
18.155 LECTURE 5

22 SEPTEMBER, 2016

RICHARD MELROSE

Abstract. Notes before and then, eventually, after lecture.

Read: Chapter 3, section 8 – but it isn’t written. I will try to write something
up before (but more likely after) the lecture. See below.

Before lecture

• Duality and (Hs(Rn))′ = H−s(Rn).
• Distributions independent of one variable.

If ψ ∈ S(R) then
∫ x
−∞ ψ(t)dt ∈ S(R) iff

∫
ψ = 0.

If φ ∈ S(R) then φ(x) = 1√
2π

(
∫
φ) exp(−x

2

2 ) + ψ, ψ ∈ S,
∫
ψ = 0.

• Can we solve du
dx = f in tempered distributions?

What we need is u(−dφdx ) = f(φ).
• Holomorphic functions of one variable. Uniqueness of holomorphic contin-

uation. Holomorphic functions valued in S ′(R), weak holomorphy.
• The tempered distributions, xz+ ∈ S ′(R) Re z > 0.

• Holomorphy of the integral
∫∞
0
xzφ(x), φ ∈ S(R).

• The identity x∂xx
z
+ = zxz+, Re z > 1.

•
∫∞
0
xzφ(x) = −1

z+1

∫∞
0
xz+1 d

dxφ(x), Re z > 1.

• Holomorphic extension of xz+ to z ∈ C \ (−N).
• Delta distributions at the origin.
• Residue at z = −k.
• Regularized value at z = −k.
• xz− = (−x)z+.

• (x+ i0)z = exp(z log(x+ i0)) = xz+ + eiπzxz− is entire.
• Linear transformations and S ′(Rn).
• All homogeneous tempered distributions on R – we need some more theo-

rems.
• Homogeneity in higher dimensions, similarly but more complicated. We

will do it.

After lecture

I did not discuss the solvability of d/dx – I will do this first on Tuesday and show
that

(1)

d

dx
: S(R) −→ S(R) is injective with range of codimension 1

d

dx
: S ′(R) −→ S ′(R) is surjective with null space of codimension 1.

1
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Here is a preliminary version of the treatment of homogeneous distributions in
dimension one which will make it to the notes sometime soon; I may need to squash
some typos first.

On R for each z ∈ R, Re z > 0 the functions (using the standard branch of the
logarithm)

xz+ =

{
xz = exp(z log x) x > 0

0 x ≤ 0
and xz1 =

{
0 x ≥ 0

(−x)z = exp(z log(−x)) x < 0

are continuous and of slow growth, |xz±| ≤ |x|Re z, so they define tempered distri-
butions as usual,

xz±(φ) =

∫ ∞
0

xzφ(±x)dx.

Definition 1. A map uz : Ω −→ S ′(Rn) on an open set Ω ⊂ C is said to be (weakly)
holomorphic if for each φ ∈ S ′(Rn) the composite maps

(2) Ω 3 z 7−→ uz(φ)C, φ ∈ S(Rn),

given by evaluating on any test function, are holomorphic in the usual sense.

Lemma 1. The functions xz± are holomorphic with values in S ′(R) in the half-plane
Ω = {z; Re z > 0}.

Proof. This is just saying that for each φ ∈ S(R) the integrals

(3)

∫ ∞
0

xzφ(±x)dx, φ ∈ S(R)

are holomorphic as functions of z. In fact this follows from the holomorphy of xz in
the usual sense. The derivative of xz in x > 0 with respect to Re z is xz log x and
similarly for Im z. For Re z > 0 the difference quotients involved converge uniformly
on [0,∞) when multiplied by φ so in fact the integrand, as a function of Re z+i Im z
is continuously differentiable and satisfies the Cauchy-Riemann equations

(4) (∂Re z − i∂Im z)

∫ ∞
0

xzφ(±x)dx = 0.

Thus the family of distributions is (weakly) holomorphic. �

One reason we are interested in the holomorphy of this family is the ‘uniqueness
of holomorphic continuation’. If Ω2 ⊃ Ω1 are open subsets of C with Ω2 connected
and u is holomorphic on Ω1 then there can be at most one holomorphic function v
on Ω2 equal to u on Ω1. Of course in general there is no such function but the point
is that two holomorphic functions on the same connected open set which are equal
on an open neighourhood of any one point are equal throughout the open set.

To see why this is of interest, suppose for the moment that Re z > 1. Then as a
function xz+ is continuously differentiable (in x for each fixed z) and satisfies

(5)
dxz+
dx

= zxz−1+ .

Changing the variable to z + 1 this can be written

(6) xz+ =
1

z + 1

d

dx
xz+1
+ , Re z > 0.



L5 3

This same equation holds in the distributional sense, so for any φ ∈ S(R),

(7) xz+(φ) =
1

z + 1
xz+1
+ (−dφ

dx
),Re z > 0.

This of course amounts to an equality of integrals as in (3). The relevant observation
is that the term on the right is actually holomorphic in Re(z+1) > 0, i.e. Re z > −1.
Since it is equal to the holomorphic function on the left for Re z > 0, that function
must itself be holomorphic in Re z > −1. This argument can be iterated.

Lemma 2. The pairing xz±(φ) for any φ ∈ S(R), extends to be holomorphic in
C \ −N with only simple poles at the negative integers and defines a tempered dis-
tribution for each z /∈ −N.

Proof. We have just seen that the left side of (7) is holomorphic in Re z > −1 for
each φ, so the right side is holomorphic in Re z > −1 except for a (possible) pole
at z = −1. This argument can be continued.

Alternatively, we can iterate the formula (7) itself, initially in Re z >> 0, to see
that for any k ∈ N,

(8) xz+(φ) =
1

(z + 1) . . . (z + k)
xz+k+ ((−1)k

dkφ

dxk
).

This shows the existence of the meromorphic extension to Re z > −k directly and
it also follows that for any z /∈ −N, with Rex > −k, there is a bound

(9) |xz+(φ)| = | 1

(z + 1) . . . (z + k)
xz+k+ ((−1)k

dkφ

dxk
)|

≤ Cz sup
x≥0
‖(1 + |x|2)

dkφ

dxk
| ≤ Cz‖φ‖(k+2),

so xz+ is indeed a tempered distribution.
Of course similar arguments apply to xz−. �

As a function for Re z > 0, xz+ is positively homogeneous of complex degree z.
This just means that if a > 0 then

(ax)z+ = azxz+.

Thinking of xz+ = µz as a distribution we can see this in a weak form as

(10)

µz(x)(ϕ(
x

a
)) =

∫ ∞
0

xzϕ(
x

a
)dx

= az+1

∫ ∞
0

tzϕ(t)dt

= az+1µz(φ)

Thus we define homogeneity of degree z for a tempered distribution in one dimen-
sion by requiring that the identity

(11) u(φ(
·
a

) = az+1u(φ), ∀ a > 0, φ ∈ S(R)

hold.

Proposition 1. For any z ∈ C there is precisely a 2-dimensional space of homo-
geneous (tempered) distributions on R of degree z; for z /∈ −N it is spanned by xz+
and xz−
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Proof. Since the identity (10) holds for Re z > 0 and both sides are holomorphic
in z it too must hold for all z /∈ −N. So to see that the space of homogeneous
distributions is at least 2-dimensional for each such z we only need to show that
xz+ and xz− are linearly independent.

To see this, observe that if φ ∈ S(R) vanishes in say |x| < 1 then the integrals in
(3) are both defined for all z ∈ C and so define entire, i.e. everywhere holomorphic,
functions which must reduce to xz±(φ) by the uniqueness of analytic continuation.
Since xz+(φ) = 0 if φ(x) = 0 in x > −1 and xz−(φ) = 0 if φ(x) = 0 in x < 1, it
follows that these two functionals are linearly independent for any z /∈ −N.

Thus the space of homogeneous distributions of degree z must be at least 2-
dimensional for any z /∈ −N.

Now, consider the Fourier transform of a homogeneous distribution u. By defi-
nition if φ ∈ S(R) and a > 0,

(12) (φ̂)(
ξ

a
) =

∫
e−ixξ/aφ(x)dx = a

∫
e−itξφ(at)dt = aFφ(a·).

Thus from the definition of the Fourier transform of distributions and the homo-
geneity of u,

(13) û(φ(
·
a

)) = u(F(φ(
·
a

))) = a−1u((φ̂)(a·)) = a−z−1u(φ̂) = a−z−1û(φ).

That is,

(14) u homogeneous of degree z ⇐⇒ û homogeneous of degree − z − 1.

The arguments above for z /∈ −N therefore also apply to show that the space of
homogeneous distributions is at least two-dimensional for all −z − 1 /∈ −N, that is
z /∈ N0. So indeed the argument applies for all z ∈ C.

I did not do the rest of the argument in class because we are missing a couple of
the intgredients.

To complete the proof that the space of homogeneous distributions is exactly two
dimensional we need to localize away from zero, Since φ(x/a) depends smoothly
on a as an element of S(R) it follows that we can differentiate the homogeneity
identity (11) and conclude that Euler’s identity holds

(15) x
du

dx
− zu = 0.

In x >, 0 xz is smooth so the product x−zu is well-defined and satisfies

(16)
d

dx
(x−zu) = 0 =⇒ u = cxz in x > 0

for some constant c. Since xz+ = xz in x > 0, a similar argument in x < 0 shows
that provided z /∈ −N (so that xz± are well-defined) there are constant c, d such
that

(17) supp(u− cxz+ − dxx−) ⊂ {0}.

It follows that u− cxz+ − dxx− is a finite sum of derivatives of δ. The kth derivative
has homogeneity −k − 1, so by scaling it follows that

(18) u = cxz+ + dxz−, z /∈ −N.

Thus the space of homogeneous distributions is two dimensional in these cases. The
Fourier transform argument above shows that this must be true in general. �



L5 5

Department of Mathematics, Massachusetts Institute of Technology
E-mail address: rbm@math.mit.edu


