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RICHARD MELROSE

ABSTRACT. Notes before and then after lecture.

Read: Chapter 3, end of Sect 1.

BEFORE LECTURE

Last lecture I promised to discuss ‘indefinite integration’ of tempered distribu-
tions, for the moment in one dimension. By the fundamental theorem of calculus
this amounts to discussing the invertibility of the differential operator d/dz.

Lemma 1. The linear map
d

1 — SR SR

(1) = S(R) — S(R)

is injective with closed range of codimension one and (hence)
d

2 —:SR) — S’ (R

) = S'(R) — S'(R)

is surjective with one-dimensional null space.

Erercise 1. Work out what this says about the operator —d?/dxz? which is the
Laplacian in one dimension.

Hint after lecture. If you want to do this ‘properly’, define a generalized inverse for
—d?/dz? by generalizing (4) below to show that

® o= Blap- D) vol [ aste)ren(-T) D ne S®

where the constant ¢ should be chosen carefully. Since [ xexp(—z?/2) = 0 and
rexp(—22/2) = —d/dx exp(—x?/2) this means that n = I for the correct choice
of constant and the fact that d?/dz? has closed range of codimension two on S(RR)
follows. .

Proof. The injectivity of d/dx on test functions is clear enough since no constant
function other than 0 can be in S(R). To characterize the range we really just need
to integrate but I will write down the answer.

() b SR = o= 2L (-2
In fact 1 is unique and the map I : ¢ — 1 is a ‘left inverse’ to d/dz so let me
write down the identities you should check

57 w,weS< )-

(5) rol —1a, Lor—ta-m m(e) = Je ¢ exp(—

dz dz Vor )
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To prove (4) just observe that the difference of ¢ and II¢, which is the first term
on the right, has integral 0. So if we define ¢ = i by the second equality

(6) I¢:w(x>=f (¢—H¢>:—/w<¢—n¢>

the third follows by the vanishing of the integral. We certainly get a smooth function
which is rapidly vanishing with all derivatives as © — —oo from the first equality
and as ¥ — oo from the second. So indeed I : S(R) — S(R) is a continuous linear
map. Estimates on di/dx are immediate and the rapid decay estimates on ¢ follow
from those of ¢ so that for instance

(7) 19l ky < Crllpllisnta
where need to estimate the integral of ¢. This proves (4).

Check that (1) and (5) follow.

Now to get (2) observe that if u € S’'(R) then by the continuity of I we can
define

8 vg) = —ullg) = To(n) = —o() = u(T %) = u(u), ¥ p e SR).

This shows the surjectivity on tempered distributions. Similarly if % = 0 then

K x?

9 U = “—u(exp(——) =c¢ — u = c is constant

©) (@)= <pmutexp(~) =c [ 0
using (4). So the null space of d/dzx is indeed one dimensional, spanned by the
constant functions. O

Ezercise 2. Write down a left inverse of d/dx on S'(R) (it is implicit in (8)) and
the identities corresponding to (5) (they are the other way around). Are these two
‘generalized inverses’ unique?

Support of a continuous function in two ways, C2°().
Compact exhaustion of an open set.

The topology of C°(2).

The space C~°°(Q2) of distributions on an open set
Restriction including S(R™) — C~°°(Q).

Sheaves (the definition only)

If K C Qis a compact subset of an open set then there exists ¢ € C°(Q2)
such that ¢ = 1 in a neighbourhood of K.

Vanishing of a distribution on an open set.

The sheaf properties.

Support of a distribution

I actually got o here.

Singular support of a distribution

Support and singular support of convolutions

I hope to get to around here.

(10) C™°[R") « C*°(R™) C CT°(R"™).
Convolution and supports.
Fundamental solutions of constant coefficient differential operators

Examples.
Ellipticity
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e Parametrices

AFTER LECTURE

I did go through the proof that if K € (2 is a compact subset of an open set then
there exists p € C°(Q2) such that 0 < y <1 and p = 1 in an open set containing
K. If the proof isn’t in the notes I will add one.

I mentioned at the beginning of the Lecture that the Laplacian A = 97 —- . — 92
on R™ has similar properties, which we could prove at the moment and will prove
later. Namely

A: S(R™) — S(R™) is injective and

11
(11) A: S (R") — S'(R™) is surjective

where the null space on S(R™) consists of the infinite dimensional space of harmonic
polynomials. The range on S(R™) is closed, and consists precisely of those ¢ €
S(R™) such that [ p(z)é(x) = 0 for every harmonic polynomial p.
I said I would add the proof that the distibution spaces C~°°(Q2) form a sheaf
over R™ (or similarly over any open subset of R™). We really do not need this ...
The presheaf axioms follow by duality from the inclusions

(12) UcCV CR"open = CX(U) CCF(V)CCERM)

where these ‘inclusions’ involve extending functions as zero outside there initial
domains. Thus the restriction of u € C™>°(V) to u|x € C7°°(U) is just obtained
by restricting the domain of the linear functional from C° (V) to C°(U). It follows
immediately that g = Id and that if U C V C W are all open then

v W W
(13) lwely =l
the categorical property.
For the sheaf property suppose U = |J,, U, is an open cover and for each a we
are given u, € C~°°(U,) such that

Up
U(!ﬁUg :

Ua
(14) ua|UuﬂUB = ug
then we wish to show that there is a unique v € C~°°(U) such that
(15) u|g = Ugq.

Lemma 2. If K € U and U = |J, U, is an open cover then there exist a finite
collection pj € C3°(Us,) j=1,..., N such that

N
(16) Z =1 in a neighbourhood of K.
j=1

Proof. Since K is compact it is covered by a finite number of the U,. So we can
proceed by induction, showing that if K is covered by N open sets U; then there
are corresponding p; € C°(U;) summing to 1 in an open set containing K. We
did this explicitly when there is one open set. Suppose there are N and consider
K =K\Uy el i>1 We can apply the inductive hypothesis and find functions
py € C2(Uj), j > 1, summing to 1 in an open set V' O K'. Then we can find
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wy € C(Uy) such that pf = 1 in an open set containing K \ V' C U;. It follows
that together with the p; for j > 1,

(17) pr = pi (1= ph) € C(Uh), pj = (1—ph)p, § > 1.
j>1
Then on an open set contaning K \ V' pj =10 1 = (1 — > pf) and pj = i for
j>1
j > 1 and on an open set containing K’ muy = pf and Y pu; = (1 — pj) so these
j>1
functions fulfil the inductive hypothesis for IV sets. O

Now returning to the sheaf property, given the covering U, and ¢ € C>°(U) then
we can apply the Lemma for K = supp(¢) and set

(18) u(9) = D ta, (10)

for some finite subcover. Since the p; depend only on the choice of some compact
set K, u is continuous on CS°(K).
In fact u is independent of the choice of the p;, since if v;, which may correspond

to a different finite open subcover Ug, of K, we can use the fact that > 1, =1 in
1
an open set containing K and hence all the supports of the p,;¢) to write

(19) ) e, (15 8) = DYt (i) = > Y ug (vipgd) = up, (1)
J [ [ ]

where we use the consistency condition (14).

To see that u satisfies (15), suppose that ¢ € C>°(U,,) for some a. The definition
(18) then corresponds to an open cover of a compact subset of U,, so each p;¢ in
(18) has support in Uy N g, so indeed
(20) Ua, (1) = va(pj®) = u(P) = ta(9).

That v it is unique follows from a similar argument.
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