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RICHARD MELROSE

Abstract. Notes before and then after lecture.

I decided I would spend the four remaining lectures discussing some aspects
of analysis on manifolds – in particular the Laplace-Beltrami operator and Hodge
Laplacian. Originally I had planned to talk about scattering theory but Semyon
Dyatlov will be devote much of 18.156 to this next semester.

I assume you know about manifolds but let me start from the beginning in
principle so that we agree on notation.

Before lecture

• A diffeomorphisms of open sets in Euclidean space; F : Ω −→ Ω′, Ω ⊂ Rn,
Ω′ ⊂ Rn′

open is a smooth map which is a bijection with a smooth inverse,
necessarily n = n′ if the sets are non-empty. Equivalently F ∗u = u ◦ F
induces a bijection

(L22.1)
F ∗ : C∞(Ω′) −→ C∞(Ω) or

F ∗ : C∞c (Ω′) −→ C∞c (Ω).

• We need to understand the behaviour of various functionals and spaces
under diffeomorphisms. The most basic of these is the integral for which
the transformation property is well-known.

Proposition 1. If F : Ω −→ Ω′ is a diffeomorphism between open subsets
of Rn and u ∈ C∞c (Ω′) then

(L22.2)

∫
Ω

F ∗u(x)|J(x)|dx =

∫
Ω′
u(y)dy, J(x) = det

∂Fi(x)

∂xj
.

The presence of this ‘Jacobian factor’ in the integral is the reason that
the integral of a compactly supported smooth function on a manifold is not
invariantly defined.
•

Definition 1. A smooth manifold is a metrizable topological space M (con-
nected unless stated explicitly otherwise) with a given space F(M) ⊂
C0(M) of ‘smooth functions’ where
(1) M has a covering by open sets Uα for each of which there are elements

xj ∈ F(M), j = 1, . . . , n such that F : Uα 3 p 7−→ (x1(p), . . . , xn(p)) ∈
Rn is a homeomorphism to an open set U ′α ⊂ Rn and

F ∗ : C∞c (U ′α) −→ C0(M) has range precisely

{u ∈ F(M);u = 0 on M \K, K b Uα}.
1



2 RICHARD MELROSE

(2) F(M) has the sheaf property that for any open covering Uα of M if
u ∈ C0(M) and for each α there exists vα ∈ F(M) such that u = vα
on Uα then u ∈ F(M).

We then write C∞(M) = F(M); if the second condition fails simply
define C∞(M) by this condition for an open cover by coordinate patches
as in the first condition and check that the definition then holds. Thus the
second part is a ‘maximality’ condition on C∞(M).
• The standard definition.
• Examples include (connected) open subsets of Rn, spheres and other em-

bedded submanifolds of RN and quotients such as the torus.
• Today I want to get as far as defining the analogues of spaces we have

talked about

(L22.3) C∞c (M) //

��

C∞(M)

��
Hs

c (M) //

��

Hs
loc(M)

��
Hs′

c (M) //

��

Hs′

loc(M)

��
C−∞c (M) // C−∞(M)

s ≥ s′ C∞(M)

��
Hs(M)

��
Hs′(M)

��
C−∞(M)

where the second column is for M compact and all arrows are dense injec-
tions.
• In principle this is easy – we just identify the spaces locally. For s ≥ 0 the

resulting objects are functions by for s < 0 may not be so. We could still
define abstract sheaves but we really want the duality idea that we started
with and that leads us to define (and explain)

(L22.4) C−∞(M ;V ) = C∞c (M ;V ′ ⊗ Ω)′, C−∞c (M ;V ) = C∞(M ;V ′ ⊗ Ω)′

for any vector bundle V over M.
• The core point here is the existence of an invariantly-defined integral; this

is what is behind (L22.4):

(L22.5)

∫
M

: C∞c (M ; Ω) −→ C.

• There are many manifolds which are ‘functorially associated’ to a given
manifold M. The primary ones are the tangent and cotangent bundles. As
sets these are unions over M of vector spaces

(L22.6)

TM =
⋂
p∈M

TpM, TpM = {v : C∞(M ;R) −→ R; v(fg) = f(p)v(g) + g(p)v(f)}

T ∗M =
⋂
p∈M

T ∗pM, T ∗pM = Ip/I2
p , Ip = {v ∈ C∞(M ;R); v(p) = 0}, I2

p = sp{fg; f, g ∈ Ip}.
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The tangent space TpM is the space of derivations on C∞(M) at p. Observe
that there is a pairing

(L22.7) TpM × T ∗pM 3 (v, [f ]) 7−→ vf ∈ R.

This is a ‘perfect pairing’ identifying each as the dual of the other.
• Vector bundles, densities and distributions.
• Operators

After lecture

(1) Here is a proof that either of the conditions in (L22.1) is equivalent to F
being a diffeomorphism.

That F being a diffeomorphism implies (L22.1) is straightforward –
the pull-back under a smooth map F : Ω −→ Ω′ always defines a linear
map

(L22.8) F ∗ : C∞(Ω′) −→ C∞(Ω),

by the chain rule. Then the inverse G = F−1 defines a linear map G∗ :
C∞(Ω) −→ C∞(Ω′) which is a 2-sided inverse to F ∗. Since F is a homeomor-
phism F−1(K) is compact if K b Ω′ (since it is G(K)) and so the second
part of (L22.1) follows from the first part when F is a diffeomorphism.

Conversely, if F : Ω −→ Ω′ is a map such that F ∗ defines a bijection as
in the first part of (L22.1) then, since the components of F = (F1, . . . , Fn)
are the pull-backs of the coordinate functions yi on Ω′ it follows that F
is smooth. Similarly the restrictions to Ω of the coordinate functions xj
on Rn are elements of C∞(Ω) and so of the form F ∗gj = gj ◦ F for some
elements gj ∈ C∞(Ω′). Thus G(y) = (g1(y), . . . , gn(y)) defines a smooth
map G : Ω′ −→ Rn such that G ◦ F (x) = ((F ∗g1)(x), . . . , (F ∗gn)(x)) =
(x1, . . . , xn)

∣∣
Ω
, i.e. G ◦ F = IdΩ so G : Ω′ −→ Ω is a left inverse of F. It

follows that F ∗ ◦ G∗ = Id so G∗ is a right inverse of F ∗ as a linear map
and since F ∗ is a bijection G∗ is the two-sided inverse. The same argument
with variables reversed shows that G is a two-sided inverse of F which is
therefore a diffeomorphism.

If the second version of (L22.1) is assumed instead of the first it follows
directly that F : Ω −→ Ω′ is proper. More precisely, if Kj is an exhaustion
by compact sets of Ω′, with Kj+1 ⊂ intKj then there is a corresponding
sequence χj ∈ C∞c (intKj) with χj = 1 on Kj−1. Since F ∗χj ∈ C∞c (Ω) it
follows that f−1(Kj) is a compact exhaustion of Ω. Now a function u on Ω′

is in C∞(Ω′) if and only if it is equal to some element vj ∈ C∞c (Ω′) on each
Kj . It follows that F ∗u ∈ C∞c (Ω) and conversely. Thus the second version
of (L22.1) implies the first.

(2) Now, consider the identity (L22.2) which is of course a well-known result
from measure theory (and the regularity hypotheses on F can be weakened).
However, just because we can, let’s use distribution theory to prove it.
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Since we know that if F is a diffeomorphism then F ∗ is a continuous
bijection as in (L22.1) we can consider the integral over Ω′ as a functional

(L22.9) I : C∞c (Ω) 3 v −→
∫

Ω′
G∗vdy ∈ C =⇒

∃ I ∈ C−∞(Ω) s.t.

∫
Ω′
G∗v = I(v) = ‘

∫
I(x)v(x)dx′.

So to prove (L22.2) we only need to show that I actually is the smooth
function |J(x)|.

We can see directly that the functional U is bounded by the supremum
norm of v for supp(v) ⊂ K b Ω fixed, since

sup |G∗v| = sup |v|.
Since this is a stronger norm than L2 this implies that I ∈ L2

loc(Ω) by
Riesz’ Representation Theorem. Mover, we can ‘compute’ the derivatives
of U since

(L22.10)

∂jI(v) = −I(−∂jv) = −
∫

Ω′
G∗(∂jv),

G∗(∂jv) = (∂jv)(g(y)) =

j∑
i=1

wji(y)∂yj (G∗v(y)), wji(x) = (∂igj(y))−1

by the chain rule where we use the invertibility of the Jacobian matrix.
Integrating by parts in the integral it follows that ∂jI ∈ L2

loc(Ω) as well.
Iterating the argument for higher derivatives shows that indeed I ∈ C∞(Ω).

So now it follows that the distribution I extends by continuity to all
v ∈ C−∞c (Ω). Consider what happens then for v = δx̄, the Dirac delta at
some point x̄ ∈ Ω. We can use the limit δx̄ = limε↓0 ε

−nχ((x − x̄)/ε) for
some bump function of integral one. Then

(L22.11) G∗
(
ε−nχ((· − x̄)/ε)

(
y) = ε−nχ((g(y)− g(ȳ))/ε), f(x̄) = ȳ.

Exercise 1. Show (just using the behaviour of the Riemann integral under
linear transformations) that as a sequence of compactly supported distri-
bution on Ω′,

(L22.12)

∫
ε−nχ((g(y)− g(ȳ))/ε)→ |det

∂gj
∂yi
|−1(ȳ).

From this it follows that I(x̄) = |det
∂gj
∂yi
|−1(ȳ) = |J(x̄)| and this in turn

proves (L22.2) – which you knew anyway.
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