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RICHARD MELROSE

ABSTRACT. Notes before and then after lecture.

I decided I would spend the four remaining lectures discussing some aspects
of analysis on manifolds — in particular the Laplace-Beltrami operator and Hodge
Laplacian. Originally T had planned to talk about scattering theory but Semyon
Dyatlov will be devote much of 18.156 to this next semester.

I assume you know about manifolds but let me start from the beginning in
principle so that we agree on notation.

BEFORE LECTURE

e A diffeomorphisms of open sets in Euclidean space; F : Q — ', Q C R,
Q cRY open is a smooth map which is a bijection with a smooth inverse,
necessarily n = n’ if the sets are non-empty. Equivalently F*u = wo F
induces a bijection

F*:C®(Q) — C=(Q) or
F*:C(Q) — CZ(Q).
e We need to understand the behaviour of various functionals and spaces

under diffeomorphisms. The most basic of these is the integral for which
the transformation property is well-known.

(L22.1)

Proposition 1. If F : Q — Q' is a diffeomorphism between open subsets
of R™ and u € C°(Y') then

(L22.2) /QF*u(x)\J(xﬂdx = /, u(y)dy, J(z) = det

OF;(x)
830.7' '

The presence of this ‘Jacobian factor’ in the integral is the reason that
the integral of a compactly supported smooth function on a manifold is not
invariantly defined.

Definition 1. A smooth manifold is a metrizable topological space M (con-

nected unless stated explicitly otherwise) with a given space F(M) C

CO(M) of ‘smooth functions’ where

(1) M has a covering by open sets U, for each of which there are elements
z; € F(M),j=1,...,nsuchthat F : Uy 3 p+— (z1(p),...,za(p)) €
R™ is a homeomorphism to an open set U/, C R™ and

F*:C>(U.) — C°(M) has range precisely

{ue F(M);u=00on M\ K, K € U,}.
1
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(2) F(M) has the sheaf property that for any open covering U, of M if
u € C°(M) and for each « there exists v, € F(M) such that u = v,
on U, then u € F(M).

We then write C*°(M) = F(M); if the second condition fails simply
define C*°(M) by this condition for an open cover by coordinate patches
as in the first condition and check that the definition then holds. Thus the
second part is a ‘maximality’ condition on C*°(M).

e The standard definition.

e Examples include (connected) open subsets of R™, spheres and other em-
bedded submanifolds of RY and quotients such as the torus.

e Today I want to get as far as defining the analogues of spaces we have
talked about

(L22.3) CX(M) —=C®(M) s>s C®(M)
HE (M) —— Hi, (M) H*(M)

’

(a) H (M)

C(M) — C~(M) C=°(M)

where the second column is for M compact and all arrows are dense injec-
tions.

e In principle this is easy — we just identify the spaces locally. For s > 0 the
resulting objects are functions by for s < 0 may not be so. We could still
define abstract sheaves but we really want the duality idea that we started
with and that leads us to define (and explain)

(L22.4) C(M;V) =CX(M; V' @ Q), C°(M;V) =C®(M; V' ® Q)

for any vector bundle V' over M.
e The core point here is the existence of an invariantly-defined integral; this
is what is behind (L22.4):

(L22.5) / :C(M; Q) — C.
M

e There are many manifolds which are ‘functorially associated’ to a given

manifold M. The primary ones are the tangent and cotangent bundles. As

sets these are unions over M of vector spaces
(L22.6)

T™M = () T,M, T,M = {v:C*(M;R) — R;v(fg) = f(p)ol9) + g(p)v()}

peEM

T°M = (| TyM, TyM =1,/I2, T, = {v € C*(M;R);v(p) = 0}, I = sp{fg; f, g € L,}.

peEM



(L22.7)

1)

(L22.8)

L22 3

The tangent space T),M is the space of derivations on C>° (M) at p. Observe
that there is a pairing

T,M x TyM > (v,[f]) = vf € R.

This is a ‘perfect pairing’ identifying each as the dual of the other.
Vector bundles, densities and distributions.
Operators

AFTER LECTURE

Here is a proof that either of the conditions in (L22.1) is equivalent to F
being a diffeomorphism.

That F being a diffeomorphism implies (1.22.1) is straightforward —
the pull-back under a smooth map F : @ — Q' always defines a linear
map

F* 2 0(Q) — C(Q),

by the chain rule. Then the inverse G = F~! defines a linear map G* :
C>®(Q)) — C>°(Y) which is a 2-sided inverse to F*. Since F is a homeomor-
phism F~1(K) is compact if K € ' (since it is G(K)) and so the second
part of (L.22.1) follows from the first part when F' is a diffeomorphism.

Conversely, if F': Q@ — Q' is a map such that F'* defines a bijection as
in the first part of (L22.1) then, since the components of F' = (F},..., F,)
are the pull-backs of the coordinate functions y; on € it follows that F
is smooth. Similarly the restrictions to € of the coordinate functions x;
on R™ are elements of C*°(£2) and so of the form F*g; = g; o F' for some
elements g; € C>(Y). Thus G(y) = (g1(y),...,9n(y)) defines a smooth
map G : Q' — R" such that G o F(z) = (F*q1)(x),...,(F*gn)(z)) =
(xl,...,xn)‘g, ie. GoF =1dg so G : ¥ — Q is a left inverse of F. It
follows that F* o G* = Id so G* is a right inverse of F* as a linear map
and since F™* is a bijection G* is the two-sided inverse. The same argument
with variables reversed shows that G is a two-sided inverse of F' which is
therefore a diffeomorphism.

If the second version of (L22.1) is assumed instead of the first it follows
directly that F': @ — Q' is proper. More precisely, if K is an exhaustion
by compact sets of €, with K11 C int K; then there is a corresponding
sequence x; € C°(int K;) with x; = 1 on K;_q. Since F*y; € C(Q) it
follows that f~!(K;) is a compact exhaustion of 2. Now a function u on €/
is in C*°(€Y') if and only if it is equal to some element v; € C°(') on each
K. It follows that F*u € C°(2) and conversely. Thus the second version
of (L22.1) implies the first.

Now, consider the identity (1.22.2) which is of course a well-known result
from measure theory (and the regularity hypotheses on F' can be weakened).
However, just because we can, let’s use distribution theory to prove it.
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Since we know that if F' is a diffeomorphism then F* is a continuous
bijection as in (L22.1) we can consider the integral over Q' as a functional

(L22.9) T:C°(Q)5v— | GrodyeC =
QI

31 eC(Q) s.t. G'v=1I(v)= ‘/I(w)v(x)dw'.
Q/
So to prove (1.22.2) we only need to show that I actually is the smooth
function |J(x)|.
We can see directly that the functional U is bounded by the supremum
norm of v for supp(v) C K € ( fixed, since

sup |G*v| = sup |v|.
Since this is a stronger norm than L? this implies that I € L2 (Q) by

loc
Riesz’ Representation Theorem. Mover, we can ‘compute’ the derivatives
of U since
ajI(’U) = 71(783‘1)) = */ G*(ajv),
(L22.10)

G*(9;0) = (9;)(9(v) = >_ w;i(y)dy, (G*v(y)), wji(z) = (Dig;(y) ™"
=1

by the chain rule where we use the invertibility of the Jacobian matrix.
Integrating by parts in the integral it follows that 9;1 € L% (Q) as well.
Iterating the argument for higher derivatives shows that indeed I € C*°(£2).

So now it follows that the distribution I extends by continuity to all
v € C;°(02). Consider what happens then for v = §z, the Dirac delta at
some point Z € . We can use the limit dz = lim.joe "x((x — &)/¢) for
some bump function of integral one. Then

(L22.11) G (e"x((- = 2)/e)(y) = e "x((g(y) — 9(@))/0), (@) =7.

Ezercise 1. Show (just using the behaviour of the Riemann integral under
linear transformations) that as a sequence of compactly supported distri-
bution on ¢V,

(122.12) [ xtto) - g(@) /0 — et §

95 -1/~
S @)

From this it follows that I(z) = | det 3%|~1(g) = |.J/(z)| and this in turn

proves (L22.2) — which you knew anyway.
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