant coefficient differential operators
• Examples.
• Ellipticity
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• Parametrices

After lecture

I did go through the proof that if K b Ω is a compact subset of an open set then
there exists µ ∈ C∞c (Ω) such that 0 ≤ µ ≤ 1 and µ = 1 in an open set containing
K. If the proof isn’t in the notes I will add one.

I mentioned at the beginning of the Lecture that the Laplacian ∆ = ∂21−· · ·−∂2n
on Rn has similar properties, which we could prove at the moment and will prove
later. Namely

(11)
∆ : S(Rn) −→ S(Rn) is injective and

∆ : S ′(Rn) −→ S ′(Rn) is surjective

where the null space on S(Rn) consists of the infinite dimensional space of harmonic
polynomials. The range on S(Rn) is closed, and consists precisely of those φ ∈
S(Rn) such that

∫
p(x)φ(x) = 0 for every harmonic polynomial p.

I said I would add the proof that the distibution spaces C−∞(Ω) form a sheaf
over Rn (or similarly over any open subset of Rn). We really do not need this ...

The presheaf axioms follow by duality from the inclusions

(12) U ⊂ V ⊂ Rn open =⇒ C∞c (U) ⊂ C∞c (V ) ⊂ C∞c (Rn)

where these ‘inclusions’ involve extending functions as zero outside there initial

domains. Thus the restriction of u ∈ C−∞(V ) to u
∣∣V
U
∈ C−∞(U) is just obtained

by restricting the domain of the linear functional from C∞c (V ) to C∞c (U). It follows

immediately that
∣∣U
U

= Id and that if U ⊂ V ⊂W are all open then

(13)
∣∣V
U
◦
∣∣W
V

=
∣∣W
U
,

the categorical property.
For the sheaf property suppose U =

⋃
α Uα is an open cover and for each α we

are given uα ∈ C−∞(Uα) such that

(14) uα
∣∣Uα
Uα∩Uβ

= uβ
∣∣Uβ
Uα∩Uβ

.

then we wish to show that there is a unique u ∈ C−∞(U) such that

(15) u
∣∣U
Uα

= uα.

Lemma 2. If K b U and U =
⋃
α Uα is an open cover then there exist a finite

collection µj ∈ C∞c (Uαj ) j = 1, . . . , N such that

(16)

N∑
j=1

= 1 in a neighbourhood of K.

Proof. Since K is compact it is covered by a finite number of the Uα. So we can
proceed by induction, showing that if K is covered by N open sets Uj then there
are corresponding µj ∈ C∞c (Uj) summing to 1 in an open set containing K. We
did this explicitly when there is one open set. Suppose there are N and consider
K ′ = K \ U1 b

⋃
j>1 . We can apply the inductive hypothesis and find functions

µ′j ∈ C∞c (Uj), j > 1, summing to 1 in an open set V ⊃ K ′. Then we can find
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µ′1 ∈ C∞c (U1) such that µ′1 = 1 in an open set containing K \ V ⊂ U1. It follows
that together with the µj for j > 1,

(17) µ1 = µ′1(1−
∑
j>1

µ′j) ∈ C∞c (U1), µj = (1− µ′1)µ′j , j > 1.

Then on an open set contaning K \ V µ′1 = 1 so µ1 = (1−
∑
j>1

µ′j) and µj = µ′j for

j > 1 and on an open set containing K ′ mu1 = µ′1 and
∑
j>1

µj = (1 − µ′1) so these

functions fulfil the inductive hypothesis for N sets. �

Now returning to the sheaf property, given the covering Uα and φ ∈ C∞c (U) then
we can apply the Lemma for K = supp(φ) and set

(18) u(φ) =
∑
j

uαj (µjφ)

for some finite subcover. Since the µj depend only on the choice of some compact
set K, u is continuous on C∞c (K).

In fact u is independent of the choice of the µj , since if νl, which may correspond
to a different finite open subcover Uβl of K, we can use the fact that

∑
l

νl = 1 in

an open set containing K and hence all the supports of the µjφ) to write

(19)
∑
j

uαj (µjφ) =
∑
l

∑
j

uαj (νlµjφ) =
∑
l

∑
j

uβl(νlµjφ) =
∑
l

uβl(νlφ)

where we use the consistency condition (14).
To see that u satisfies (15), suppose that φ ∈ C∞(Uα) for some α. The definition

(18) then corresponds to an open cover of a compact subset of Uα, so each µjφ in
(18) has support in Uα ∩ uαj , so indeed

(20) uαj (µjφ) = uα(µjφ) =⇒ u(φ) = uα(φ).

That u it is unique follows from a similar argument.
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