18.155 LECTURE 6 27 SEPTEMBER, 2106

RICHARD MELROSE

ABSTRACT. Notes before and then after lecture.

Read: Chapter 3, end of Sect 1.

Before lecture

Last lecture I promised to discuss 'indefinite integration' of tempered distributions, for the moment in one dimension. By the fundamental theorem of calculus this amounts to discussing the invertibility of the differential operator d/dx.

Lemma 1. The linear map

(1)
$$\frac{d}{dx}: \mathcal{S}(\mathbb{R}) \longrightarrow \mathcal{S}(\mathbb{R})$$

is injective with closed range of codimension one and (hence)

(2)
$$\frac{d}{dx}: \mathcal{S}'(\mathbb{R}) \longrightarrow \mathcal{S}'(\mathbb{R})$$

is surjective with one-dimensional null space.

Exercise 1. Work out what this says about the operator $-d^2/dx^2$ which is the Laplacian in one dimension.

Hint after lecture. If you want to do this 'properly', define a generalized inverse for $-d^2/dx^2$ by generalizing (4) below to show that

(3)
$$\phi = \frac{\int_{\mathbb{R}} \phi}{\sqrt{2\pi}} \exp(-\frac{x^2}{2}) + c(\int_{\mathbb{R}} x\phi(x))x \exp(-\frac{x^2}{2})\frac{d^2}{dx^2}\eta, \ \eta \in \mathcal{S}(\mathbb{R})$$

where the constant c should be chosen carefully. Since $\int x \exp(-x^2/2) = 0$ and $x \exp(-x^2/2) = -d/dx \exp(-x^2/2)$ this means that $\eta = I\psi$ for the correct choice of constant and the fact that d^2/dx^2 has closed range of codimension two on $\mathcal{S}(\mathbb{R})$ follows.

Proof. The injectivity of d/dx on test functions is clear enough since no constant function other than 0 can be in $\mathcal{S}(\mathbb{R})$. To characterize the range we really just need to integrate but I will write down the answer.

(4)
$$\phi \in \mathcal{S}(\mathbb{R}) \Longrightarrow \phi = \frac{\int_{\mathbb{R}} \phi}{\sqrt{2\pi}} \exp(-\frac{x^2}{2}) + \frac{d}{dx} \psi, \ \psi \in \mathcal{S}(\mathbb{R}).$$

In fact ψ is unique and the map $I: \phi \mapsto \psi$ is a 'left inverse' to d/dx so let me write down the identities you should check

(5)
$$I \circ \frac{d}{dx} = \mathrm{Id}, \ \frac{d}{dx} \circ I = \mathrm{Id} - \Pi, \ \Pi(\phi) = \frac{\int_{\mathbb{R}} \phi}{\sqrt{2\pi}} \exp(-\frac{x^2}{2}).$$

RICHARD MELBOSE

To prove (4) just observe that the difference of ϕ and $\Pi \phi$, which is the first term on the right, has integral 0. So if we define $I\phi = \psi$ by the second equality

(6)
$$I\phi = \psi(x) = \int_{-\infty}^{x} (\phi - \Pi\phi) = -\int_{x}^{\infty} (\phi - \Pi\phi)$$

the third follows by the vanishing of the integral. We certainly get a smooth function which is rapidly vanishing with all derivatives as $x \to -\infty$ from the first equality and as $x \to \infty$ from the second. So indeed $I: \mathcal{S}(\mathbb{R}) \longrightarrow \mathcal{S}(\mathbb{R})$ is a continuous linear map. Estimates on $d\psi/dx$ are immediate and the rapid decay estimates on ϕ follow from those of ϕ so that for instance

(7)
$$\|\psi\|_{(k)} \le C_k \|\phi\|_{k+n+1}$$

where need to estimate the integral of ϕ . This proves (4).

Check that (1) and (5) follow.

Now to get (2) observe that if $u \in \mathcal{S}'(\mathbb{R})$ then by the continuity of I we can define

(8)
$$v(\phi) = -u(I\phi) \Longrightarrow \frac{dv}{dx}(\mu) = -v(\frac{d\mu}{dx}) = u(I\frac{d\mu}{dx}) = u(\mu), \ \forall \ \mu \in \mathcal{S}(\mathbb{R}).$$

This shows the surjectivity on tempered distributions. Similarly if $\frac{du}{dx} = 0$ then

(9)
$$u(\phi) = \frac{\int \phi}{\sqrt{2\pi}} u(\exp(-\frac{x^2}{2})) = c \int \phi \Longrightarrow u = c \text{ is constant}$$

using (4). So the null space of d/dx is indeed one dimensional, spanned by the constant functions.

Exercise 2. Write down a *left* inverse of d/dx on $\mathcal{S}'(\mathbb{R})$ (it is implicit in (8)) and the identities corresponding to (5) (they are the other way around). Are these two 'generalized inverses' unique?

- Support of a continuous function in two ways, $C_{c}^{\infty}(\Omega)$.
- Compact exhaustion of an open set.
- The topology of C[∞]_c(Ω).
 The space C^{-∞}(Ω) of distributions on an open set
- Restriction including $\mathcal{S}(\mathbb{R}^n) \longrightarrow \mathcal{C}^{-\infty}(\Omega)$.
- Sheaves (the definition only)
- If $K \subset \Omega$ is a compact subset of an open set then there exists $\phi \in \mathcal{C}^{\infty}_{c}(\Omega)$ such that $\phi = 1$ in a neighbourhood of K.
- Vanishing of a distribution on an open set.
- The sheaf properties.
- Support of a distribution
- I actually got o here.
- Singular support of a distribution
- Support and singular support of convolutions
- I hope to get to around here.

$$\mathcal{C}^{-\infty}(\mathbb{R}^n) * \mathcal{C}^{-\infty}_{c}(\mathbb{R}^n) \subset \mathcal{C}^{-\infty}(\mathbb{R}^n)$$

- Convolution and supports.
- Fundamental solutions of constant coefficient differential operators
- Examples.

(10)

• Ellipticity

• Parametrices

AFTER LECTURE

I did go through the proof that if $K \Subset \Omega$ is a compact subset of an open set then there exists $\mu \in \mathcal{C}^{\infty}_{c}(\Omega)$ such that $0 \leq \mu \leq 1$ and $\mu = 1$ in an open set containing K. If the proof isn't in the notes I will add one.

I mentioned at the beginning of the Lecture that the Laplacian $\Delta = \partial_1^2 - \cdots - \partial_n^2$ on \mathbb{R}^n has similar properties, which we could prove at the moment and will prove later. Namely

(11)
$$\Delta : \mathcal{S}(\mathbb{R}^n) \longrightarrow \mathcal{S}(\mathbb{R}^n) \text{ is injective and} \\ \Delta : \mathcal{S}'(\mathbb{R}^n) \longrightarrow \mathcal{S}'(\mathbb{R}^n) \text{ is surjective}$$

where the null space on $\mathcal{S}(\mathbb{R}^n)$ consists of the infinite dimensional space of harmonic polynomials. The range on $\mathcal{S}(\mathbb{R}^n)$ is closed, and consists precisely of those $\phi \in \mathcal{S}(\mathbb{R}^n)$ such that $\int p(x)\phi(x) = 0$ for every harmonic polynomial p.

I said I would add the proof that the distibution spaces $\mathcal{C}^{-\infty}(\Omega)$ form a sheaf over \mathbb{R}^n (or similarly over any open subset of \mathbb{R}^n). We really do not need this ...

The presheaf axioms follow by duality from the inclusions

(12)
$$U \subset V \subset \mathbb{R}^n \text{ open } \Longrightarrow \mathcal{C}^{\infty}_{c}(U) \subset \mathcal{C}^{\infty}_{c}(V) \subset \mathcal{C}^{\infty}_{c}(\mathbb{R}^n)$$

where these 'inclusions' involve extending functions as zero outside there initial domains. Thus the restriction of $u \in \mathcal{C}^{-\infty}(V)$ to $u\Big|_U^V \in \mathcal{C}^{-\infty}(U)$ is just obtained by restricting the domain of the linear functional from $\mathcal{C}_c^{\infty}(V)$ to $\mathcal{C}_c^{\infty}(U)$. It follows immediately that $\Big|_U^U = \text{Id}$ and that if $U \subset V \subset W$ are all open then

$$(13) |_U^V \circ |_V^W = |_U^W,$$

the categorical property.

For the sheaf property suppose $U = \bigcup_{\alpha} U_{\alpha}$ is an open cover and for each α we are given $u_{\alpha} \in \mathcal{C}^{-\infty}(U_{\alpha})$ such that

(14)
$$u_{\alpha}\Big|_{U_{\alpha}\cap U_{\beta}}^{U_{\alpha}} = u_{\beta}\Big|_{U_{\alpha}\cap U_{\beta}}^{U_{\beta}}$$

then we wish to show that there is a unique $u \in \mathcal{C}^{-\infty}(U)$ such that

(15)
$$u\Big|_{U_{\alpha}}^{U} = u_{\alpha}.$$

Lemma 2. If $K \in U$ and $U = \bigcup_{\alpha} U_{\alpha}$ is an open cover then there exist a finite collection $\mu_j \in C_c^{\infty}(U_{\alpha_j})$ $j = 1, \ldots, N$ such that

(16)
$$\sum_{j=1}^{N} = 1 \text{ in a neighbourhood of } K.$$

Proof. Since K is compact it is covered by a finite number of the U_{α} . So we can proceed by induction, showing that if K is covered by N open sets U_j then there are corresponding $\mu_j \in \mathcal{C}^{\infty}_c(U_j)$ summing to 1 in an open set containing K. We did this explicitly when there is one open set. Suppose there are N and consider $K' = K \setminus U_1 \Subset \bigcup_{j>1}$. We can apply the inductive hypothesis and find functions $\mu'_j \in \mathcal{C}^{\infty}_c(U_j)$, j > 1, summing to 1 in an open set $V \supset K'$. Then we can find

RICHARD MELROSE

 $\mu'_1 \in \mathcal{C}^{\infty}_{c}(U_1)$ such that $\mu'_1 = 1$ in an open set containing $K \setminus V \subset U_1$. It follows that together with the μ_j for j > 1,

(17)
$$\mu_1 = \mu'_1(1 - \sum_{j>1} \mu'_j) \in \mathcal{C}^{\infty}_{c}(U_1), \ \mu_j = (1 - \mu'_1)\mu'_j, \ j > 1.$$

Then on an open set containing $K \setminus V \mu'_1 = 1$ so $\mu_1 = (1 - \sum_{j>1} \mu'_j)$ and $\mu_j = \mu'_j$ for j > 1 and on an open set containing $K' mu_1 = \mu'_1$ and $\sum_{j>1} \mu_j = (1 - \mu'_1)$ so these functions fulfil the inductive hypothesis for N sets.

Now returning to the sheaf property, given the covering U_{α} and $\phi \in \mathcal{C}^{\infty}_{c}(U)$ then we can apply the Lemma for $K = \operatorname{supp}(\phi)$ and set

(18)
$$u(\phi) = \sum_{j} u_{\alpha_j}(\mu_j \phi)$$

for some finite subcover. Since the μ_j depend only on the choice of some compact set K, u is continuous on $\mathcal{C}^{\infty}_{c}(K)$.

In fact u is independent of the choice of the μ_j , since if ν_l , which may correspond to a different finite open subcover U_{β_l} of K, we can use the fact that $\sum_l \nu_l = 1$ in an open set containing K and hence all the supports of the $\mu_j \phi$) to write

(19)
$$\sum_{j} u_{\alpha_j}(\mu_j \phi) = \sum_{l} \sum_{j} u_{\alpha_j}(\nu_l \mu_j \phi) = \sum_{l} \sum_{j} u_{\beta_l}(\nu_l \mu_j \phi) = \sum_{l} u_{\beta_l}(\nu_l \phi)$$

where we use the consistency condition (14).

To see that u satisfies (15), suppose that $\phi \in \mathcal{C}^{\infty}(U_{\alpha})$ for some α . The definition (18) then corresponds to an open cover of a compact subset of U_{α} , so each $\mu_j \phi$ in (18) has support in $U_{\alpha} \cap u_{\alpha_j}$, so indeed

(20)
$$u_{\alpha_j}(\mu_j \phi) = u_\alpha(\mu_j \phi) \Longrightarrow u(\phi) = u_\alpha(\phi).$$

That u it is unique follows from a similar argument.

Department of Mathematics, Massachusetts Institute of Technology $E\text{-}mail \ address: rbm@math.mit.edu$